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Abstract

The CS 5604: Information Storage and Retrieval class (Fall 2022), led by Dr. Edward Fox,
has been assigned the task of designing and implementing a state-of-the-art information
retrieval and analysis system that will support Electronic Theses & Dissertations (ETDs).
Given a large collection of ETDs, we want to run different kinds of learning algorithms to
categorize them into logical groups, and by the end, be able to suggest to an end-user the
documents which are strongly related to the one they are looking for. The overall goal for
the project is to have a service that can upload, search, and retrieve ETDs with their derived
digital objects, in a human-readable format. Specifically, our team is tasked with analyzing
documents using object detection and topic models, with the final deliverable being the Ex-
perimenter web page for the derived objects and topics. The object detection team worked
with Faster R-CNN and YOLOv7 models, and implemented post-processing rules for saving
objects in a structured format. As the final deliverable for object detection, inference on 5k
ETDs has been completed, and the refined objects have been saved to the Repository. The
topic modeling team worked with clustering ETDs to 10, 25, 50, and 100 topics with different
models (LDA, NeuralLDA, CTM, ProdLDA). As the final deliverable for topic modeling,
we store the related topics and related documents for 5k ETDs in the Team 1 database, so
that Team 2 could provide the related topic and documents on the documents page. By
the end of the semester, the team had the deliverables being the Experimenter web page for
the derived objects and topics, and the related objects and topics for 5k ETDs stored in the
Team 1 database.

Keywords: ETD, electronic theses and dissertations, deep learning, object detection, topic
modeling
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Chapter 1

Overview

1.1 Introduction

In 1997, Virginia Tech was the first university to require its students to submit their theses
and dissertations (ETDs) electronically. Recent research at Virginia Tech and Old Dominion
University has collected over 500,000 ETDs from around the USA that provides our corpus.
Accordingly, we are trying to make them more accessible for searching by extracting the
metadata, chapters, abstracts, table of contents, figures, and so on as well as implementing
topic modeling algorithms to obtain a list of the most relevant topics associated with the
document files. Eventually, users will have access to the ETDs through the web pages
developed by the Fall 2022 CS5604 class. In this report, we discuss the pipeline of our work
as well as the architecture, design, and implementation of the underlying algorithms that we
have employed.

There are 5 teams to achieve this goal. A curator team (Team 1) stores the ETDs and
outputs from other teams and provides APIs to access this data. Another team (Team 2) for
the front-end user persona allows users to search ETDs and use a recommendation system.
Our team will experiment with topic models and object detection which will ultimately
allow searching of ETDs through specific topics by a chapter and section level. Team 1
enables uploading all data contained in an ETD to the database. Another experimenter
team (Team 4) would deal with analysis of ETDs through language models, classification,
and summarization by a chapter and section level. All of the services would be provided by
the DevOps team (Team 5) that would provide CI/CD services through Docker containers.

Our role in this project will be experimenting with topic models and object detection. The
refined objects from the object detection pipeline along with the list of topics from the topic
modeling pipeline will be fed into Team 1’s Repository. Figure 1.1 shows the general pipeline
that our Objects & Topics team has been following throughout the semester.

The object detection subteam will extract the ETD objects using YOLOv7 and Faster R-
CNN (Detectron2), and work on post-processing logic to parse the text and image objects
from the detection. Both the list of objects (un-ordered set) and the ETD hierarchy would
be stored in separate data structures, which would be used to generate an XML file, and
create RDF Triples to be stored in the Knowledge Graph. The outputs can then be accessed
from the Repository by other teams for downstream tasks.
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Figure 1.1: Complete pipeline diagram

The topic modeling team will train the models based on ETDs and segmented chapters gen-
erated by the object detection team, and work on topic modeling and clustering algorithms.

We use Team 1’s API to store the ETD objects as well as the list of topics in the Repository.
The complete pipeline will be explained in detail in the following sections.

1.2 Project Management

Actively managing human resources to get work done efficiently is one of the key requirements
in this project. There are a host of project tracking tools like JIRA, Google Tasks, and Trello
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which can be clubbed with Git integration to track who is working on which feature and
what all code changes has been done towards a particular task.

For our team communication, we decided to use Google Tasks owing to its simplicity. We
keep track of the progress of this project through weekly meetings, where each of us updates
the others with the current progress and challenges faced. Thus whenever some issue comes
up, everyone can instantly resolve that issue together. Besides, our project client could assign
tasks and set due dates, so the work flow is transparent and efficient.
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Chapter 2

Literature Review

Research exploration of literature is a time consuming process. A researcher has to go
through hundreds of documents, filter out the ones which are of interest and develop further
analysis. This iteration has to go multiple times in most cases. Our class is collaborating
with the University Library at Virginia Tech [1] to build an information storage and retrieval
system to help speed up that process. They have given us a collection of over 500,000 ETDs
[2] from different universities across the country. Each ETD has some metadata fields which
will be described in the subsequent sections. Along with the data, we have the full text and
the PDF version of the ETD document. At present, topic modeling and object detection
models are helping literature reviewers by suggesting papers which can be more relevant to
the reader.

2.1 Dataset

Our dataset has more than 500K ETDs ranging from 1845 to 2020, but most of them are
published after 1945.

2.1.1 Object Detection

The labeling for the ETD objects was done using Roboflow [3], a free online labeling tool.
There are 24 categories that were identified and labeled which were deemed common in
ETDs such as paragraph, figure, and table. Table 2.1 contains all the categories that the
detection model will identify. There are 20 text-based classes, and 4 image-based classes.

The labeling was provided to us from 6 undergraduate students working during the Spring
2022 semester [4]. The dataset contains both born digital and scanned ETDs. During the
Summer 2022 semester, our Subject Matter Expert (SME) augmented the dataset to add
to the final object count of ∼25K pages (∼100K objects) to get the dataset we are working
with for this project.
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Table 2.1: ETD Categories

Category #Instances
Title 439
Author 404
Date 338
University 309
Committee 282
Degree 279
Abstract Heading 169
Abstract Text 183
List of Contents Heading 512
List of Contents Text 1059
Chapter Title 2211
Section 9337
Paragraph 30359
Figure 6359
Figure Caption 5722
Table 2654
Table Caption 2213
Equation 5092
Equation Caption 3051
Algorithm 96
Footnote 5722
Page Number 24543
Reference Heading 313
Reference Text 2088

Total Objects 99859
Total Images 25073

2.1.2 Topic Modeling

The dataset contains the basic information of ETDs, such as ETD ID, title, and abstract. We
took the title and abstract as our analyzing target. We also segmented chapters generated
by the object detection group as extra analyzing targets.
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2.2 Object Detection

We plan on evaluating our object detection pipeline using two models – Faster R-CNN and
YOLOv7, as each of them has a distinct advantage.

