
Streams, Structures, Spaces, Scenarios, and Societies (5S):

A Formal Digital Library Framework and Its Applications

Marcos André Gonçcalves

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fullfilment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Advisory Committee:

Edward A. Fox, Chair
Layne T. Watson

Naren Ramakrishnan
Weiguo Fan

Alberto H. F. Laender

November 29, 2004
Blacksburg, Virginia

Keywords: digital libraries, ontology, semantic modeling, log standard, 5SL, 5SGen, 5SGraph, theory,
quality.

Copyright c© 2004 by Marcos André Gonçalves
ALL RIGHTS RESERVED



Streams, Structures, Spaces, Scenarios, and Societies (5S):

A Formal Digital Library Framework and Its Applications

Marcos André Gonçcalves

Abstract

Digital libraries (DLs) are complex information systems and therefore demand formal foundations lest
development efforts diverge and interoperability suffers. In this dissertation, we propose the fundamen-
tal abstractions of Streams, Structures, Spaces, Scenarios, and Societies (5S), which allow us to define
digital libraries rigorously and usefully. Streams are sequences of arbitrary items used to describe both
static and dynamic (e.g., video) content. Structures can beviewed as labeled directed graphs, which
impose organization. Spaces are sets with operations that obey certain constraints. Scenarios consist of
sequences of events or actions that modify states of a computation in order to accomplish a functional re-
quirement. Societies are sets of entities and activities, and the relationships among them. Together these
abstractions provide a formal foundation to define, relate,and unify concepts – among others, of digital
objects, metadata, collections, and services – required toformalize and elucidate “digital libraries”. A
digital library theory based on 5S is defined by proposing a formal ontology that defines the fundamental
concepts, relationships, and axiomatic rules that govern the DL domain. The ontology is an axiomatic,
formal treatment of DLs, which distinguishes it from other approaches that informally define a number
of architectural invariants. The applicability, versatility, and unifying power of the 5S theory are demon-
strated through its use in a number of distinct applicationsincluding: 1) building and interpreting a DL
taxonomy; 2) informal and formal analysis of case studies ofdigital libraries (NDLTD and OAI); 3)
utilization as a formal basis for a DL description language,digital library visualization and generation
tools, and a log format specific for DLs; and 4) defining a quality model for DLs.



Contents

1 Introduction 1
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 1
1.2 Hypotheses and Research Questions . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 2
1.3 Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 2
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 3

I Theory 5

2 Streams, Structures, Spaces, Scenarios, Societies (5S):A Formal Framework for Digital Li-
braries 6
2.1 5S Overview: Informal Definitions . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 6

2.1.1 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6
2.1.2 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7
2.1.3 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
2.1.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8
2.1.5 Societies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8

2.2 Example of Applications of 5S . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 9
2.2.1 Digital Library Taxonomy . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 9
2.2.2 DL Case Studies with 5S . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12

2.3 The 5S Formal Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 16
2.3.1 5S Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16

2.4 5S Formal Definition of Digital Library . . . . . . . . . . . . . . .. . . . . . . . . . . . . 18
2.5 Example Applications of the 5S Formal Framework: FormalTreatment of Open Archives

and the NDLTD Union Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 25
2.5.1 Open Archives Initiative . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 25
2.5.2 NDLTD Union Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 28

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29

3 Towards a Digital Library Theory: A Formal Digital Library Ontology 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 30
3.2 Background: The 5S Framework for Digital Libraries . . . .. . . . . . . . . . . . . . . . . 31
3.3 Defining a DL Theory Through an Ontological Analysis of the 5S Framework . . . . . . . . 32

3.3.1 Intra-S Relationships . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 33
3.3.2 Inter-S Relationships . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 37

3.4 Example Application of the Ontology: Expanding the “Minimal DL” to the “Typical DL”:
A Taxonomy of DL Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 40

iii



II Practical Applications/Tools 51

4 Language – Declarative Specification of DLs: the 5SL Language 52
4.1 5SL General Organization . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 53

4.1.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 53
4.2 5SL Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 55

4.2.1 Stream Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 55
4.2.2 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 55
4.2.3 Spatial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57
4.2.4 Societal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57
4.2.5 Scenario Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 59

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 63

5 Visualization – Visual Semantic Modeling of Digital Libraries: the 5SGraph Tool 64
5.1 The 5SGraph Modeling Tool . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 64

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 64
5.1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 65
5.1.3 Key Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 66

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 67
5.2.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 71

6 Generation – (Semi-)Automatic Generation of Componentized DLs: the 5SGen Tool 73
6.1 Summary of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 73
6.2 The 5SLGEN Digital Library Generator . . . . . . . . . . . . . . . .. . . . . . . . . . . . 75

6.2.1 The Tool Underlying Model . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 75
6.2.2 Extensiblity and Reusability . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 76

6.3 5SLGen Architecture and Implementation . . . . . . . . . . . . .. . . . . . . . . . . . . . 78
6.3.1 Generating Static Contextual Structure . . . . . . . . . . .. . . . . . . . . . . . . 79
6.3.2 Generating Dynamic Behavior . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 80

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 81
6.4.1 Systems Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 82

7 Logging: An XML Log Standard for DLs 83
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 84
7.2 The Digital Library Standardized Log Format . . . . . . . . . .. . . . . . . . . . . . . . . 86

7.2.1 DL Log Standard Design . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 86
7.2.2 DL Log format structure . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 87

7.3 DL Log Tool and its Implementation . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 91
7.3.1 The First Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 91
7.3.2 The Second Generation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 93

7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 93
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 94

III Quality 97

8 Defining a Quality Model for Digital Libraries 98
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 98

iv



8.2 Digital Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 99
8.2.1 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 99
8.2.2 Pertinence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 104
8.2.3 Preservability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 104
8.2.4 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 107
8.2.5 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 107
8.2.6 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 109
8.2.7 Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 113

8.3 Metadata Specifications and Metadata Format . . . . . . . . . .. . . . . . . . . . . . . . . 114
8.3.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 114
8.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 116
8.3.3 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 116

8.4 Collection, Metadata Catalog, and Repository . . . . . . . .. . . . . . . . . . . . . . . . . 117
8.4.1 Collection Completeness . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 117
8.4.2 Catalog Completeness and Consistency . . . . . . . . . . . . .. . . . . . . . . . . 118
8.4.3 Repository Completeness and Consistency . . . . . . . . . .. . . . . . . . . . . . 120
8.4.4 Collection Impact Factor . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 120

8.5 DL Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 120
8.5.1 Effectiveness and Efficiency . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 121
8.5.2 Extensibility and Reusability . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 122
8.5.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 123

8.6 Quality and the Information Life Cycle . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 125
8.7 Evaluation: Focus Group . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 126

8.7.1 Presentation – Discussions . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 126
8.7.2 Post-Presentation Discussion . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 127

8.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 128
8.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 128

9 Conclusions and Future Work 130
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 130
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 130

9.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130
9.2.2 Application/Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 131
9.2.3 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 133
9.2.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 133

v



List of Figures

1.1 Scope of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 3

2.1 Taxonomy of digital libraries terms . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 11
2.2 5S map of formal definitions . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 16
2.3 Overview of descriptive metadata with example . . . . . . . .. . . . . . . . . . . . . . . . 20
2.4 A StructuredStream for an ETD (adapted from [Navarro andBaeza-Yates 1997]) . . . . . . 21
2.5 A simple digital object . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 22
2.6 Simple indexing service . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 23
2.7 A simple hypertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 24

3.1 DL ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 40
3.2 Several examples of compositions among infrastructureand information satisfaction DL

services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49
3.3 Examples of compositions of services . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 49

4.1 5SL metamodel for minimal DL . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 54
4.2 Stream model example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 55
4.3 DTD for structural model . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 56
4.4 Document definition example . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 56
4.5 Catalog definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 56
4.6 Spatial model example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 57
4.7 Example of a societal schema for an NDLTD site (in UML) . . .. . . . . . . . . . . . . . . 58
4.8 5SL-XML societal encoding of the NDLTD schema . . . . . . . . .. . . . . . . . . . . . . 59
4.9 A simple search scenario for an ETD site . . . . . . . . . . . . . . .. . . . . . . . . . . . 60
4.10 5SL-XML serialization of the scenario depicted in Figure 4.9 . . . . . . . . . . . . . . . . . 61
4.11 The review scenario for the submission service . . . . . . .. . . . . . . . . . . . . . . . . 62
4.12 Portion of the 5SL-XML serialization of the scenario depicted in Figure 4.11 . . . . . . . . 62

5.1 5SGraph sample interface with structured toolbox (bottom part) and workspace (upper part);
figure shows modeling of collections for the CITIDEL project(www.citidel.org) . . . . . . . 66

5.2 Reuse of models before and after loading . . . . . . . . . . . . . .. . . . . . . . . . . . . 68
5.3 Enforcing semantic constraints in the CITIDEL system. See (top) teacher as actor and (bot-

tom) learner services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 69
5.4 Task time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 71
5.5 Closeness to expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 72

6.1 Overview of the architecture for DL modeling and generation . . . . . . . . . . . . . . . . . 74
6.2 DL service composition pattern . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 76
6.3 Relationships between services for relevance feedback. . . . . . . . . . . . . . . . . . . . 77

vi



6.4 Relationships between the services for the lesson plan in VIADUCT . . . . . . . . . . . . . 78
6.5 Statechart diagram of the VIADUCT system . . . . . . . . . . . . .. . . . . . . . . . . . . 79
6.6 Architecture of 5SLGen based on MVC (expanding part of Figure 6.1) . . . . . . . . . . . . 80

7.1 Example of Apache log format . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 84
7.2 Example of OpenText log format . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 85
7.3 Example of Greenstone log format . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 85
7.4 Top level hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 88
7.5 XML schema for log format . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 89
7.6 Decomposition of statement into different types . . . . . .. . . . . . . . . . . . . . . . . . 89
7.7 Decomposition of an event into different types . . . . . . . .. . . . . . . . . . . . . . . . . 90
7.8 XML schema for log format (Search) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 92
7.9 Search attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 93
7.10 XML log entry - example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 94
7.11 XML log entry - example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 95
7.12 XML log entry - example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 96

8.1 Factors in preservability . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 106
8.2 Significance in the ACM Digital Library . . . . . . . . . . . . . . .. . . . . . . . . . . . . 108
8.3 Distribution of absolute values of citation-based similarity in the ACM DL . . . . . . . . . . 112
8.4 Timeliness in the ACM Digital Library . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 115
8.5 Average completeness of catalogs in NDLTD (as of February 2004) . . . . . . . . . . . . . 116
8.6 Average conformance of catalogs in NDLTD . . . . . . . . . . . . .. . . . . . . . . . . . 118
8.7 Information Life Cycle (adapted from [28]) with respective dimensions of quality added for

each major phase and related activities. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 125

vii



List of Tables

3.1 Informal services definitions . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 43
3.2 Services inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 44
3.3 Services pre- and post-conditions (Part 1) . . . . . . . . . . .. . . . . . . . . . . . . . . . 45
3.4 Services pre- and post-conditions (Part 2) . . . . . . . . . . .. . . . . . . . . . . . . . . . 46
3.5 A taxonomy of DL services/activities . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 47

5.1 Overall performance results for three tasks . . . . . . . . . .. . . . . . . . . . . . . . . . . 71

6.1 Systems comparison (+ indicates support of a feature, - indicates lack of support, + - indi-
cates partial support) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 82

7.1 Current and in-development services in the log format . .. . . . . . . . . . . . . . . . . . . 87

8.1 DL high-level concepts and corresponding DL dimensionsof quality with respective metrics 100
8.2 Dimensions of quality and Ss involved in their definitions . . . . . . . . . . . . . . . . . . . 101
8.3 Accessibility of VT-ETDs (first column corresponds to the first letter of author’s name) . . . 103
8.4 Documents with highest degree of significance . . . . . . . . .. . . . . . . . . . . . . . . 108
8.5 Documents with highest absolute degree of co-citation .. . . . . . . . . . . . . . . . . . . 110
8.6 Documents with highest absolute degree of bibliographic coupling . . . . . . . . . . . . . . 111
8.7 Documents with highest absolute Amsler degree . . . . . . . .. . . . . . . . . . . . . . . . 111
8.8 Macro F1 on individual evidence . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 113
8.9 Institutions in the OCLC NDLTD Union Catalog with corresponding number of records (as

of February 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 117
8.10 ACM Guide partitioned by genre. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 119
8.11 ACM Guide sizes of subsets partitioned by genre (key: J=journal; P = proceedings, B =

book ) and publisher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 119
8.12 Completeness of several collections . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 119
8.13 Impact Factor for the ACM DL and DBLP . . . . . . . . . . . . . . . . .. . . . . . . . . . 121
8.14 Effectiveness of structured queries . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 122
8.15 Efficiency of indexing and searching services of a search engine . . . . . . . . . . . . . . . 122
8.16 Analysis of prototype using the metric of Lines of Code .. . . . . . . . . . . . . . . . . . . 124
8.17 Reliability of CITIDEL services . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 124

viii



Chapter 1

Introduction

1.1 The Problem

Digital libraries may be extremely complex information systems. The proper concept of a digital library
seems hard to completely understand and evades definitionalconsensus. Different views (e.g., historical,
technological) and perspectives (e.g., from the library and information science, information retrieval, or
human-computer interaction communities) have led to a myriad of differing definitions. Licklider, in his
seminal work [130, pp. 36–39], visualized a collection of digital versions of the worldwide corpus of
published literature and its availability through interconnected computers. More recently, Levy and Marshall
gave a view of digital libraries as a polygamy of documents, technology, and work [128]. Lesk analyzed
the relative weights of the wordsdigital and library in recent efforts in the field, and concluded that many
of those efforts are dissociated from an understanding of users’ needs and their use of the resources being
provided [126]. Borgman explicitly explored the competingvisions of the digital library field, both from
research and from practitioner communities, and showed thedifficulty that this conflict imposes on activities
like defining terms, characterizing terminologies, and establishing contexts [29]. A Delphi study of digital
libraries coalesced a broad definition: organized collection of resources, mechanisms for browsing and
searching, distributed networked environments, and sets of services objectified to meet users’ needs [117].
The President’s Information Technology Advisory Committee (PITAC) Panel on Digital Libraries discusses
“digital libraries – the networked collections of digital text, documents, images, sounds, scientific data, and
software that are the core of today’s Internet and tomorrow’s universally accessible digital repositories of
all human knowledge” [165]. Underlying all of these is the consensus agreement that digital libraries are
fundamentally complex.

Such complexity is due to the inherently interdisciplinarynature of this kind of system. Digital libraries
integrate findings from disciplines such as hypertext, information retrieval, multimedia services, database
management, and human-computer interaction [70]. The needto accommodate all these characteristics
complicates the understanding of the underlying concepts and functionalities of digital libraries, thus making
it difficult and expensive to construct new digital library systems. Designers of digital libraries are most
often library technical staff, with little to no formal training in software engineering, or computer scientists
with little background in the research findings about information retrieval or hypertext. Thus, digital library
systems are usually built from scratch using home-grown architectures that do not benefit from digital library
and software design experience. Wasted effort and poor interoperability can therefore ensue, raising the costs
of digital libraries and reducing the fluidity of information assets in the future.

The broad and deep requirements of digital libraries demandnew frameworks and theories in order
to understand better the complex interactions among their components [81]. Supporting this claim, the
summary report of the Joint NSF-European Union (EU) WorkingGroups on Future Directions of Digital

1



Libraries Research recommended that “new frameworks and theories be developed in order to understand
the complex interactions between the various components ina globally distributed digital library” [185].
However, though the necessity for such an underlying theoryhas long been perceived and advocated, little
if any progress has been made towards a formal framework or theory for digital libraries.

Formal frameworks and theories are crucial to specify and understand clearly and unambiguously the
characteristics, structure, and behavior of complex information systems. It is not surprising that most of
the disciplines related to digital libraries have underlying formal frameworks and theories that have steered
them well: databases [44, 212, 21, 39, 3], information retrieval [177, 170, 211, 207, 108, 13], and hypertext
and multimedia [132, 54]. A formal framework abstracts the general characteristics and common features
of a set of systems developed for similar problems, explainstheir structures and processes, and strengthens
common practice. Furthermore, formal frameworks for information systems can be used for the design of
a real system, providing a precise specification of requirements against which the implementation can be
compared for correctness. The lack of formal theories and frameworks lead to diverging efforts and has
made interoperability one of the most important problems faced by the field.

1.2 Hypotheses and Research Questions

In this dissertation, we present the first comprehensive framework for digital libraries – 5S (Streams, Struc-
tures, Spaces, Scenarios, and Societies). The two main hypotheses of this dissertation are:

• A formal theory for DLs can be built based on 5S;

• The formal theory can serve as a basis for modeling and building high-quality DLs.

These two hypotheses lead to the following research questions, which we will try to answer in this
dissertation.

• Can we formally elaborate 5S?

• How can we use 5S to formally describe digital libraries?

• What are the fundamental relationships among the Ss and high-level DL concepts?

• How can we allow digital librarians to easily express those relationships?

• Which are the fundamental quality properties of a DL? Can we use the formalized DL framework to
characterize those properties?

• Where in the life cycle of digital libraries can key aspects of quality be measured and how?

1.3 Scope of the Dissertation

Figure 1.1 shows the scope of this dissertation which is concentrated in the top portion of the figure. Here
we are interested in a theory of DLs which is abstracted from the commonalities existent among disparate
DL systems/architectures. Also we are interested in how those theories can be represented (e.g., symbolic
mathematics, markup languages) and instantiated to build real DL running systems. In terms of societal
interactions (represented as dashed lines) we are only interested in those happening between actors (users of
the DL) and (parts of) the system. Societal interactions among actors which do not go through the DL system
are not covered here. Also, actors interact with objects of the real world (small balls). In this dissertation,
we do not focus on these objects or how they are represented inthe system. In other words, we focus mostly

2



on (information) objects ‘born’ digital not in surrogates of objects existing in the real world. Finally, the
quality portion of this work touches both theory and aspectsof the running system (represented as a gray
area marked with “Q”). But even this part has a more system-oriented perspective instead of focusing on
usage issues.

Figure 1.1: Scope of the dissertation

1.4 Outline of the Dissertation

This dissertation is logically organized in three ‘parts’.Part 1 deals with the theoretical aspects of the
work. Part 2 shows how to put theory into practice by showing anumber of applications/tools based on the
theoretical framework. Part 3 focuses in a different type ofapplication, namely a quality model for DLs.
The chapters within the parts are organized as follows:

• Chapter 2: Introduction to 5S and to the formal framework, published inACM Transactions on Inform-
ation Systems, Vol. 22, No. 2, April 2004, with E. A. Fox, L.T Watson, and N. A. Kipp [90].

• Chapter 3: Introduction to the digital library ontology, early version published inProceedings of the
ACM SIGIR Workshop in Mathematical Formal Methods in Information Retrieval, July 29, 2004,
Sheffield, England, with E. A. Fox, and L. T. Watson [88].

• Chapter 4: Introduction to the 5SL Language for DeclarativeSpecification of DLs, published inPro-
ceedings of the Second Joint ACM / IEEE-CS Joint Conference on Digital Libraries, July 14-18, 2002,
Portland, with E. A. Fox [86]

• Chapter 5: Introduction to 5SGraph, a tool for visual semantic modeling of DLs, published in thePro-
ceedings of the 7th European Conference on Digital Libraries (ECDL 2003), 17-22 August, Trond-

3



heim, Norway, Springer LNCS 2769, 2003, with Q. Zhu, R. Shen,and E. A. Fox [236]. A demostra-
tion of the tool was conducted during the 3rd Joint ACM / IEEE-CS Joint Conference on Digital
Libraries, May 27-31, 2003, Houston, with a summary being published in the proceedings of the
conference [235].

• Chapter 6: Introduction to 5SGen, a tool for (semi-)automatic generation of DLs from scenario and
societies models expressed in 5SL, published in the7th European Conference on Digital Libraries
(ECDL 2003), 17-22 August, Trondheim, Norway, Springer LNCS 2769, 2003, with R. Kelapure,
and E. A. Fox [114].

• Chapter 7: Introduction to a proposal for an XML-based log standard for DLs and associated tools,
published in theProceedings of the 6th European Conference on Digital Libraries (ECDL 2002),
September 16-18, Rome. Italy, 2002, LNCS 2458, with M. Luo, R. Shen, M. F. Ali, and E. A.
Fox [93]. Some extensions of the log format and the tools werealso published as a short paper in
Proceedings of the Third Joint ACM / IEEE-CS Joint Conference on Digital Libraries, May 27-31,
2003, Houston, with G. Panchanathan, U. Ravindranathan, A.Krowne, E. A. Fox, F. Jagodzinski, and
L. Cassel [96].

• Chapter 8:Introduction to the proposed Quality Model for DLs, abstract published in theProceedings
of the DELOS Workshop on the Evaluation of Digital Libraries, October 4-5, Padova, Italy, 2004,
with E. A. Fox, B. Zhang, and L. T. Watson [91].

• Chapter 9: Conclusions and Discussion into future work.

• Appendices

Related work is covered in the context of each chapter.

4



Part I

Theory

5



Chapter 2

Streams, Structures, Spaces, Scenarios,
Societies (5S): A Formal Framework for
Digital Libraries

In this chapter, we introduce 5S and formalisms for streams,structures, spaces, scenarios, and societies—
as a framework for providing theoretical and practical unification of digital libraries. These formalisms are
important for making sense of complexity and can ultimatelyserve as an aid for designers, implementers,
and evaluators of digital libraries. These abstractions work with other known and derived definitions to yield
a formal, rigorous framework of digital libraries.

This chapter is organized as follows. Section 2.2 presents an overview of 5S, including definitions and
examples. Section 2.3 discusses two applications of 5S including: a) construction and interpretation of a DL
taxonomy; and b) informal analysis of case studies of digital libraries. Sections 2.2 and 2.3 are purposely
informal and introduce most of the key concepts in an intuitive manner without complete precision. The
role of Section 2.4 is to formally define key information constructs that were introduced in the previous
sections. Section 2.5 then builds on this framework to formally describe several DL higher level constructs
and settings. Section 2.6 illustrates the application of the formal framework. Section 2.7 discusses related
work.

2.1 5S Overview: Informal Definitions

2.1.1 Streams

Streams are sequences of elements of an arbitrary type (e.g., bits, characters, images, etc.). In this sense,
they can model both static and dynamic content. The first includes, for example, textual material, while the
later might be, for example, a presentation of a digital video, or a sequence of time and positional data (e.g.,
from a GPS) for a moving object.

A dynamic stream can represent an information flow—a sequence of messages encoded by the sender
and communicated using a transmission channel possibly distorted with noise, to a receiver whose goal
is to reconstruct the sender’s messages and interpret message semantics [190]. Dynamic streams are thus
important for representing whatever communications take place in the digital library. Examples of dynamic
streams include video-on-demand delivered to a viewer, a timed sequence of news sent to a client, a timed
sequence of frames that allows the assembly of a virtual reality scenario, etc. Typically, a dynamic stream
is understood through its temporal nature. A dynamic streamthen can be interpreted as a finite sequence

6



of clock times and associated values1 that can be used to define a stream algebra, allowing operations on
diverse kinds of multimedia streams [134]. The synchronization of streams can be specified with Petri Nets
[152] or other approaches.

In the static interpretation, the temporal nature is generally ignored or is irrelevant, and a stream corre-
sponds to some information content that is interpreted as a sequence of basic elements, often of the same
type. A popular type of static stream according to this view is text (sequence of characters). The type of
the stream defines its semantics and area of application. Forexample, any text representation can be seen
as a stream of characters, so that text documents, such as scientific articles and books, can be considered as
structured streams.

2.1.2 Structures

A structure specifies the way in which parts of a whole are arranged or organized. In digital libraries,
structures can represent hypertexts, taxonomies, system connections, user relationships, and containment
– to cite a few. Books, for example can be structured logically into chapters, sections, subsections, and
paragraphs; or physically into cover, pages, line groups (paragraphs), and lines [77]. Structuring orients
readers within a document’s information.

Markup languages (e.g., SGML, XML, HTML) have been the primary form of exposing the inter-
nal structure of digital documents for retrieval and/or presentation purposes [78, 45, 85]. Relational and
object-oriented databases impose strict structures on data, typically using tables or graphs as units of struc-
turing [21].

With the increase in heterogeneity of material continuallybeing added to digital libraries, we find that
much of this material is called “semistructured” or “unstructured”. These terms refer to data that may have
some structure, where the structure is not as rigid, regular, explicit, or complete as the structure used by
structured documents or traditional database management systems [2]. Query languages and algorithms can
extract structure from these data [119, 3, 147]. Although most of those efforts have a “data-centric” view
of semi-structured data, works with a more “document-centric view” have emerged [12, 74, 73]. In general,
humans and natural language processing systems can expend considerable effort to unlock the interwoven
structures found in texts at syntactic, semantic, pragmatic, and discourse levels.

2.1.3 Spaces

A space is a set of objects together with operations on those objects that obey certain constraints. The
combination of operations on objects in the set is what distinguishes spaces from streams and structures.
Since this combination is such a powerful construct, when a part of a DL cannot be described well using
another of the Ss, a space may well be applicable. Despite thegenerality of this definition, spaces are
extremely important mathematical constructs. The operations and constraints associated with a space define
its properties. For example, in mathematics, affine, linear, metric, and topological spaces define the basis for
algebra and analysis [83]. In the context of digital libraries, Licklider discusses spaces for information [130,
p. 62]. In the information retrieval discipline, Salton andLesk formulated an algebraic theory based on
vector spaces and implemented it in the SMART system [177]. “Feature spaces” are sometimes used with
image and document collections and are suitable for clustering or probabilistic retrieval [169]. Spaces also
can be defined by a regular language applied to a collection ofdocuments. Document spaces are a key
concept in many digital libraries.

Human understanding can be described using conceptual spaces. Multimedia systems must represent
real as well as synthetic spaces in one or several dimensions, limited by some metric or presentational space
(windows, views, projections) and transformed to other spaces to facilitate processing (such as compression

1These values are undefined or a value of typeT , e.g., boolean, integer, text, or image.

7



[191, 237]). Many of the synthetic spaces represented in virtual reality systems try to emulate physical
spaces. Digital libraries may model traditional librariesby using virtual reality spaces or environments [20,
148]. Also, spaces for computer-supported cooperative work provide a context for virtual meetings and
collaborations [47, 161].

Again, spaces are distinguished by the operations on their elements. Digital libraries can use many types
of spaces for indexing, visualizing, and other services they perform. The most prominent of these for digital
libraries are measurable spaces, measure spaces, probability spaces, vector spaces, and topological spaces.

2.1.4 Scenarios

One important type of scenario is a story that describes possible ways to use a system to accomplish some
function that a user desires. Scenarios are useful as part ofthe process of designing information systems.
Scenarios can be used to describe external system behavior from the user’s point of view [118]; provide
guidelines to build a cost-effective prototype [204]; or help to validate, infer, and support requirements
specifications and provide acceptance criteria for testing[103, 205, 123]. Developers can quickly grasp the
potentials and complexities of digital libraries through scenarios. Scenarios tell what happens to the streams,
in the spaces, and through the structures. Taken together the scenarios describe services, activities, tasks,
and those ultimately specify the functionalities of a digital library.

For example, user scenarios describe one or more users engaged in some meaningful activity with an
existing or envisioned system. This approach has been used as a design model for hypermedia applica-
tions [153]. Human information needs, and the processes of satisfying them in the context of digital libraries,
are well suited to description with scenarios, including these key types: fact-finding, learning, gathering, and
exploring [226]. Additionally, scenarios can aid understanding of how digital libraries affect organizations
and societies, and how challenges to support social needs relate to underlying assumptions of digital li-
braries [128]. Scenarios also may help us understand the complexities of current publishing methods, as
well as how they may be reshaped in the era of digital libraries, by considering publishing paths, associated
participants, and publication functions [225].

The concepts of state and event are fundamental to understanding scenarios. Broadly speaking, a state
is determined by what contents are in specified locations, as, for example, in a computer memory, disk
storage, visualization, or the real world. The nature of thevalues and state locations related to contents in
a system are granularity-dependent and their formal definitions and interpretations are out of the scope of
this chapter; the reader is referred to [227] for a lengthy discussion. An event denotes a transition or change
between states, for example, executing a command in a program. Scenarios specify sequences of events,
which involve actions that modify states of a computation and influence the occurrence and outcome of
future events. Dataflow and workflow in digital libraries canbe modeled using scenarios.

2.1.5 Societies

A society is a set of entities and the relationships between them. The entities include humans as well as hard-
ware and software components, which either use or support digital library services. Societal relationships
make connections between and among the entities and activities.

Examples of specific human societies in digital libraries include patrons, authors, publishers, editors,
maintainers, developers, and the library staff. There are also societies of learners and teachers. In a human
society, people have roles, purposes, and relationships. Societies follow certain rules and their members play
different roles—participants, managers, leaders, contributors, or users. Members of societies have activities
and relationships. During their activities, society members often create information artifacts—art, history,
images, data—that can be managed by the library. Societies are holistic—substantially more than the sums
of their constituents and the relationships between them. Electronic members of digital library societies,

8



i.e., hardware and software components, are normally engaged in supporting and managing services used
by humans.

A society is the highest-level component of a digital library, which exists to serve the information needs
of its societies and to describe the context of its use. Digital libraries are used for collecting, preserving,
and sharing information artifacts between society members. Cognitive models for information retrieval [22,
59, 32], for example, focus on user’s information-seeking behavior (i.e., formation, nature, and properties
of a user’s information need) and on the ways in which information retrieval systems are used in operational
environments.

Several societal issues arise when we consider them in the digital library context. These include policies
for information use, reuse, privacy, ownership, intellectual property rights, access management, security,
etc. [165]. Therefore, societal governance (law and its enforcement) is a fundamental concern in digital
libraries. Language barriers are also an essential concernin information systems and internationalization of
online materials is an important issue in digital libraries, given their globally distributed nature [151].

Economics, a critical societal concern, is also key for digital libraries [109]. Collections that were “born
electronic” are cheaper to house and maintain, while scanning paper documents to be used online can be
relatively expensive. Internet access is widely availableand in many settings is inexpensive. Online mate-
rials are seeing more use, including from distant locations. Since distribution costs of electronic materials
are very low, digital delivery makes economic sense. However, it brings the problem of long-term storage
and preservation, which must be adequately addressed if theinformation being produced today is to be
accessible to future generations [131].

2.2 Example of Applications of 5S

In this section, we illustrate the expressiveness and unifying power of 5S through two different example
applications. In the first, we build a taxonomy of DL conceptsderived from the literature and characterize
the result in light of the framework. The second applicationuses 5S as an analytical tool to understand and
dissect a DL instance and a DL protocol for interoperability.