Faster R-CNN, which was originally published in 2015 [5], is the third iteration of the R-
CNN architecture [6] published by Ross Girshick et al. A second version called Fast R-
CNN [7] replaced R-CNN’s selective search algorithm with the Region of Interest (RoI)
Pooling that enabled sharing expensive computations and made the inference much quicker.
Faster R-CNN introduced a Region Proposal Network (RPN) that can be trained end-to-
end with the CNN to generate high quality proposals using the feature maps from the
CNN. It is to be noted that the original Faster R-CNN implementation used a standard
VGG-16 backbone architecture for the CNN, whereas in the framework that we are using,
Facebook AI Research’s Detectron2 [8], there are object detection models built on top of
Faster R-CNN with advanced architectures that perform really well. Though Faster R-CNN
remained the state-of-the-art for years, it has been replaced by models with better speed vs.
accuracy trade-offs such as the newer iterations of YOLO models. YOLOv7 has the highest
accuracy of 56.8 percent average precision [9] when trained on the MS COCO dataset [14]
from scratch without using pre-trained weights, and it outperforms both transformer-based
object detectors and convolution-based object detectors in real-time. However, it is to be
noted that most of our work concerning ETDs is done offline; they are processed in batches.
Thus, the inclusion of both YOLO and Faster R-CNN models in the Experimenter web page
would be beneficial.

2.3 Topic Modeling

In recent years, there have been many advances in the fields of text mining and natural
language processing (NLP). Topic modeling in the analysis of ETDs aims to extract thematic
collections of words that could represent topics from a large corpus of text documents. Several
topic modeling algorithms have been proposed over the years. Earlier works such as Latent
Dirichlet Allocation (LDA) [10] were based on the idea of probabilistic formulation of topics.
Recent works in the domain of topic modeling include neural topic models such as NeuralLDA
[11], ProdLDA [11], and CTM [12]. The representations learned from topic models can be
used for downstream tasks that rely on document representations, such as finding similar
documents (document recommendation), finding similar topics, and analyzing the variation
of topics over time.
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2.4 Tools

2.4.1 PyTorch

PyTorch [13] is a widely used open-source machine learning framework originally developed
by Meta AI. A majority of the deep learning projects that are in deployment now use
PyTorch. It supports Python [21] natively while also having a C++ interface. PyTorch and
TensorFlow are considered to be the state-of-the-art frameworks for deep learning currently,
before which frameworks like Caffe [19] and Torch [22] used to be popular. A major advantage
in using PyTorch is that it provides much better GPU acceleration as it relies on Tensor
operations at the base level.

2.4.2 YOLOv7

YOLOv7 is a real-time object detector that has greatly advanced the computer vision and
machine learning world, as it is considered to be the fastest, and most accurate object
detector till date. For training the model on the COCO dataset [14], pretrained weights
were not used in the official YOLOv7 paper [9] by Chien-Yao Wang et al.

YOLOv7 uses a convolutional neural network to predict bounding boxes and class probabil-
ities considering the entire image at one step, unlike earlier object detection models which
use regions of the image to localize objects and images with high probabilities. The archi-
tecture is as follows – image frames are featured through a backbone (deep neural network
composed of many convolutional layers, and that is used to extract certain features) which
is then combined and mixed in the neck (additional layers between backbone and the head,
which are referred to as a copy of detectors to collect feature maps from different stages)
and then it finds the bounding boxes.

2.4.3 Detectron2

Detectron2 [8] is a framework for object detection built on top of PyTorch, developed by
Facebook AI Research (FAIR). It has support for a number of research projects in computer
vision and production applications within Facebook. It is a re-write from 2018’s Detectron,
which was written using Caffe2, which is now a part of PyTorch [13]. Besides object detection,
Detectron2 also has support for advanced deep learning tasks such as activity recognition,
semantic/instance segmentation, and several other tasks. Detectron2 has support for training
object detection models on custom datasets using pre-trained weights that are provided in
the official repository. All models in Detectron2 are pre-trained on the COCO dataset [14].
For our experiments, we would be using the Faster R-CNN models [5] present in Detectron2.
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Figure 2.1: Comparison between real-time object detectors [9]

2.4.4 pdf2image

pdf2image [15] is a useful Python module that converts a Portable Document Format (PDF)
file to PIL (Python Imaging Library) Image objects. The convert_from_path function
returns a PIL Image object that represents each page of the PDF for which the local path
is given as input. We implement this function as a pre-processing step to get the set of page
images which would be given as input to the object detection model. Also, we would be
storing the page images for ETDs in the Repository.

2.4.5 Flask

The Flask [16] framework is a lightweight web framework based on WSGI [17] implemented
in Python, so it is convenient and straightforward for us to integrate it with our back end
code. WSGI stands for Web Server Gateway Interface, and it describes how the web server
communicates with the web application. Due to the reason that it is a micro-framework
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architecture, it is flexible and highly scalable, with a wide selection of third-party libraries.
We can combine it with the Python libraries we need during the project development. In
addition, the extension of new web features and functionalities would be easy to build.
Besides, we also need the front-end technology, HTML, CSS, and JavaScript. HTML will
provide the basic structure of the website, and CSS will control the styling of the website,
while JavaScript will increase the interactivity with the users.

2.4.6 OCTIS

OCTIS (Optimizing and Comparing Topic models) [18] is a Python package that provides
implementation of various topic modeling algorithms like Latent Dirichlet Allocation (LDA)
[10], CTM [12], ProdLDA [11], and NeuralLDA [11]. The library also allows to evaluate the
results of an algorithm by using classification metrics, coherence metrics, diversity metrics,
and similarity metrics.
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Chapter 3

Requirements

In this chapter, we discuss the requirements of our team: Objects & Topics.

3.1 Data Requirements

Our object detection model is a supervised learning algorithm which needs labeled data,
i.e., each of the figures and tables within an ETD has to be explicitly listed for the training
algorithms to learn. For the topic modeling algorithm, no labeling is required as it is an
unsupervised algorithm. To satisfy our data requirements, Team 1 will be maintaining the
Repository with Read/Write APIs using which our model will ingest raw data and give out
processed output for catering to the end-users.

Although these were the proposed requirements, Team 1 wanted us to give them the model
code for them to run and populate their own Repository. However, after discussing more
with Team 1, we decided that it was better to store objects in the Repository using their
POST APIs. We will discuss this in more detail in the following sections.

3.2 Processing Requirements

Both the object detection and topic modeling experiments are resource intensive. Due to the
large volume of input data, we need GPUs (which are specialized hardware having several
processors designed to perform one difficult task unlike a CPU designed to do several different
tasks). A container on the cloud having the desired hardware will cater to our needs. For
this, Team 5 has initialized a Docker instance with GPU enabled for our team. However,
since the cloud server does not support Docker images larger than 20 GB in size, we had to
scale down the requirements, and update the container to support the frameworks that we
are using for both object detection and topic modeling.

10



Chapter 4

Design

4.1 Approach

As is shown in Figure 4.1, after creating the page images from the ETDs, we train YOLOv7
to extract objects such as the metadata, figures, tables, chapters, titles, and paragraphs
where some are image-based and some are text-based objects. To extract text from the PDF
images, we use OCR (for scanned PDFs) or PyMuPDF (for born digital PDFs). Finally, we
pass the refined image and text objects to Team 1.

4.2 Tools

The tools/frameworks that are used in this projects are listed as follows:

• VT CS Cloud [23]

• GitLab [24]

• Docker [20]

• Python [21], PyTorch[13], Flask [16]

• Detectron2 [8] and YOLOv7 [9]

• LDA [10], Neural LDA [11], ProdLDA [11], CTM [12]

• OCTIS [18]

4.3 Methodology

4.3.1 Object Detection

From our initial assessment of the object detection models, we were able to conclude that
YOLOv7 performs better than Faster R-CNN in terms of speed and accuracy for our use case,

11



Figure 4.1: Object Detection – pipeline diagram

which is extracting different objects from ETDs. Therefore, we focus on the YOLOv7 model
to implement our post-processing rules, though we give the experimenter the option to use
both models (YOLOv7 and Faster R-CNN) as an additional feature with hyper-parameter
tuning.

Personas: These include students and researchers who want to review work related to
their research area, librarians and university administration who want an overview of recent
research in their institutions, and experimenters working with object detection.

Goals: The object detection team is to provide an interface for the experimenter, supporting
analysis of the results of an experimental instance of detection, for a specified set of ETDs.
They will be able to run experiments with the Detectron2 and YOLOv7 models, with the
option to input their own set of hyper-parameters to assess the accuracy of both the model
and the post-processing rules.
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For other types of personas, various services involving detected objects will be provided by
other teams.

Next, we discuss the problems that came with the object detection models, and the solutions
we implemented post-detection.

False positives

Problem:

• Last line of the paragraph in the previous page is detected as a chapter title as in
Figure 4.2.

Solution (rule):

• Check the first letter of the title (capital).

• Avoid the text overflow for consecutive pages by checking the punctuation.

• Check if it is a subset of the table of contents.

Figure 4.2: Incorrectly detected chapter title – false positive

Problem:

• Image-based objects (figures, tables) and their corresponding captions might not be
on the same page as in Figure 4.3.

Solution (rule):

• Determine the relationship between figure/table and their corresponding captions.
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• Pair images with their corresponding captions according to the image being on top or
bottom of images, or in some cases left or right.

Figure 4.3: Incorrect caption detected – false positive

Problem:

• Chapter titles appear on multiple pages for the same chapter in some cases.

Solution (rule):

• Check if two consequent chapter titles are the same.

ETD Filtering Rules

The rules that we use to filter out incorrect detections, false positives, and map the hierarchy
between objects are as listed below:
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Rules for filtering chapters/sections (delimiters)

• The first letter of the detected text object should be capitalized.

• Whenever a new chapter tag is created (chapter title is detected), the last detected
object from the previous page is checked. If it is a paragraph object, and the last
character in paragraph is not ‘.’ then it is not considered to be a valid chapter tag.

• If a chapter title is the same as the previous chapter title, then a new chapter tag is
not created.

• An empty section tag is created when a body object other than section name or chapter
title is detected – this accounts for sections that do not have a chapter title or if the
model fails to detect the chapter or section title.

Rules for linking image-based objects with their captions

• This rule has been implemented for two image-based objects – figure and table.

• The relationship between figure/table and their corresponding caption is first deter-
mined – captions can either appear on top or bottom of the image-based objects.

• The images are paired with their corresponding captions according to this pattern,
assuming this pattern extends to the entire ETD.

• Exception to this rule – If the orientation of a page is is horizontal (landscape) then
the pattern might not be consistent with the other pages. To avoid this, each page’s
orientation is checked, and if found to be horizontal, it is rotated by 90° – and a new
set of detections (sorted by the y-axis) is obtained.

Getting rid of false positives based on matching with table of contents (ToC)

• Extract and save all the detected chapter titles, section titles, and page numbers using
the text from the ToC.

• Create two files from comparison of ToC lines and chapter titles, one of which has the
chapter titles similar to some lines of ToC, while the other has chapter titles that were
not found in ToC. The same goes with section names and page numbers.

• Filter out the chapter and section titles that have been incorrectly detected.
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Figure 4.4: Topic Modeling – pipeline diagram

4.3.2 Topic Modeling

Topic Modeling involves clustering documents into list of topics using tokens and finding
Nearest Neighbors using vectors to obtain most related documents. Earlier, the input com-
prised only of the ETD title and the overall abstract. But now, we incorporated the chapters
and their summaries from the Team 1 database as input to our model. Figure 4.4 shows the
complete data pipeline. As a result, our topic browser gives more fine-grained categories.
They now link to a list of chapters and list of ETDs.