2.2.1 Digital Library Taxonomy

A taxonomy is a classification system of empirical entities with the goal of classifying cases according to
their measured similarity on several variables [19]. Classifications are a premier descriptive tool and as
such, they give a foundation towards an explanation for a phenomena. Classifications provide a terminology
and vocabulary for a field and help to reduce complexity and achieve parsimony of description by logically
arranging concepts through the identification of similarities and differences. We have built a taxonomy for
digital libraries as a classification system of terms involved with the field. Our taxonomy describes the digital
library field in conceptual terms and therefore its organization is amenable to be interpreted in the light of
5S. This interpretation aims toward a more informal conceptual understanding of the ‘Ss’ and corresponding
DL components.

In the process of building such a taxonomy, we have considered the principles of taxonomies in social
sciences, notably cluster analysis, and faceted classification schemes [213]. In particular we were guided by
the idea that writing about a subject unequivocally revealsthe appropriate facets for that subject [65], and
that those facets are enough to describe the phenomenon [163]. We followed an agglomerative strategy using
subjective relational concepts like association and correlation. During the construction of the taxonomy we
tried to accommodate all the terms found in the literature and marginal fields, guarantee mutual exclusivity,
and ensure consistency and clarity.

To collect the unstructured list of concepts, we went through the early literature to find all features,

9



issues, and roles utilized, and identified specific terms [89]. As a starting point, we used an initial set of
terms and phrases listed alphabetically in [67]. To this list we added other terms from various articles.
When this was reasonably voluminous, we produced a groupingof terms of similar or related meaning into
“notational families” known as facets. Each group was givena label that described the idea behind the
homogeneity of the group or the main variable considered. From there, we grouped the clusters, and so on,
until we achieved convergence into one unique facet called “digital library.”

Once the initial taxonomy was complete, we noticed certain terms were missing or ambiguous, so we
added terms and qualified them in each context. After severaliterations of successive clustering, declus-
tering, and reclustering, we released a more concrete and consistent working set for peer review and then
improved the taxonomy based on comments received. The resulting taxonomy is shown in Figure 2.1.

We must point out that, as with any classification system, ourtaxonomy must evolve to accommodate
changes in the digital library field. However, two factors should contribute to the stability of the taxonomy,
and therefore to its relative longevity. First the taxonomywas derived from a significant corpus of digital
library literature; therefore it is more stable than personal opinions. Second, the higher-level groupings
are significantly abstract so that they may be applied to manyfields, with possible additions or changes
necessary only at the level of specific categories. Clearly,such changes are likely due to the youth and rapid
development of the field. In the following we describe the main facets and sub-facets of the taxonomy,
making use of 5S as an analytical tool.

Actors: Who interacts with/within DLs? In our context, actors are the users of a digital library. Actors
interact with the DL through an interface design that is (or should be) affected by the actors’ preferences
and needs. Actors who have preferences and needs in common, display similar behavior in terms of services
they use and interactions they practice. We say these actorsform adigital community, the building blocks of
a digital library society2. Communities—of students, teachers, librarians—interact with digital libraries and
use digital libraries to interact, following pre-specifiedscenarios. Communities can act as a query-generator
service, from the point of view of the library, and as a teaching, learning, and working service, from the
point of view of other humans and organizations. Communications between actors and among the same
and different communities occur through the exchange of streams. Communities of autonomous agents and
computers also play roles in digital libraries. They instantiate scenarios upon requests by the actors of a
DL. To operate, they need structures of vocabulary and protocols. They act by sending (possibly structured)
streams of queries and retrieving streams of results.

Activities: What happens in DLs? Activities of digital libraries — abstracting, collecting, creating,
disseminating, evaluating, modeling, organizing, personalizing, preserving, requesting, and selecting —
all can be described and implemented using scenarios and occur in the DL setting as a result of actors using
services. Furthermore, these activities make and characterize relationships within and between societies,
streams, and structures. Each activity happens in a setting, arena, or space. The relationships developed can
be seen in the context of larger structures (e.g., social networks [188, 112]).

Components: What constitutes DLs? Digital libraries can contain repositories of knowledge, inform-
ation, data, metadata, relationships, logs, annotations,user profiles, and documents. They can be associated
with higher-level structuring and organizational materials: term lists (e.g., authority files, dictionaries), clas-
sification tools (e.g., subject headings and taxonomies), thesauri, ontologies, and metadata catalogs. These

2Digital communities are formed by actors who interact with aDL possibly through the same interface paradigm. The actors
might belong to distinct social communities of the real world. For instance, a digital community might be instantiated by the
adoption of a particular architecture and interface for a DL(e.g., a chat room or MOO). This instantiation is somewhat arbitrary
and artificial. Social communities, on the other hand, appear much more naturally as a result of complex social interactions.

10



Figure 2.1: Taxonomy of digital libraries terms

11



knowledge organization sources are normally applied to collections of digital objects and support a number
of services such as metadata-based resource discovery, query expansion with thesauri, hierarchical browsing
with classification systems, and ontology-based crosswalks among disparate metadata formats and vocab-
ularies. Finally, DLs are served by a substrate—a foundational complex amalgamation of different com-
binations of Ss that involves computers, network connections, file and operating systems, user interfaces,
communication links, and protocols.

Socio-economic, Legal Aspects: What surrounds the DL? This facet is mainly related to the societal
aspects of the DL and their relationships and interactions,including regulations, measures, and derivatives.
It abstracts aspects surrounding the other DL issues and involves policies, economic issues, standards, and
qualities. For example, policies may dictate that only certain communities have the right to use specific
portions of a collection. Some of these DL issues can be established regarding normative structured docu-
ments. Policies and quality control also can be enforced by specific services, for example, authentication,
authorization [82], encryption, and specific practices (scenarios) or protocols, which can involve other com-
munication services and serialized streams.

Environment: In what contexts are DLs embedded? The environment involves a set of spaces (e.g.,
the physical space, or a concept space defined by the words of anatural language) that defines the use and
the context of a DL. The environment also involves the society that sets up the DL and uses it. But the
environment is also how the DL fits into the structure of community and its organization and dictates the
scenarios by which its activities are performed. Those who pursueAcademic Disciplinesdefine a problem
area “per se” and build a rational consensus of ideas and information about the problem that leads to a
solution [182]. Thus they carve out a space for their approaches (e.g., in terms of concepts in a domain
language, etc.), and structure some subject knowledge jointly with specific scenarios that define the methods
or activities used to solve their specific problems.PurposesandScopedefine types of societies served by
the DL and determine a specific library structure.

2.2.2 DL Case Studies with 5S

In the last section, 5S was used to provide a better understanding of the DL field as a whole. The goals of this
and the next section are threefold: 1) to show the use of 5S as an analytical tool that facilitates comprehension
of specific DL phenomena; 2) to present the complex interplays that occur among 5S components and
DL concepts in real DL applications; and 3) to illustrate thepossibility of using 5S as an instrument for
requirements analysis in DL development.

Case Study 1: Networked Digital Library of Theses and Dissertations (NDLTD)

The Networked Digital Library of Theses and Dissertations (NDLTD) [144, 68, 200, 201] is an interna-
tional federation of universities, libraries, and other supporting institutions focused on efforts related to
electronic theses and dissertations (ETDs). Many libraries and universities run their own programs and ser-
vices, but consortial activities at the state (e.g., OhioLINK), regional (e.g., Catalunya, Spain), and national
(e.g., Australia, Brazil, China, Germany, India, Korea, Portugal) levels exist. NDLTD allows institutions
to cooperate and collaborate in a federated fashion, in a scalable and sustainable effort, especially since
automation affords savings to both students and their universities relative to old paper-based approaches. As
the distributed collection grows, and ultimately achievescritical mass, NDLTD has the potential to become
one of the largest and most active digital libraries supporting education and research.

12



Societies The primary community addressed through the NDLTD society is graduate students. The project
aims to enhance graduate education, particularly of those students who prepare either a thesis or disserta-
tion. Consequently, a second community is implicated, namely those involved in administering graduate
programs. Those who are deans or associate deans of graduateschools, and their supervisors (e.g., associate
provosts or associate chancellors) and staff, as well as themembers of related associations (e.g., Council
of Graduate Schools in USA, or the Canadian Association of Graduate Schools), are key members of this
important community, that often decides if a university will join NDLTD. Because some universities have
distributed these responsibilities to colleges or faculties, or because some involved in graduate program ad-
ministration are too busy to carefully study NDLTD, we expanded this second community to include those
in colleges or departments that administer graduate programs, allowing them to have their respective units
join NDLTD prior to an action by the entire university. The third community related to the NDLTD society
includes those involved in related activities in university libraries. This often involves the director or dean of
the university library, as well as those involved in automation, support of multimedia development, training,
cataloging, preservation, or other similar roles.

A fourth community involved in NDLTD is that of faculty. Theymay encourage students to start early
to experiment with electronic theses and dissertations (ETDs), and to prepare expressive works, using mul-
timedia. They may assist by providing tools in their laboratories that help with production of an ETD. They
may guide students to produce high-quality works, that, in turn, may encourage and help large numbers
of interested readers. Faculty also assist students to grasp key issues regarding intellectual property and
copyright, and to make their research results available to the widest community of readers possible given
constraints relating to patents or publishers.

A fifth, whose importance to the project became obvious earlyin 1997, is that of publishers. Though
NDLTD was developed as a university effort, there is linkagewith scholarly publishers because thesis and
dissertation work often relates to other writings involving those students, such as conference papers, journal
articles, and monographs. Because of copyright laws and publisher policies, that may force editors to make
judgements regarding prior publication, this important community must be considered. In cases like ACM,
IEEE-CS, and Elsevier, there is strong support by way of policies encouraging ETDs, which has been highly
beneficial.

Scenarios Each of the communities involved in the NDLTD society needs particular services from the
digital library. They engage in various tasks and activities related to ETDs - each with corresponding sce-
narios. The NDLTD team has focused on training (through workshops, online materials, and help in media
centers or library sites) to assist students with the authoring or creation of ETDs. Next, there is the process of
submission, supported by workflow software to help studentsenter and edit the metadata about their ETDs.
Staff in the graduate school and library also use other partsof the workflow software as they check, approve,
catalog, and archive new ETDs. Library staff ensure that newworks are added to the collection, and that the
system affords access almost all the time. In terms of volume, the most active scenarios relate to use of the
DL. First, there are simple (running) and advanced (prototype) interfaces that support accessing individual
university sites (searching or browsing), federated search across multiple sites, and access to a union archive
collection through ODL components [199] and Virtua [215] systems. There is experimental software to add
annotation capabilities (the service selected as most important to add, based on focus groups to determine
what other scenarios apply) [136]. There is also experimental software, extending SIFT (Stanford Inform-
ation Filtering Tool) [231] to provide routing services based on stored user profiles, for those who wish to
be notified whenever an interesting ETD arrives. As time proceeds, our work in interoperability with other
digital library software like Greenstone [230] and Phronesis [80], or institutional repositories like DSpcae
(www.dspace.org), may allow us to support other universities that choose to use those packages to provide
access services for their local ETDs.

13



Spaces One space-related aspect of NDLTD is the physical location of members (a metric space) — now
spread over parts of Africa, Asia, Australia, and Europe, aswell as North, Central, and South America.
The Internet provides the name space of machines, while the WWW provides the name space of servers.
Vocabulary used in different NDLTD services relates to the conceptual space used in indexing. This will
become more disciplined, as members use some version of MARC, Dublin Core, or the ETD-MS thesis
and dissertation metadata standard [9], which is likely to provide the basic conceptual space for accessing
the NDLTD collection. In addition, manual, semi-automatic, and automatic indexing and classification
methods can be applied to place ETDs into conceptual spaces that relate to the Library of Congress or
Dewey classifications, as well as discipline-specific thesauri (e.g., ACM’s category system for computing)
[95]. Another major space-related aspect of NDLTD deals with user interfaces. There are multiple graphical
user interfaces that relate to our various software routines, including the ENVISION interface [102] and
other visualization or personalization prototypes [157].In addition, we have investigated how the library
metaphor applies to using our CAVE (virtual reality environment) [148].

Streams NDLTD deals with a variety of streams. At the simplest level are streams of characters for text,
and streams of pixels for images. Some students have included audio files, or digital video, with their ETDs.
These present challenges regarding quality of service if played back in real time, or alternatively storage
problems if downloaded and then played back from a local system. On the one hand, using standards like
MPEG will make it easier to prolong the useful life of multimedia-rich ETDs, but on the other hand the
representations that allow streaming of audio and video tend to be proprietary. This suggests that students
probably should store both types of representation. The other class of streams related to NDLTD is that of
network protocols. Those involve transmissions of serialized streams over the network. Federated search,
harvesting, and hybrid services, using a number of protocols, like Dienst, Z39.50, the Harvest system, and
the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), have been developed in the
context of NDLTD [92].

Structures Structure plays many roles in NDLTD. A database management system is at the heart of the
software for submission and workflow management developed at Virginia Tech. XML and SGML are ways
to describe the structure of metadata, or of ETDs themselves. While only a small number of submissions at
Virginia Tech have used such markup approaches, larger numbers are being collected in other locations, such
as Germany. Moreover, NDLTD has developed and is promoting the Interoperability Metadata Standard for
Electronic Theses and Dissertations (ETD-MS) as a standarddescriptive metadata scheme for describing
electronic theses and dissertations [9]. Structures in theform of semantic networksare used inside MARIAN
to represent ETD collections and metadata and are explored through the services provided.

Case Study 2: Open Archives Initiative

The Open Archives Initiative (OAI) [121] is not a digital library by itself but a multi-institutional project
to address interoperability of archives and digital libraries by defining simple protocols for the exchange of
metadata. The current OAI technical infrastructure is defined by the Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) [150], which defines mechanisms for archives to expose and export their
metadata. In the following, this technical infrastructureis analyzed from the 5S point of view.

Societies The main communities designed for the OAI society are electronic, namely active agents called
harvesters and repositories, which interact through OAI-PMH. The other two kinds of communities empha-
sized by the initiative are the so-calleddata providersandservice providers. The former may be the manager
of an archive, acting on behalf of the authors submitting documents to the archive. The latter is a third party,

14



creating end-user services based on data harvested from archives. Ultimately, we have those communities
constituted by the final users of the services (including in some cases those engaged in self-archiving) and
those involved with administrative aspects of repositories/archives.

Streams The main streams associated with the OAI are dynamic and include communications between
harvester agents and the repository server. Those communications are organized asrequestsfrom the agent
to the server, which occur through specific verbs (see Scenarios below) embedded in HTTP requests, and
responsesthat are textual metadata, which must be encoded and serialized in XML streams. The Open
Archives Initiative so far has not considered multimedia streams, except when they are encoded in XML as
part of the metadata.

Structures Major structures of OAI are involved withrecords, sets, andmetadata formats. OAI records
can be considered containers [120], which encapsulate several kinds of descriptive metadata. Thus, OAI
records obey a structure organized into:

• Header, which corresponds to information that is common to all records and includes a unique iden-
tifier and a datestamp – the date of creation, deletion, or latest date of modification of an item, the
effect of which is a change in the metadata of a record disseminated from that item.

• A single manifestation of the metadata from an item. The OAI protocol supports multiple manifesta-
tions (structures) of metadata for any single item. At a minimum, repositories must be able to return
records with metadata expressed in the Dublin Core format, without any qualification. Optionally, a
repository also may be capable of disseminating other formats of metadata.

• About, an optional container to hold data about the metadata record itself, as opposed to the digi-
tal object associated with the metadata. Typically, this container is used to hold rights information
regarding the metadata record, terms and conditions for usage, etc.

Setsare optional hierarchical structures for grouping items ina repository for the purpose of selective
harvesting of records. Membership of records insetsis not mandatory, butsetscan share common records.

Registries, with data about various OAI-compliant repositories, alsoare provided. This allows users or
harvesters or service providers to find suitable collections.

Scenarios Regarding OAI repositories and the harvesting protocol, there is a fixed set of scenarios, namely
those involved with requests and responses in the protocol conversations between harvesters and OAI
archives. In a 5S analysis, we can associate each request-response pair with a scenario, involving an in-
teraction between harvester and repository. Thus, in the OAI harvesting protocol there are scenarios for
retrieving the identifiers of records in the repository restricted to specific sets (ListIdentifiers verb); to re-
trieve a particular record given an identifier and metadata format (GetRecord verb); to retrieve information
about the repository, including administrative information (Identify verb); and to list all supported metadata
formats, records and sets in the repository (respectively,ListMetadataFormats, ListRecords, and ListSets
verbs)

Another extremely important set of services, which is not part of the OAI technical specifications itself,
but is essential to its functionality, is provided by mediation middleware. This layer, which is placed between
the repository and the OAI protocol itself, provides vertical communications, conversions, and translations
from the OAI verbs and metadata organization to specific internal queries and operations on the underlying
data representations of the repository. For example, if therepository is built upon a relational database, the
mediation middleware is responsible for translating OAI requests to corresponding SQL queries.

15



Figure 2.2: 5S map of formal definitions

Spaces The OAI framework is naturally distributed along the physical space. Service providers can build
indexing spaces on the top of metadata spaces, a kind of document space, and make use of vector or proba-
bilistic spaces for building services like searching and filtering.

2.3 The 5S Formal Framework

In this section, we precisely and unambiguously formalize most of the informal digital library concepts
introduced in previous sections. Figure 2.2 shows a map of the most important concepts and formal defini-
tions. Each concept is associated with the corresponding definition number of its formal definition; arrows
indicate that a concept is formally defined in terms of previously defined concepts that point to it3. The
mathematical preliminaries (Defs. A1–A14) are found in Appendix A.

2.3.1 5S Formalisms

Definition 1 A streamis a sequence whose codomain is a nonempty set.

Definition 2 A structure is a tuple(G,L,F), whereG = (V,E) is a directed graph with vertex setV and
edge setE, L is a set of label values, andF is a labeling functionF : (V ∪ E) → L.

As a derivative of this definition, the next one follows.

Definition 3 A substructureof a structure(G,L,F) is another structure(G′, L′,F ′) whereG′ = (V ′, E′)
is a subgraph of G,L′ ⊆ L andF ′ : (V ′ ∪ E′) → L′.

Definition 4 A spaceis a measurable space, measure space, probability space, vector space, topological
space, or a metric space4.

3The notion of a tuple (def. A.4) is used in most definitions, so, for simplicity, we are not showing arrows coming out of that
concept in Figure 2.2. Other popular definitions are treatedlikewise.

4See Appendix definitions 9-14 for formal definitions of each of these spaces.

16



Probability studies the possible outcomes of given events (or experiments) together with their relative
likelihood and distributions. Probability is defined in terms of asample spaceS, which is a set whose
elements are calledelementary events. More formally, in terms of a probability space, the set of possible
events for an experiment consists of theσ-algebraB and a sample space is defined as the largest setS ∈ B.
The measureµ is called a probability distribution.

Probabilistic information retrieval (PIR) takes a more subjective interpretation of probability, called
the bayesianinterpretation, which sees probability as a statistical procedure which endeavors to estimate
parameters of an underlying probability distribution based on the observed distribution. In PIR the sample
space is the setQ×D of all possible queries and documents and the probability distribution tries to estimate,
given a queryq ∈ Q the probability that a documentd ∈ D will be relevant to the query, using any evidence
at hand. Normally the words in the documents and in the query are the major sources of evidence. A precise
definition of probability of relevance is dependent on the definition of relevance and different PIR models
have different interpretations [49].

Vector spaces are the basis for a widely used information retrieval model, the Vector Space Model
(VSM) [179]. In this model, a document spaceD is a vector space where a documentdi ∈ D is represented
by a t-dimensional vectordi = (wi1, wi2, ..., wit), wij being the weight (a numerical value) of thejth
index termtj of di, wij ≥ 0. An index termis normally a word (or variant), occurring in the text of the
document, whose semantics helps in defining the document’s main themes. However, in general, an index
term may be any value describing some aspect of the document,such as a feature value (e.g., color, shape,
elevation, temperature) or descriptor (e.g., element in a thesaurus or classification system), or concept, or
complex linguistic expression (e.g., phrase, entry in a gazetteer). Furthermore, it is possible to use their
representation vectors, i.e., their terms and term weights, to define a number of functions such asdegree of
similarity s : D × D → R between documents.

Vector spaces and measure spaces are often built on top of topological spaces, the latter being the more
basic concept. Any use of the concept of distance implies an underlyingmetric space, which is a topological
space whose open sets are defined by{y | d(x, y) < r}, whered(x, y) is the distance betweenx andy.

Definition 5 A system state(from now on, just state) is a functions : L → V , from labelsL to valuesV. A
state setS consists of a set of state functionss : L → V.

Labels represent a logicallocation associated with some value in a particular state. Thussi(X) is the
value, or the contents, of location X in statesi ∈ S. The nature of the values related to contents in a system
is granularity-dependent and its definition is out of the scope of this chapter. Normally there are simple
values of basic datatypes such as strings and numbers or higher-level DL objects such as digital objects and
metadata specifications.

Definition 6 A transition event(or simplyevent) on a state set S is an elemente = (si, sj) ∈ (S × S) of a
binary relation on state setS that signifies the transition from one state to another. An evente is defined by
a condition functionc(si) which evaluates a Boolean function in statesi and by an action functionp.

This transition event is not aprobabilistic event [46]. Rather, it is more like the events in networked
operating systems theory [192], transitions in finite statemachines [53], those modeled by the Unified
Modeling Language (UML) [25], or transitions between places in Petri Nets [152].

The condition is used to describe circumstances under whicha state transition can take place. An action
models a reference to an operation, command, subprogram or method, responsible to perform the actual
state transition. Events and actions can have parameters that abstract data items associated with attributes
(labels) of a state.

Definition 7 A scenariois a sequence of related transition events〈e1, e2, ..., en〉 on state setS such that
ek = (sk, sk+1), for 1 ≤ k ≤ n.

17



We also can interpret a scenario as a path in a directed graphG = (S,Σe), where vertices correspond to
states in the state setS and directed edges are equivalent to events in a set of eventsΣe (and correspond to
transitions between states). (Technically,G is a pseudodigraph5, since loops(si, si) are possible as events.)

Definition 8 A service, activity, task, or procedureis a set of scenarios.

Note that the scenarios defining a service can have shared states. Such a set of related scenarios has been
called a “scenario view” [103] and a “use case” in the UML [25]. In this framework, a simple transmission
service of streams can be formally specified as:

Definition 9 Let T = 〈t1, t2, ..., tn〉 be a stream. Let eventeti = (sti , dti
6) and eventati = (dti , sti+1

). A
transmission of streamT is the scenario (sequence of related events)eT = 〈et1 , at1 , et2 , at2 , ...etn 〉.

Scenarios areimplementedto make a working system and the so-called “specification-implementation”
gap must be overcome [172]. Formally, the implementation ofscenarios can be mapped to an abstract
machine represented by a deterministic finite automaton (DFA). This automatonM = (Q,Σe, δ, q0, F ) is
such that M is the user-perceived conceptual state machine of the system and accepts a languageL(M) over
the set of eventsΣe. A grammarG = (V,Σe, R, s0) for the languageL(M) is such that the non-terminals
set V corresponds to the state setS, the terminals are the finite set of eventsΣe, s0 is a distinguished
initial state initializing all locations in that state, andR is a finite set of rules. Each rule in R is of the
form si → esj and conveys the system from statesi to sj as a consequence of evente, or is of the form
si → e whensj ∈ F is a final state. The grammar and the corresponding conceptual state machine make
up the abstract formal model which the analyst uses to capture, represent, and display system behavior in
terms of scenarios. Alternatively, denotational semantics [227] and object-oriented abstractions [171] offer
a programming language perspective for the question of formal scenario implementation.

Definition 10 A societyis a tuple(C,R), where

1. C = {c1, c2, ..., cn} is a set of conceptual communities, each community referring to a set of individ-
uals of the same class or type (e.g., actors, service managers);

2. R = {r1, r2, ..., rm} is a set of relationships, each relationship being a tuplerj = (ej , ij), where
ej is a Cartesian productck1

× ck2
× · · · × cknj

, 1 ≤ k1 < k2 < · · · < knj
≤ n, which specifies

the communities involved in the relationship andij is an activity (cf. Def. 8) that describes the
interactions or communications among individuals.

The second part of the definition emphasizes the collaborative nature of societies as in the case of users
and service managers engaged in performing DL services. Scenarios describe the service behavior exactly
in terms of interactions among the involved societies. For example, an ETD submission service involves
interactions between graduate students and an ETD submission workflow manager (an electronic member
of a service managers society).

2.4 5S Formal Definition of Digital Library

As pointed out in previous sections, there is no consensual definition of a digital library. This makes the
task of formally defining this kind of application and its components extremely difficult. In this section, we
approach this problem by constructively defining a “core” ora “minimal” digital library, i.e., the minimal

5A digraph which permits both loops and multiple edges between nodes.
6dti

is the state that indicates that the destination has received stream itemti

18



set of components that make a digital library, without which, in our view, a system/application cannot be
considered a digital library. Each component (e.g., collections, services) is formally defined in terms of an
S construct or as combinations or compositions of two or moreof them. The set-oriented and functional
mathematical formal basis of 5S allows us to precisely definethose components as functional compositions
or set-based combinations of the formal Ss.

Informally, a digital library involves a managedcollectionof information with associatedservicesin-
volving communitieswhere information is stored in digital formats and accessible over a network. Inform-
ation in digital libraries is manifest in terms ofdigital objects, which can contain textual or multimedia
content (e.g., images, audio, video), andmetadata. Although the distinction between data and metadata
often depends on the context, metadata commonly appears in astructured way and covering different cate-
gories of informationabouta digital object. The most common kind of metadata isdescriptive metadata,
which occurs in catalogs and indexes and includes summary information used to describe objects in a DL.
Another common characteristic of digital objects and metadata is the presence of some internal structure,
which can be explicitly represented and explored to providebetter DL services. Basic services provided by
digital libraries are indexing, searching, and browsing. Those services can be tailored to different commu-
nities depending on their roles, for example, creators of material, librarians, patrons, etc.

In the following we formally define those concepts ofmetadata (structural and descriptive), digital
object, collection, catalog, repository, indexing service, searching service, browsing service, and finally
digital library.

Definition 11 A structural metadataspecification is a structure.

This simple definition emphasizes the role of structural metadata as a representation or abstraction of re-
lationships between digital objects and their component parts (cf. Def. 16). The graph-based representation
of this type of metadata can be explicitly expressed, as in the case of markup [45], or implicitly computed
[143, 43].

The next definition, fordescriptive metadata specifications, is inspired by developments in the meta-
data area, mainly those related to theSemantic Web[23] and the Resource Description Framework (RDF)
[216], and emphasizes the semantic relationships implied by the labeling function in a structure. Figure
2.3(a) illustrates the basic constructs. Statements, which are triples corresponding to a specific resource (the
thing being described) together with a named property aboutthe resource plus the value of that property for
that resource, are promoted to first-class concepts. Figure2.3(b) shows an example of an instantiation of
the construct for a descriptive metadata specification about an electronic thesis with four statements: State-
ment1 = (Thesis1, ‘author’, ‘M.A.Goncalves’), Statement2= (Thesis1, ‘degree’, Degree1), Statement3 =
(Degree1, ‘level’, ‘doctoral’), and Statement4 = (Degree1, ‘grantor’, ‘Virginia Tech’). Below we define the
notions ofdescriptive metadata specificationandmetadata format more formally.

Definition 12 Let L =
⋃

Dk be a set of literals defined as the union of domainsDk of simple datatypes
(e.g., strings, numbers, dates, etc.). Let alsoR andP represent sets of labels for resources and properties
respectively. Adescriptive metadata specificationis a structure(G,R ∪L ∪ P,F), where:

1. F : (V ∪ E) → (R ∪ L ∪ P) can assign general labelsR ∪ P and literals fromL to nodes of the
graph structure;

2. for each directed edgee = (vi, vj) of G, F(vi) ∈ R ∪ L, F(vj) ∈ R ∪ L andF(e) ∈ P;

3. F(vk) ∈ L if and only if nodevk has outdegree0.

The triplest = (F(vi),F(e),F(vj)) is called astatement(derived from the descriptive metadata spec-
ification), meaning that the resource labeledF(vi) has propertyF(e) with valueF(vj) (which can be
designated as another resource or literal).

19



(a) (b)

Figure 2.3: Overview of descriptive metadata with example

Definition 13 Let DLMF
= {D1,D2, ...,Di} be the set of domains that make up a set of literalsLMF =

⋃i
j=1 Dj. As for metadata specifications, letRMF and PMF represent sets of labels for resources and

properties, respectively. Ametadata formatfor descriptive metadata specifications is a tupleMF =
(VMF ,defMF ) with VMF = {R1,R2, ...,Rk} ⊂ 2RMF a family of subsets of the resource labelsRMF

anddefMF : VMF × PMF → VMF ∪ DLMF
is a property definition function.

Therefore a metadata format, through the property definition function, constrains the kinds of resources
that can be associated together in statements of a metadata specification as well as the basic datatype do-
mains, which are associated with pairs (resource-property) related to literals [37]. For example, for any
set of labelsR for resources, the Dublin Core metadata format defines thatdefDC(R, ‘title′) = String
anddefDC(R, ‘subject′) = SubjectTerms whereSubjectTerms is a finite set of labels for Resources
corresponding to controlled terms. The following definition follows from the previous two definitions:

Definition 14 A descriptive metadata specificationMS = (GMS ,RMS ∪ LMS ∪ PMS ,FMS) conforms
with a metadata formatMF = (VMF ,defMF ) if RMS ⊆ RMF , LMS ⊆ LMF , PMS ⊆ PMF , and for
every statementst = (r, p, l) derived fromMS, r ∈ Rk for someRk ∈ VMF and p ∈ PMS implies
l ∈ defMF (Rk, p).

Definition 15 Given a structure(G,L,F), G = (V,E) and a streamS, a StructuredStreamis a function
V → (N×N) that associates each nodevk ∈ V with a pair of natural numbers(a, b), a < b, corresponding
to a contiguous subsequence[Sa, Sb] (segment) of the streamS.

Therefore, a StructuredStream defines a mapping from nodes of a structure to segments of a stream. An
example in a textual stream can be seen in Figure 2.4 . From theexample, it can be deduced that several
structures can be imposed over one stream and vice-versa. Also, it can be seen that segments associated
with a node should include the segments of its children (in the case of a hierarchical tree), although it is not
equal to the union of those, as “gaps” or “holes” can occur between child segments [143]. Finally, it should
be noted that this definition works also for multimedia streams like audio, video, and images.

Definition 16 A digital objectis a tupledo = (h, SM,ST, StructuredStreams) where

20



Figure 2.4: A StructuredStream for an ETD (adapted from [Navarro and Baeza-Yates 1997])

1. h ∈ H, where H is a set of universally unique handles (labels);

2. SM = {sm1, sm2, . . . , smn} is a set of streams;

3. ST = {st1, st2, . . . , stm} is a set of structural metadata specifications;

4. StructuredStreams = {stsm1, stsm2, . . . , stsmp} is a set of StructuredStream functions defined
from the streams in theSM set (the second component) of the digital object and from thestructures
in theST set (the third component).