Personas: These include students and researchers who want to review work related to
their research area, librarians and university administration who want an overview of recent
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research in their institutions, and experimenters working with topic modeling.

Goals:

1. Show the document topics based on different analysis models and numbers of desired
topics.
Right now, the services below are available to all the regular users who have the
experimenter page link, but we will require login authorization in the future. The user
will first select the model and the number of topics, which could refer to Figure 6.7.
Next, the user will press the button for “select topic,” which will lead the user to the
topic page that displays several topics with an index (e.g., indication of related digital
objects like ETDs and chapters) of the topic. After the user selects and presses the
index of the topic, a page with documents that are topically related will be displayed.

2. Show related documents needed by users through topic models and indexes.
The users first need to finish goal 1, then all relevant topics will be shown on a web
page. Users can visit all topics and choose what they are interested in.

3. Show documents by a timeline search engine on specific topics. The figure example
could refer to Figure 6.13.
The user needs to first select the model and the number of topics. Next, the user
will press the button for “select topic,” which will lead the user to the topic page that
displays several topics. After the user selects and presses the index of the topic, a
page with documents that are topics related will be displayed. The user can enter the
starting year, end year, and threshold on this page to search on the digital object(s)
they want.

4. Show most relevant topics for a search query.
The user inputs a set of keywords as a search query. Next, the user will select the
model name and number of topics. After clicking the search button, a page with the
top 10 results will be displayed where each result will indicate a topic (with associated
hyperlink). On clicking any of these search results, the users will be redirected to show
all of the documents connected with the selected topic.

4.4 Deliverables

4.4.1 Object Detection

Our deliverables for object detection include:

• Extracted objects which will be stored inside Team 1’s Repository.
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• Experimenter web page which chooses either a Detectron2 (Faster R-CNN) or YOLOv7
model and displays all the extracted objects given an ETD.

Figure 4.5: XML Schema
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The XML schema to store the refined ETD objects is shown in Figure 4.5.

Each PDF has its ETD ID as the root element, and there are 3 sub-elements – front, body,
and back. There are four image-based objects (figures, tables, equations, and algorithms)
whereas the rest are text-based objects. The image-based objects have captions or numbers
associated with them.

Table 4.1: Deliverables – ETD Objects

Output for a given ETD Description/Contents

Page images Each page of ETD is saved as a JPG file.

Detected objects Consists of sub-folders for each image-based object class
(figure, table, equation, algorithm) saved as JPG files.

JSON object Each object – text and image-based – is saved (un-
ordered set as per the detection sequence).

Parsed XML Detected objects in a tree structure with XML elements
set to the clean text for text-based objects, and the im-
age path for image-based objects.

Based on our discussions with Team 1, and assessing the overall requirements of the class,
we finalized the schema as shown in Table 4.1 to store our objects in the Repository.

An example JSON structure for a saved text-based object is in the following format:

{"type": “university",
“text": “University of California, Berkeley",
“page_num": 1, “bbox": [587, 1329, 1109, 1391]}

An example JSON structure for a saved image-based object is in the following format:

{“type": “figure",
"path": "1410_figure_98.jpg",
“page_num": 141, “bbox": [565, 170, 1140, 1887]}

The type key contains the class of the detected object (from a total of 24 classes as shown
in Table 2.1). The text and path keys are set to the clean text if it is a text-based object
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or the saved image path if it is an image-based object, and the bbox key consists of the
detected bounding box in this format: [x1, y1, x2, y2] where (x1, y1) represents the
top-left corner, and (x2, y2) represents the bottom-right corner of the bounding box.

We are using Team 1’s Save detected object (POST) API to store our objects.

https://team-1-flask.discovery.cs.vt.edu/v1/objects/<etd_id>/<type_name>

The <type_name> is set to page, text, image, and xml, to support different file types, and
services required by the other teams.

Table 4.2: Deliverables – Objects API

Type File Metadata

page <page_number>.jpg -

text - {keys = type, text, page_num, bbox}

image <etd_id>_<class>_<count>.jpg {keys = type, path, page_num, bbox}

xml <etd_id>.xml -

The objects are stored in the Repository as shown in Table 4.2.

The deliverables for the other teams are listed as follows:

• Team 2: Experimenter web page

• Team 4: Refined objects (with hierarchy) for the chapter segmentation model

• Team 5: The requirements for them to set up the Docker containers for the cloud
server, and provide services for workflow automation

We are providing Team 5 with 3 of our services (containerized), which are to be used for
workflow automation, and our front-end web page. The services are as follows:

• Generate page images given an ETD ID

• Generate outputs given an ETD ID - using YOLOv7

• Generate outputs given an ETD ID - using Faster R-CNN (Detectron2)
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These services are available through Docker images that generate the aforementioned outputs
when an ETD ID that exists in the Repository is specified as input while executing. The
first service splits a PDF into multiple pages and creates a sub-directory consisting of the
individual pages saved as JPG files. The second and third services generate the required
outputs (detected images, JSON objects, and the XML file) using YOLO and Faster R-CNN
models, respectively. The detailed instructions on how to use these services are given in
Section 7.

4.4.2 Topic Modeling

The deliverables for Topic Modeling include supporting APIs to return related topics and
documents for an ETD, and a Topic Browser which visualizes all of the topics generated
by the model and their respective documents. Table 4.3 lists the above mentioned points
succinctly.

Table 4.3: Deliverables for Topic Modelling

Output Description

Related Topics & Related Docs For a given ETD ID or Chapter ID, find the most similar
topics and documents.

Topic Browser (Experimenter) Allow a user to browse all topics, click on one and read
associated documents (Documents by Topic, Chapters
by Topic).

APIs

We are currently offering 3 kinds of API calls. The ETD embedding API call takes in the
model name, number of topics, and ETD ID, and returns a corresponding topic vector which
is a vector containing the probability of the document belonging to each of the k different
topics generated. The ETD related documents API takes in the model name, number of
topics, and ETD ID, and returns the most related documents, while the parameter top k
value is optional and defaults to 5 (related documents). The ETD related topics API takes
in the model name, number of topics, and ETD ID, and returns the most related topics,
while the parameter top k value is optional and defaults to 5 (related topics).