Figure 2.5 shows an example of a very simple digital object with one structure and several streams. Two
important aspects must be pointed out about this formal definition of a digital object:

1. Any real implementation does not need to enforce physicalcontainment of the several component
parts of a digital object; for example, we could have pointers to external streams.

2. The definition does not consider active behavior of digital objects [198, 145] which supports oper-
ations like different disseminations or exporting of subparts. While there is no explicit restriction
regarding this, the definition conforms to our minimalist approach.

Definition 17 A collectionC = {do1, do2, . . . , dok} is a set of digital objects.

Definition 18 Let C be a collection with k handles in H. Ametadata catalogDMC for C is a set of pairs
{(h, {dm1, . . . , dmkh

})}, whereh ∈ H and thedmi are descriptive metadata specifications.

Definition 19 Let C be a collection with handles H. Arepository is a tuple (R, get, store, del), where
R ⊂ 2C is a family of collections and the functions “get”, “store,”and “del” satisfy:

21



Figure 2.5: A simple digital object

1. get : H → C maps a handleh to a digital object get(h).

2. store : C × R → R maps(do, C̃) to the augmented collection{do} ∪ C̃.

3. del : H × R → R maps(h, C̃) to the smaller collectioñC − {get(h)}.

Thus a repository encapsulates a set of collections and specific services to manage and access the col-
lections.

Definition 20 LetI : 2T → 2H be an index function whereT is a set of indexing features andH is a set of
handles. Anindex is a set of index functions. Anindexing serviceis a single scenario{〈is1, is2, ..., isn〉}
comprised of pipelined scenariosis1, is2, ..., isn in which the starting statesk0

of the first event of the initial
scenariois1 has a collectionsk0

(K) = C and/or a metadata catalogsk0
(Y ) = DMC for collectionC as

its values and the final stateskf
of the final scenarioisn has an indexIC = skf

(Z) as its value (K, Y, and
Z being labels of the respective states).

The interpretation of the index and the indexing service is dependent upon the underlying indexing
space. Features of an indexing space can be words, phrases, concepts, or multimedia characteristics, like
shape or color, appearing or associated with the content of adigital object (in its descriptive and structural
metadata or streams). Normally, if a vector space is considered, terms are treated as unrelated, therefore
defining orthogonal vectors that span a spaceT with dimensionm. If a probabilistic spacep = (X, B, µ) is
used,T = X is the set of distinct terms and is called asample space. Also an index can be thought of as a
mapping from an indexing space to adocument (digital object) spacedefined by the collection.

The indexing service normally takes the shape of apipeline servicewhere scenarios themselves are
executed in sequence and the final state of a scenario is the starting state of the next one. A very simple
instance of such an indexing service is shown in Figure 2.6 for indexing of textual material. The indexing
service is composed of three scenarios organized as a pipeline of the following scenarios: 1) tokenization,
which identifies unique terms inside the textual streams; 2)stopword removal, which filters out terms not
useful for retrieval; and 3) stemming, which removes affixesand allows retrieval of syntactic variations

22



Figure 2.6: Simple indexing service

of query terms [13]. Each one of the scenarios can be thought of as doing some transformation in the
representations of digital objects in order to produce the index function. Note again that we are making
use of our minimalist approach by not considering complex indexes, for example, defining locations inside
streams of digital objects for phrase, proximity, or structural queries.

Definition 21 Let Q be a set of conceptual representations for user informationneeds, collectively called
queries. LetMIC

: Q × (C × DMC) → R be a matching function, associated with an indexIC , that
associates a real number with a queryq ∈ Q and a digital objectdo ∈ C and possibly its descriptive
metadata specificationsms ∈ DMC , indicating how well the query representation matches withthe digital
object, structurally, by content, or regarding the descriptive metadata specifications. Asearching serviceis
a set of searching scenarios{sc1, sc2, . . . , sct}, where for each queryq ∈ Q there is a searching scenario
sck = 〈e0, . . . , en〉 such thate0 is the start event triggered by a query q and eventen is the final event of
returning the matching function valuesMI(q, d) for all d ∈ C.

The components of a digital objectdo, are denoted bydo(1), do(2), etc. Therefore,dok(2) denotes the
second component, i.e., the stream set component of a digital objectdok, dok(3) its structural metadata set
component (third component), anddok(4) its set of StructuredStreams functions (fourth component). Let
alsoG[v] denote the subgraph of a directed graphG containing nodev and all points and edges reachable
starting fromv. A substructure defined byG[v] inherits the labeling of the structure defined with G. Finally,
let f : A → B and letD be any non-empty subset of A. Therestriction of f to D, denoted byf |D, is a
subset off and is a function fromD to B. Then, for a collectionC:

1. AllStreams = (∪dok∈Cdok(2)) andAllSubStreams= ∪smt∈AllStreams{smt[i, j] | smt = 〈a0 , a1,
. . . , an〉, 0 ≤ i ≤ j ≤ n)} will be the set of all streams and substreams (segments of streams) of all
digital objects in the collectionC;

2. AllSubStructuredStreams=
⋃

k,j(SubStructuredStreamkj
) where:

(a) dk ∈ C;

(b) Gkj
= (Vkj

, Ekj
) is the first component of some structurestkj

∈ dk(3);

(c) Hkj
= {Gkj

[vt] | vt ∈ Vkj
} corresponds to the set of all substructures ofstkj

;

(d) SubStructuredStreamkj
= {S|V ′ | (V

′

, E
′

) ∈ Hkj
, S ∈ dk(4) is a StructuredStream func-

tion defined from the structurestkj
, andS|V ′ is the restrition ofS to V

′

}.

Therefore,AllSubStructuredStreams corresponds to the set of all possible substructures and their
corresponding connections to streams inside digital objects of the collection.

Definition 22 Let H = ((VH , EH), LH ,FH) be a structure andC be a collection. AhypertextHT =
(H,Contents,P) is a triple such that:

23



Figure 2.7: A simple hypertext

1. Contents ⊆ C∪AllSubStreams∪AllSubStructuredStreams is a set of contents that can include
digital objects of a collectionC, all of their streams (and substreams) and all possible restrictions of
the StructuredStream functions of digital objects.

2. P : VH → Contents is a function which associates a node of the hypertext with the node content.

A hyperlink is an edge in the hypertext graph. Source nodes ofa hyperlink are called “anchors” and are
generally associated via functionP with segments of streams. Also, in this definition, two basictypes of
hyperlinks can be identified:structuralandreferential[222]. Structural hyperlinks allow navigation inside
internal structures and across streams of digital objects.Referential hyperlinks usually have their target
nodes associated with different digital objects or their subcomponents.

Figure 2.7 illustrates the definition. The hypertext is madeby structural hyperlinks that follow the
structural metadata and external referential links. Linksoriginate from (segments of) streams. Link targets
for, respectively, links 1, 2, and 3, are an entire digital object, a portion of its StructuredStream function
(in the figure, represented by the subgraph pointed to by the link and the associated streams) and one of its
streams, in this case an image.

An example of such a hypertext is the Web. The Web is a structure where hypertext links connect nodes
that can be associated with: 1) complete HTML pages that can be considered digital objects; 2) substructures
of a HTML page, for example, a section of the page; and 3) linksto streams, e.g., images, audios, or text. The
Distributed Graph Storage (DGS) system also implements similar ideas with structural and hyper-structural
links representing, respectively, the internal structures of digital objects and hypertext constructs [189]. It
should be noted that for the sake of brevity we are not describing links to services, for example, external
plugins that can be invoked by browsers or Web forms.

Definition 23 A browsing serviceis a set of scenarios{sc1, . . . , scn} over a hypertext (meaning that events
are defined by edges of the hypertext graph(VH , EH)), such that traverse link eventsei are associated with
a functionTraverseLink : VH ×EH → Contents, which given a node and a link retrieves the content of
the target node, i.e.,TraverseLink(vk, eki

) = P(vt) for eki
= (vk, vt) ∈ EH .

24



Therefore, by this definition, every browsing service is associated with an underlying hypertext con-
struct. This view unifies the three modes of browsing defined by Baeza-Yates and Ribeiro-Neto [13]: flat
browsing, structured guided, and navigational mode. The third one is the most general case and fits exactly
our framework. The first two can be considered special cases.In flat browsing the hypertext has a flat orga-
nization, for example, an ordered list of documents or a set of points in an image, and the graph structure of
the hypertext corresponds to a disconnected bipartite graph. In the second one, which includes classification
hierarchies and directories, the hypertext graph is a tree.Many semi-structured wrapper algorithms disclose
this hypertext “hidden” structure in the Web. Once revealed, this structure can be recorded in databases or
represented in other semi-structured models to allow queries or transformations. Methodologies like PIPE
[162] make use of this information to personalize Web sites.Note also that more sophisticated kinds of
hypertext can be defined by extending the current definition.For example, we could relax the functionP
to be a relation and associate different contents with the same node, which could be achieved by having
different modes of traversing the same link in an extension of the TraverseLinkfunction 7. However, the
present definition is simpler and serves well our minimalistapproach8.

Definition 24 A digital library is a 4-tuple(R, Cat, Serv, Soc), where

• R is a repository;

• Cat = {DMC1
,DMC2

, ...,DMCK
} is a set of metadata catalogs for all collections{C1, C2, ..., CK}

in the repository;

• Serv is a set of services containing at least services for indexing, searching, and browsing;

• Soc is a society.

We should stress that the above definition only captures the syntax of a digital library, i.e., what a
digital library is. Many semantic constraints and consistency rules regarding the relationships among the
DL components (e.g., how the scenarios inServ should be built fromR andCat and from the relationships
among communities inside the societySoc, or what the consistency rules are among digital objects in
collections ofR and metadata records inCat) are not specified here. Those will be the subject of Chapter
3.

2.5 Example Applications of the 5S Formal Framework: FormalTreatment
of Open Archives and the NDLTD Union Archive

2.5.1 Open Archives Initiative

The following formalizes the Open Archives Intitiative Protocol for Metadata Harvesting [121] (OAI-PMH).

Definition 25 Let dl = (R, Cat, Serv, Soc) be a digital library. The digital library dl can be considered
OAI complaint if:

1. there are two electronic members of the dl society,{dp, hvt} ⊂ Soc(1), Soc = dl(4), called the data
provider manager and the harvester;

2. there is a serviceOAI Harvesting ∈ dl(3) = Serv whose behavior is defined below; and

7This extended approach also generalizes the notion of link directionality where bi-directional links or non-directional links
correspond just to different ways of traversing the link (e.g., SOURCETO SINK, SINK TO SOURCE, BOTH).

8Note also that libraries can supportserendipityor ‘random links’.

25



3. ({dp} × {hvt}, OAI Harvesting) ∈ Soc(2)

The data provider managerdp responds to requests of the harvesterhvt. Conversations between the har-
vester and the data provider manager constitute the OAI harvesting service.OAI Harvesting = {Identify,
ListMetadataFormats, ListSets, ListIdentifiers, ListRecords, GetRecord} ∈ Serv is a service formally de-
fined below as 6 scenarios:

1. Identify

Goal: Returns general information about the archive (what in OAIterms corresponds to the repository
R along with a metadata catalogDMCk

∈ Cat for someCk in the repository.

Scenario: 〈e1 : p =identify, e2 : p = response(identification)〉, wheree1 is an event generated by
the harvesterhvt invoking an operation indp of dl, e2 is the event corresponding to the response from
the data providerdp, p : specifies the corresponding operation that is being invoked, andidentifica-
tion is a parameter of the response operation. Theidentificationparameter is a descriptive metadata
specification= (GIdent,RIdent ∪ LIdent ∪ PIdent,FIdent) about the archive, where:

(a) resourceRIdent = {id} is a unique identifier for the archive; and

(b) propertiesPIdent = {repositoryName, baseURL, protocolVersion, earliestDatestamp, delete-
dRecord, granularity}

2. ListMetaFormats

Goal: Lists metadata formats supported by the archive as well as their schema location.

Scenario: 〈e1 : p = ListMetadataFormats, e2 : p = response(metadata formats)〉 and
oai dc ∈ metadata formats, meaning the Dublin Core metadata format is mandatory.

3. ListSets

Goal: Provides a hierarchical listing of sets in which records may be organized.

Scenario: 〈e1 : p =ListSets(resumptionToken), e2 : p= response(archive sets, resumption-
Tokeni)〉 andarchive sets = {set1, set2, ..., setk} where eachseti is a 3-tuple(setSpeci, setNa-
mei, setDescriptioni) and:

(a) setSpeci is a colon [:] separated sequence of strings〈str1i : str2i : ... : strni〉 indicating
the path from the root of the set hierarchy to the respective node. Each string in the sequence
must not contain any colons [:]. Since a setSpec forms a unique identifier for the set within the
repository, it must be unique for each set. Flat set organizations have only sets with setSpec that
do not contain any colons [:].

(b) setNamei – a short human-readable string namingseti

(c) setDescriptioni - an set of descriptive metadata specifications aboutseti (metadata format not
specified; Dublin Core suggested).

The resumptionToken is a mechanism for flow control when returning an incomplete list of sets. Its
exact format is not defined by the protocol. The only defined use of resumptionToken is as follows
[150]:

26

























resumptionToken 6= ∅, if archivessets list is incomplete;
resumptionToken = ∅, if archivessets list completes a previously received list;
resumptionTokeni = resumptionTokeni+1, whereresumptionTokeni+1

is the resumptionToken used in the next ListSets request andresumptionTokeni

is the resumptionToken received in the response of the previous request.

4. ListRecords

Goal: Retrieves metadata for multiple records.

Scenario: 〈e1 : p =ListRecords(from,until,set,metadataPrefix, resumptionToken), e2:p = response
({oai record1, . . . , oai recordk}, resumptionTokeni)〉. Eachoai recordi is a 4-tuple(headeri,
metadatai, abouti, statusi) where:

(a) headeri is a 3-tuple(record idi, datestampi, setsi):

i. record idi being a unique identifier for theoai recordi,

ii. datestampi, the date/time of creation, modification or deletion of the record for the purpose
of selective harvesting;

iii. setsi ⊂ archive sets, the set membership of the item for the purpose of selective harvest-
ing.

(b) metadatai ∈ dmj(2) for somedmj ∈ DMCk
;

(c) abouti is a descriptive metadata specification about theoai recordi; metadata format not spec-
ified. Common examples of properties includerights statementsandprovenanceinformation
about the metadata record itself.

(d) statusi – an optional status attribute with a value of ‘deleted’ – indicates the withdrawal of
availability of the specified metadata format for the item, dependent on the repository support
for deletions.

For everyoai recordi in the response set, the following set of constraints follows:

(a) from ≤ datestampi ≤ until, i.e., datestamp corresponding to the record creation or modifi-
cation is within the specified date range.

If omitted the request parameterfrom takes the value associated with the earliestDatestamp
property ofidentificationof the archive;

(b) set ∈ setsi;

(c) metadataPrefix∈ metadataformats; metadatai conforms with the metadata format defined in
metadataPrefix;

(d) andresumptionToken fits within the sequence limits related to the flow control implemented
by dp as discussed above.

5. ListIdentifiers

Goal: Lists all unique handles (in OAI terms, identifiers) corresponding to digital objects in the
repository.

Scenario: 〈e1 : p =ListIdentifiers(from,until,set,resumptionToken), e2 : p = response({ record idi,
..., record idl}, resumptionTokeni)〉, where{record idi, ...,record idl} is a set of identifiers (or
handles) for OAI records{oai recordi, ...,oai recordl}. The same set of constraints forListRecords
applies to theListIdentifiersresponse.

27



6. GetRecord

Goal: Returns the metadata for a single identifier in the form of anOAI record.

Scenario: 〈e1 : p =GetRecord(id,metadataPrefix), e2 : p = response(oai recordi)〉, id = record idi;
other constraints apply as above.

2.5.2 NDLTD Union Archive

• A digital library federation is a setDLF = {dl1, dl2, ..., dlf } of independent and possibly heteroge-
neous digital libraries (DLs). NDLTD is a digital library federation where each independent DLdlk =
(ETD Rk, ETD Catk, ETD Servk, ETD Sock). ETD Rk is a repository having a collection
ETD Colljk = {etd1jk, etd2jk, ..., etdnjk} composed of a set of digital objectsetdijk correspond-
ing to electronic theses or dissertations (ETDs). The possible set of streams of an ETD,etdijk(2),
is normally limited to a small number of standard types (e.g., Unicode encoding for the character
set, MPEG for videos) due to preservation concerns and technological limitations. NDLTD currently
does not enforce (yet) any specific structural metadata for ETDs, but several projects for standardizing
such a structure with XML Schemas and DTDs are under development in many locations including
Finland, Germany, and USA. For each ETDetdijk ∈ ETD Colljk there should be at least one
etd dmijk ∈ ETD DMjkETD Colljk

, ETD DMjkETD Colljk
∈ ETD Catk, ETD DMjkETD Colljk

being a metadata catalog for the ETD collectionETD Colljk.

• NDLTD promotes ETD-MS as the metadata format for ETD descriptive metadata specifications. For
eachdlk in NDLTD, let:

– ETD IDsk = {hijk|hijk = etdijk(1), etdik ∈ ETD Colljk}, NDLTD ETD IDs =
⋃

dlk∈NDLTD ETD IDsk be the set of the handles of all the ETDs in the NDLTD federation
collections;

– ETD Properties = {‘title’, ‘creator’, ‘person’, ‘subject’, ‘description’,‘publisher’, ‘contribu-
tor’, ‘date’, ’type’, ‘format’, ‘identifier’, ‘language’,‘coverage’, ‘rights’, ‘degree’};

– Degree = {dg1, dg2, ..., dgx} a set of unique labels representing the degree portion of an ETD;

– andDegree Properties = {‘name’, ‘level’, ‘discipline’, ‘grantor’}, a set of properties about
the degree portion of an ETD.

In formal terms, ETD-MS is a metadata format(VETD−MS, defETD−MS) for descriptive metadata
specifications in ETD-MS= (GETD,RETD ∪ LETD ∪ PETD, FETD), where resourcesRETD =
(NDLTD ETD IDs ∪ Degree), VETD−MS =
{ETD IDs, Degree}, propertiesPETD = (ETD Properties ∪ Degree Properties) and for all
triples(r, p, z) (i.e. resource, property, value):

1. r ∈ NDLTD ETD IDs iff p ∈ ETD Properties,

2. r ∈ Degree iff p ∈ Degree Properties, and

3. defETD(NDLTD ETD IDs, ‘degree′) = Degree.

• SocietyETD Sock of dlk is such that{Patron, Student, ETDReviewer, ETDCataloguer, ETDSearch-
Manager, ETDWorkflowManager,...} ⊂ ETD Sock(1).

• The NDLTD Union Archive is a tuple(NDLTD Union,UA Harvester) whereNDLTD Union
=

⋃

dlk∈NDLTD ETD DMjkETD Colljk
, ETD Catk = dlk(2),

28



ETD DMjkETD Colljk
∈ ETD Catk, is the union of the metadata catalogs for the ETD collections

of all NDLTD members andUA Harvester is a manager, an electronic member of the NDLTD
society, which participates in an OAI harvesting service that periodically harvests metadata records
from the NDLTD members.

• Each DLdlk in the union archive includes a data provider manager,dpk ∈ dlk(4) = ETD Sock,
which responds to requests from the NDLTD harvesterUA Harvester. Conversations between the
UA Harvesteranddpk are governed by the OAI-PMH and constitute an OAI harvestingservice as
defined in the previous section.

2.6 Related Work

Formal frameworks, which have supported research and development in most computer science subfields
(e.g., programming languages, databases, information retrieval, hypermedia), are surprisingly missing in
the digital library literature. One could conjecture that is due to the previously argued complexity of the
field. Wang [220] provides one first attempt to fill this gap. His so-called “hybrid approach” defines a
digital library as a combination of a special purpose database and a hypermedia-based user interface and
builds upon this combination to formalize digital libraries in terms of the language Z [197]. Kalinichenko
et al. [110] presented a canonical framework for information systems and a compositional approach that
they applied to provide a partial solution for interoperability in DLs. Castelliet al. [37] have presented the
closest work to ours so far. In the context of a multidimensional query language for digital libraries they
have formalized the concepts of documents, based on the notions of views and versions, metadata formats
and specifications, and a first-order logic based language. These approaches, clearly incomplete, are, as far
as we know, the only attempts to provide some formalization for the digital libraries field.

The flexibility of 5S has been further demonstrated as an instrument for requirements analysis in DL
development and as a basis for organizing a digital library taxonomy. While research in DL requirements
analysis has been underrepresented with only small isolated case studies (e.g., [52, 58, 84, 128]), to the best
of our knowledge there is no other comprehensive DL taxonomypublished in the literature, other than that
presented in [67]. Our taxonomy is an expanded version of that one.

]

29



Chapter 3

Towards a Digital Library Theory: A
Formal Digital Library Ontology

Digital libraries have eluded definitional consensus and lack agreement on common theories and frame-
works. This makes comparison of DLs extremely hard, promotes ad-hoc development, and impedes in-
teroperability. In this chapter we propose a formal ontology for digital libraries (DLs) that defines the
fundamental concepts, relationships, and axiomatic rulesthat govern the DL domain, therefore providing a
frame of reference for the discussion of essential conceptsof DL design and construction. The ontology is
an axiomatic, formal treatment of DLs, which distinguishesit from other approaches that informally define
a number of architectural variants. The process of construction of the ontology was guided by 5S, a formal
framework for digital libraries. To test its expressibility we have used the ontology to create a taxonomy of
DL services and reason about issues of reusability, extensibility, and composability.

3.1 Introduction

Research in digital libraries (DLs) has historically been very pragmatic. While much attention has been
paid to design and implement systems and architectures [228, 38, 155, 199], create collections and services
[149, 41], and improve algorithms and methods [99], very little has been done to understand the underlying
fundamental concepts, their relationships, and the axiomatic rules that govern the DL domain, or in other
words, to develop a theory of DLs. The necessity of such theory has long being advocated, from the origins
of the field, illustrated by Licklider’s call for a unified Computer Science (CS)/Library and Information
Science (LIS) model [130], to recent workshops on the futureof digital libraries [124]. The absence of
such a theory makes comparison of different DL architectures and systems extremely hard, promotes ad-hoc
development, and impedes interoperability. Its existencemight enhance our ability to communicate about
and identify new research areas [195].

In Chapter 2, we have presented a partial formal conceptualization of digital libraries by formally defin-
ing high-level DL concepts such as digital objects, collections, repositories, services, etc. We proceeded
from basic mathematical concepts such as sets, graphs, functions, sequences, and so forth in a bottom-up
manner. However, such conceptualization does not constitute a DL theory. A theory should make explicit
the implicit relationships that exist among the defined formal DL concepts as well as provide a set of rules
or axioms that precisely define and constrain the semantics of concepts and relationships in the theory. This
type of formal conceptualization has elsewhere been calledan ontology [57]. Ontologies specify relevant
concepts – the types of things and their properties – and the semantic relationships that exist between those
concepts in a particular domain. Formal specifications use alanguage with a mathematically well-defined
syntax and semantics to describe such concepts, properties, and relationships precisely.

30



In this chapter, we define a formal, axiomatic ontology for digital libraries (DLs) that can serve as a
frame of reference for the discussion of essential conceptsof DL design. The process of construction of
such an ontology was guided by 5S, a formal framework for digital libraries. We use the resulting ontology
to provide answers for questions such as:

• how should DL services be built from the repository, its collections and metadata catalogs, and from
the relationships among different societies that participate in the DL?;

• which are the dependencies and consistency rules that should follow in a DL theory?;

• which are the fundamental and elementary DL services and howcan services be built/composed from
other DL services?

This chapter is organized as follows. Section 3.2 summarizes our earlier results by giving a formal defi-
nition of DLs based on the 5S framework. Section 3.3 builds onthe core definitions to create an axiomatic,
formal ontology for digital libraries. Sections 3.4 illustrates the expressiveness of the ontology by applying
it to create a taxonomy of DL services and to reason about issues of minimality, extensibility, and reusability.

3.2 Background: The 5S Framework for Digital Libraries

In this section, we summarize the results of Chapter 2. Accordingly, Let:

• Streams be a set of streams, which are sequences of arbitrary types (e.g., bits, characters, pixels,
frames);

• Structs be a set of structures, which are tuples,(G,L,F), whereG = (V,E) is a directed graph and
F : (V ∪ E) → L is a labeling function;

• Sps be a set of spaces each of which can be a measurable, measure, probability, topological, metric,
or vector space.

• Scs = {sc1, sc2, . . . , scd} is a set of scenarios where eachsck = 〈e1k({p1k}), e2k({p2k}), . . . , edkk

({pdkk
})〉 is a sequence of events that also can have a number of parameters pik. Events represent

changes in computational states; parameters represent specific locations in a state and respective val-
ues.

• St2 be a set of functionsΨ : V × Streams → (N × N) that associate nodes of a structure with a
pair of natural numbers(a, b) corresponding to a segment of a stream.

• Coll = {C1, C2, . . . , Cf} be a set of DL collections where each DL collectionCk = {do1k, do2k, . . . ,
dofkk

} is a set of digital objects. Each digital objectdok = (hk, Stm1k, Stt2k,Ωk) is a tuple where
Stm1k ⊆ Streams, Stt2k ⊆ Structs, Ωk ⊆ St2, andhk is a handle which represents a unique
identifier for the object.

• Cat = {DMC1
,DMC2

, . . . ,DMCf
} be a set of metadata catalogs forColl where each metadata

catalogDMCk
= {(h,msshk)}, andmsshk = {mshk1,mshk2, . . . ,mshknhk

} is a set of descriptive
metadata specifications. Each descriptive metadata specification mshki is a structure with atomic
values (e.g., numbers, dates, strings) associated with nodes.

• A repositoryR = {Ci}(i = 1 to f) be a set of collections; it is assumed there exist operationsto
manipulate them (e.g., get, store, delete) (see Def. 19.) .

31



• Serv = {Se1, Se2, . . . , Ses} be a set of services where each serviceSek = {sc1k, . . . , scskk
} is

described by a set of related scenarios.

• Soc = (C,R) whereC be a set of communities andR is a set of relationships among communities
SM = {sm1, sm2, . . . , smj}, andAc = {ac1, ac2, . . . , acr} are two such communities where the
former is a set of service managers responsible for running DL services and the latter is a set of actors
that use those services1. Being basically an electronic entity, a membersmk of SM distinguishes
itself from actors by defining or implementing a set of operations {op1k, op2k, . . . , opnk} ⊂ smk.
Each operationopik of smk is characterized by a triple(nik, sigik, impik), wherenik is the opera-
tion’s name,sigik is the operation’s signature (which includes the operation’s input parameters and
output), andimpik is the operation’s implementation. These operations definethe capabilities of a
service managersmk. For example, SearchManager⊃ match(q:query, C:collection)2 indicates that
a SearchManager defines an operation “match” with two parameters, a query and a collection.

According to the 5S formal framework a digital library is a 4-tuple (R, Cat, Serv, Soc).
The above definition emphasizes syntactic aspects, i.e., how digital library concepts are composed or

built from previously defined concepts. In the next section,we will explore semantic relations and rules of
the DL domain.

3.3 Defining a DL Theory Through an Ontological Analysis of the 5S Frame-
work

The crux of our contribution with the 5S framework was, departing from abstractions of many DL archi-
tectural settings, recognizing and formally defining the essential participating concepts in the digital library
discourse. In this section, we extend those results to definea DL ontology by specifying the fundamental
collaborations or relations that exist among the DL participants and the sets of rules (or axioms) which
constrain the semantics of concepts and relations in the ontology.

We organize the presentation and development of the ontology according to 5S. For each S, we list the
concepts and the relations in which they take part. We consider first intra-S relations, i.e., the relations
that occur only among concepts of the same S, along with the corresponding axioms or rules. Afterwards,
relations defined between concepts belonging to different Ss are defined representing inter-dependencies.
It should be noticed in the discussion below that some concepts such as digital objects and indexes are
inherently “cross-S” concepts, i.e., they are defined in terms of concepts belonging to more than one S. For
presentation purposes, we will include those “cross-S” concepts within the discussion about the ‘S’ in which
they share most of their relationships.

More formally, a domain is a set of objects of the same DL type.A DL type is characterized by a defini-
tion as in Chapter 2. An object is of a typeX if its properties (e.g., internal components, organization) satisfy
the definition ofX. Examples of DL types include the basic Ss and derivative types such as collections, dig-
ital objects, etc. An ontological concept is a domain. For example, the statementx ∈ Digital Object says
thatx is a digital object as defined in Chapter 2 and therefore describesx by the ontological concept Digital
Object. An n-ary relation is a subset of the Cartesian product C1 × C2 · · · × Cn of the domains defined by
the respective DL concepts. LetR ⊂ A × B be a relation. ThenR−1 = {(b, a)|(a, b) ∈ R} ⊂ B × A is
called theinverse relationof R. A predicate is a function from a Cartesian product to theBoolean values

1It is worthwhile to remind the reader that in this dissertation we will focus only on the relationships between actors andservices
managers, which correspond to interactions mediated by theDL. We will not focus on interactions which happen outside ofthe
system.

2To simplify notation, we will represent an operationopx = (nx, sigx, impx) by nx({pxk}) where{pxk} is the set of input
parameters ofopx. The output parameters and implementation can be added whena fuller description of the operation is required.

32



true or false. A predicatep(x) built over a relation among concepts is true if x is a member ofthe relation,
false otherwise. We now proceed to define our meaning of a DL ontology.

Definition 26 An ontology is a tuple (OntolConcepts, OntolRels) where:

1. Ontol Concepts is a family of ontological concepts,

2. Ontol Rels is a family of relations.

For notational purposes we will usebold to designate ontological concepts (or simply, concepts) and
italics to define the corresponding predicate. We will use the dot “.” notation to denote components of the
definition of concepts, for examplex.hspecifies the handle of a digital object,y.Imgspecifies the image (or
range) of events of scenario y, andz.opspecifies the set of operations of Service Manager z. We also may
refer to a component of a tuple-oriented concept by its position in the tuple, for example, z(2) specifies the
set of descriptive metadata specifications of a member of a catalog. Finally, we will represent a relation
R ⊂ A × B by A R B. The notation for 3-tuple relations will use similar variants, depending on the
semantics of the relation.

Below we proceed to define the relations and rules of our DL ontology. The relations were developed
by carefully analyzing all possible pairs of associations among concepts within the same and between Ss,
and contextual information necessary to define some of theserelations.

3.3.1 Intra-S Relationships

Streams

• Concepts:{text, image, video, audio}

• Relations:

– contains⊂ video× image∪ video× audio
Streams define the basic content types over which digital objects are built, the latter being the
ultimate carriers of the information in the DL. However somecomplex types of streams (e.g.,
video) may themselves be associated with simpler types of streams (e.g., images, audio). This
relation indicates that a video contains a image as one of itsframes, or contains a specific audio
recording.

Structures

• Concepts:{do, ms, mss, C, DMC , R}. Key: do = digital object; ms = descriptive metadata specifi-
cation; mss = set of descriptive metadata specifications; C =collection,DMC = metadata catalog for
collection C,R = repository.

• Relations:

– is versionof ⊂ do× do
Different manifestations of a digital object are versions,which normally differ structurally or in
terms of their content (e.g., format, encoding, etc.). Thisrelation indicates that a digital object
is a version of another digital object. A digital objectx is a slightly different version of digital
objecty in terms of their streams or structures. Note also that sincehandles are used as identifiers
of digital objects they should be globally unique, so no two digital objects, version or not, share
the same handle.

33



Rules.1. Digital object handles are unique. 2. x isversionof y for two digital objects x and y
if they differ in the handle component and at least one other component, but share at least one
other of their components (e.g., they have the same set of streams, set of structures, or set of
structuredstreams).
Symbolic rules.1. ∀x, y(do(x) ∧ do(y) ∧ (x.hx = y.hy) ⇒ x = y)); 2. ∀x, y (x is versionof
y ⇐⇒ do(x) ∧ do(y) ∧ (x.h 6= y.h) ∧ ((x.Stt 6= y.Stt) ∨ (x.Stm 6= y.Stm) ∨ (x.Ω 6=
y.Ω)) ∧ ((x.Stt = y.Stt) ∨ (x.Stm = y.Stm) ∨ (x.Ω = y.Ω))).

– cites/links to⊂ do× do
Digital objects commonly contains references to other related digital objects in terms of citations
or links. While there are discussions if citations and linkshave the same semantic meaning
[30, 194] we will treat them likewise, since they ultimatelyconnect documents together.

– belongsto⊂ ms× DMC ∪ mss× DMC

Digital objects can belong to many different collections. Similarly, descriptive metadata specifi-
cations can belong to many catalogs.
Rule.x belongsto y indicates that a metadata specification x is used to definean element of the
metadata catalog y.
Symbolic Rule.∀x, y(x belongsto y ⇐⇒ (ms(x) ∧ DMC(y) ∧ (∃z ∈ y : x ∈ z(2))) ∨
(mss(x) ∧ DMC(y) ∧ (∃z ∈ y : x = z(2)))

– part of ⊂ C × C ∪ DMC × DMC

Many DL collections and metadata catalogs are built by aggregating smaller subcollections /
subcatalogs. One good example is the National Science Digital Library (NSDL) union catalog
which is basically an amalgamation of the metadata catalogsof all the participant projects.
Rule.x part of y indicates that collection x is a subset of collection y ormetadata catalog x is a
subset of metadata catalog y.
Symbolic Rule.∀x, y(x part of y ⇐⇒ ((C(x)∧C(y)∧x ⊆ y)∨ (DMC(x)∧DMC(y)∧x ⊆
y)))

– describes⊂ mss× do∪ DMC × C;
A digital object may potentially have many descriptive metadata specifications, for example, in
standard formats (e.g., Dublin Core, MARC) for sharing purposes, or based on more detailed,
community-oriented specific formats. Also qualitative properties of metadata catalogs such as
completeness and consistency can be defined in terms of this relationship.
Rules.1. x describes yindicates that a set of descriptive metadata specificationsx, belonging to
some catalogq for collectionp, describes the content of a digital objecty, which belongs to that
collectionp. The set of metadata specificationsx can describe only one digital object, therefore
the describes relation between sets of metadata specifications and digital objects is afunction.
Symbolic rules.1.1 ∀x, y(x describesy ∧ mss(x) ∧ do(y) ⇒ ∃p, q, h : C(p) ∧ DMC(q) ∧
((h, x) ∈ q) ∧ (y ∈ p) ∧ (y(1) = h));
1.2∀x, y, z(x describesy ∧ x describesz ∧ mss(x) ∧ do(y) ∧ do(z) ⇒ y = z)

Rules. 2. The relation qdescribesp, (q, p) ∈ DMC × C indicates that a metadata catalog q de-
scribes a specific collection p. A complete catalog has at least one set of metadata specifications
for each digital object in the collection it describes. In a consistent catalog, each set of metadata
specifications describes (exactly) one digital object in the related collection. In other words, a
completedescribesrelationship between a metadata catalog, and a collection defines a surjective
partial function, and a consistent relationship defines a total function. Also note that it is very
common that different metadata specifications (e.g., a Dublin Core and a MARC version) may
describe the same digital object, so in most cases thedescribesfunction is not injective.

34



Symbolic Rules. 2.1 Catalog/Collection Consistency: ∀x, y, z(C(y) ∧ DMC(x) ∧ mss(z) ∧
x describesy ∧ z belongsto x ⇒ ∃p ∈ y : z describesp);
2.2 Catalog/Collection Completeness: ∀x, y, z(C(y)∧DMC(x)∧ do(z) ∧ x describesy ∧ z ∈
y ⇒ ∃m : (mss(m) ∧ m belongsto x ∧ m describesz)).

– stores⊂ R × C × DMC

Captures the fact that a physical linkage exists between a collection and the metadata catalog
that describes it in the context of the collection’s repository. In many DL systems, digital objects
are physically stored with their metadatata specificationsor with physical pointers to them (e.g.,
foreign keys, memory address). In our minimal DL, we were flexible enough to allow a catalog
to exist outside of scope of the collection’s repository, but this relationships make the physical
connection explict.

Rule. r stores (x,y)indicates that a repositoryr stores a collectionx with the metadata catalogy
which describesx.

Symbolic Rule. ∀x, y, z(x stores(y, z) ⇒ R(x) ∧ C(y) ∧ DMC(z) ∧ z describesy)

Spaces

• Concepts:{Vec, Pr, Measurable, Measure, Metric , Top}. Key: Vec= vector space; Pr = probability
space; Measurable = measurable space; Measure = measure space; Metric = metric space; Top =
topological space.

• Relations

– is a⊂ Measure× Measurable∪ Pr × Measure∪ Metric × Top ∪ Vec× Top.

x is a y indicates that a space x has all the properties / constraints / operations associated with
the definition of the space y and may include additional properties / constraints / operations. The
is a relationship is reflexive, transitive, and anti-symmetric, therefore mathematical spaces that
participate in this relation define a partial order.

Scenarios

• Concepts:{Se, Sc, e}; Key: Se = service; Sc = scenario; e = event.

• Relations:

– contains⊂ Sc× e
Makes explicit the relationship that an event belongs to a sequence of some scenario of use of
a DL service. Rule.sck containsekj

indicates that an eventekj
= sck(j) is a element of the

image/range of a scenariosck, for somej belonging to the domain{1, 2, . . . , dk} of sck. Recall
that scenario is a sequence of events, i.e., it is a function from natural numbers to a set of events.

Symbolic Rule. ∀x, y(x containsy ∧ Sc(x) ∧ e(y) ⇒ ∃j : (j ∈ x.Dom ∧ y = x(j)))

– precedes⊂ e× e× Sc; happensbefore⊂ e× e× Sc
A scenario of use represents a temporal sequence of events that a user (or another service man-
ager) engages in while interacting with a DL service. The temporal ordering of events is captured
by these relations.

Rule 1. x precedesz y indicates that an event x occurs immediately before y in thecontext of
scenario z. xhappens beforez y indicates that both x and y are elements of sequence z, and x

35



happens some time before y, i.e., the sequence value of x is smaller than the sequence value of
y.

Symbolic Rule 1. ∀x, y, z(x precedesz y ∧ e(x) ∧ e(y) ∧ Sc(z) ⇒ ∃i, j : (z containsx ∧
z containsy ∧ x = z(i) ∧ y = z(j) ∧ i + 1 = j))

Symbolic Rule 2. ∀x, y, z(x happens beforez y∧e(x)∧e(y)∧Sc(z) ⇒ ∃i, j : (z containsx∧
z containsy ∧ x = z(i) ∧ y = z(j) ∧ i < j))

– reuses⊂ Se× Se∪ Sc× Sc; extends⊂ Se× Se∪ Sc× Sc
Services exposed by a DL can be classified either as elementary or composite. Elementary ser-
vices provide the basic infrastructure for the DL. Examplesinclude authoring, indexing, rating,
and linking. Composite services can be composed of other services (elementary or composed)
by reusing or extending them. For example, searching and browsing services use indexing
and linking services, a relevance feedback service extendsthe capabilities of a basic search-
ing service, and a lesson plan building service may use already existing searching, browsing,
and binding services to find and organize relevant resources. The problem of composability
of services has gained considerable attention recently, mainly in the Web Services community
[33, 50]. However, DL services are restricted to certain specific types with constrained inputs
and outputs, therefore making the problem more manageable and amenable to domain specific
techniques. Since DL services are described by correlated,generally slightly variant scenar-
ios of use, similar notions can be applied to those scenarios. For example, consider scenario
sc1 = 〈search(q, C), results({(doi, wi)})〉 for a search service whereq represents a query,
C a DL collection,do a digital object, andw a weight. The scenariosc2 = 〈search(q, C),
results({(doi, wi)}), relevant docs{doi}, expanded query(eq, {doj}), search(eq,C), re-
sults({(dok, wk)})〉 is an extension ofsc1 representing a relevance feedback search.

Rule 1. Let sc1 = 〈e1, e2, . . . , en〉 be a scenario. A scenariosc2 = 〈e2x, . . . , e2y〉 reuses
scenariosc1 if it contains all events ofsc1 in the same order they appear, i.e., if eventei precedes
eventej in sc1, the same relationship holds in scenariosc2, or, in other words,sc2 reusessc1

only if sc1 is aconsecutive subsequenceof sc2.

Symbolic Rule 1. ∀x, y(x reusesy∧Sc(x)∧Sc(y) ⇒ (∀z : e(z)∧y containsz ⇒ x containsz)∧
(∀p, q : e(p) ∧ e(q) ∧ p precedey q ⇒ p precedesx q))

Rule 2. A serviceSe1 reuses serviceSe2 if it includes all its scenarios, i.e., ifSe2 ⊆ Se1.

Symbolic Rule 2. ∀x, y(x reusesy ∧ Se(x) ∧ Se(y) ⇒ y ⊆ x).

Rule 3. Let sc1 = 〈e1, e2, . . . , en〉 be a scenario. A scenariosc2 = 〈e2x, . . . , e2y〉 extends
scenariosc1 if it contains all events ofsc1 in the same relative order they appear, i.e., if eventei

happens before eventej in sc1, the same relationship holds in scenariosc2, or, in other words,
sc2 extendssc1 only if sc1 is a subsequence ofsc2.

Symbolic Rule 3. ∀x, y(x extendsy∧Sc(x)∧Sc(y) ⇒ (∀z : e(z)∧y containsz ⇒ x containsz)∧
(∀p, q : e(p) ∧ e(q) ∧ p happens beforey q ⇒ p happens beforex q)).

Rule 4. A serviceSe2 extendsserviceSe1 if Se2 includes all ofSe1’s scenarios, andSe2 has
new scenarios, i.e., there exist scenarios inSe2 which are not elements ofSe1, or there exist
scenarios ofSe2 which extend scenarios ofSe2.

Symbolic Rule 4. ∀x, y(x extendsy ∧ Se(x) ∧ Se(y) ⇒ y ⊆ x ∧ (x 6= y ∨ ∃p, q : Sc(p) ∧
Sc(q) ∧ p ∈ x ∧ q ∈ y ∧ p extendsq)).

Societies

• Concepts:{SM, Ac, op}; Key: SM = service Manager; Ac = actor; op = operation.

36



• Relations

– redefines⊂ op× op
A common reason to redefine or override an operation is to provide more specific functionality
for a service manager which inherits an operation from another service manager (see below).
Rule. A redefined operation has the same name, and often (but not necessarily) the same signa-
ture, but a different implementation.
Symbolic Rule. ∀x, y(x redefinesy ∧ op(x) ∧ op(y) ⇐⇒ x.n = y.n ∧ x.imp 6= y.imp).

– includes⊂ SM × SM; inherits from ⊂ SM × SM
Aggregation and generalization are two special types of relationships between service managers
that foster reusability and extensibility. Aggregation, captured in the includes relation, mod-
els a ‘whole/part’ relationship in which one manager as a whole has other managers as parts,
or, in other words, if service managerx includes service managery, it implies thaty is re-
quired in order to use service managerx. Generalization, captured by theinherits from relation,
means that a manager has all the capabilities defined by another manager, potentially has addi-
tional ones, and can redefine others (polymorphism). For example, LessonPlanBuilding includes
Binding Manager indicates that a service manager LessonPlanBuilding includes operations of
a Binding Manager. Similarly, RelevanceFeedbackSearch Managerinherits from Search Man-
ager indicates that a RelevanceFeedbackSearch Manager hasthe same capabilities as the Search
Manager as well as additional ones (e.g., for query expansion).
Rule 1. x includes yindicates that a service managerx has all operations defined in service
managery plus others not defined iny.
Symbolic Rule 1.∀x, y(x includesy ∧ SM(x) ∧ SM(y) ⇒ y.op ⊆ x.op ∧ y.op 6= x.op).
Rule 2. x inherits from y indicates that a service managerx has all operations from the service
managery and defines additional operations, orx redefines some operations ofy.
Symbolic Rule 2. ∀x, y(x inherits from y ∧ SM(x) ∧ SM(y) ⇒ (y.op ⊆ x.op ∧ y.op 6=
x.op) ∨ (∀z ∈ y.op − x.op : ∃w ∈ x.op : w redefinesz)).

– invokes:op × op
It is generally useful to specify dependencies between operations when discussing issues of ex-
tensibility and reusability. For example, searchsimilar(do)invokesmatch(q:query, C:collection)
indicates that a searchsimilar operation invokes a match operation, defined in a Service Manager
x or in another manager thatx inherits from or includes.
Rule. 1. f invokes gindicates that operation f may invoke operation g, namely, that within the
body of operation f there is an expression whose evaluation invokes g (g is a subfunction of
f). The operation f defined in a service manager x may only invoke an operation g, if g also is
defined in x or in another manager that x includes or inherits from.
Symbolic Rule. ∀f, g(f invokesg ∧ op(f) ∧ op(g) ∧ (∃p : SM(p) ∧ f ∈ p ∧ g ∈ p) ⇐⇒
g is a subfunction off ⇐⇒ ∃ functionsr, s : g = r ◦ f ◦ s

– association:Ac × Label × Ac
A generic relationship between actors without a pre-definedsemantics, this one captures generic
societal relationships between communities of actors. Forexample, the relation (Professor,
“teaches”, Learner) is self-explanatory.

3.3.2 Inter-S Relationships

In this section, we identify several relations that cross the borders of Ss. Our emphasis here is on the
relationships between the dynamic aspects of the DL, characterized by societies and scenarios, and the

37



more “static” aspects of the DL, characterized by concepts in the other Ss. We also further explore other
relationships among the three static Ss.

Scenarios and Societies

• Relations:

– executes⊂ e× 〈op〉

The changes of computational states which are triggered by events in a scenario are compu-
tationally realized by invoking operations defined on service managers. Let〈op〉 be the set
of finite sequences from op.ek executes〈op〉j indicates that the list of operations〈op〉j =
〈op1j , op2j , . . . , opnjj

〉 is executed as the result of the occurrence of eventek. Also if Pk is the
set of event parameters ofek andPj is the union of all parameters of all operations in〈opj〉,
Pj ⊆ Pk. For example, search(q,C)executesmatch(q,C) states that an eventsearchexecutes
an operationmatch(probably defined in a Searching Manager) between a queryq and the set of
digital objects in the collection C.

– recipient⊂ {SM ∪ Ac} × e
In a scenario it is normally useful to identify the societal members that receive events for the pur-
pose of checking consistency, security, etc. For example, the following two relationships specify
recipients of events in a simple searching scenario: SearchManagerrecipient search(q,C); Re-
searcherrecipientresults({(doi , wi)}).

Rule. recipient⊂ {SM ∪ Ac} × e indicates that a specific service manager or actor is the
receiver of an event in a scenario. Any actor can be the receiver of any event. If the event has an
executerelationship with some operation, the receiver must be a Service manager which should
have this operation.

Symbolic Rule. ∀x, y, z(x recipienty ∧ y executesz ∧ SM(x) ∧ e(y) ⇒ ∀w ∈ z.Img : w ∈
x.op).

– participatesin ⊂ {SM ∪ Ac} × Sc
This relation makes explicit the societal entities interacting in a scenario.

Rule. Indicates that a service manager or actor x participates ina specific scenarioy of a DL
service by being a recipient of an eventz of scenarioy.

Symbolic Rule. ∀x, y(x participatesin y∧(SM(x)∨Ac(x))∧Sc(y) ⇒ ∃z : e(z)∧y containsz∧
x recipientz)).

For Service Managers, a consequence of the defined relationsis that only operations defined in
the participating managers should be associated with events of the scenarios in the service. This
gives rise to the following consistency rule between a scenario and a society.

Symbolic Rule. ∀x, y, z, w(Sc(x)∧ e(y)∧ op(z)∧x containsy∧y executesw∧ z ∈ w.Img ⇒
∃p : SM(p) ∧ p partipatesin x ∧ z ∈ p.op).

– uses⊂ Ac × Se
In many real DL settings it is useful to specify that only specific kinds of Actors may be allowed
to use certain services. For example, while a researcher should be allowed to use all information
seeking services, services such as ‘lesson plan building’ and ‘dissertation submission approval’.
should be used only by teachers and archivists, respectively.

Rule. Indicates that an Actor is allowed to use a specific service by participating in some of the
services’ scenarios.

Symbolic Rule. ∀x, y(x usesy∧Se(y)∧Ac(x) ⇒ ∃z : Sc(z)∧SM(w)∧z ∈ y∧x participatesin z).

38



– runs⊂ SM × Se
Rule. Service Managerx runs servicey if all operations executed in all scenarios ofy are defined
onx or in managers thatx includes or inherits from.

Symbolic Rule. ∀x, y(x runsy ∧ SM(x) ∧ Se(y) ⇒ ∀z, p, q, r : (Sc(z) ∧ e(p) ∧ op(r) ∧ z ∈
y ∧ z containsp ∧ p executesq ∧ r ∈ q.Img ⇒ r ∈ x.op).

Structures, Streams and Spaces

• Relations:

– IC ⊂ θ × V PM × H

LetC ∈ Coll be a collection,H be the set of all handles of digital objects in C,θ ⊂
⋃

do∈C do(4)
be a set of all triples (node, stream, interval) associated to digital objects in the collection, where
interval is a pair of natural numbers (a,b) corresponding toa portion of the stream (or a sub-
stream) andV PM =

⋃

sp∈{V ec∪Pr∪Metric} sp. An type of indexIC is a relation that maps
specific substreams associated with nodes of specific digital object structures and elements of a
vector, probability, or metric space representing those substreams to handles of digital objects.
Normally, the elements of these spaces are built by extracting statistical features(e.g., number
of specific text terms, histograms) from the respective substream. In the case of a probability
space, the elements ofH are mapped from a finite set with a discrete measure assigningpositive
probabilities to elements of that set. If an index fuunctionI in defintion 20 of Chpater 2 only
mapped feature singletons to handle singletons, and if the index were theunion of these pairs,
rather than a set of set of pairs, then the index from Chapter 2would be the same asIC here.

Symbolic Rule. ∀x(x ∈ ICi
⇒ ∃y, z : do(y) ∈ Ci ∧ x(1) = y(1) ∧ z = x(2) ∧ z ∈ y(4)).

∀C(Coll(C) ∧ (h, s, v) ∈ IC ∧ (h, s, v′) ∈ IC ⇒ v = v′).

Scenarios and (Streams, Structures, Spaces)

• Relations:

– employs⊂ Se× S3; produces⊂ Se× S3

Let S3 = Streams∪ Structures ∪ Spacesbe the union of all concepts of the respective Ss.
DL services manipulate, transform, and return instances ofthe concept types defined inS3 or
their component parts. For example, the notion of distance (as defined by a metric space) or
probability (as defined by a probability space) are essential to services which need to compute a
similarity measure between objects in the DL or between a patron’s intrinsically vague inform-
ation need and objects in the DL. Examples of services that normally employ spaces to compute
these measures include searching, filtering, recommending, visualizing, classifying, and clus-
tering. Also, services exist that transform DL objects (digital objects, metadata specifications,
structures, streams) into different types of spaces for many purposes. Examples include services
such as indexing, which transforms structured streams intoelements of a vector or probability
space, rendering or visualizing, which normally takes collections and transforms into a 2D/3D-
metric space, or customizing, that normally transforms a space (e.g., a user interface (UI) or
a distance function) into another personalized space (e.g., a customized UI or a personalized
distance function [60]).

Due to the complexity and number of possible instances of this relation, we will postpone the
discussion to the next section, where we will further characterize the relationships between ser-
vices and the other “static” Ss by making explicit employed inputs and produced outputs of

39



Figure 3.1: DL ontology

events in these services as well as pre- and post-conditionsthat constrain when and how these
services can be evoked and combined.

The resulting ontology is graphically depicted as shown in Figure 3.1. Each S is represented as
a circle containing the respective concepts. Normal lines represent inter-S relations while dotted
lines correspond to inter-S relationships. Arrows linked to a whole indicate that the relationship
can exist among all concepts in an S.

3.4 Example Application of the Ontology: Expanding the “Minimal DL” to
the “Typical DL”: A Taxonomy of DL Services

Our objective in this section is to further explore some of the most important types of relations in the DL
ontology, namely the “employs” and “produces” relationships between services and the other static “Ss”
and the “extends” and “reuses” relationships among services. More specifically, in this section we want to
answer questions such as:

1. Which DL elements are employed or produced by the different DL services?

2. Which are the fundamental DL services?

3. Which kinds of service compositions are possible or valid?

4. Which DL services are elementary or composite?

By answering these questions we make two contributions:

40



• we expand the definition of the “minimal digital library” by formally characterizing a number of
typical digital libraries services, other than the ones defined in Chapter 2; and

• we demonstrate how to use these characterizations to reasonabout how DL services can be built from
other DL components such as repositories and societal interactions, as well as be composed with other
services by extension or reuse.

Table 3.1 shows a set of activities or services derived from ashortened list of the DL taxonomy’s activ-
ities presented in Chapter 2, along with their informal definitions. From that list of activities/services, we
chose only those with explicit “employs/produces” relationships with some static components of the DL,
thus removing entries which:

• had to do with the user’s mind and perception and did not correspond to any tangible DL service (e.g.,
those under ‘abstracting’);

• had to do with pure societal interactions(e.g., ‘collaborating’, ‘publicizing/advertising’)

• had to do with evaluation of services (e.g., ‘analyzing logs’, ‘leading focus groups’);

• had to do with operational aspects of the DL (e.g., ‘renewing’);

• had to do with specific implementation or architectural issues of the DL (e.g., ‘federating’ which deals
with the aspect of distributing queries over a network).

It is very hard to argue for completeness/suficiency of both the set of chosen services and their defini-
tions. An argument similar to the one made for the completeness of the taxonomy in Chapter 2 can be made
regarding the representativeness of this set of services asthe most common ones in typical DLs, since those
were driven from the analysis of the DL literature for a relatively long period of time.

In Tables 3.2, 3.3, and 3.4 each service is characterized by parameters (input, output) of the initial and
final events of the scenarios that compose those services3 as well as pre- and post-conditions that should
hold before and after the respective events. Correctness ofthe entries in Tables 3.2, 3.3, and 3.4 can be
assessed in terms of if they correctly capture the semanticsof the informal definition of each service in
Table 3.1, asssuming that those are correct. Finally, it is also worth noticing that we are not extending the
proper concept of ‘Service’ in the ontology, but we areinstantitatingor characterizing a number of members
of that concept in the context of the ontology’s relationships. All other previous definitions and keys apply
here. Those definitions are complemented with the followingones.

Definition 27 A query q is a (possibly structured) representation of a userinterest or information need. The
exact format of a query is left unspecified here since it is system-dependent.

Definition 28 An annotationannik is a descriptive metadata specification that exists only in reference to a
digital objectdoi; ansij = {anni1, anni2, . . . , annikj

} is a set of annotations describingdoi.

Definition 29 Hyptxt is a hypertext (see formal definition in Chapter2); anchor is a node of a hypertext.

Definition 30 A personal binderbiuk is a subset of some collectionC ∈ Coll for an actoracu ∈ Ac ∈
Soc(1).

Definition 31 A log entry is a descriptive metadata specification about an eventof a scenario.

3In fact, some scenarios of a service can have different initial and final output. In this case it is assumed that the most ‘typ-
ical’ scenario of a service can be identified and that we can use the initial and final events of that scenario for the purposes of
characterizing the service.

41



Definition 32 tfr ⊂ S3×Spaces is a function that transforms any element of a concept inS3 into a space.
Transformers = {tfr1, tfr2, . . . , tfrn} is a set of such functions.

Definition 33 Let{doi : i ∈ I = {i1, i2, . . . , inI
}} be a set of digital objects andCt = {c1, c2, . . . , cm} be

a set of labels form categories. A classifierclassCt : {doi : i ∈ I} → 2Ct is a function that maps a digital
object to a set of categories.

Definition 34 A clustercluk is a subset of a set of digital objects.

42



Service Informal Definition
Acquiring Takes a set of digital objects, belonging to a collection notin the DL, and incorporates them into

some collection of the DL
Annotating Incorporates an annotation to a set of annotations of a digital object; this set of annotations describes

the digital object
Authoring Creates a digital object and incorporates it into some collection of the DL
Binding Incorporates a set of digital objects into a personal binderof some actor
Browsinga Given an anchor of a hypertext returns a set of digital objects
Cataloging Incorporates a metadata specification into a set of metadataspecifications describing a digital object
Classifying Takes a digital object and a classifier and assigns a number ofpossible categories to the object from

a finite set of possibilities
Clustering Takes a set of digital objects and produces a number of subsets; the union of those subsets should be

equal to the original set.
Conserving Takes a collection and produces a similar one, i.e., anothercollection with all objects of the previous

one.
Converting Takes a digital object and produces a version of it (by changing its streams, structures, or structured

streams)
Copying/ Replicat-
ing

Takes a digital object, produces an identical one, and incorporates it into some collection of the DL

Crawling (focused) Given a collection, produces a subset or a copy of that collection
Customizing (inter-
face)

Transforms (using a transformer) the appearance of a user interface, i.e., transforms a metric space
into a different one

Describing Produces a description of a digital object (in terms of a metadata specification) and incorporates this
description into the object’s set of metadata specifications

Digitizing Produces a new digital object from a hard-copy version
Disseminating Given a set of handles of digital objects in a collections, returns the respective objects
Evaluating Given a digital object, produces an evaluation (i.e., a realnumber) for it
Expanding (query) Given a query, an index for a collection, and a set of digital objects returned by the original query and

marked as relevant/pertinent to that query by a user, produces a new, modified query
Extracting (struc-
ture)

Given a stream, produces a structured stream from it.

Filtering Given a set of digital objects, and a query, a threshold (a real number), and an index, or a category
and a classifier, produces a subset of the original set, in which the objects either match the query with
a weight higher than the threshold or belong to the specified category

Harvesting (meta-
data)

Given a set of handles of digital objects, returns the set of metadata specifications for those objects

Indexing Given a collection, produces an index for it
Linking Includes a digital object into a hypertext
Logging Produces a log entry from some event from a scenario of some service
Measuring Produces a measure for a specific digital object
Rating Given a digital object, produces a rate (real number) for it
Recommending Given a collection and an actor, and a set of ratings for objects in that collection produced by others

or the same actor, recommends (produces a subset of that collection) for that particular actor
Requesting Given a handle of a digital object, returns the respective object
Reviewing (peer) Produces a revision (i.e., a real number or a metadata specification) for a digital object
Searching Given a query, a collection, and an index for that collection, returns for each object in the collection

a real number indicating how well the query matches with the object
Submitting Either incorporates 1) a new object into the collections of the DL; 2) a new metadata specification

into the set of metadata specifications of a digital object; or) a new operation into the set of operations
of a service manager

Training (classifier) Produces a classifier given a set of digital objects along with their associated categories
Translating (format/
language)

Produces a version of a digital object by changing its formator language

Visualizing Given a colllection produces a visualization (i.e., a metric space) for it

aThe definition of a browsing service in Chapter 2 includes a number of different outputs for browsing events over a hypertext,
including internal structures of digital objects and theirstructured streams. For the sake of simplicity in this discussion we will
consider browsing services whose events’s output include only a set of digital objects.

Table 3.1: Informal services definitions
43



Service User input Other Service
Input

Output

Acquiring {doi : i ∈ I} none Cj

Annotating doi, annik (hi, ansip) (hi, ansiq)
Authoring nonea none doi

Binding {doi : i ∈ I}, bium {doj : j ∈ J} biun

Browsing anchor Hyptxtj {doi : i ∈ I}
Cataloging hi, msik (hi, mssip) (hi, mssiq)
Classifying doi classCt (doi, {cx, . . . , cy})
Clustering {doi : i ∈ I} none {cluk : k ∈ K}
Conserving Ci none Ck

Converting doi none doj

Copying/ Replicating doi none doj

Crawling (focused) Ci none Ck

Customizing (interface) aci , tfrk spq spj

Describing none doi msik

Digitizing noneb none doi

Disseminating {hx, . . . , hy} none {dox, ..., doy}
Evaluating doi none (doi, wi)
Expanding (query) {doi : i ∈ I} IC , qi, {doj : j ∈

J}
qk

Extracting (structure) stmi none (stj , Ψij)

Filtering
q, t, {doi : i ∈ I} ICi

{doj : j ∈ J}
ck, {doi : i ∈ I} classCt {dok : k ∈ K}

Harvesting (metadata) {hx, . . . , hy} none {(hx, msshxk), . . . , (hy, msshyt)}
Indexing Ci none ICi

Linking doi Hyptxtj Hyptxtq
Logging none ei log entryi

Measuring doi spj (doi, wi)
Rating doi, acj none (doi, acj , rij)
Recommending aci, Ck {(doi, acj , rij) :

i ∈ I, j ∈ J}
{dom : m ∈ M}

Requesting hi none doi

Reviewing
doi none (doi, wi)
doi none msik

Searchingc q, Ci ICi
{(dok, wqk) : k ∈ K}

Submitting
doi, Ck none Cj

doi, msik, DMCj
none DMCt

opk, smi none smj

Training (classifier) {doi, i ∈ I} × 2Ct none classCt

Translating (format/ lan-
guage)

doi none doj

Visualizing C tfrk spj

aUser’s mind is outside scope.
bAnalog/Real world items are outside scope.
cIn fact, this and some other services that take digital objects (or sets of them, or collections) as inputs could also receive digital

object surrogates such as metadata specifications as inputsas well. For sake of simplicity we chose not to specify those here and
leave them as extensions for future work.