Code Sample – get Topic vector
GET /API/get_etd_embeddings/{model_name}/{num_topics}/{etd_id}
Path Parameters:

21



1. model_name: String
Slug for name of model. Can be either of LDA, CTM, NeuralLDA, or ProdLDA.

2. num_topics: Integer
Replace this with the number of topics to be generated. Has to be either of 10,
25, 50, or 100.

3. etd_id: Integer
Provide the etd_id for which you need the results.

Response (Valid Query):

Status: 200
> {"status":"success","vector":[0.0003150326374452561,
0.20719221234321594,0.01724390685558319,0.11466679722070694,
0.00031506028608419,0.000315034732921049,0.00031509360997006297,
0.00031502716592513025,0.00031508112442679703,0.00031509919790551066,
........ ]}

Response (Invalid Query):

Status: 200
> {"status":"failure", "message":"Given etd_id not found!"}

Code Sample – Get related Documents
GET /API/get_etd_relateddocs/{model_name}/{num_topics}/{etd_id}/{topk}
Path Parameters:

1. model_name: String
Slug for name of model. Can be either of LDA, CTM, NeuralLDA, or ProdLDA.

2. num_topics: Integer
Replace this with the number of topics to be generated. Has to be either of 10,
25, 50, or 100.

3. etd_id: Integer
Provide the etd_id for which you need the results.

4. topk: Integer
Provide the top K value, but this path parameter is optional and its default is 5
without specification.
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Response (Valid Query):

Status: 200
> {"status":"success","body":[218606, 63948, 321952, 91535, 241780]}

Response (Invalid Query):

Status: 200
> {"status":"failure", "message":"Given etd_id not found!"}

Code Sample – Get related Topics
GET /API/get_etd_relatedtopics/{model_name}/{num_topics}/{etd_id}/{topk}
Path Parameters:

1. model_name: String
Slug for name of model. Can be either of LDA, CTM, NeuralLDA, or ProdLDA.

2. num_topics: Integer
Replace this with the number of topics to be generated. Has to be either of 10,
25, 50, or 100.

3. etd_id: Integer
Provide the etd_id for which you need the results.

4. topk: Integer
Provide the top K value, but this path parameter is optional and its default is 5
without specification.

Response (Valid Query):

Status: 200
> {"status":"success","body":[11, 46, 70, 3, 22]}

Response (Invalid Query):

Status: 200
> {"status":"failure", "message":"Given etd_id not found!"}
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Services

In order to support workflow automation (Team 5) we have divided our task into 2 services:

• Given a dataset having several ETDs, pre-process and train a Topic Model to generate
a list of topics and their associated documents.

• For a given document (ETD/Chapter), return the top 5 most related topics and related
documents.

These services will provide data to other teams as well as to our experimenter page, i.e., the
Topic Browser.
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Chapter 5

Implementation

5.1 Milestones

5.1.1 Object Detection

In Table 5.1 we list the tasks completed by the Object Detection team.

Table 5.1: Object Detection Milestones

Timeline Tasks
1 Sept Get familiar with Detectron2 and YOLOv7
8 Sept Set up cloud server and get the model trained
13 Sept Set up object detection pipeline
19 Sept PDF to text using YOLOv7
23 Sept PDF to images using YOLOv7
30 Sept Parsing by chapters, sections and paragraphs
4 Oct Linking image based objects to caption / number
6 Oct API function to return a list of objects for an ETD
15 Oct Test parser logic and detect false positives
15 Oct Proposed rules method for removing false positives
15 Oct Complete object post-processing
21 Oct HTML generation for YOLOv7 from refined objects in a Flask app
24 Oct Team 1 deliverables – DB tasks (read/write)
28 Oct Added support for Detectron2 (Faster R-CNN)
28 Oct Finalized base models and parser logic for YOLOv7 and Faster R-CNN
1 Nov Integrated Detectron2 model with the Flask App
4 Nov Deployed the containerized Flask app on the cloud server
28 Nov Experiment with a bigger subset of the ETD dataset
Final Run inference on 5k ETDs using Team 1’s API to store into their DB
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5.1.2 Topic Modeling

In Table 5.2 we list out the tasks completed by the Topic Modeling team.

Table 5.2: Topic Modeling Milestones

Timeline Tasks
1 Sept Get familiar with LDA and OCTIS
8 Sept Run LDA from notebook on 500k dataset
13 Sept Create a table with etd_id and topic vector
19 Sept Set up Nearest Neighbour search
23 Sept Populate FaisNN with 230k ETD vectors from LDA model
23 Sept Perform similarity search (topic+document) through FaisNN
30 Sept Integrate FaisNN to Flask app
3 Oct Pagination of document results page
9 Oct Train on complete 500k ETD dataset and integrate with UI
13 Oct Improve topic filtering and query
13 Oct Display top-5 topics when topic search query is used
19 Oct Code refactoring and optimization for reducing load time
26 Oct API development and testing for populating Team 1’s database
28 Oct Chapter dataset generation, pre-processing and training using

XMLs from Object Detection
6 Nov Finalizing a Topic Browser front-end after trying multiple open source

options with dummy data
24 Nov Inference learning of chapters from ETD based model
27 Nov Topic Bubble data generation complete.
28 Nov Pushing all chapter’s related topics & docs to DB
1 Dec Push all ETD’s related topics & docs to DB
Final Set up workflow automation - Team 5

5.2 Developer Services and Workflow Automation

5.2.1 Object Detection

Since object detection inference is a resource intensive process, we have set up a GPU-
enabled container [25] (with the required dependencies installed) on the cloud [23]. It is to
be noted that support for both frameworks (YOLOv7 and Detectron2) has been included in
the Docker Image used for this container. Also, we have provided the services for our object
detection model (as explained in Section 4.4) packaged as separate Docker images to Team
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5 for workflow automation, and for other teams to use these services, if required.

For Continuous Integration and Continuous Development (CI/CD), we are using the Git-
Lab [27] instance on the cloud, maintained by Team 5. Currently, CI/CD features are only
enabled for our Flask application that is running on the cloud. The application essentially
converts the generated XML file to HTML, and renders it on the web page. Our front-end
web page, with its functionality, is explained in detail in Section 7.