Table 3.2: Services inputs and outputs

44



Service Pre-conditions Post-conditions
Acquiring ∃Ct /∈ Coll : {doi : i ∈ I} ⊆ Ct; Cj ∈ Coll;∃Ck ∈ Coll : Ck ∪ {doi : i ∈ I} =

Cj ∧ Ck ∩ {doi : i ∈ I} = ∅
Annotating ∃C ∈ Coll : doi ∈ C;hi = doi(1);

∃x ∈ Cat : (hi, ansip) ∈ x
∃y ∈ Cat : (hi, ansiq) ∈ y ∧ annik ∈ ansiq ∧
ansiq describesdoi

Authoring none ∃C ∈ Coll : doi ∈ C

Binding ∃C ∈ Coll : {doi : i ∈ I} ⊆ {doj :
j ∈ J} ⊆ C; bium ∈ Coll

{doi : i ∈ I} ∪ bium = biun ∈ Coll

Browsing anchor∈ Hyptxtj ∃C ∈ Coll : {doi : i ∈ I} ⊆ C

Cataloging ∃C ∈ Coll : doi ∈ C ∧ doi : hi =
doi(1); ∃x ∈ Cat : (hi,mssip) ∈ x

∃y ∈ Cat : (hi,mssiq) ∈ y ∧ msik ∈ mssiq ∧
mssiq describesdoi

Classifying ∃C ∈ Coll : doi ∈ C {cx, . . . , cy} ⊆ Ct

Clustering ∃C ∈ Coll : {doi : i ∈ I} ⊆ C
⋃

k cluk = {doi : i ∈ I}

Conserving Ci ∈ Coll Ci = Ck ∈ Coll

Converting ∃C ∈ Coll : doi ∈ C ∃C ∈ Coll : doj ∈ C ∧ doj is versionof doi

Copying/
Replicating

∃C ∈ Coll : doi ∈ C ∃C ∈ Coll : doj ∈ C ∧ doi = doj

Crawling
(focused)

Ci ∈ Coll Ci ⊇ Ck ∈ Coll

Customizing
(interface)

spq ∈ Metric; aci ∈ Ac; tfrk ∈
Transformers

spj ∈ Metric; spj = tfrk(spq)

Describing ∃C ∈ Coll : doi ∈ C ∃x ∈ Cat, y : y belongsto x ∧ msik ∈ y ∧
y describesdoi

Digitizing none ∃C ∈ Coll : doi ∈ C

Disseminating∀hi ∈ {hx, . . . , hy} : ∃doi, C : doi ∈
C ∧ hi = doi(1)

∀doi ∈ {dox, . . . , doy} : (hi = doi(1))

Evaluating ∃C ∈ Coll : doi ∈ C wi ∈ [a, b] ⊂ R

Expanding
(query)

∃C ∈ Coll : {doi : i ∈ I} ⊆ {doj :
j ∈ J} ⊆ C; ∃x, y, op(x), SM(y) :
x ∈ y ∧ op(q, C) = {doi : i ∈ I}

none

Table 3.3: Services pre- and post-conditions (Part 1)

45



Service Pre-conditions Post-conditions
Extracting
(structure)

stmi ∈ Streams stj ∈ Structs; Ψij ∈ St2; stmi ∈ Ψij.Dom;
stj.V ∈ Ψij.Dom

Filtering

∃C ∈ Coll : {doi : i ∈ I} ⊆ C;
t ∈ [a, b] ⊂ R

∃x, y, op(x), SM(y) : x ∈ y ∧ op(q, {doi : i ∈
I}) = {(doj , wj) : j ∈ J}; ∀(dog, wg) ∈
{(doj , wj) : j ∈ J}, wg > t; {doj : j ∈ J} ⊆
{doi : i ∈ I}

∃C ∈ Coll : {doi : i ∈ I} ⊆ C ;
ck ∈ Ct

{dok : k ∈ K} ⊆ {doi : i ∈ I}; ∀do ∈ {dok : k ∈
K} : ck ∈ classCt(do)

Harvesting
(metadata)

∀hi ∈ {hx, . . . , hy},∃C ∈
Coll, doi ∈ C : hi = doi(1)

∃DM ∈ Cat :
{(hx,msshxk), . . . , (hy,msshyt)} ⊂ DM

Indexing Ci ∈ Coll none
Linking ∃C ∈ Coll : doi ∈ C doi ∈ Hyptxtq
Logging ∃x, y : Se(x)∧Sc(y)∧y ∈ x∧ei ∈ y; none
Measuring spj ∈ Measure wi ∈ spj

Rating ∃C ∈ Coll : doi ∈ C; acj ∈ Ac rij ∈ [a, b] ⊂ R

Recommending{doi : i ∈ I} ∈ Ck; {acj , j ∈ J} ⊆
Ac; Ck ∈ Coll; rij ∈ [a, b] ⊂ R

{dom : m ∈ M} ⊆ Ck

Requesting ∃C ∈ Coll : doi ∈ C hi = doi(1)

Reviewing
∃C ∈ Coll : doi ∈ C wi ∈ [a, b] ⊂ R

∃C ∈ Coll : doi ∈ C ∃x ∈ Cat, y : y belongsto x ∧ msik ∈ y ∧
y describesdoi

Searching Ci ∈ Coll {dok : k ∈ K} ⊆ Ci, wqk ∈ [a, b] ⊂ R

Submitting

Ck ∈ Coll {doi} ∪ Ck = Cj ∈ Coll

DMCj
∈ Cat msik belongsto DMCt ∈ Cat; ∃x ∈ DMCt :

msik ∈ x ∧ x describesdoi

smi ∈ SM opk ∈ smj ∈ SM

Training
(classifier)

∃C ∈ Coll : {doi : i ∈ I} ⊆ C; none

Translating
(for-
mat/language)

∃C ∈ Coll : doi ∈ C ∃C ∈ Coll : doj ∈ C ∧ doj is versionof doi

Visualizing C ∈ Coll tfrk(C) = spj ∈ Metric

Table 3.4: Services pre- and post-conditions (Part 2)

46



Table 3.5 shows an organized taxonomy of DL services featured in Tables 3.1 through 3.4, derived from
a deep analysis of the entries in that table. The taxonomy wascreated by grouping together all services with
similar I/O behaviour. In the highest level, we make a distinction between Infrastructure and Information
Satisfaction Services. The latter is distinguished from the former by always receiving as a user input either an
active, personal item (e.g., a binder, a personal transformer, a set of documents considered relevant/pertinent)
or a personal representation of an information need (see Chapter 8 for a discussion on this) or interest (e.g.,
a query, an anchor, a profile, a handle of a desired object, a category)4.

Infrastructure services can be further sub-divided into Repository-Building and AddValue services.
Repository-Building services are characterized by producing as output uniquely the four basic items of the
“minimal DL” related to a Repository: collections, digitalobjects, catalogs, and/or metadata specifications.
All Add Value services produce distinct outputs, with the exception of the translating services. Preser-
vational services are distinguished from Creational by producing outputs that are equal to their inputs or
slightly variations of them, i.e., versions in the case of converting/translating services, for preservation pur-
poses. AddValue services either aggregate value/information to their inputs (e.g., annotations, evaluations,
structures, indexes, measures, log entries, rates, reviews, translations, visualizations) or connect objects
together (e.g., by training and classifying, clustering, indexing, linking).

Infrastructure Services Information
Satisfaction
Services

Repository-Building
Creational Preservational Add Value

Acquiring Conserving Annotating Binding
Authoring Converting Classifying Browsing
Cataloging Copying/Replicating Clustering Customizing
Crawling (focused) Translating (format) Evaluating Disseminating
Describing Extracting Expanding (query)
Digitizing Indexing Filtering
Harvesting Linking Recommending
Submitting Logging Requesting

Measuring Searching
Rating
Reviewing (peer)
Surveying
Training (classifier)
Translating (lan-
guage/format)
Visualizing

Table 3.5: A taxonomy of DL services/activities

In this taxonomy, we further characterize afundamental service (denoted bybold) as either:

1. one that produces as an output an element of the basic concepts belonging to our minimal definition
of a DL, such as digital objects, metadata specifications, collections, and catalogs, without which a

4For for the sake of simplicity, in the tables, for some services such as customizing, rating, recommending, we did not make
an explicit distinction between an actor and arepresentationof an actor. Despite being an important distinction, since services can
only take representations as inputs, those representations can take multiple forms (e.g., a simple identifier, a complex profile), all
which can in a way or another be represented as some kind of structure.

47



DL cannot exist;

2. one that belongs to the minimal set of DL services (i.e., indexing, searching and browsing) proposed
in Chapter 2;

3. one that supports the three former services in terms of extension or reuse. In case of item 1, this
includes all the Creational services, with the exception ofcrawling and harvesting, which produces
collections and catalogs from existing inputs in the same oranother DL.

In case of item 1, this includes all the Creational services,with the exception of crawling and harvesting,
which produces collections and catalogs from existing inputs in the same or another DL. In case of item 3,
this includes linking, fundamental to produce an hypertextwhich supports the browsing service. Similarly
a composite(denoted by underlining) DL service is one that takes input from some other service (as per
column 3 of Table 3.2); otherwise the service is called elementary. For example, it can be seen from Table
3.2 that all Preservational services and all the Creationalservices but ‘describing’ (which takes a digital
object as an input from another service) are elementary.

One interesting application of the taxonomy is as a tool to help reason about issues of reuse/extension
of services. Services that produce outputs that can be employed as input by other services have a high
potential to be (re-)used by the latter and services that have similar behaviors have also a large potential
for reuse/extension. For example, Figure 3.2 graphically depicts fundamental services, split into Infra-
structure (Creational + AddValue) and Information Satisfaction services. Normal arrows represent rela-
tionships, where those marked with ‘p’ and ‘e’, denote ‘produces’ and ‘employs’ relationships respectively.
Dotted arrows represent the transformation of a user interest/information need into a representation useful
as an input of a service, in the context of the ‘uses’ relationship between actors and services. From the figure
is easy to see that: 1) the output of (fundamental) infra-structure services is normally the input of either an-
other Creational service or a (fundamental) Information Satisfaction service; and 2) there are many potential
reuse/extend inter-dependencies among the Creational services. Authoring and digitizing produce digital
objects that when submitted produce DL collections and whendescribed/catalogued produce catalogs. Col-
lections are also produced by acquiring services. An indexing service takes a collection and produces an
index used by searching services while linking services produce hypertexts used in browsing services. These
along with requesting services give ultimately access to the digital objects of the DL to the interested actor.

Another example is shown in Figure 3.3 which expands on the right portion of Figure 3.2 by depicting
input/output interactions (and therefore potential for reuse/extension) between fundamental and composite
information services and between the latter and some non-fundamental AddValue services. Common to
the composite information satisfaction services depictedin the figure is the fact that all of them take a set of
digital objects or a collection as input. Recommending takes an actor’s representation, a collection, and the
output of a rating service (i.e., triples (digital object, actor, rating)), and produces a subset of the original col-
lection [156]. Filtering also takes a user interest representation expressed as a query or a category of interest,
either an index or a classifier (produced by a training service), and a set of objects to produce a subset of the
original set. Similarly, binding takes the output producedby searching or browsing services and produces a
new binder which contains (a subset of) those objects. Visualizing produces a space out of a collection and
a transformer, while expanding a query takes the original query submitted to a Searching service, an index
for a collection, and a subset of the response set (i.e., relevant and/or non-relevant documents) and produces
a modified query.

Many other possible compositions are possible and can be seen by analyzing the entries in Tables 3.1-
3.4 and the similarities implied by the taxonomy. Without wanting to be exhaustive at all, some examples
include:

• Recommending, Filtering, Binding, and Expanding query, among others, produce a set of digital
objects; those sets can be further indexed for searching/browsing purposes.

48



Figure 3.2: Several examples of compositions among infrastructure and information satisfaction DL services

Figure 3.3: Examples of compositions of services

49



• Conserving should be able to reuse a copy/replicating service multiple times to produce a copy of a
collection.

• Classifying could be extended to implement filtering, by simply including events to check if a specified
category is in the returned set of categories for an object.

• Translating should be able to be re-used by converting for some types of conversion.

• An advanced searching service may reuse extracting (structure) and extend a Searching service to
provide support for structured queries [87].

The reader is invited to continue exploring other possibilities. To finalize, one can devise an interesting
practical application for the ontology/taxonomy where allthose relatiohsips are materialized in terms of
design patterns/object-oriented hierarchies/componentpools to serve as a backbone for the construction of
the IR/DL systems, therefore promoting reuse of code and saving time and money.

50



Part II

Practical Applications/Tools

51



Chapter 4

Language – Declarative Specification of
DLs: the 5SL Language

Digital libraries (DLs) have emerged as an important research and application area, facilitated by advances in
information technology, especially the Internet and the World Wide Web (WWW). There is strong demand
for new and varied DL systems capable of dealing with all kinds of mixed-mode, multimodal, and multi-
media digital content. As hundreds of DLs are created by colleges, universities, associations, and diverse
other organizations to deal with content they create or digitize, and with local collections of information
from numerous remote sources, strong pressure will be exerted to tailor each to special requirements of use
as well as content.

The process of building a digital library involves specification of the content to be stored; how that
content is organized, structured, described, and accessed; which services are offered by the library (e.g.,
searching, browsing, personalizing, collaborating); andhow patrons (and automated agents) ultimately use
those services and interact with each other in the DL environment. Thus, by their own nature, DLs are
complex and inter-disciplinary information systems.

This complexity makes it difficult and expensive to construct new systems. Nowadays DLs are built
within monolithic, tightly integrated, and generally inflexible systems – or by assembling disparate compo-
nents in an ad-hoc way, with resulting problems in interoperability and adaptability. Ad hoc construction
is not sufficient to meet that demand. More importantly, conceptual modeling, requirements analysis, and
methodological approaches are rarely supported, making itextremely difficult and expensive to tailor DL
content and behavior to particular communities’ interestsand needs. The general trend has been to develop
tools to solve small parts of the problem, whereas the root ofthe problem – the lack of specific DL patterns,
models, methodologies, formalisms, and languages – is almost completely ignored.

To address these challenges, we propose a novel digital library modeling language for conceptual DL
design, based on 5S, called 5SL. 5SL is a high-level, domain-specific language, which allows declarative
specification of a number of DL features that are often considered in isolation. Domain specific languages
are explicitly designed to address a particular class of problems by offering specific abstractions and nota-
tions for the domain at hand. Thus, the main contributions ofthis chapter are: 1) the raising of the level
of abstraction in digital library specification and modeling, through a DL design methodology which is
model-driven and use-case based; 2) an illustration of how the various DL design issues may be combined
in a coherent framework that enriches, extends, and customizes classical models for database, hypertext,
information retrieval, and software engineering.

This chapter is organized as follows. Section 4.1 gives an overview of the language and its foundations.
Section 4.2 details and exemplifies the use of each of the five models (in 5SL). Section 4.3 compares our
approach to related research.

52



4.1 5SL General Organization

5SL is a domain-specific, declarative language with a formalsemantics for conceptual modeling of digital
libraries. The formal semantics is understood in terms of a translation of language constructs into the 5S-
formalized framework. Its formal basis provides an unambiguous and precise DL specification tool, which
can facilitate prototyping, allow proofs of assertions andaid validation of implementations.

With 5SL, the specification of a digital library consists of 5complementary perspectives. Figure 4.1
presents a UML-based graphical representation of that5SL meta-model, corresponding to the portion of
the 5S ontology used in the language. A modeling language is arepresentation of some theory and serves as
a meta-model whose instantiation produces models of specific (DL) systems. As in normal UML notations,
boxes represent Concepts or classes. Lines with diamonds diamonds represent “whole/part” aggregation
relationships (e.g., services are composed of scenarios which are composed of events) and lines with large
arrowheads pointing to a (parent) class represent a “is-kind-of” generalization relatiohsiphs (e.g., actors and
service managers are two kinds of communities). Besides showing a “view” of the meta-model which is
more familiar to system designers, this representation also help to focus on the parts of the DL ontology uti-
lized in the language. It also shows some relationships not represented directly in the ontology, but derivable
from some of its relationships such as ‘employs’, ‘uses’, and ‘runs’. One example is the dependecy relation-
ships (dashed lines) which show that one class uses another class as an argument in their events/operations.

To improve acceptability and interoperability, 5SL makes extensive use of existing standard specification
sublanguages for representing DL concepts, when that turnsout to be possible. The need for the integration
of multiple languages is a key aspect of the domain-specific language approach [10]. A domain typically
consists of multiple subdomains, each of which may require its own particular language. This is particularly
true for digital libraries but the aggregative nature of 5S matches this requirement quite well.

5SL utilizes an XML syntax. The abundance of XML supporting software tools facilitates the construc-
tion of DL generators (see Chapter 6). Most of the 5SL model primitives are defined as XML elements,
which can enclose other sublanguages that help to define DL concepts. In more detail, MIME types consti-
tute the basis for encoding streams. XML Schema [218] and/orRDF Schema [217] are the primary tools for
describing structures. And finally, an adapted and extendedversion of UXF [206], an XML serialization of
UML [25], is used with the Societal and Scenario Models.

4.1.1 Running Example

Throughout this chapter, we employ a simplified running example (scenario) to illustrate the features and
use of 5SL.

A Networked Digital Library of Theses and Dissertations (NDLTD) digital library manages
collections of electronic theses and dissertations (ETDs). Students produce ETDs as a result of
their graduate studies and are responsible for submitting their work along with metadata. In the
process of creating ETDs, students are encouraged to fully apply new multimedia and hyperme-
dia technologies. The submission service is controlled by aworkflow process, which includes
a review phase and a cataloguing phase. In the review phase, the university staff checks ETD
files, the metadata submitted by the student, and payment of appropriate fees. In the catalogu-
ing phase, MARC, ETD-MS (a metadata standard for ETDs), and other metadata formats are
produced from the workflow process, possibly complemented,and distributed for several other
catalogs. The DL services for patrons include fulltext and keyword-based searching as well
as browsing by author and department. Optionally other services like topical or hierarchical
browsing or recommendations can be offered.

53



Figure 4.1: 5SL metamodel for minimal DL

54



<streams>
<text name=‘ETDText’>

<content-type>text/xml
<charset>UTF-8</charset>

</content-type>
<content-type>application/pdf</content-type>
<lang>ENG</lang>

</text>
<audio name=‘ETDAudio’>

<content-type>audio/x-aiff</content-type>
</audio>
<video name =‘ETDVideo’>

<content-type>video/mpeg</content-type>
</video>

. . .
</streams>

Figure 4.2: Stream model example

4.2 5SL Models

4.2.1 Stream Model

The stream model specifies the kinds and formats of multimedia content supported by the digital library.
Preservation concerns and technological limitations influence the specification of this model. With the
objective of promoting reusability and standardization, we have based this model in the Web standard of
MIME types. A MIME type consists of a type (e.g., text), a subtype (e.g., plain, xml) and, in the case of
textual data, a character set, which corresponds to the encoding and language. A three-character Z39.53
language code (e.g., ENG, JPN) is used to indicate the language.

Figure 4.2 shows a subset of the kinds of streams supported byan NDLTD DL. It includes English XML
texts using UTF-8 encoding, PDF files, and several audio and video formats.

4.2.2 Structural Model

The structural model considers multiple sources for organization of a digital library. In this model, one
describes the internal structure of digital objects (documents), metadata standards, properties of collections
and catalogs, as well as knowledge organization tools, which impose organization upon collections, catalogs,
and sets of concepts.

Figure 4.3 presents the portion of the Document Type Definitions (DTDs) (i.e., context-free grammars
that define the logical structure of acceptable XML documents) for the structural model, which shows how
these different aspects of the DL organization are arrangedin a 5SL description.

The internal structure of digital objects (or documents) isdefined with the use of XML Schema. Simi-
larly, structures for descriptive metadata and knowledge organization structures can be described either with
XML or RDF Schema. XML Schema, a standard promoted by the W3C,was conceived to improve on the
deficiencies of DTDs.

A typical description of a document is shown in Figure 4.4, which presents a skeleton of an ETD docu-
ment specification.

55



<!ELEMENT Structure (Document, Metadata,
Collection, Catalog)>

<!ELEMENT Metadata (Descriptive,
Administrative?)>

Figure 4.3: DTD for structural model

<document name=‘ETD’>
<stream_enumeration>

<stream value=‘ETDText’>
<stream value=‘ETDAudio’>

...
</stream_enumeration>
<structured_stream>

%XMLSchema%
<structured_stream>

</document>

Figure 4.4: Document definition example

Documents are defined by imposing structures over (sets of) streams or by using the structure to provide
some organization among them. In other words, a document is seen as a structural composition of streams.
The set of streams that enter in the composition of the documents (as reflected by the relationship between a
document and the entire Stream Model in Figure 4.1) is specified in the<streamenumeration> subsection.
An XML Schema inside the section<structuredstream> defines the internal organization of the document
as a structuring of the streams.

Properties of collections of documents and catalogs of metadata such as name, creator, maintainer,
availability, and semantics are similarly defined in the Structural Model. Figure 4.5 shows the 5SL encoding
of a NDLTD DL catalog which supports ETD-MS and Dublin Core asmetadata formats.

<catalog name=‘VT-ETDCatalog’>
<creator=‘fox@vt.edu’ >
<maintainer=‘mgoncalv@vt.edu’>
<public =‘true’>
<metadata_format = ‘ETD-MS’

schema=‘http://www.ndltd.org/standards/metadata/
etdms/1.0/etdms.xsd’/>

<metadata_format = ‘dublin_core’
schema=’http://www.openarchives.org/OAI/1.1/dc.xsd’ />

....
</catalog>

Figure 4.5: Catalog definition

56



4.2.3 Spatial Model

The Spatial Model specifies a framework for modeling logicalrepresentations and operations of several
DL components. In particular, this model gives details of the underlying DL retrieval models(e.g., use of
vectorial or probability spaces), including detais for indexes, and the user interface appearance (i.e., sets of
metric spaces).

<Spatial_Model name=‘NDLTD_Space_Model’>
<UI name=‘NDLTD_UI’>

<Rendering>HTML</Rendering>
</UI>
<IR_Model>

<Retrieval_Space>Vector</Retrieval_Space>
<Index>

<Stemming>Porter</Stemming>
<Stopwords>NDLTDStopWords.txt</Stopwords>

</Index>
</IR_Model>

<Spatial_Model>

Figure 4.6: Spatial model example

Figure 4.6 especifies that the rendering of the NDLTD user interface is HTML-based (instead of Java-
based), that a vector space is used as basis for retrieval (instead of a probability or metric space), that the
Porter’s algorithm is used for stemming (instead of, for example, a morphological algorithm), and that the
set of utilized stopwords for removal from the index is listed in the specified file.

Currently these properties are described only for documentation purposes and are not being used in the
DL generation process described in Chapter 5, but we intend to use them in the future for configuration of
some of the components that implement these funcionailites.

4.2.4 Societal Model

The fundamental concept in the societal model is that of a ‘community’, a set of entities (human or com-
puter) that share the same characteristics and behavior. Inthe Societal model of 5SL, we are concerned about
identifying the different communities that interact within the DL environment, the main functionalities as-
sociated with them, and their semantic relationships. The model is based on the classical object-oriented
paradigm, and uses the concepts of attributes, methods, andrelationships.

In 5SL, as in 5S, we distinguish two main types of communities: service managers and actors. Service
managers administer DL services while actors explore thoseservices to fulfill their information needs. Ser-
vice managers also define and implement basic methods or operations. The exact behavior and functionality
of the DL services are described in the Scenario Model with sequences of events (and corresponding invo-
cations of operations) representing interactions or collaborations between the communities. Note, though,
that the functional description of societies as described by their operations/methods could be automatically
generated from the Scenarios Model, and their implementation also could be generated by forward engi-
neering [25] or algorithmic model transformations [186]. We have decided to explicitly model at least the
interfaces of those operations/methods in the Societal Model as a design choice for consistency purposes,
to aid explicit modeling of relationships and constraints,and because of its possible impact on the DL gen-
eration process. This decision can be reviewed in the futureas we gain more insight with the additional

57



Figure 4.7: Example of a societal schema for an NDLTD site (inUML)

use of the language. Figure 4.7 shows a simple societal schema for an ETD site that captures the seman-
tics described in the running example (described with UML notation). This schema consists of four actors
(Patron, Student, ETDReviewer, and ETDCataloger) and two managers, the ETDWorkflowManager and the
ETDConverterManager, and three services, converting, reviewing, and cataloguing1. In particular, the ET-
DConverterManager is responsible for converting ETD files into standard formats as specified in the Stream
Model.

The XML code of Figure 4.8 represents part of the 5SL encodingof the societal schema (corresponding
to dark boxes in Figure 4.7).

Core Service Managers Model

The core service managers model is formed by a set of pre-defined managers, whose supported services con-
stitute the minimal functionality that a digital library should support. There are five of these core managers,
as shown in Figure 4.1. The InterfaceManager is responsiblefor the active aspects of the user interface as
for receiving and passing events for all the appropriate Service Managers. The SearchManager executes
the search strategy as described in the retrieval model. It takes a query representation and a collection, and
returns documents in the collection along with associated weights, where the weights specify how well the
document representation matches with (or implies) the query. The BrowsingManager contains operations
to manage hypertexts and to implement run-time navigation activities based on the hypertext topology. The
IndexManager is responsible for, given a collection of documents, producing an Index as described in the
Spatial Model. The Repository Manager manages collectionsand potentially catalogs (if it stores them).

1We chose to represent services with oval symbols. Besides differetiate them from the other Societal Concepts it is also consis-
tent with the representation of UML Use cases, to which Services are related.

58



Figure 4.8: 5SL-XML societal encoding of the NDLTD schema

Basic operations of the Repository Manager include adding,deleting, and retrieving documents from a col-
lection. As we will see in Chapter 5, each of this ‘logical’ classes are materialized as software components
in our DL component Pool.

4.2.5 Scenario Model

The purpose of the Scenario Model is to describe the behaviorof the DL services. The description is realized
as a set of sequences of events that the actor and managers engage to yield an observable result of value to
members of the DL society. UML interaction diagrams providea visual tool to help with this description.
5SL provides a specific way to serialize these graphical representations in XML.

Figure 4.9 exemplifies the use of a UML sequence diagram for describing a simple scenario of a search-
ing service in an NDLTD DL. A patron searching for ETDs about aparticular topic expresses her interests
as a fulltext query. The request is passed through the InterfaceManager to the SearchManager that executes
a search procedure, according with the strategy described in the retrieval model (see Spatial Model). The
SearchManager then returns a weighted set of ETD identifierswhere weights specify how well the corre-
sponding ETD representations match with the query. The set is presented to the user by the InterfaceManager
as an ordered list of titles, which allows her to scan to judgethem for relevance. She finds a particular title
appealing and requests the ETD. The request is carried out bypassing the corresponding identifier to the
Repository Manager, which retrieves the particular ETD forthe researcher.

The corresponding 5SL code for this scenario is shown in Figure 4.10. The 5S theory describes scenarios
as sets of events, which can be associated with operations and conditions2. The operation associated with

2In Tables 3.3 and 3.4 we have pre- and post-conditions only for the initial and final events, but potentially all events canhave
associated conditions.

59



Figure 4.9: A simple search scenario for an ETD site

60



Figure 4.10: 5SL-XML serialization of the scenario depicted in Figure 4.9

the event, which may result in a change of state, is an executable statement that forms an abstraction of a
computational procedure as defined in the societal model. The XML textual sequence of event descriptions
corresponds to the temporal sequence in the scenario. Note also that the XML element ‘receiver’ in the code
corresponds to the recipient ontological relationship. For completeness and to facilitate generation of code,
we also introduced the ‘sender’ element.

A more complex service description is illustrated in Figure4.11. For brevity, we omit events related to
the InterfaceManager. The scenario depicts the Graduate School perspective of the ETD Submission service.
The ETD reviewer logs into the system and checks for the lastest submitted ETDs. For each of those ETDs
the reviewer repeats the same process: he chooses an ETD to review; the workflow manager responds with
an ETD review page which lists ETD files, metadata, and options; the reviewer downloads ETD files for
review and verifies the metadata; and finally he checks if the student has returned all forms and has paid all
appropriate fees. The repetition is shown in the picture by an enclosing box with an associated condition; all
events in the box are repeated if the reviewer chooses to review another ETD. The reviewer can then choose
to accept the submission, so the ETD goes into the library collection. If the reviewer rejects it, an email goes
to both student and advisor explaining the reasons for rejection. In the picture, the alternatives are presented
by multiple arcs exiting from different boxes representingdistinct states; the first arc carries the condition
that led to the respective state.

Part of the 5SL encoding is shown in Figure 4.12. Two language-specific constructs were also intro-
duced in the language to faciliate specification of different flows of control and are shown in the figure.
Repetition is captured by the<INTERACTION> element. All events defined inside this element are re-
peated according to the order of their definition. Alternatives are defined inside a<BRANCHING> section.
Each<WHEN> subelement with respective condition inside the branchingdefines an alternative path of
execution.

61



Figure 4.11: The review scenario for the submission service

Figure 4.12: Portion of the 5SL-XML serialization of the scenario depicted in Figure 4.11

62



4.3 Related Work

Recent research, developed mainly in the database and hypertext communities, has been investigating declar-
ative approaches and representations for specific kinds of information systems, mainly Web and e-commerce
sites. Strudel [62], Tiramisu [6], and Active Views [1], areexamples of systems that have this data-centered
perspective of a Web site. The common objective is to separate Web site structure, data management, and
page presentation, and to provide some query mechanism to allow manipulation of their representations
(normally graph-based).

The hypertext/hypermedia community also has a long tradition of developing rich abstraction models
and decompositions for hypermedia systems. Examples include OOHDM [187], Web2000 [17], and Au-
toweb [71]. An interesting approach close to ours is described in [176, 40]. The WebML modeling language
and its supporting tool, Torii, provide powerful abstractions to describe and generate the hypertext and
navigation structure of Web sites.

In comparison, 5SL factors information architectures at a finer granularity, which provides more expres-
siveness as well as more specific DL constructs and abstractions not present in WebML or any of the cited
works.

An even closer approach is described in [238]. The Digital Library Definition Language (DLDL) is
focused on describing external behavior of DLs for purposesof supporting interoperability in terms of
federated searching. A similar approach is defined in [160].These approaches however are limited in scope
and in their ability to cover most of the challenges in the construction of complex digital libraries.

A remarkable system that shares many objectives with our approach is the New Zealand Greenstone
DL system [229, 15]. Greenstone allows the construction of complex DLs and tailoring of many parts of
DLs to specific domains and needs. However to achieve these goals Greenstone utilizes (in early versions)
heterogeneous machinery including Perl modules, proprietary markup languages, and macros, CORBA,
Standard Template Library (STL) in C++, etc3. In contrast, our approach presents more uniform, high
level, and abstract way to deal with all these aspects without committing to any particular implementation
or architecture.

In sum, although 5SL shares many of the goals exposed by the research community, none of the im-
plemented methods presents such a comprehensive, homogeneous, and integrated DL oriented approach to
cover almost all aspects of digital library design and construction. Moreover, in contrast with most of the
related work, 5SL is deeply grounded is a rich formal theory for digital libraries.

3The latest version of Greenstone just released uses Java.

63



Chapter 5

Visualization – Visual Semantic Modeling of
Digital Libraries: the 5SGraph Tool

The current interest from non-experts who wish to build digital libraries (DLs) is strong worldwide. How-
ever, since DLs are complex systems, it usually takes considerable time and effort to create and tailor a DL
to satisfy specific needs and requirements of target communities/societies. What is needed is a simplified
modeling process and rapid generation of DLs. To enable this, DLs can be modeled with descriptive domain-
specific languages as 5SL. In such languages, models are madeup of elements representing concepts, rules,
and terminology that are part of the domain world, as opposedto the world of code or of generic modeling
languages (e.g., UML [26]). Despite its advantages, domain-specific languages are sometimes hard to learn
and master. A visual tool would be helpful to non-experts so they may model a DL without knowing the
theoretical foundations and the syntactic details of the descriptive language. In this chapter, we present
a domain-specific visual DL modeling tool, 5SGraph. It employs a metamodel that describes DLs using
the 5S theory. 5SGraph presents the metamodel in a structured toolbox, and provides a top-down visual
building environment for designers. The visual proximity of the metamodel and instance model facilitates
requirements gathering and simplifies the modeling process. The output from 5SGraph is a DL model that
is an instance of the metamodel, expressed in the 5S description language. Furthermore, 5SGraph maintains
semantic constraints specified by a 5S metamodel and enforces these constraints over the instance model to
ensure semantic consistency and correctness. 5SGraph enables model reuse to reduce the time and effort
of designers. 5SGraph also is designed to accommodate and integrate several other complementary tools
reflecting the interdisciplinary nature of DLs. The 5SGraphtool has been tested with real users and several
modeling tasks in a usability experiment, and its usefulness and learnability have been demonstrated.

This chapter is organized as follows. Section 5.1 describes5SGraph: its design, functionality, key
features, and visualization properties. Section 5.2 presents design, measures, and results of a usability
experiment to evaluate the tool.

5.1 The 5SGraph Modeling Tool

5.1.1 Motivation

With 5SL, a DL designer does not need to be an expert in software engineering or information science; she
only needs to have a clear conceptual picture of the needed DLand be able to transform the conceptual
picture to 5SL files. This greatly reduces the burden on designers, speeds up the building process, and
increases the quality of the DLs built. However, 5SL has its own problems and limitations:

1. The designer must understand 5SL well enough to be able to write a 5SL file and to correctly use it to

64



express his/her ideal digital library.

2. The 5SL file, which describes a DL, consists of five sub-models (Stream model, Structural model, Spa-
tial model, Scenarios model, and Societal model). Althoughall of the five sub-models are expressed
in XML, they use different sets of concepts and have different semantics. Thus, the 5SL specification
is compatible and extensible, because many existing standard formats can be used within the 5SL
language. Yet, to build one DL, the designer needs to understand the five or more different semantic
specifications that are required to express the system.

3. When large and complex digital libraries are to be built, it is very hard even for experts to manually
write those XML files without any assistance from a tool.

4. It is very difficult to obtain the big picture of a DL just from a huge set of XML files. This may cause
trouble for maintenance, upgrade, or even understanding ofan existing system.

5. A number of semantic constraints exist between (inter-model constraints) and within (intra-model
constraints) the sub-models. Designers need extra effort to ensure consistency in the whole model.

5.1.2 Requirements

Reflecting on the above mentioned disadvantages of 5SL, we consider the following four functions of a
modeling tool based on the 5S/5SL framework to be essential:to help DL designers to 1) understand 5S
quickly and easily; 2) build their own DLs without difficulty; 3) transform their models into complete,
correct, and consistent 5SL files automatically; 4) understand, maintain, and upgrade existing DL models
conveniently.

Accordingly, our 5SGraph modeling tool supports these functions as it provides an easy-to-use graphical
interface. It automatically generates desired 5SL files forthe designer. Since visualization often helps
people understand complex models, 5SGraph is able to load and graphically display DL metamodels1. The
visual model shows the structure and different concepts of aDL and the relationship among these concepts.
5SGraph also provides a structured toolbox to let the designer build a DL by manipulation and composition
of visual components (see Figure 5.1). The structured toolbox provides all the visual components of the
metamodel, and shows the relationships among these components. The visualization thus provides guidance
while the designer is building the model. The designer only needs to deal with a graphical interface and
pull visual components together. It is not required to memorize the details of the syntax and semantics of
5SL. Cognitive load is reduced. Typing effort and typing errors are reduced. Furthermore, correctness and
consistency can be automatically guaranteed by 5SGraph; thus it yields correct and consistent 5SL XML
files according to the visual model built by the designer. As such, 5SGraph eliminates the disadvantages of
working with raw 5SL.

The concept of metamodel is very important to assure flexibility. The metamodel, which is a representa-
tion of the 5S theory, describes a generic DL. The model for a specific DL is an instance of the metamodel,
which in our case is a domain-specific metamodel, i.e., specific to the domain of building DLs. Since the
5S framework is still under development, it is expected thatmore changes and additions will be made in
the future, especially to 5SL. Fortunately, when given a newmetamodel, the tool can be used with future
versions of 5SL as well as more application-oriented specializations of it. One example of the latter is the
5S-based metamodel for archaeological DLs currently beingdeveloped in the ETANA project [164]

1Diffent metamodels can exist. For example, the current metamodel can evolve generating new versions or metamodels for
more application-oriented types of digital libraries (e.g., ETANA – an archaeological DL) can be created.

65



Figure 5.1: 5SGraph sample interface with structured toolbox (bottom part) and workspace (upper part);
figure shows modeling of collections for the CITIDEL project(www.citidel.org)

5.1.3 Key Features.

Some of the major features of the tool include:

• Flexible and extensible architecture

5SGraph is a domain-specific modeling tool. Thus, the model is made up of elements that are part of
the domain world, not the whole entity world. 5SGraph is tailored to accommodate a certain domain
metamodel for 5S. Methods that are appropriate only to 5S canbe used to optimize the modeling
process. Reuse in such a specific domain is realistic and efficient, because the models in that domain
have many characteristics in common.

The 5SL language extensively uses existing standards. The reason is that the specification of a DL
involves many sub-domains, and there are various standard specifications for each sub-domain. There
also are many well-developed tools for those sub-domains. For example, metadata is an important
element in 5S. Several existing metadata editors can be usedto view and edit metadata. Another
example concerns the scenario part of 5S. A specific scenariocan be modeled and described by UML
sequence diagrams, so existing UML modeling tools could be used for this purpose.

The 5SGraph tool should not “re-invent the wheel”. Therefore, the tool is designed to be a super-
tool, which means it provides an infrastructure based on 5S and calls existing tools as needed. In the
interest of brevity, however, this chapter focuses on how 5SGraph helps with modeling a DL, rather
than on how 5SGraph calls other tools to create customized components.

• Reuse of sub-models

In 5SGraph, model reusability means that models designed for one digital library instance can be
saved and reused in other DL models. Reusability saves time and effort. There are models that are

66



common for different DL systems. For example, many DLs sharethe same data formats, and the same
descriptive metadata standards. The models representing streams or metadata can be built once and
reused in different DLs. When a new model is needed, the user does not need to build a new one from
scratch. He/she loads a similar (sub-)model and spends relatively less time by making minor changes
to customize it (see Figure 5.2). Of course, not all models are designed to be reusable. A reusable
model should be self-contained and independent.

• Synchronization between the model and the metamodel

There are two views in the tool. One is for the toolbox (metamodel); the other is for the user model.
These two views are related through the concept type/instance relationships between concepts in the
toolbox and instances in the user model. When a user selects an instance in the workspace (user
model), 5SGraph is able to synchronize the view of the toolbox by showing a visible path from the root
to the corresponding type of selected concept (see Figure 5.1). The convenience of synchronization is
that: 1) the user does not need to manually search all the components in the toolbox to find the correct
type; and 2) The tool helps the user focus on the most important relationships of the type. The child
parts that can be added to the current component are within easy reach.

• Enforcing of semantic constraints

Certain inherent semantic constraints exist in the hierarchical structure of 5S. These constraints in 5S
are divided into two categories. Value constraints specifythe range of possible values of an element,
while association constraints define the relationships among different components. Examples of such
constraints include:

1. The streams used in the definition of a digital object (document) are predefined in the Stream
Model.

2. A collection consists of different kinds of documents. A catalog describes a collection, since
a catalog collects administrative or descriptive metadatathat apply to the digital objects in the
collection. A catalog, therefore, is dependent on a collection.

3. The services that the actor (a member of the Society Model)uses or a service manager (another
member of the Society Model) runs can be drawn only from the services already defined in the
Scenario Model.

The 5SGraph tool is able to manage these constraints. For example, an actor only can use services
that have been defined in the Scenario Model. For example, as occurs in CITIDEL, the declaration of an
actor, Teacher, is shown in Figure 5.3(a). In order to associate actors with the services they use, the designer
browses back to the Scenario Model to first define services: metadata search, multi-scheme browsing, profile
filtering, browsing, cataloging, focused crawling, lessonplan building, and lesson plan customized browsing
(this one with four scenarios: unordered and ordered browsing, guided path, and slide show - as supported by
the VIADUCT manager). When the designer browses back to Actor in the Scenario Model in the metamodel,
he/she finds that the created set of services are automatically added into the metamodel under the node
‘Actor’ (see Figure 5.3(b), structured toolbox), allowinghim/her to connect the defined services with the
actors that use them. In the example, Learner is connected toall but two services (focused crawling, run by
the ‘crawlifier’ manager, and lesson plan building, used only by teachers).

5.2 Evaluation

We conducted a pilot usability test of 5SGraph. The questions to be answered were: 1) Is the tool effective
in helping users build DL models based on the 5S theory? 2) Does the tool help users efficiently describe

67



(a)

(b)

Figure 5.2: Reuse of models before and after loading

68



(a)

(b)

Figure 5.3: Enforcing semantic constraints in the CITIDEL system. See (top) teacher as actor and (bottom)
learner services

69



DL models in the 5S language? 3) Are users satisfied with the tool? Participants of this preliminary test
included seventeen volunteers from a graduate level Information Storage and Retrieval class, or from the
DL research group of Virginia Tech. We choose participants who have basic knowledge of DLs and have the
motivation to create DLs. These types of people are some of the target users of the tool. Three representative
tasks with different levels of difficulty were selected:

• Task 1: build a simple model of a Technical Report Digital Library using reusable sub-models

The difficulty level of this task is low. Its purpose is to helpthe participants to get familiar with 5S
and the 5SGraph tool.

• Task 2: finish an existing partial model of CITIDEL (Computing and Information Technology Inter-
active Digital Educational Library, www.citidel.org)

The difficulty level of this task is medium.

• Task 3: build a model of NDLTD (Networked Digital Library of Theses and Dissertations, www.ndltd.org)
from scratch.

The difficulty level of this task is high.

The procedures were as follows:

1. the participant was asked to read some background documents about 5S and the modeling methodol-
ogy;

2. the participant was given an introductory presentation on 5SGraph;

3. the participant was given a description of task 1 and we recorded how he/she completed it;

4. after the participant finished each task, he/she was giventhe next task description immediately;

5. after the participant finished all the tasks, he/she was given a questionnaire form to fill out.

5.2.1 Measures

We use the following test measures:

• Effectiveness

– Completion rate: percentage of participants who complete each task correctly.

– Goal achievement: extent to which each task is achieved completely and correctly.

• Efficiency

– Task time: time to complete each task.

– Closeness to expertise: minimum task time divided by task time.

• Satisfaction Satisfaction is measured using a subjective 10-point bipolar rating scale, where 1 is the
worst rating and 10 is the best rating. After each participant finishes all three tasks, he/she is given a
questionnaire and asked to rate the overall learnability, effectiveness, and satisfaction based on his/her
observation.

70



Task 1 Task 2 Task 3
Completion Rate (%) 100 100 100
Mean Task Time (min) 11.3 11.4 15.1
Mean Closeness to Expertise 0.483 0.752 0.712
Mean Goal Achievement (%) 97.4 97.4 98.2

Table 5.1: Overall performance results for three tasks

Figure 5.4: Task time

5.2.2 Results

• Effectiveness: The high completion rate and the high goal achievement rate demonstrate the effec-
tiveness of 5SGraph (see Table 5.1).

• Efficiency: Most participants finish tasks in less than 20 minutes (see Figure 4); the generated 5SL
files are very accurate.

• Closeness to Expertise reflects the learnability of the tool(see Table 2, Figure 5). There are three
observations, which have been confirmed statistically (t test: 0.05).

1. Observation 1: the mean Closeness to Expertise in task 2 issignificantly greater than that in task
1.

2. Observation 2: the mean Closeness to Expertise in task 3 issignificantly greater than that in task
1.

3. Observation 3: the mean Closeness to Expertise in task 3 isnot significantly different from that
in task 2.

The results suggest that the tool is easy to learn and use. Working on a simple and short task such as task
1 is enough for users to become familiar with the tool. User proficiency is quite close to expert performance
level after they use the tool the first time. In fact, there aresome participants (#9 and #10) with good
computer skills who achieved a completion speed very close to the expert’s in tasks 2 and 3. Observation 3
indicates that users have similar performance in tasks 2 and3. The reason may be that users have become
highly familiar with the tool after task 1. The remaining difference between the participants and the expert

71



Figure 5.5: Closeness to expertise

may be due to other factors, e.g., familiarity with the tasks, typing speed, reading speed, and skill in using
computers. The average rating of user satisfaction is 9.1 and the average rating of tool usefulness is 9.2.
From these numbers, it does appear that our participants aresatisfied with the tool and consider it useful for
building DLs based on 5S.

72



Chapter 6

Generation – (Semi-)Automatic Generation
of Componentized DLs: the 5SGen Tool

In the previous chapters, we have introduced languages and tools to allow customized modeling of DLs.
In this chapter we describe a new generic DL generator based on the 5S framework, focusing on support
for two key aspects of DLs: ‘societies’ and ‘scenarios’ [35]. The principal contribution of this work is the
development, implementation, and deployment of a generic DL generator that can be used by DL designers
to semi-automatically produce tailored DL services from models of societies and scenarios. By doing this the
generator attempts to bridge the gap between DL models and system implementation, i.e., between concept
and execution, therefore partially validating the formal theory of 5S. We demonstrate the feasibility of this
approach and substantiate our claims by providing two examples that illustrate the features of the generator.
This chapter is organized as follows. Section 6.2 describesour approach and development environment.
Section 6.3 is the core of the chapter and details examples, architecture, and implementation of our digital
library generator. The ‘Examples’ subsection focuses on extensibility and reusability. Section 6.4 deals with
related work.

6.1 Summary of the Approach

Our objective is to cover the whole process of DL development, from requirements to analysis, analysis
to design, design to implementation. We aim to generate ‘tailored’ DL software satisfying the particular
requirements of specific DL societies. The basic idea is to develop models, languages, and tools able to
capture the rich set of DL requirements and properties of particular settings and to automatically convert
these ‘patterns’ into different representations by properly compiling, transforming, and mapping models in
different levels and phases of the DL development process. The assumption is that automatic transformations
and mappings diminish the risk of inconsistency and increase productivity. This view will be supported by:

1. Having a model based approach that allows the DL designer to describe: 1) the kinds of multimedia
information the DL supports (Stream Model); 2) how that information is structured and organized
(Structural Model); 3) different logical and presentational properties and operations of DL compo-
nents (Spatial Model); 4) the behavior of the DL (Scenario Model); and 5) the different societies of
actors and managers of services that act together to carry out the DL behavior (Societal Model). We
have organized and formalized these and other DL notions into the 5S (Streams, Structures, Spaces,
Societies, Scenarios) framework. This formal framework provides a foundation for the DL generator.

2. Using a domain-specific language based on 5S, 5SL, for declarative specification and automatic gener-
ation of DLs. Domain specific languages enable applicationsto be programmed with domain abstrac-

73



tions, thereby allowing compact, clear, and machine-processable specifications to replace detailed and
abstruse code [18].

3. Using scenario based design for defining the behavior of a system. Scenarios keep design discussion
focused on user activities, more specifically, they keep design discussion focused on the level of task
organization that actors experience in their tasks. In 5S, we envision scenarios as sequences of events
that modify states of a computation in order to accomplish some functional requirement. We use
scenarios to describe the behavior of DL services and societal interactions.

4. Implementing a code generator that allows a DL designer toprovide a modeling specification in terms
of scenarios and societies. This generates implementations using precise transformations/mappings.
The generated DL makes use of well defined components that each carry out key DL functions in-
teracting with one another using lightweight protocols1. We draw heavily upon work with the Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [150] and Open Digital Libraries
(ODL [199]).

Figure 6.1: Overview of the architecture for DL modeling andgeneration

We adopt an approach shown to be highly effective in other areas of computing: develop powerful
theories and (meta)models (i.e., 5S framework); use them todevelop formal specifications (i.e., 5SL), and
generate tailored systems from those specifications (using5SLGen). We explain the approach in the context
of the classical software engineering process (see Figure 6.1). During requirements gathering (see 1 in
Figure 6.1) the DL designer captures all ‘societal’ conditions and capabilities to which the DL must conform.
5S provides a common ground terminology and domain model that is close to the DL world and furnishes
precisely defined concepts so that the resulting description is understandable by end users. The role of the
DL expert is to design a metamodel for DLs based on 5S, which will be used for modeling the DL. In the

1An earlier and different tool following similar principlesbut targeted towards a monolothical system (MARIAN) based on a
object-oriented class hierarchy was presented in [94, 90]

74



analysis phase (see 2 in Figure 6.1), the requirements are formally captured in 5SL. The DL designer must
be aware of functional requirements – what services a community needs and what form of interaction these
services should have with the users of the DL: publishers, searchers, administrators, etc. Modeling such a
complex system using only an XML-based language requires a great deal of knowledge of the 5S theory
and language syntax. Accordingly, we introduced 5SGraph, avisual modeling tool that helps designers to
model a DL instance without knowing the theoretical foundations and the syntactical details of 5SL. The
focus of the design phase (see 3 in Figure 6.1) is to produce models that are closer to the implementation
and the target architecture, but still preserve the structure of the system as captured by the analysis model.
5SLGen produces design models from 5SL models by transforming higher-level 5SL concepts into object-
oriented classes and workflows. This transformation involves scenario analysis and scenario synthesis.
Finally in the implementation phase (see 4 in Figure 6.1), 5SLGen uses the produced design models to
generate running DL services by integrating components from pools, mapping models to specific target
platforms and languages (e.g., Java, Perl), and compiling and producing new components and subsystems.
This digital library generator, 5SLGen, is the focus of thischapter.

6.2 The 5SLGEN Digital Library Generator

6.2.1 The Tool Underlying Model

As argued in Chapter 3, we envision the services exposed by a DL to be either of the composite or elementary
type. Elementary services provide the basic infrastructure for the DL. Examples include collecting, indexing,
rating, and linking. Composite services can be composed of other services (elementary or composed) by
reusing or extending them. For example, a relevance feedback service extends the capabilities of a basic
search service while a lesson plan building service can use already existing searching, browsing, and binding
services to find and organize relevant resources. The problem of composability of services has been studied
recently, mainly in the Web community [7, 50]. However, DL services are restricted to certain specific
types with constrained inputs and outputs, therefore making the problem more manageable and possible to
be treated with domain specific techniques. Figure 6.2 showsa UML-based (meta-)model for the services
exposed by the tailored DL produced by 5SLGen. The model defines composite services recursively as an
aggregation of other services, composite or elementary. Elementary services do not rely on other services
to fulfill their responsibilities while composite servicesact like umbrella structures that bring together other
services, which collaborate to implement certain functionality. The application logic of a composite service
is described by a workflow, i.e., a combination of control anddata flows that mirror the behavior defined
in the services scenarios, including invocations of other services. Statecharts [26] and Petri nets [167] are
possible notations for formally representing workflows. Inour implementations we chose statecharts to
represent the workflow of a service. Statecharts, introduced by Harel [101], represent a compact way of
describing the dynamic aspects of the system. Statecharts connect events and states. When an event is
received, the system leaves its current state, initiates the actions specified for the transition and enters a new
state. The next state depends on the current state as well as the event.

The distinct aspects of this model are: 1) the combination ofan explicit workflow and service ag-
gregation to support composite services; 2) the emphasis onscenario-based modeling of services and the
automatic generation of workflows from them; and 3) the role of the service manager (a societal member)
as the binding point for societal relationships, scenario interactions, and spatial visualizations. From an
architectural and implementation point of view, point 1 becomes significant, since combining a small set of
basic DL services and managers gathered from a pool of DL components should allow a designer to model
and generate most digital libraries (at least from the behavioral point of view) with a minimum amount of
coding. The only situations when coding is unavoidable are,for example, when a specific behavior of a
composite service (e.g., Rocchio based expansion of a queryin relevance feedback) is not implemented as

75



Figure 6.2: DL service composition pattern

operations by any component in the core pool or cannot be reused (e.g., due to incompatibility of interfaces).
More importantly, the model also shows how the 5 Ss help when defining all components of a real, imple-
mented DL. Services are implemented as components taken from the pool or automatically generated from
the scenarios and their interactions/relationships. Service managers define the context or functionality of the
service in terms of its operations and the data it expects, and are associated with a spatial (presentational)
model of a user interface. It is interesting to notice the connections between the service manager roles and
the classical Model-View-Controller (MVC) architecture of user interfaces [34], which explicitly separates
functionality, behavior, and presentation and has helped facilitate the development of user interfaces that are
modular and extensible. Service managers and actors communicate through streams (e.g., protocols) and
structures (e.g., structured streams such as metadata specifications and digital objects). Finally the model
provides the basic architectural underpinnings for the creation of DL generators, as described in Section 6.3.

6.2.2 Extensiblity and Reusability

In this section we present examples of two services, a Relevance Feedback Search service and a Lesson Plan
Building service, implemented using 5SLGen. The services exposed follow the model explained in Figure
6.2, and illustrate reusability and extensibility. More formally a service Y reuses a service X if the behavior
of Y incorporates the behavior of X. A service Y extends a Service X if it subsumes the behavior of X and
potentially includes conditional sub-flows of events. We start each subsection with the main scenario for the
particular service.

Extensibility: A Relevance Feedback Service

Scenario 1: Relevance feedback is a well known technique to improve quality of search services. A relevance
feedback service extends a basic search service by allowingthe user to choose from the results of a search

76



the documents that are relevant. The selected relevant documents are then used by the Relevance Feedback
Manager to construct an expanded query (using the Rocchio method, for example), which is then run to
retrieve the next set of documents to be presented to the user. Figure 6.3 shows the relationship between the
relevance feedback service and the search service (left part) and describes the relevance feedback scenario
in terms of a UML sequence diagram (middle part). A sequence diagram focuses on the time ordering of
events between members of societies. These members appear along the top margin of a dashed line that
represents a timeline. Events can be associated with actions that the service managers perform to provide
a given functionality. For the sake of brevity we do not show the corresponding 5SL modeling in XML.
The 〈〈extends〉〉 relationship specifies that an instance of a relevance feedback search service includes the
behavior of search service and adds specific events, subjectto specific conditions (e.g., the set of relevant
documents cannot be empty). The scenario shows that all the events associated with the basic search scenario
occur in the relevance feedback scenario, with the additionof the expandQuery event and synchronous
response. The statechart for the Relevance Feedback Manager derived from the scenario is shown in the
figure too. There are only two states: the system transitionsfrom the default to the .expanded query. state
after reception of the expandQuery event (if the condition is true) and immediately transitions back to the
default state where it can receive other requests.

Figure 6.3: Relationships between services for relevance feedback

Reusability: Lesson Plan Building Service

Scenario 2: A lesson plan aggregates specific educational metadata and correlated resources (e.g., papers,
simulations) available in the Computing and Information Technology Interactive Digital Electronic Library
(CITIDEL) into a coherent package useful for some CS teaching activity. A specific service manager called
VIADUCT supports this service, which can be used only by teachers registered with CITIDEL. To build a
lesson plan, the teacher uses the information-seeking services of CITIDEL (i.e., searching and browsing)

77



to look for relevant resources to a specific lesson, choses among those using any subjective criteria (e.g.,
by relevance, by date), assembles a number of the chosen resources together using a binding service, and
associates descriptive metadata such as typical DC-based ones like author, identifier, language, as well as
specific ones such as topic area, target audience, and time required for the whole lesson plan object. The
teacher has to explicitly publish the lesson plan to allow students to view it. To allow a select group of
people to view the lesson plan, the teacher saves the plan, returns to the main VIADUCT user information
page, re-opens the project, and gives the project URL to whomever she wishes.

Figure 6.4: Relationships between the services for the lesson plan in VIADUCT

Figure 6.4 shows that the lesson plan building (LPB) servicereuses three other services: Searching,
Browsing, and Binding, as well as the main scenario of the LPBservice. Figure 6.5 presents the statechart
generated from scenario synthesis of the main scenario withother related scenarios of this service (not
shown for brevity). The teacher starts the construction of anew lesson plan from the main menu (see 1
in Figure 6.5). The lesson plan edit page allows the teacher to fill out basic metadata about the plan and
organize a number of related resources together (see 2 in Figure 6.5). To locate relevant resource the teacher
can either search or browse (see 3 and 4 in Figure 6.5) the collection according to some criteria and sorting
order. Having the results of an initial search/browse activity the user can either: 1) search for a similar
document (see 5 in Figure 6.5); 2) browse a particular entry for details (see 6 in Figure 6.5); 3) perform
another search (see 7 in Figure 6.5); or 4) select a number of items to put in her binder (see 8 in Figure 6.5).
If the user chooses the latest option the binder is shown and she can transfers a number of resources from
the binder to the resource set of the current plan (see 9 in Figure 6.5). Once the plan is ready the teacher can
save it and publish to the students (see 10 and 11 in Figure 6.5).

6.3 5SLGen Architecture and Implementation

The architecture of 5SLGen is shown in Figure 6.6. The generated system is organized around the idea of a
clean separation between service managers, that implementoperations and carry data; views, for displaying
all or a portion of the data; and controllers, for handling events that affect the data or the view(s) [34]. In

78



Figure 6.5: Statechart diagram of the VIADUCT system

the context of 5SLGen the service managers are either represented by one or more components in the pool
or are generated from the 5SL-Societies model. The generated service managers may contain skeleton code
for operations and capabilities not defined in any componentof the pools; this code needs to be provided by
the designer. Our current component pool consists of ODL components that communicate through a family
of lightweight protocols based on OAI [150]. The ODL components, originally implemented in Perl, have
been encapsulated through a Java interface, allowing them to be imported by the Java classes for the service
managers. The controller maps onto the workflow of the systemgenerated from the 5SL-Scenarios model.
The view corresponds to the user interface presentation. The DL designer binds the presentation elements
with the service managers to complete the implementation ofthe generated DL services.

This architecture for the generated DL services is achievedthrough the following process: The DL de-
signer captures the structural and behavioral aspects of DLservices through the 5SL-Societies model and
5SL-Scenarios model. 5SL-Societies captures the relationships among actors (those who use services) and
services managers, whereas 5SL-Scenarios capture their dynamic interactions. The specifications of the DL
captured in 5SL (- Societies and Scenarios) undergo a seriesof transformations (explained below) with the
DL designer providing input at certain stages to generate the Java classes corresponding to the implemen-
tations of the service managers and the workflow of the DL. Once the presentation elements (views) are
coupled with the controller, the generation of the tailoredDL service is complete.

6.3.1 Generating Static Contextual Structure

The 5SL-Societies model is realized based on the relationships among actors and service managers and
the set of operations that define the services. capabilities. In order to generate Java classes from the 5SL-
Societies model we have chosen an intermediate step of transforming (see 2 in Figure 6.6) the 5SL-Societies
XML Model into a XMI [154] representation model (see 3 in Figure 6.6) using the JDOM and XPATH
XML APIs. XMI is an XML based industry standard to enable easyinterchange of metadata between

79



Figure 6.6: Architecture of 5SLGen based on MVC (expanding part of Figure 6.1)

modeling tools and between tools and metadata repositories. Many CASE tools serialize UML diagrams
to XMI. Generation of XMI files for the 5SL-Societies model enables the exchange of the 5S-Societies
model among various UML modeling tools supporting modelingas well as forward and reverse engineering.
Moreover, existing freeware tools (see 4 in Figure 6.6) enable the generation of Java code from the serialized
XMI Model (XMI2Java). We use an open source XMI2Java implementation to generate Java classes that
implement the service managers (see 5 in Figure 6.6) for the generated DL.

6.3.2 Generating Dynamic Behavior

The 5SL-Scenarios model is used to capture the dynamic behavior of services (e.g., see figures 6.3 and 6.4)
as scenarios. In order to describe the whole behavior of a DL service, a great multitude of scenarios is
required to capture the complete set of possible societal interactions. Scenarios can contain other scenarios
and in many cases are only small variations of others. This requires an approach for scenario integration in
order to capture the whole behavior of the system. Also, in order to be able to generate an implementation
from the scenarios, the level of abstraction needs to be reduced to a more concrete model in terms of compu-
tational actions and change of states that occur during scenario execution. These problems can be addressed
by generating a statechart model (see 8 in Figure 6.6) from the scenarios (see 6 in Figure 6.6). The mapping
from scenarios to statecharts is performed according to thefollowing rules: For any object in a sequence
diagram, incoming arrows represent events received by the object and they become transitions (see Section
3.1). Outgoing arrows are actions and they become actions ofthe transitions leading to the states. The
intervals between events become states. The object starts in the default state specified in the 5SL-Societies
model [208]. This transformation (see 7 in Figure 6.6) is achieved by parsing the 5SL-Scenarios modeled
in XML with the JDOM and XPATH XML APIs [107, 42] and implementing the rules mentioned above.
Again, since scenarios represent partial descriptions of the system behavior, an approach for scenarios com-
position is needed to produce a more complete specification of the service. As each scenario is mapped to
a statechart we synthesize the statecharts derived in the previous step to perform scenario composition. The
statecharts are synthesized (see 9 in Figure 6.6) accordingto the following rules [208]: 1) if a transition is

80



common to the two statecharts, it is taken only once into the final statechart; 2) if at a certain moment in
time either one or another scenario is executed, the statecharts are combined with sequential (object can be
in only one state) substates within a composite state; and 3)if two scenarios are executed at the same time
they are combined with concurrent substates (object can be in more than one state) within a composite state.
A statechart extends traditional a finite-state machine (FSM) with notions of hierarchy and concurrency. A
FSM represents a mathematical model of a system that attempts to reduce the model complexity thereby
providing a powerful manner to describe the dynamic behavior of systems and components. The synthe-
sized statechart (Figures 6.3 and 6.5) generated using the above rules represents the FSM/workflow for the
DL service (see 10 in Figure 6.6). To generate code from the FSM we have extended an open source state
machine compiler (see 11 in Figure 6.6) that compiles the annotated FSM to generate code (Java classes
– see 12 in Figure 6.6) for the controller of the DL services. Before compilation the FSM is annotated
by providing component specific implementation details by the DL designer (see Figure 6.6). There are
many techniques of implementing state machines; the most common implies some sort of switch or if-else
statements for implementing state dependent behavior; however this solution is not scalable; therefore we
chose to implement FSM using the state design pattern from [79]. The state pattern localizes state-specific
behavior in an individual class for each state, and puts all the behavior for that state in a single state object
eliminating the necessity for a set of long, look-alike conditional statements. In the context of 5SLGen
when the service manager class receives an event, it delegates the request to its state object, which provides
the appropriate state specific behavior. The lesson plan building and relevance feedback service have been
implemented using the above generation process. Manual intervention is required for: first annotating the
FSM with component specific implementation details and second providing the views for the data. For more
detais on implemenation, algorithms, etc., the reader is referred to [113]

As a proof of concept, 5SGen has been used to create prototypes of several DLs including CITIDEL,
VIADUCT, the NDLTD Union Archive [113], and the Brazilian Digital Library in Computing [55].