Workflow automation for the entire object detection pipeline has not been set up by Team
5. However, a basic workflow for the YOLOv7 service that we provided, has been set up,
and is functional.

5.2.2 Topic Modeling

Since topic modeling training for a dataset is an expensive computation process, we did
not set up a GPU-enabled container for that; that can be done as future work if sufficient
resources are available for a suitable container. However, services that show our experimental
pages have already been containerized by Team 5.

For Continuous Integration and Continuous Development(CI/CD), we are using the GitLab
instance on the cloud, maintained by Team 5. These features have already been implemented
by Team 5 in the GitLab repository. The application basically shows our experimental pages.

Workflow automation for the entire topic modeling pipeline has been not been set up by
Team 5. However, a basic workflow for the Topic Browser application has been set up and
is functional.

5.3 Inference

5.3.1 Object Detection

Due to time constraints, the original dataset of 50k ETDs was scaled down to 5k ETDs in
order to align with the class goals. This collection of ETDs was given to us by Team 4,
and the entire class was tasked with using this subset for their experiments. Since work-
flow automation was not set up to automate the process of running inference using multiple
services, it was decided that we run the model on our containers, and use Team 1’s API
to store objects in the Repository. We are using a temporary directory on the container,
that stores the inputs (using the GET API) and outputs (from the model inference), and
finally the POST API is used to store the required files in the Repository. The file structure
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and outputs are as explained in Table 4.2. Inference on the 5k ETDs is completed, and the
results are saved successfully to the Repository.

The Get objects by ETD ID API can be used to get the saved objects, and files, by speci-
fying the <etd_id> and the <type_name>.

https://team-1-flask.discovery.cs.vt.edu/v1/etds/<etd_id>/objects?type=<type_name>

5.3.2 Topic Modeling

For a dataset size of 50k ETDs each having about 10 chapters, generating a model would
have needed much more memory than is available to us during the course. To combat this,
we have generated a model using just the 5k ETDs and performed inference for each chapter
to generate respective data (related topics and documents).

Figure 5.1 illustrates the inference process we followed for each chapter. We iterated on each
available chapter’s raw text, performed preliminary data cleaning, and used the cleaned text
as a query to perform similarity search on the model’s topicwordmatrix. This way we get
the top 5 related topics.

For related ETDs, we use the previously generated result of the top 5 topics to collect their
respective top 5 ETDs. The overall list has 25 candidate ETDs which we sort based on their
weights to get the top 5 related ETDs for the given chapter. This process is illustrated in
Figure 5.2.

5.4 Challenges

5.4.1 Object Detection

A major challenge that we faced while parsing the extracted objects is false positives, as
explained below. We implemented rules for the table of contents, chapters, sections, figures,
and tables. One of the biggest challenges is that detection is not always in the top-bottom
order for pages. This necessitates the creation of an XML tree since a hierarchy of the ETD
would be required for other tasks, such as segmenting an ETD into its constituent chapters,
and extracting image-based objects along with their corresponding captions. The XML tree
structure also can be employed to promote accessibility, such as to provide a good order for
a screen reader to follow when aiding those with low vision.

For various document parts and elements, the following lists some of the challenges, and
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Figure 5.1: Related Topics using inference learning

rules to help with the analysis and XML tree construction.

• Front Metadata:

1. Abstract is detected as title, and abstract text is detected as paragraph, and in
some cases they overflow into the next page as paragraphs.

2. Duplicate detections for some objects.

• Chapters and Sections (delimiters):

1. Finding the right chapter title, since in some cases, chapter titles are being either
not detected or wrongly detected.

2. Refining chapter title detection by removing outliers.
3. Finding if the keyword “chapter” is in the list of all detected chapter titles.
4. Difference in font size between chapter titles and other objects.
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Figure 5.2: Related Documents using inference learning

5. Checking the indentation level – left/center alignment because chapter titles are
either on the left side or at the center.

6. Chapter titles may appear on multiple pages as a header for the same chapter.

• Image-based Objects (algorithms, equations, tables, and figures):

1. Linking the captions/numbers with their associated images based on Euclidean
distance.

2. Linking the captions/numbers with their associated images when they overflow
into the next page.

5.4.2 Topic Modeling

The challenges faced in Topic Modeling overlap with the ones faced by the Object Detection
sub-team. If the chapters generated from an ETD have errors due to the nature of input
ETDs (like scanned images and random PDF layouts), then the output we get after using
the erroneous data will also be incorrect.

Other than that, there also is a challenge to fit as much training data into the limited
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amount of RAM available from the cloud. Finally, we decided to reduce the dataset size to
5000 ETDs to solve it but that is leading to the degradation of cluster output.

5.5 Evaluation

5.5.1 Object Detection

We randomly sampled a small subset (around 50 ETDs) from the original dataset to exper-
iment with our trained YOLOv7 and Faster R-CNN models, and tested both models with
different hyper-parameter settings. Then, we refined the extracted set of ETD objects with
our parser logic, and implemented the rules mentioned in Section 4.3.1 to filter out both
incorrect detections and false positives. We finalized the set of rules for post-processing and
extensively tested our parser logic with the object detection pipeline.

From running our model on the 5k ETDs, we observed that it takes around 1-2 minutes
for each ETD to run our model on a container with GPU (in the cloud). If the model is
run on a CPU without GPU, it takes about 5 minutes for each ETD. Before implementing
the post-processing rules for our model, about 20% of the chapter titles and 5 percent of
the captions were detected incorrectly, whereas after imposing the ETD filtering rules as
specified in Section 4.3.1, we brought down the incorrect detections to about 3-4%.

5.5.2 Topic Modeling

We initially processed 2000 ETDs and trained the model in order to save time and in-
crease efficiency. However, this also caused some unsatisfactory results in training, such as
repeated topics and inaccurate topics while describing documents. Therefore, in the subse-
quent large-scale data processing, we were able to record diversity and coherence to ensure
the acceptability of models, and we provided tables of diversity and coherence for users
to browse as a tip to choose different models and set the number of topics according to
their criteria. Below is the code snippet that shows how we determined the diversity and
coherence.