6.4 Related Work

The first work to advocate a goal-oriented requirements analysis approach for digital libraries is [24], but
that work does not propose any development tool or environment. The closest approach to our DL generator
is the collection services and plug-in architecture of Greenstone [228]. However their architecture covers
only portions of the Stream and Structural models of 5S with little support for modeling and generation of
customized DL services (other than basic searching and browsing). While much attention has been paid
to digital library architectures and systems, very few works tackle the problem of integrated DL design,
conceptual modeling, and requirements gathering. Examples of work on DL architectures and systems
include: monolithic systems (e.g., Greenstone [228], MARIAN [94], componentized architectures (e.g,
[199], [37]), agent-based architectures (e.g., UMDL [224]), and layered architectures (e.g., Alexandria [72]).
Our declarative/generative approach should be generalizable for any of those systems/architectures by taking
whole or portions of those systems as part of our component pools. There is no reason why those systems
and their components can not be incorporated in our component pools, given that they export clear, reusable
software interfaces with accessible entry points. Most research done in the area of code generation from
requirements has not been directed towards specific domainssuch as DLs. Most CASE tools do not address
issues raised by research in scenario-based requirements analysis and design such as scenario generation,
management of scenario descriptions, analysis and integration of scenarios, and bridging the gap between
scenario descriptions and software designs and implementation. We have attempted to tackle the above
problems and to bridge the model system gap through the 5S framework.

81



6.4.1 Systems Comparison

Digital Library systems can be compared in many ways. Table 6.1 shows a comparative analysis of several
systems and DL generators based on the goals and requirements associated with the 5S family of tools.

Feature/ System Greenstone OpenDLib EPrints Dspace 5S*
Model-based - + - + +
Theory-based - + - + +
Support for Multiple Architectures - - - - +
Graphical Environment for Modeling + - - - - +
Support for Requirement Analysis + - + - + - + - +
Support for Workflows - + - + - + - +
Reusability + - + - - +
Extensibility + - + - - +
Large User Base + + + + -

Table 6.1: Systems comparison (+ indicates support of a feature, - indicates lack of support, + - indicates
partial support)

OpenDLib [37] and DSpace [209] are the only systems with a clear data model behind them. The former
has a formal model for documents and metadata based on the notion of views and versions and a proprietary
query language; the latter has a simple E-R model based on thenotions of communities, collections, and
aggregators. These are the only systems with a theoretical basis, albeit incomplete. The theoretical model
for OpenDLib supports a set of axioms and constraints for distributed DLs, while DSpace is based on
OAIS (Open Archival Information System), a non-formal reference model for digital repositories focused
on preservation [175].

The 5S family of tools is the only one with potential to support multiple architectures. This has been
proved by building generators for monolithic [94] as well ascomponentized architectures. This is due to
the clear separation between the DL model, visualization, and code generation. The same DL model can
be implemented in different systems and architectures given the corresponding generator. Such a separation
has become a fundamental concept in databases and Web development, but has not been investigated widely
in DL systems.

Greenstone has the best set of graphical interfaces for organization of resources and collections in a
sense that is complementary to the 5S tools discussed in thiswork [14]. While the other systems have
simple user interfaces for ingesting and revising resources, for administrative tasks, and for searching and
browsing, interfaces for support of the complete modeling and personalization of all aspects of a digital
library for specific communities do not exist in these systems.

Requirements analysis and workflow services are only partially supported by some of these systems.
Eprints (www.eprints.org) and DSpace only allow the configuration of fixed workflows for ingesting and
reviewing. OpenDLib is the most flexible in this sense but also does not support declarative description
of the collective behavior of the DL (elsewhere called “services choreography [27]”). None of them sup-
ports requirements analysis for different types of services in the form of descriptions of scenarios of use
and automatic generation of workflows based on the integration of these scenarios. For the same reasons,
reusability and extensibility are only partially supported by Greenstone and OpenDLib, the latter being the
most flexible and configurable of all these systems in terms ofservices.

On the other hand, all the above systems have a larger base of users than our tools, due mainly to the
amount of financial and technical support they have.

82



Chapter 7

Logging: An XML Log Standard for DLs

Log analysis is a primary source of knowledge about how digital library patrons actually use DL systems and
services and how systems behave while trying to support userinformation seeking activities. Log recording
and analysis allows evaluation assessment and opens opportunities to improvements and enhanced new
services. Indeed, the benefits of logging are numerous, including improving performance by recording
effective evaluation data [16], helping in designing and testing of user interfaces [135], and better allocation
of resources [111].

Conventional libraries have a long history of concern for privacy [133]. While circulation statistics are
widely available, storage of patron-related information is rare in such libraries. The introduction of On-Line
Public Access Catalogs (OPACs) has changed the picture and allowed some degree of log recording and
analysis to improve library services [31, 180, 111, 158]. More recently, Web servers and proxy caching
servers have made Web log analysis become common place, recording each and every access to their doc-
uments. These, along with the advance of techniques in Web log mining, have made possible a number of
new and enhanced services such as customization and personalization [168].

Digital libraries differ from the Web in many ways. Firstly,digital library collections are explicitly
organized, managed, described, and preserved. Secondly, Web sites and Web search engines assume very
little about the users, tasks, and data they deal with. Digital libraries normally have much more knowledge
of their users and tasks since they are built to satisfy specific needs of interested communities. And thirdly,
the digital objects in DL collections tend to be much more structured than the information presented in the
Web. Therefore, digital library logging should offer much richer information and opportunities. Despite the
fact that many current DL systems do some kind of logging, they tremendously differ in the format in which
they record the information and even the sort of informationthat is recorded. Interoperability, reuse of log
analysis tools, and comparability of log analysis results are major problems.

In this chapter, we propose an XML-based standard digital library log format based on 5S that cap-
tures a rich, detailed set of system and user behaviors supported by current digital library services. The
proposed standard is implemented in a generic log componenttool, which can be plugged into any digital
library system to produce the specified format. The focus of this work is on interoperability, reusability, and
completeness. Specifications, implementation details, and examples of use are described.

This chapter is organized as follows. Section 7.2 covers related work and analyzes associated problems.
Section 7.3 describes the DL log format and motivation for design. Section 7.4 presents the log tool, its
implementation and some examples. Section 7.5 discusses the implementation of a prototype analysis tool.
Section 7.6 shows some examples of real log entries.

83



7.1 Related Work

Most current Web servers store log files in the Common Log Format (CLF)- a simplistic format which
reflects the stateless nature of the HTTP protocol by recording just individual server events. Apache, perhaps
the most used Web server, uses an extension of CLF called Combined Log Format, which tries to keep some
state information by recording the links between resources.

A sample of CLF is given in Figure 7.1 (from the csgrad.cs.vt.edu server). The fields are host; rfc931,
i.e., information returned regarding identity of the person, otherwise ‘-’; authuser, if a userid is sent for
authentication, otherwise ‘-’; day; month; year; hour; minutes; seconds; request; the first line of the HTTP
request as sent by the client; ddd, status code returned by the server, otherwise ‘-’; and bbb, the number of
bytes sent (not including the HTTP/1.0 header), otherwise ‘-’.

bbn-cache-3.cisco.com - - [22/Oct/1998:00:20:21 -0400] " GET
/˜harley/courses.html HTTP/1.0" 200 1734
bbn-cache-3.cisco.com - - [22/Oct/1998:00:20:22 -0400] " GET
/˜harley/clip_art/word_icon.gif HTTP/1.0" 200 1050
www4.e-softinc.com - - [22/Oct/1998:00:20:27 -0400] "HEA D
/ HTTP/1.0" 200 0
user-38ldbam.dialup.mindspring.com - - [22/Oct/1998:00 :20:48 -0400] "GET
/˜lhuang/junior/capehatteras.html HTTP/1.0" 200 328
user-38ldbam.dialup.mindspring.com - - [22/Oct/1998:00 :20:48 -0400] "GET
/˜lhuang/junior/PB2panforringed.mirror.gif HTTP/1.0" 200 20222
eger-dl01.agria.hu - - [22/Oct/1998:00:20:51 -0400] "GET
/˜tjohnson/pinouts/ HTTP/1.0" 200 26994

Figure 7.1: Example of Apache log format

Distinct from simple Web servers, which focus primarily on browsing behavior, Web search engines
and digital libraries also record data about search and other information seeking behaviors. The following
(Figure 7.2) )is a sample (from the VT Web site) of a query transaction submitted through the OpenText
search engine. It shows the search terms and operations, butalso records a good deal of internal cryptic
information about how the system operates internally.

Digital library systems, most probably for historical reasons, usually implement logs that resemble Web
log formats or utilize proprietary formats. As an example, Figure 7.3 shows an annotated sample of a portion
of the log of the Greenstone digital library system [228]. Greenstone is a comprehensive, open-source digital
library system, which enables logging by setting a specific flag in the configuration file. Each line in the
sample user log contains: (a) the IP address of the user’s computer; (b) a timestamp in square brackets; (c)
the CGI arguments in parentheses; and, (d) the name of the user’s browser (Netscape is called “Mozilla”).

The last CGI argument, “z”, is an identification code or “cookie” generated by the user’s browser: it
comprises the user’s IP address followed by the timestamp when they first accessed the digital library. The
log file usage.txt is placed in the /etc directory in the Greenstone file structure.

Other digital library log formats that we analyzed include those associated with the Dienst protocol
(used by the old NCSTRL-Networked Computer Science Technical Reference Library [122]), and MARIAN
digital library systems [94].

Problems with existing DL logs

A careful analysis of the logs of the Web and DL systems discussed above reveals a common set of problems.
These include:

84



Mon Sep 28 17:48:42 1998
----- Starting Search -----
Mon Sep 28 17:48:42 1998
{Transaction Begin}
Mon Sep 28 17:48:42 1998
{RankMode Relevance1}
Mon Sep 28 17:48:42 1998
"Bacillus thuringiensis "
Mon Sep 28 17:48:42 1998
P0 = "Bacillus thuringiensis "
Mon Sep 28 17:48:42 1998
R = (*D including (*P0))
Mon Sep 28 17:48:42 1998
R = (((*R rankedby *P0)))
Mon Sep 28 17:48:42 1998
S = (subset.1.10 (*R))
Mon Sep 28 17:48:42 1998
SL0 = (region "OTSummary" within.1 (*S))
Mon Sep 28 17:48:42 1998
(*SL0 within.1 ( subset.1.1 *S ))
Mon Sep 28 17:48:42 1998
(*SL0 within.1 ( subset.2.1 *S ))
Mon Sep 28 17:48:42 1998
{Transaction End}
Mon Sep 28 17:48:42 1998
----- Ending Search -----

Figure 7.2: Example of OpenText log format

ADMINISTRATION 37
/fast-cgi-bin/niupepalibrary
(a) its-www1.massey.ac.nz
(b) [Thu Dec 07 23:47:00 NZDT 2000]
(c) (a=p, b=0, bcp=, beu=, c=niupepa, cc=, ccp=0, ccs=0, cl= , cm=,
cq2=, d=, e=, er=, f=0, fc=1, gc=0, gg=text, gt=0, h=, h2=, hl =1,
hp=, il=l, j=, j2=, k=1, ky=, l=en, m=50, n=, n2=, o=20, p=hom e,
pw=, q=, q2=, r=1, s=0, sp=frameset, t=1, ua=, uan=, ug=,
uma=listusers, umc=, umnpw1=, umnpw2=, umpw=, umug=, umun =, umus=,
un=, us=invalid, v=0, w=w, x=0, z=130.123.128.4-95064787 1)
(d) "Mozilla/4.08 [en] (Win95; I ;Nav)"

Figure 7.3: Example of Greenstone log format

85



1. Disorganization: Barring a few, most of the system logs were very poorly organized and structured.

2. Complexity of analysis: Lack of proper thought in recording the log information makes log analysis
a hard problem. Indeed, complex data mining techniques are currently needed to extract some useful
information from Web and similar types of logs [196, 140].

3. Incompleteness:Important information that would be necessary for analysiswas omitted from some
logs. As an example, most of the logs failed to record the client postal and email address, information
that is essential in any user-based study of the system. Note, however, that for private reasons, such
information may need to be kept separate, and have restricted access.

4. Incompatibility: Each of the systems had their own log formats, making it difficult to use the same
tools to analyze logs from different systems for the same kind of study.

5. Ambiguity: Many of the log entries and their semantics were not properlyand precisely specified in
the log format itself, which could lead to ambiguity in analyzing them.

6. Inflexibility: The logs recorded a good deal of system specific information which would not be
applicable to other systems. This information was recordedin conjunction with other information that
was system independent.

7. Verboseness:Many of the logs looked just like code dumps used for debugging by the implementers
of the system, rather than containing clear and precise self-describing information about system usage
and behavior.

The above problems were found across virtually the whole setof logs that we analyzed. In the next
section, we present our standardized digital library log format design, which attempts to solve many of
those problems.

7.2 The Digital Library Standardized Log Format

As per the previous analysis, current Web and digital library logging has a number of problems. Our solution
is to propose an XML-based DL standard format which is comprehensive, reflective of the actual DL system
behavior, easily readable, precise, flexible to accommodate in varying systems, and succinct enough to be
easily implemented.

7.2.1 DL Log Standard Design

As a first step in creating the DL log format, we collected an extensive, flat set of attributes that we felt
were necessary to be recorded in the DL log. The next step was to organize these attributes in a fashion that
was logical and structured and could be easily represented and implemented. We chose to produce an XML
Schema [218] to describe the syntax and semantics of our DL log format. XML provides a standard syntax
for the log format; different XML element tags represent different semantic attributes to be registered in the
log. As a matter of fact, a similar use of XML to guarantee structural quality of Web logs is reported in
[199]. XML Schema provides an equivalent to a grammar in XML syntax to specify the structure of the
log format. Also, XML log files produced by our tool can be validated against the schema for correctness.
Besides that, XML Schema has a rich set of basic types, such asthose for numbers, dates, and times, which
further contribute to standardization. And finally, the abundance of XML parsers and other related software
helps in the construction of analysis tools.

The DL log format had to be reflective of how a generic DL systembehaves. We achieve this goal in
two ways:

86



1. By using the 5S framework as guidance for how to organize the log structure and define the semantics
of the DL components whose behavior would be logged.

To be useful, the DL log format has to be reflective of how a generic DL system behaves. Accordingly,
we have designed and organized the log structure in accordance with our 5S framework. In 5S,
services are composed of scenarios, which describe servicebehavior through sequences of specific
user and system events. Since we are mostly interested in understanding user interactions and the
perceived value of responses, we have chosen to record only the initial user input and final service
output events along with corresponding parameters (modeled as XML sub-elements of events), and
ignore most of the internal system communications (except administrative information). According
to the 5S philosophy, extensions regarding new service events are to be modeled by analyzing user
inputs and system outputs. Table 7.1 shows the current (bold) and in-development services and input
events supported by the log format.

Service XML log event and sub-
elements

Searching Search (Collection/Catalog,
SearchBy(Field), QueryString)

Browsing Browse(anchor,
DocInfo(PathName,DocID))

Submitting Update(AddInfo(DocInfo))
Annotating Annotate ( AnnotateInfo (Anno-

tationID, DocInfo) )
Filtering Filter (criteria (query,category),

userId)

Table 7.1: Current and in-development services in the log format

2. By having the notion of a “transaction” as the basic unifying entity of the log format.

Basically everything that occurs in a DL system could be broken down to the level of a transaction,
either as interaction between users and the system or among the system components themselves.
Simple examples of a transaction in our format would be a search query submitted by a user, the
registering of a new user, or the recording of some system failure. This may be an isolated transaction
in a system that does not have the notion of an explicit “session”, or it might be a part of a group of
transactions that define a session. However, most of the current DL log formats, such as CLF, record
just one or a few kinds of events or transactions. All or most of the entries in those log files have
similar semantics. Our log format is designed to record a number of different kinds of transactions.
Examples of distinct transactions are search, browse, session start, etc.

7.2.2 DL Log format structure

Figure 7.4 shows the higher-level organization of the DL logformat. Each DL log file consists of a number
of log entries, each entry representing a type of transaction. Transactions could be categorized as being
related to session creation, user registration, user and system events associated with the use of DL services,
administration activities, errors, and user-responses. An important and essential feature of the format should
be to identify each transaction precisely. To achieve this,we record the timestamp at which it occurred and
also associate a unique ID with each transaction. This ID should ideally be monotonically increasing across

87



one server to provide a logical representation of successive transactions. Additionally, in case we are dealing
with a non-session based system, we need a way to identify theuser. One way to do this is to associate the
location (IP address) from which the user is interacting with the system. Each transaction is then associated
with a specific statement. A partial XML Schema of the high level organization is shown in Figure 7.5.

............. 

LOG

Log Entry

Statement

TimeStamp

MachineInfo

SessionId

Transaction

..............

Figure 7.4: Top level hierarchy

There are basically two kinds of statements: 1) those related to specific user and system events associated
to DL services; and 2) general statements related to administrative and other general activities. In more detail
(Figure 7.6), the following types of statements are defined:

• SessionInfo: In the case of an explicit session based system, the session start and end times, as well
as the user’s and associated information, need to be recorded. We also assign a globally unique ID to
each session. Using this ID, it is very easy to group togetherall the transactions that occur within this
session.

• Registration info: In many session-based systems, users have to register themselves with the system
when they use it for the first time. They usually have to selecta user-ID, password, and possibly pro-
vide their identifying and demographic information. This information can latter be used to identoify
the user and her patterns of usage of DL services.

• Administration information: Most systems record administration activities like systemstartup, shut-
down, backup start, backup end, etc. This transaction type is provided to record such information.

• Error Information: This element is related to errors or failures that may occur anytime in the system.
Invalid query, document not found, etc., are examples of error and failure information that need to be

88



<xsd:complexType name="LogType">
<xsd:element name="LogEntry" minOccurs="0" maxOccurs=" unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Transaction">

<xsd:complexType>
<xsd:attribute name="ID" type="xsd:int/>

</xsd:complexType>
</xsd:element>
<xsd:element name="TimeStamp" type="xsd:dateTime"/>
<xsd:element name="MachineInfo">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="IPAddress" type="xsd:string"/>
<xsd:element name="Port" type="xsd:int" minOccurs="0"/ >

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="SessionId" type="xsd:string" minOcc urs="0"/>
<xsd:element name="Statement" type="StatementType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:complexType>

Figure 7.5: XML schema for log format

Figure 7.6: Decomposition of statement into different types

89



recorded. If the user forgets to explicitly logout in a session based system the automatic system time
out can be recorded.

• Help Information: Some DL systems provide help facilities to aid the user. Use of this feature should
be considered to be separate from the other actions described above. Our log format considers this to
be another type of transaction. It can be an interesting investigation to find out which kinds of help
are frequently used.

• Event: We consider this to be the heart of the DL log format. User or system events occur as a result
of users performing information seeking activities and using digital library services, or as a system
response to those activities. Each event is associated withan action type, which encompasses the
main operations associated with DL services such as searching, browsing, updating, and recording
of system information related to these three operations. Each of those actions is performed over a
collection of digital objects or a catalog of metadata. Userevents also have a status code that is based
on the outcome of the action (e.g., success, failure, etc.).Four different kinds of actions are currently
defined (Figure 7.7):

Figure 7.7: Decomposition of an event into different types

1. Search: Searching is a fundamental DL service. Different systems implement a number of dif-
ferent query languages and search schemes based on the underlying retrieval model they use.
Two of the common models are boolean and ranked retrieval [13, 108]. Each of these systems
also can provide additional features like selection of collection(s), structure related information
such as which fields the search concerns (author, title, subject, etc.), and some contextual inform-
ation such as the duration of activities, or some way to indicate whether this search operation is
to be performed in the context of a previous, larger search orsome profile or filter. Systems also
can provide options to the users to select how they want to view the results from their queries,

90



including sort option and maximum number of results to be presented. The details of the search
element are presented in the portion of the Log Schema below (Figure 7.8).

Specific types of objects can be searched include generic digital objects and metadata records.
SearchBy is used in structured queries and covers specific (metadata/structural) fields under
which the query will be performed. The value of SearchType isset to persistent if the search is
to be performed over the result of a previous search. Since query syntax is heavily dependent
on the specific DL system and underlying retrieval model, we only record the exact query string
used. Log analysts will consider this information in the context of the particular system for their
studies. It is obvious that here we are considering an extended set of of inputs/outputs for the
Searching service events than those considered in Tables 3.1-3.4, more specifically metadata
specifications and catalogs, and structured fields (i.e., labels for nodes of structures). Here the
goal is completeness and abundance of information while there was simplicity, precision, and
correctness. The PresentationInfo includes contextual and user’s preference information such
as presentation format (e.g., list, threaded, tabular), which type of sort to apply (e.g., estimated
relevance, by a specific field), number of results per page, and cut off threshold.

2. Browse: Browsing services can be performed by navigation through lists of search results,
indexes organized by specific fields, and generic hypertexts. In the browse section we include
identifiers of nodes or anchor’s text for links navigated, targeted documents, and presentation
information.

3. Update: Some systems also provide facilities to allow an administrator or user to add, modify
or edit some part(s) of collections and/or catalogs resident in a repository. This corresponds to
the submitting services in Tables 3.1-3-4.

4. Store information: This action allows us to record the data associated with the search and
browse actions from the point of view of the system. So, basically actions 1, 2 and 3 above
record the user’s data, while this action records the system’s response data. After any action the
system needs to record some information like number of bytestransferred, response time of the
action, highest and lowest ranked item, etc.

7.3 DL Log Tool and its Implementation

7.3.1 The First Generation

The first version of the DL XML Log Tool was implemented using generic Java classes and was designed
to be used by any digital library or analysis system. There were mainly two classes in the log tool imple-
mentation, XMLLogData.java, used for storing data, and XMLLogManager.java, which provided methods
to write and read log information according to our DL log format. XMLLogData.java basically provided a
structure to hold private data with Set and Get methods to setand get values. For example it had one attribute
String SessionInfo for session-based systems and it had SetSessionInfo() and GetSessionInfo() methods to
set and get the value of SessionInfo. All the read and write methods were synchronized to avoid conflicts
and inconsistences. The most difficult part was how to plug-in the tool into the target system. That should
be done by calling specific methods of the XMLLogManager wherever a specific type of transaction occurs.
Since this was heavily dependent on the target system architecture and implementation, that should be done
by developers or administrators.

First tests were performed on the MARIAN digital library system [94]. MARIAN had a resource man-
agement mechanism, which administered and allocated all the system resources such as class managers and
searchers. In the MARIAN system, we only had one XMLLogManager Java object in memory, created as

91



<xsd:complexType name="SearchType">
<xsd:sequence>

<xsd:element name="Collection"
type= "xsd:string" minOccurs="0"/>

<xsd:element name="MetadataCatalog" type= "xsd:string" minOccurs="0"/>
<xsd:element name="ObjectType">

<xsd:complexType>
<xsd:element name="DigitalObject"

type="xsd:string" minOccurs="0"/>
<xsd:element name="MetadataRecord"

type="xsd:string" minOccurs="0"/>
</xsd:complexType>

</element>
<xsd:element name="SearchBy"

type= "xsd:string" minOccurs="0"/>
<xsd:element name="SearchType">

<xsd:complexType>
<xsd:element name="persistent"

type="xsd:string" minOccurs="0"/>
<xsd:element name="non-persistent"

type="xsd:string" minOccurs="0"/>
</xsd:complexType>

<xsd:element>
<xsd:element name="QueryString"

type= "xsd:string" minOccurs="0"/>
<xsd:element name="TimeOut"

type= "xsd:string" minOccurs="0">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="StartDate" type="xsd:date"/>
<xsd:element name="EndDate" type="xsd:date"/>

</xsd:sequence>
</xsd:complexType>

</element>
<xsd:element name="PresentationInfo"

type= "PresentationInfoType" minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

Figure 7.8: XML schema for log format (Search)

92



Figure 7.9: Search attributes

an attribute of the ResourceClassManager. Whenever information needed to be logged the client called the
corresponding method of the XMLLogManager instance of the ResourceManager.

7.3.2 The Second Generation

The first version had a monolithic architecture, which was strongly coupled within the target system. When-
ever DL events needed to be logged, the client invoked the corresponding methods of the log tool, since spe-
cific calls had been inserted within the target system. This implementation revealed two major drawbacks:
1) small changes in the format required complex changes of the DL logger code and complete recompila-
tion of the tool and target system, therefore preventing extensibility; and 2) the Java-based implementation
and close coupling required a deep understanding of the target tool architecture and caused problems in
connecting the tool with DLs implemented in other languages(e.g., Perl), therefore preventing wide-spread
adoption.

Our second generation implementation solved those problems by 1) re-implementing the tool with an
OO hierarchical, bottom-up design that mimics the organization of the XML schema of the log format,
therefore making internal communications clearer and isolating points of communication and modification;
and 2) de-taching the tool from the target DL system by using connectionless sockets. For socket commu-
nication, we devised a simple, ad-hoc datagram packet format.

7.4 Examples

We have included examples of some log transactions in MARIANcaptured from real use of the system.
In the examples, we use the Dirline collection, a U.S. National Library of Medicine’s online digital library
containing location and descriptive information about a wide variety of information resources including

93



<Transaction ID = "3452">
<SessionId > 987654usr3 </SessionId>
<SessionInfo>

<SessionStart> Start </SessionStart>
<LoginInfo>

<UserId> mhabib <UserId>
</LoginInfo>

</SessionInfo>
<TimeStamp> 2002-05-31T20:10:55.000-05:00 </TimeStamp >
<MachineInfo>

<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>

</MachineInfo>
</TransId>

Figure 7.10: XML log entry - example 1

organizations and projects concerned with health and biomedicine.

1. Login to the System:

2. Query on all Dirline records enties about “low back pain” in any part of the record.

3. Browse an item of the ranked list returned as a answer for the previous search.

7.5 Discussion

As expected with any newly proposed standard, evolution to cope with results of the early stages of exper-
imentation is expected. Accordingly, our formats and toolshave evolved to deal with the results of such
experiments. With the interest demonstrated by many DLs andinstitutions (e.g., CiteSeer [125], MyLibrary
[141], Daffodil [76]) in adopting the format and tools, we expect soon to release stable versions of both.
Once this phase is achieved, other research issues will become the focus of future efforts, such as richer
analysis and evaluation, and efficient use of distributed storage.

94



<Transaction ID = "3455">
<SessionId > 987654usr3 </SessionId>

<TimeStamp> 2002-05-31T20:11:07.000-05:00 </TimeStamp >
<MachineInfo>

<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>

</MachineInfo>
<Statement>

<Event>
<Action>

<Search>
<Collection>Dirline</Collection>
<ObjectType>CommunityRecord</ObjectType>
<SearchBy>SearchByAnyParts</SearchBy>
<SearchType>NonPersistant</SearchType>
<QueryString>low back pain</QueryString>
<TimeFrame>

<StartTime>2002-05-31T20:11:07.000-05:00</StartTime >
<EndTime>2002-05-31T20:11:09.000-05:00</EndTime>

</TimeFrame>
<PresentationInfo>

<Format>List</Format>
<SortBy>ByRank</SortBy>
<NumberOfResults>217</NumberOfResults>
<Cutoff>20</Cutoff>

</PresentationInfo>
</Search>

</Action>
<StatusInfo>successful</StatusInfo>

</Event>
</Statement>

</Transaction>

Figure 7.11: XML log entry - example 2

95



<Transaction ID = "3456">
<SessionId > 987654usr3 </SessionId>
<TimeStamp> 2002-05-31T20:11:15.000-05:00 </TimeStamp >
<MachineInfo>

<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>

</MachineInfo>
<Statement>

<Event>
<Action>

<Browse>
<DocID> 5114 </DocID>
<DocName>University of Washington School of

Medicine Multidisciplinary Pain Center ( UWPC )
</DocName>

</Browse>
</Action>

</Event>
</Statement>

</Transaction>

Figure 7.12: XML log entry - example 3

96



Part III

Quality

97



Chapter 8

Defining a Quality Model for Digital
Libraries

In this chapter, we elaborate on the meaning of quality in digital libraries (DLs) by proposing a quality
model which is deeply grounded in the 5S formal theory for digital libraries (see Chapters 2-3). We move
the theory one step further to define: “What is a good digital library?”. For each major DL concept and onto-
logical relationship we can formally define a number of dimensions of quality and propose a set of numerical
indicators for those quality dimensions. In particular, weconsider key concepts of a minimal DL: catalog,
collection, digital object, metadata specification, repository, and services. Regarding quality dimensions,
we consider: accessibility, accuracy, completeness, composability, conformance, consistency, effectiveness,
efficiency, extensibility, impact factor, pertinence, preservability, relevance, reliability, reusability, signifi-
cance, similarity, and timeliness. Regarding measurement, we consider characteristics like: response time
(with regard to efficiency), cost of migration (with respectto preservability), and number of service failures
(to assess reliability). For key DL concepts, each pair, of aquality dimension and its corresponding nu-
merical indicator, can be illustrated through applicationto a number of “real-world” digital libraries such as
the ACM Digital Library [4], the Computing and Information Technology Interactive Digital Educational
Library (CITIDEL) [41], and the Networked Digital Library of Theses and Dissertations (NDLTD) [144].

We also discuss connections between the proposed dimensions of DL quality and an expanded version
of a workshop’s consensus view of the life cycle of information in digital libraries [28]. Such connections
can be used to determine when and where quality issues can be measured, assessed, and improved — as
well as how possible quality problems can be prevented, detected, and eliminated.

The main contributions of this work are twofold:

1. a proposal of new formalizations for quality dimensions and indicators for digital libraries in the
context of our 5S framework; and

2. a contextualization of these indicators within the DL information cycle.