# Initialize metrics
npmi=Coherence(texts=dataset.get_corpus(), topk=10, measure='c_npmi')
topic_diversity = TopicDiversity(topk=10)
# Retrieve metrics score
topic_diversity_score = topic_diversity.score(output)
print("Topic diversity: "+str(topic_diversity_score))
npmi_score = npmi.score(output)
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print("Coherence: "+str(npmi_score))

5.6 Future Work

In the interest of continuous improvement, we recommend future work to extend our efforts
with both object detection and topic modeling. In this section we highlight the different
plans of action post-class which could be implemented in the future.

5.6.1 Object Detection

The object detection group has mostly worked on the model, post-processing rules, and
Experimenter UI. The biggest room for improvement was to be able to integrate better with
the overall information system that the class has worked on. Here are a few highlighted
downstream tasks that can be implemented to extend this project.

• Integrate the Flask app/Experimenter UI with the front-end and workflow services.

• Update our pipeline to support the Add an ETD service once Team 1 provides the API
for saving metadata.

• Set up more workflow automation.

• Add support for scanned documents, and modify the existing pipeline accordingly.

• Add more post-processing rules based on the results of the 5k dataset.

• Improve UI layout, and add more functionality such as choosing hyper-parameters.

• Add test routines to the CI/CD pipeline.

5.6.2 Topic Modeling

In the future, it would be helpful to implement more models and integrate them into the
topic browser. Besides that, the user interface can be further extended and improved. First
and foremost would be to connect the Topic Bubble UI and our Topic Browser, so that
users can switch between different applications. It also would help to further automate the
workflow of the Topic Bubble application. Secondly, it would help to integrate our UI with
Team 2 services, so that users who log in with accounts could access the experiment pages.
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Chapter 6

User Manual

6.1 Object Detection

The front-end web page that the object detection team provides is the web page for ex-
perimenters. Figures 6.1 and 6.2 are the proposed wireframes that the team has come up
with.

6.1.1 Proposed Wireframes

Figure 6.1: Object detection experimenter wireframe (Model selector page)

As is shown in Figure 6.2, the model selector page can support both the Detectron2 and
YOLOv7 models. This also gives customization for different model weights and hyper-
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parameters. The Experimenter will be able to access this page by the sidebar menu, after
logging in, and choosing object detection in the menu.

Figure 6.2: Object detection parsed ETD wireframe (Extracted ETD view page)

After choosing a model, the experimenter will be redirected to the extracted ETD view page.
As is shown in Figure 6.2, the generated XML from object detection will be used to generate
an HTML page. This page will show all objects extracted from an ETD using the order of
the XML schema, as discussed in Section 4.4.1.

6.1.2 Current Model

In order to visualize how the different models are producing the XML output on an ETD, we
developed a Flask application that produces an HTML web page from the object detection
model. In the future, we recommend that this be connected to the front-end website.
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Figure 6.3: ETD viewer model selector page

In Figure 6.3, the user is given a choice to choose between the Detectron2 and YOLOv7
models for object detection.

Figure 6.4: ETD viewer upload ETD page

After a user selects a model for object detection, they are given an option to upload a PDF
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of the ETD they want to perform the detection on. This is demonstrated in Figure 6.4.

Figure 6.5: ETD viewer with metadata page

Figure 6.6: ETD viewer with extracted image page

As is shown above, Figures 6.5 and 6.6 both show the produced HTML page that was
generated from the object detection model. Figure 6.5 highlights the metadata fields while
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Figure 6.6 shows the detected chapters and figures with linked captions extracted from
the ETD. VTechWorks has two files associated with this report that illustrates the object
detection results. One is the final class presentation. The other is an associated standalone
video, ETDViewerDemo.mp4, regarding the ETD viewer. In Table 6.1, we give the timeline
of events in ETDViewerDemo.mp4:

Table 6.1: Object Detection ETD viewer

Time Stamp Description
00:00 Shows how one would upload an ETD to the application.
00:10 Loading ETD and running object detection. The user will be able to see

the progress of the model.
00:41 Goes through the detected objects. The user is able to navigate to different

chapters and sections of the ETD.
00:43 Demonstrates the functionality of the sidebar.

6.2 Topic Modeling

The experimental front-end user interface (UI) encapsulates multiple downstream tasks and
services for users of a digital library. Figure 6.7 shows the entry point for an end-user. Once
the user selects a model and number of topics, the UI will lead the user to the topic list
page. Figure 6.8 gives the topic list where a user could select their interest. It will lead to
the documents page, shown in Figure 6.9, which gives an overview of ETDs related to that
topic. Users can expand the abstract by clicking the ‘show more button’ as in Figure 6.10.
Besides, users can click the title of the ETD and go to its documentation (see Figure 6.11)
which has related topics and similar documents. The full text page in Figure 6.12 includes
the full text URI button. The experimental system also supports filtering documents within
a time range and university. That will lead the user to the result as shown in Figure 6.13.
In order to provide a more intuitive and interactive UI, we made a Topic Modeling Bubble
chart as shown in Figure 6.14, where each topic bubble represents a topic. The size and color
of the topic bubble are determined by the number of documents related to that topic. Thus
the larger and more red a topic bubble is, the higher is the number of related documents.
After the user clicks a topic bubble, it will give a word cloud of the top 10 words in that
topic, as seen in Figure 6.15. The topic bubble will expand to a larger rounded square when
the user clicks on the blue expand button. That leads to the documents view and sources
view as shown in Figure 6.16. The documents view gives the top 20 ETDs related to that
topic, and shows the title and author information, while the sources view gives the author
distribution. Clicking a word in the word cloud view, works as a filter to only show the topic
bubble that contains the selected word. Meanwhile, it also presents the word weight in that
topic as a pie chart as shown in Figure 6.17. In order to provide a more vivid presentation of
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the interactive UI, we made a video, TopicBubbleDemo.mp4. The key times and associated
descriptions are shown in Table 6.2.

Table 6.2: Topic Modeling Topic Bubble UI

Time Stamp Description
00:16 Word cloud view after clicking the topic bubble
00:23 Documents view and sources view after clicking the blue expandable but-

ton
00:34 Filter words after clicking a word in the word cloud view
00:51 Locating the topic bubble by entering the topic number

Figure 6.7: Index Page shows searching topic by selecting topic model and number of topics
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Figure 6.8: Topic Page shows browsing topic which is ranked by number of documents

Figure 6.9: Topic Selected Page shows browsing documents in a selected topic
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Figure 6.10: Show more Button Page shows full text of abstract

Figure 6.11: Document Page shows specific information about the selected document
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Figure 6.12: Full Text URI Page shows full text source of the selected document

Figure 6.13: Filter Document Page shows filtering documents by start year, end year, thresh-
old, and university

41



Figure 6.14: Topic Bubble page shows topic bubble where each bubble is represented as a
topic

Figure 6.15: Topic bubble gives the word cloud view of the top 10 words when selecting a
topic bubble
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Figure 6.16: Topic bubble gives the documents view and sources view after clicking the
expand button

Figure 6.17: Clicking the word in the word cloud works as a filter to show only the topic
bubble that contains the word

43



Chapter 7

Developer Manual

In this chapter, we describe the onboarding steps which any interested developer can go
through in order to be able to contribute to this project.

7.1 Folder Structure

Navigating to the Team 3 folder in the cloud through “/tree/camelot/team3/” (see Figure
7.1) will show the user the top level topic modeling and object detection directories, which
contain the code used to perform the respective tasks. For object detection, the team has
two directories where object_detection is the folder with the APIs and Flask application,
which contains the post-processing rules that we have come up with over the semester, as
well as the code which utilizes Team 1’s API to upload detected objects. The other folder,
object_detection_refactored, contains the cleaned and refactored versions of both the Faster
R-CNN and YOLOv7 models, which are to be used going forward. The code repository is
organized such that it is easier to add support for other object detection models in the
future. There are still filtering rules and false positives that have not been addressed with
the refactored model. In the future it would help to add the post-processing rules that
were implemented in the original model (explained in Section 4.3.1), as there are only the
necessary rules to detect objects and build an XML structure, in the refactored version.
Both folders have the capability to run inference with either Detectron2 or YOLOv7.

Figure 7.1: Folder structure for Team 3
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7.2 Object Detection

7.2.1 Access

A new user needs to have access to the following:

1. VT Computer Science Cloud [23]

2. Team 3 container cluster [25]

3. The GitLab repository for our Flask application with CI/CD

7.2.2 Steps

To access the container cluster, you must first get the access code from the VT CS Cloud
website [23], illustrated in Figure 7.2 and explained below.

Figure 7.2: Folder structure for object detection

1. 5k_ETDs: This folder contains the files used to perform the batch upload of objects
to the Team 1 database.

2. detectron2: This folder contains the Detectron2 model.

3. Flask: This folder contains the Experimenter UI application.

4. flask_inputs: This folder contains the inputs that the Experimenter UI application
uses.

5. yolov7: This folder contains the YOLOv7 model.
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Saving Objects

1. Open the “/tree/camelot/team3/object_detection/5k_ETDs” directory in the con-
tainer.

2. Run the code below in a notebook. The “etd_id” can be replaced by the PDFs from
Team 1’s database by running the curl command and GET request using Team 1’s API.

!curl --output tmp/{etd_id}.pdf --request GET
https://team-1-flask.discovery.cs.vt.edu/v1/etds/{etd_id}/pdf

etd = f"tmp/{etd_id}.pdf"

!python ETDExtraction.py --source $etd --output "tmp"

3. After you run the cell, the objects are extracted and tagged, and they will be saved in
the “tmp” folder mentioned in the code above.

Running Flask

1. Navigate to the “/tree/camelot/team3/object_detection/Flask/xml_parser/” direc-
tory in the container.

2. Run the following commands to run the Flask app:

$ export FLASK_APP=flask_main.py
$ flask run --host=0.0.0.0 -p 5001

Services

1. We have packaged our code as multiple services provided to Team 5, to be used for
workflow automation, and for our front-end web page. A sample service (for our
YOLOv7 model) is available at Docker Hub. Use the following URL to see how the
service is to be used.
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https://hub.docker.com/layers/nirmal2519/yolo/0.4/images/
sha256-64754d9407c042dc6f277e3261fc46fbeb8bc0f9fc78ecd79417f51927d173c3?
context=explore

2. Run the Docker image, and execute the following command:

$ python ETDExtraction.py \
--source test/CMU-ISR-16-113.pdf \
--output test

3. There is a sample ETD (CMU-ISR-16-113.pdf) in the Docker image for testing. Once
this command is executed, the outputs as shown in Table 4.1 would be generated in
the root directory for the sample ETD.

7.3 Topic Modeling

For Topic Modelling, we will be using the ETD Dataset to train various models in a Jupyter
notebook which will generate pickle files corresponding to each model. Now, these model
files will be referred to by the Flask application to serve APIs or display the results to a
user’s queries. For a developer to start contributing, one needs to follow the steps mentioned
in the following sections.

7.3.1 Access

A new user needs to have access to the following tools:

1. VT Computer Science Cloud [23]

2. Team 3 Topic Modeling container cluster [26]

3. The Git repository for our Flask application

7.3.2 Steps

1. Look for the ETD dataset stored in the “/tree/camelot/team3/topicmodeling/5k_ETDs”
directory in the container. This file will be available in a CSV format. In this work we
used the dataset containing 5000 entries which was available both locally at the above
path and through API call from Team 1. Note that in the future, a bigger dataset can
be used as appropriate.
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Figure 7.3: A snapshot of topic_model.ipynb

2. Open the topic_model.ipynb Python notebook location at path “data/team3/topic_
modelling/TextMining/Code” in the container as shown in Figure 7.3.

3. By running all the cells, all the pre-requisites will be downloaded. Then the pre-
processing steps and clustering will be done to generate the required output.

4. To make changes, git checkout to a new branch and add your code to the notebook.

5. After validating your code, add the new changes to ETD.py, which is the Flask appli-
cation running the backend logic for the webview. Once the model is generated, it’s
time to see whether the Flask application is giving the correct webpages. To verify,
use the command flask run to check on your local host. If no errors are found, the
command line output will look like what appears in Figure 7.4.

6. Once the complete pipeline (from the model training code through the Flask applica-
tion code) is working as intended, raise a pull request on the Git with detailed commit
messages.
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Figure 7.4: Command line output of Flask application
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