8.1 Introduction

What is a good digital library? As was pointed out by Fuhr et al. [75], the answer to this question depends on
whom you ask. It can be considered that what differentiates agood DL from a not so good one is the quality
of its services and content. Since one of the main goals of ourwork with the 5S formal theory is to try to
answer (at least partially) the question of “What is a digital library,” our hypothesis in this chapter is that
further development on the theory will allow us to define critical dimensions and indicators of DL quality. In
contrast to its physical counterpart, the “digital” natureof DLs allows automatic assessment and enforcement

98



of those quality properties, therefore supporting prevention and elimination of quality problems. 5S gives
a standard terminology to discuss these issues in a common framework. Moreover, the formal nature of
our DL theory allows us to add precision as we define specific DLquality dimensions and corresponding
numeric indicators.

In this chapter, we will follow the standard terminology used in social sciences[11]. We will use the
termcomposite quality indicator1 (or in short quality indicator) to refer to the proposed equations instead of
the stronger termquality measures. Only after one has a number of indicators, and they are validated2 and
tested for reliability3, can they be composed into reliable “measures”. Despite partial tests of validity (for
example, through focus groups4) the proposed quality indicators do not qualify as measuresyet. Also, it
should be stressed that the proposed equations are only approximations of or give quantified indication of a
quality dimension. They should not be interpreted as a complete specification of a quality dimension, since
more factors/variables can enter in their compositions which were not specified here. We will, however,
reserve the right to use the term “measure” when talking about standard measures that have long been used
by the CS / LIS communities. The distinction should be clear in context.

Table 8.1 shows a summary of candidate dimensions of qualityfor some of the most important DL
concepts and factors affecting the measurement of the corresponding quality dimensions. Most of these
dimensions of quality can be characterized in the context ofseveral DL semantic relationships defined in
our Digital Library Ontology (see Chapter 3). Table 8.2 shows some of the S concepts and ontological
relationships involved in the definition of quality dimensions and indicators5. The following subsections
explain these indicators in detail by:

1. motivating them and discussing their meaning/utilization;

2. formally defining them and specifying their corresponding numerical computation; and

3. illustrating their use by applying the indicators/metrics in the context of some “real-world” DLs (e.g.,
ACM, CITIDEL, NDLTD).

This chapter is organized as follows. Sections 8.2 through 8.5 present all the dimensions of quality,
the proposed indicators, and their applications to the respective DL concepts. Section 8.6 deals with the
connections between the proposed dimensions and Borgman etal.’s Information Life Cycle [28]. Section
8.7 covers related work and Section 8.8 concludes the chapter.

8.2 Digital Objects

8.2.1 Accessibility

A digital object is accessible by a DL actor or patron, if it exists in the collections of the DL, the reposi-
tory is able to retrieve the object, and: 1) an overly restrictive rights management property of a metadata
specification does not exist for that object; or 2) if such exists, the property does not restrict access for the
particular society to which the actor belongs or to that actor in particular. A quality indicator for calculating
accessibility is a function, which depends on all those factors and the granularity of the rules (e.g., entire

1An indicator composed of two or more simpler indicators or variables.
2According to [11], validity refers to the extent to which a specific measurement provides data that relate to commonly accepted

meanings of a particular concept. There are numerous yardsticks for d etermining validity: face validity, criterion-validity, content
validity, and construct validity.

3Also according to [11], reliability refers to the likelihood that a given measurement procedure will yield the same description
of a given phenomena if that measurement is repeated.

4A type of face validity.
5Each S in which the DL concept in the first column is inserted also is involved.

99



DL Concept Dimension of
Quality

Factors/Variables in Measuring

Digital object

Accessibility Collection, # of structured streams, rightsmanagement
metadata, communities

Pertinence Context, information, information need
Preservability Fidelity (lossiness), migration cost, digital object com-

plexity, stream formats
Relevance Term (feature) frequency, inverse document frequency,

document size, document structure, query size, collec-
tion size

Similarity Same as in relevance, citation/link patterns
Significance Citation/link patterns
Timeliness Age, time of latest citation, collection freshness

Metadata Speci-
fication

Accuracy Accurate attributes, # of attributes in the record
Completeness Missing attributes, schema size
Conformance Conformant attributes, schema size

Collection
Completeness Collection size; size of the ‘ideal collection’
Impact Factor Size of the collection; number of citations

Catalog
Completeness # of digital objects without a set of metadata specifica-

tions; size of the described collection
Consistency # of sets of metadata specifications per digitalobject

Repository
Completeness # of collections
Consistency # of collections in repository; Catalog/Collection pair-

wise consistency

Services

Composability Extensibility, reusability
Efficiency Response time
Effectiviness Precision/recall (search); F1 measure (classification)
Extensibility # of extended services; # of services in the DL; # of.

lines of code per service manager
Reusability # of reused services; # of services in the DL; # oflines

of code per service manager
Reliability # of service failures; # of accesses

Table 8.1: DL high-level concepts and corresponding DL dimensions of quality with respective metrics

100



DL Concept Dimension of
quality

Some ‘S’ Concepts and Relationships Involved

Digital object

Accessibility Societies(actor), Structures (metadata specification),
Streams + Structures (structured streams)

Pertinence Societies (actor), Scenarios (task)
Preservability Streams, Structures (structural metadata), Scenarios

(process (e.g., migration))
Relevance Streams + Structures (structured streams), Structures

(query), Spaces (Metric, Probabilistic, Vector)
Similarity Same as in relevance, Structures (citation/link patterns)
Significance Structures (citation/link patterns)
Timeliness Streams (time), Structures (citation/link patterns)

Metadata Speci-
fication

Accuracy Structure (properties, values)
Completeness Structure (properties, schema)
Conformance Structure (properties, schema)

Collection
Completeness none
Impact Factor Structure (citation/link patterns)

Catalog
Completeness Structure (describes(Collection))
Consistency Structure (describes(Collection))

Repository
Completeness Structure (describes(Collection))
Consistency Structure (describes(Catalog, Collection))

Services

Composability see Extensibility, reusability
Efficiency Streams (time), Spaces (operations, contraints)
Effectiviness see Pertinence, Relevance
Extensibility Societies + Scenarios (extends, inheritsfrom, redefines)
Reusability Societies + Scenarios (includes, reuses)
Reliability Societies + Scenarios (uses, executes, invokes)

Table 8.2: Dimensions of quality and Ss involved in their definitions

101



object; structured streams). It should be noted that digital object accessibility as defined here is different
from the common view of “Web site accessibility”, which is concerned with creating better ways to provide
Web content to users with disabilities [202, 174].

Let access constraintbe a property of some metadata specification of a digital object dox whose values
include the sets of communities that have the right to accessspecific (structured) streams within the object.
Also let struct streams(dox) =

⋃

t∈dox(4) t be the set of structured streams ofdox. The accessibility
acc(dox, acy) of a digital objectdox to an actoracy is:

• 0, if there is no collectionC in the DL such thatdox ∈ C;

• otherwiseacc = (
∑

z∈struct streams(dox) rz(acy))/|struct streams(dox)|, where:

– rz(acy) is a rights management rule defined as an indicator function:

∗ 1, if
· z has no access constraints; or
· z has access constraints andacy ∈ cmz, wherecmz ∈ Soc(1) is a community that has

the right to access z; and
∗ 0, otherwise

Example of application. Virginia Tech’s Digital Library of Electronic Theses and Dissertations.
At Virginia Tech, a student can choose, at the moment of submission, to allow her electronic thesis or dis-

sertation to be viewed worldwide, by the originating university, or not at all. The “mixed” case occurs when
some portions (e.g., particular chapters or multimedia files) have restricted access while others are more
widely available. The majority of Virginia Tech students choose their documents to be viewable worldwide
[69] – but some initially choose not to grant worldwide access, because of concerns regarding patents or
publication of results in journals/conferences. To address this concern, there are ongoing discussions with
publishers to help them understand the goals and benefits of NDLTD (http://www.ndltd.org/publshrs/). An
additional concern is faculty advisors. Author exit surveys indicate that many of the authors who chose
to restrict access based their decisions on the advice of their faculty committee. Anecdotal evidence indi-
cates that committee chairs feel very protective of these future academicians and are concerned about their
chances of publishing in other venues.

Therefore the accessibilityacc(etdx, acy) of a Virginia Tech ETDetdx is:

• 0, if etdx does not belong to the VT-ETD collection;

• otherwise(
∑

z∈struct streams(etdx) rz(acy))/|struct streams(etdx)|, where:

– rz(acy) is a rights management rule defined as an indicator function:

∗ 1, if
· etdx is marked as “worldwide access” or
· etdx is marked as “VT only” andacy ∈ V Tcmm, whereV Tcmm is the community of

Virginia Tech ID holders accessingz through a computer with a Virginia Tech regis-
tered IP address.

∗ 0, otherwise

Table 8.3 shows the number of unrestricted (worldwide, accessibility = 1 to everybody), restricted to VT
campus (accessibility = 0 worldwide, 1 to members ofV Tcmm), mixed, along with the degree of accessibility
acc(etdx, acy) of the mixed ETDs for non-V Tcmm membersacy, as of March 25, 2003. For example, five
out of the six chapters (structured streams) of the third mixed ETD under the letter A were available only to
VT. The rights management rule therefore is 0 for all those chapters, thus making its overall acessibility to
non-VT actors 1/6 or 0.167.

102



First letter of author’s
name

Unrestricted Restricted Mixed Degree of accessibility for users not in the VT
community

A 164 50 5 mix(0.5, 0.5, 0.167, 0.1875, 0.6)
B 286 102 3 mix(0.5,0.5, 0.13)
C 231 108 7 mix (0.11, 0.5, 0.5, 0.5, 0.33, 0.09, 0.33)
D 159 54 2 mix(0.875, 0.666)
E 67 26 1 mix(0.5)
F 88 39 2 mix(0.375, 0.09)
G 166 72 2 mix(0.666,0.5)
H 225 91 3 mix(0.66, 0.5, 0.235)
I 20 8 1 mix(0.5)
J 84 36 2 mix(0.5, 0.6)
K 166 69 2 mix(0.5, 0.5)
L 189 68 6 mix(0.153, 0.33, 0.5, 0.5, 0.94)
M 299 115 9 mix(0.5, 0.5, 0.5, 0.041, 0.5, 0.5, 0.5, 0.117, 0.5)
N 74 16 1 mix(0.8)
O 45 19 2 mix(0.5, 0.125)
P 172 71 3 mix(0, 0, 0.33)
Q 13 6 0 mix = none
R 158 71 3 mix(0.66, 0.5, 0.5)
S 398 159 8 mix(0.66, 0.5, 0.5, 0.6, 0.33, 0.66, 0.33, 0.6)
T 111 49 1 mix(0.13)
U 9 7 0 mix = none
V 63 20 0 mix = none
W 191 81 5 mix (0.5, 0.22, 0.38, 0.875, 0.5)
X 11 5 0 mix = none
Y 38 9 3 mix(0.5, 0.5, 0.125)
Z 47 17 2 mix(0.5, 0.5)
All 3474 1368 73

Table 8.3: Accessibility of VT-ETDs (first column corresponds to the first letter of author’s name)

103



8.2.2 Pertinence

Pertinence is one of the most “social” quality indicators since it is a relation between the information car-
ried by a digital object and an actor’s information need, anddepends heavily on the actor’s knowledge,
background, current task, etc.

Let Inf(doi) represent the “information”6 (not physical) carried by a digital object or any of its (meta-
data) descriptions,IN(acj) be the information need7 of an actor andContextjk be an amalgam of societal
factors which can impact the judgment of pertinence ofdoi by acj at timek. These include, among others,
task, time, place, the actor’s history of interaction, and arange of other factors that are not given explicitly
but are implicit in the interaction and ambient environment. A complete formalization of context is out of
the scope of this work. The reader is referred to a recent workshop on “Context in Information Retrieval”
for a number of papers on the subject [105].

Also, let’s define two sub-communities of actors,usersandexternal-judges⊂ Ac, as:

• users: set of actors with an information need who use DL services totry to fulfill/satisfy that need

• external-judges: set of actors responsible for determining the relevance (see Section 8.2.4) of a docu-
ment to a query. Let’s also constrain that a member of external-judges can not judge the relevance of
a document to a query representing her own information need,i.e., at the same point in timeusers ∩
external-judges= ∅.

The pertinence of a digital objectdoi to a useracj at a timek is an indicator function8 Pertinence(doi, acj) :
Inf(doi) × IN(acj) × Contextjk defined as:

• 1, if Inf(doi) is judged byacj to be informative with regards toIN(aci) in contextContextjk;

• 0, otherwise.

Since pertinence is an implicit, subjective judgment made by a user in a particular context it can ulti-
mately only be assessed by the user herself.

Example of use. We will use pertinence as a quality indicator to evaluate theeffectiveness of information
satisfaction services (see Section 8.5.1).

8.2.3 Preservability

Preservability is a quality property of a digital object which reflects a state of the object that can vary due
to changes in hardware (e.g., new recording technologies),software (e.g., release of a new version of the
software used to create/display the object), representation formats (e.g., new image standard such as JPEG
2000), and processes to which the object is submitted (e.g.,migration).

The four main technical approaches to digital preservationare:

1. Migration: transforming from one digital format to another format, normally a successive subsequent
one (e.g., from JPEG to JPEG 2000) [48]

6Information and information need, by themselves, are hard notions to formally define. One comprehensive attempt is presented
in [138].

7Certain authors such as Taylor [210] and Mizzaro [139] make adistinction between the “real” and the “perceived” information
need. We will not make this distinction here, in the interestof brevity.

8Voorhees [214], Greisdorf [98], and others argue for non-binary pertinence/relevance functions. We will leave such extensions
for future work.

104



2. Emulation: re-creating the original operating environment by saving the original programs and or
creating new programs that can emulate the old environment [173];

3. Wrapping: packaging the object to be preserved with enough human readable metadata to allow it to
be decoded in the future [223];

4. Refreshing: copying the stream of bits from one location to another, whether the physical medium is
the same or not [127].

Note that here we are not considering physical deterioration of the medium in which the object is stored
since this is a property of the medium itself, not the object.However we acknowledge that this is an
important problem, for which “refreshing” is the normally used approach [8].

For cost, operational, and technical reasons, migration isthe most widely used of the three techniques
mentioned above [223]. However the ideal solution should besome combination of all the techniques
[223, 107]. One example which applies such a combination is the UVC-based approach [131]. Nonetheless,
for the purpose of the discussion below we will concentrate on migration issues.

A digital object’s preservability can be affected by its obsolescence and the fidelity of the migration
process (see Figure 8.1). Obsolescence reflects the fact that a very obsolete object is really hard and costly
to migrate, given the difficulty of finding appropriate migration tools and the right expertise. Fidelity reflects
the differences between the original and the migrated object or, in other words, reflects the distortion or the
loss of information inherent in the migration process that is absorbed by the object. The more obsolete and
the less faithful the migration process, the lower the object’s preservability. Preservability also is affected by
contextual issues of specific DLs. For example, while it is desirable to always use the most faithful migration
process, a DL may not have sufficient resources (money, storage, personnel) to apply it to its digital objects
during migration. Based on the above discussion and on the fact that these two factors are orthogonal, we
can define the preservability of a digital objectdoi in a digital librarydl as a tuple:

preservability(doi, dl) = (fidelity of migrating(doi, formatx, formaty), obsolescence(doi, dl)). (8.1)

As mentioned before, obsolescence is a complex notion to capture, that depends on many contextual
factors. Since the choice of how to deal with obsolescence generally depends on resources at the disposal of
the DL, one possible idea is to approximate its value by the actual cost of migrating the object [181]. While
a complete cost model for preservability/obsolescence is beyond the scope of this work, we recognize many
factors that can impact the cost, including:

• Capital direct costs

– Software development/acquiring or license updating for newer versions

– Hardware (for preservation processing or storage)

• Indirect Operating Costs

– Identifing candidate digital objects

– Evaluating/examining/negotiating intellectual property issues and rights

– Process

– Storage

– Staff training (on software / procedures)

105



Figure 8.1: Factors in preservability

Obsolescence then can be defined as obsolescence(doi , dl) = cost of converting/migrating the digital object
within the context of the specific dl.

The fidelity of the migration processp of a digital objectdoi from formatx to formaty can be defined
as the inverse of the distortion or noise introduced by the processp, i.e., fidelity(doi, formatx, formaty)
= 1

distortion(p(formatx ,formatx))+0.5 . Distortion can be computed in a number of ways depending on the type
of object and transformation [184]. One very common measure, when converting between similar formats,
is themean squared error (mse). In the case of a digital object,msecan be defined as follows. Let{xn}
be a stream of a digital objectdoi and {yn} be the converted/migrated stream; the mean squared error
mse({xn}, {yn}) = 1

N
∗

∑N
n=1(xn − yn)2, whereN is the size of the streams. The mean square error for

the whole objectdoi can be calculated as the average ofmsefor all its streams.

Example of Use. Let’s consider the following scenario adapted from [104]. In 2004, a librarian receives
an email notifying her that a special collection9 of 1,000 digital images, stored in TIFF version 5.0, is in
danger of becoming obsolete, due to the fact that the latest version of the display software no longer supports
TIFF 5.0. The librarian decides to migrate all digital photos to JPEG 2000 which now has become thede
facto image preservation standard, recommended by the Research Libraries Group (RLG).

The librarian does a small search for possible migration options and finds a tool, costing $500, which
converts TIFF 5.0 directly to JPEG 2000. Let’s consider thatthe amount of time taken by the librarian and
the system administrator to order the software, install it,learn it, and apply it to all digital images combined
takes 20 hours. Assume also that the hourly rate in this DL is $66.6 per hour per employee10. In order to

9Preservation of a collection, instead of a digital object, also may involve preserving all the structures (e.g., classification
schemes, etc.) imposed on the collection.

101800 is the number of hours in a work-year (37.5 hrs/wk * 48 wks/yr) and $110,000 the total annual cost of an employee
working for this DL, based on salary, benefits, expenses, etc.

106



save space, the librarian chooses to use in the migration a compression rate which produces an averagemse
of 9 per image. In this scenario, the preservability of each digital image would correspond to: preservability
(image-TIFF 5.0,dl) = (1/9, ($500 + $66.6 * 20) /1000) = (0.11, $1.83).

8.2.4 Relevance

A digital object isrelevant[182] in the context of an expression of an information need (e.g., a query) or
interest (e.g., profile) and a service (e.g., searching, recommending). A role of an information satisfaction
service is to provide ways to find the most relevant information for the user, which in case of DLs is carried
by digital objects and their metadata specifications.

The relevance of a digital object to a query is an indicator functionRelevance(doi, q) defined as:

• 1, if doi is judged by aexternal-judgeto be relevant toq;

• 0 otherwise

The most common measures for relevance estimates/predictions are based on statistical properties of the
streams of the digital object such as term (feature) frequency and the collection (e.g., collection size, inverse
document frequency). For example, to estimate the relevance asrel(doi, q) of a documentdoi to a queryq
in the vector space model (see Chapter 2), the cosine of the angle between the vectors representing the two
entities is normally used. Therefore

rel(doi, q) =
do→i × q→

|do→i | ∗ |q→|
(8.2)

Note that differently from pertinence, relevance is a relation between arepresentation of a document
and arepresentationof an information need (i.e., query). Also, it is supposed tobe an objective, public, and
social notion that can be established by a general consensusin the field, not a subjective, private judgment
between the actor and her information need [64, 115].

Example of use. Examples can be found in any information retrieval work using the vector space model
[178, 13]. There are literally thousands of these, the most prominent being published in the annual ACM
SIGIR conference proceedings and in journals such as the ACMTransactions on Information Systems.

8.2.5 Significance

Significance of a digital object can be viewed from two perspectives – relative to its relevance to a user need
(as in Section 8.2.4) or in absolute terms, irrespective of particular user requirements. Absolute significance
can be calculated based onraw citedness– the number of times a documentdoi is cited, or the frequency of
occurence of citations whose target isdoi. Other factors may play a role in the significance of a document
such as the prestige of the journal publishing the work, its use in courses, awards given, etc., but these are
very hard to quantify/measure.

Example of Use. The ACM Digital Library
We used 98,000 documents from ACM DL, which corresponded to approximately 1,093,700 (outgoing)

citations (average of 11.53 citations per document). Table8.4 shows the top 9 documents in the ACM
collection with the highest values of significance while Figure 8.2 shows the distribution of significance
values in the same collection.

107



Document Publication Year Significance
Computer programming as art CACM 1974 279
A generalized processor sharing approach to flow con-
trol in integrated services networks: the single-node
case

IEEE/ACM Transactions on Net-
working (TON)

1993 138

The entity-relationship model – toward a unified view
of data

ACM Transactions on Database
Systems

1976 130

A relational model of data for large shared data banksCACM 1970 121
Revised report on the algorithmic language scheme ACM SIGPLAN Notices 1986 116
Parallel discrete event simulation CACM 1990 108
Can programming be liberated from the von Neumann
style?: a functional style and its algebra of ...

CACM 1994 107

A case for redundant arrays of inexpensive disks
(RAID)

ACM SIGMOD Record 1988 107

Time, clocks, and the ordering of events in a dis-
tributed system

CACM 1978 105

Table 8.4: Documents with highest degree of significance

 0

 50

 100

 150

 200

 250

 300

S
ig

ni
fic

an
ce

Documents

Figure 8.2: Significance in the ACM Digital Library

108



8.2.6 Similarity

Similarity metrics reflect the relatedness between two or more digital objects. Similarity can be measured
based on the digital object’s content (streams) (e.g., use and frequency of words), the digital object’s internal
organization (structures), or citations/linking patterns. For example, similarity between two documents can
be calculated using a similar idea as for relevance estimates in Section 8.2.4, where a document vector (and
its term frequency vector) substitutes for the query vector. This idea can be expanded to calculate similarity
between corresponding structured streams of documents (e.g., using their title and abstract texts). Other
measures can be used to calculate similarity as well. Assuming again that documents are represented as
vectors of terms or features, two such measures are “bag-of-words” and Okapi, both defined below. For
vectorsdi and dj, di ∩ dj is the set of termst that are components of bothdi and dj . |di| means the
dimension of the vectordi (number of terms in the document).

Bag-of-words(di, dj) = |di ∩ dj |/|dj | (8.3)

Okapi(di, dj) =
∑

t∈di∩dj

3 ∗ tf(t, dj)

0.5 + 1.5 ∗
len(dj)

lenavg+tf(t,dj )

∗ log
N − df(t) + 0.5

df(t) + 0.5
∗ tf(t, di) (8.4)

In Equation 8.4,tf(t, d) is the frequency of termt in documentd anddf(t) is the document frequency
of the termt in the whole collection.N is the number of documents in the whole collection,len(d) is the
length of documentd, andlenavg is the average length of all documents in the collection. Note that both
measures are asymetric.

Similarity measures also may use link or citation information to compute the relatedeness of two objects.
Among the most popular citation-based measures of similarity are: co-citation, bibliographic coupling, and
the Amsler measure, all of which we explain below.

Co-citation was first proposed by Small [193]. Two documentsare co-cited if a third paper has citations
to both of them. This reflects the assumption that the author of a scientific paper will cite only papers related
to his own work. The extension for digital objects and hyperlinks is straightforward. More formally, letdi

be a digital object and letPdi be the set of documents that cite or link todi, called the parents ofdi. The
co-citation similaritycocit(di, dj) between two documentsdi anddj is defined as:

cocit(di, doj) =
|Pdi ∩ Pdj|

max|P |
(8.5)

wheremax|P | is the maximum number of parents for any object in the whole collection. If both Pdi

andPdj are empty, we define the co-citation similarity as zero. Equation 8.5 tells us that, the more par-
entsdi and dj have in common, the more similar they are. However, co-citation is a measure between
pairs of digital objects. The absolute degree of co-citation of documentdi in collection C is defined as
∑

dj∈C−{di}
cocit(di, dj).

Also with the goal of determining how related two documents are, Kessler [116] introduced the measure
of bibliographic coupling. Two documents share one unit of bibliographic coupling if both cite a same
document. The idea is based on the notion that authors who work on the same subject tend to cite the same
documents. More formally, letdi be a digital object. We defineCdi as the set of documents thatdi links
to, also called the children ofdi. Bibliographic couplingbibcoup(di, dj) between two pagesdi anddj is
defined as

bibcoup(di, dj) =
|Cdi ∩ Cdj |

max|C|
(8.6)

wheremax|C| is the maximum value of children for any object in the whole collection. According to
Equation 8.6, the more children in common documentdi has with documentdj , the more related they are.

109



This value is normalized by the total set of children, to fit between 0 and 1. If bothCdi andCdj are empty,
we define the bibliographic coupling similarity as zero. Theabsolute degree of bibliographic coupling of a
documentdi in collectionC is defined as

∑

dj∈C−{di}
bibcoup(di, dj).

Finally, in order to take advantage of both types of information, Amsler proposed a measure that com-
bines co-citation and bibliographic coupling. According to Amsler, two documentsdi anddj are related if
(1) di anddj are cited by the same document, (2)di anddj cite the same document, or (3)di cites a third
documentdk that citesdj . Thus, letPdi be the set of parents ofdi, and letCdi be the set of children ofdi.
The Amsler similarity between two pagesdi anddj is defined as:

Amsler(di, dj) =
|(Pdi ∪ Cdi) ∩ (Pdj ∪ Cdj)|

max(|P ∪ Cd|)
(8.7)

Eq. 8.7 tells us that, the more links (either parents or children)di anddj have in common, the more they are
related. The absolute Amsler degree of a documentdi in collectionC is defined as

∑

dj∈C−{di}
Amsler(di, dj).

Examples of use. The ACM Digital Library and Automatic Classification
First, we illustrate the use of the citation-based similarity measures. Tables 8.5, 8.6, and 8.7 show the top

9 documents in the ACM collection with the highest absolute values of co-citation, bibliographic coupling,
and Amsler, respectively.

Document Publication Year Cocit
A unified lattice model for static analysis of programs
by construction or approximation of fixpoints

4th ACM SIGACT-SIGPLAN 1977 37.97

Active messages: a mechanism for integrated commu-
nication and computation

19th annual int. symposium on
Computer architecture

1992 36.92

Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch
buffers

17th Annual Int. Symposium on
Computer Architecture

1990 31.12

Computer programming as an art CACM 1974 30.07
The SPLASH-2 programs: characterization and
methodological considerations

22nd Annual Int. symposium on
Computer architecture

1995 29.36

ATOM: a system for building customized program
analysis tools

ACM SIGPLAN ’94 1994 27.90

Analysis of pointers and structures Proceedings of the conference on
Programming language design and
implementation

1990 27.53

Revised report on the algorithmic language scheme ACM SIGPLAN Notices (Issue) 1986 25.99
The directory-based cache coherence protocol for the
DASH multiprocessor

17th annual international sympo-
sium on Computer Architecture

1990 25.87

Table 8.5: Documents with highest absolute degree of co-citation

Figures 8.2(a), (b), (c) show the distribution of absolute values (sorted by decreasing magnitude) of co-
citation, bibliographic coupling, and Amsler in the ACM DL collection. It can be seen, as expected, that the
values for Amsler and bibliographic coupling are higher than for co-citation due to the fact that documents
cite more than they are cited. It also can be seen that the values drop really quickly in all measures.

Similarity measures can be used within a number of DL services. One example is automatic classifi-
cation. Table 8.8 shows the performance of several classifiers based on the nearest neighbor approach and
different types of similarity, using the macro-F1 measure (see Section 8.5.1)11. The collection utilized was

11Macro-F1 is computed by averaging the F1 value obtained by the classifiers for each candidate category.

110



Document Publication Year Bibcoup
Query evaluation techniques for large databases CSUR 1993 70.49
Compiler transformations for high-performance com-
puting

CSUR 1994 63.82

On randomization in sequential and distributed algo-
rithms

CSUR 1994 47.77

External memory algorithms and data structures: deal-
ing with massive data

CSUR 2001 45.29

A schema for interprocedural modification side-effect
analysis with pointer aliasing

TOPLAS 2001 44.69

Complexity and expressive power of logic program-
ming

CSUR 2001 44.39

Computational geometry: a retrospective ACM symposium on Theory of
computing

1994 41.29

Research directions in object-oriented database sys-
tems

ACM SIGACT-SIGMOD-SIGART
symposium

1990 40.17

Cache coherence in large-scale shared-memory multi-
processors: issues and comparisons

CSUR 1993 35.07

Table 8.6: Documents with highest absolute degree of bibliographic coupling

Document Publication Year Amsler
Computer programming as an art CACM 1974 69.15
Compiler transformations for high-performance com-
puting

CSUR 1994 64.31

Analysis of pointers and structures Prog. language design and imple-
mentation

1990 62.56

Query evaluation techniques for large databases CSUR 1993 59.81
A schema for interprocedural modification side-effect
analysis with pointer aliasing

TOPLAS 2001 57.90

Context-sensitive interprocedural points-to analysis in
the presence of function pointers

ACM SIGPLAN ’94 1994 56.59

Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effect

20th ACM SIGPLAN-SIGACT 1993 55.72

Efficiently computing static single assignment form
and the control dependence graph

TOPLAS 1991 54.50

Extensibility safety and performance in the SPIN op-
erating system

ACM Symp. Operating systems
principles

1995 53.84

Table 8.7: Documents with highest absolute Amsler degree

111



 0

 5

 10

 15

 20

 25

 30

 35

 40

A
bs

ol
ut

e 
C

o-
ci

ta
tio

n 
D

eg
re

e

Documents

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
bs

ol
ut

e 
B

ib
lio

gr
ap

hi
c 

C
ou

pl
in

g 
D

eg
re

e

Documents

(b)

 0

 10

 20

 30

 40

 50

 60

 70

A
bs

ol
ut

e 
A

m
sl

er
 D

eg
re

e

Documents

(c)

Figure 8.3: Distribution of absolute values of citation-based similarity in the ACM DL

112



a subset of the ACM digital library (approximately 30,000) documents, in particular those classified under
only one category of the ACM classification scheme (first level, 11 categories), with 30% of the collection
used for training and the remainder for testing. These classifiers assign a category label to a test document
based on the categories attributed to the k most similar documents in the training. The most widely used
algorithm was introduced by Yang and is referred to askNN [232]. ThekNN algorithm was chosen since it
is simple and makes direct use of similarity information. InthekNN algorithm, to a given test documentdi

is assigned a score associatingdi with each candidate categoryc. This score is defined as
∑

d′∈Nk(di)

similarity(di, d
′) ∗ f(c, d′) (8.8)

whereNk(di) are thek nearest neighbors ofdi (the most similar documents in the training set) andf(c, d′)
is an indicator function that returns 1 if document d’ belongs to categocyc, and 0 otherwise. For the
similarity function we used 10 different measures:

1. similarity based on the bag-of-words method using only the title of the document (titbag),

2. similarity based on the cosine method using only the titleof the document (titcos),

3. similarity based on the Okapi measure using only the titleof the document (titokapi),

4. similarity based on the bag-of-words method using only the abstract of the document (absbag),

5. similarity based on the cosine method using only the abstract of the document (abscos),

6. similarity based on the Okapi measure using only the abstract of the document (absokapi),

7. similarity based on the three citation-based measures.

Evidence Macro
F1(30%)

AbstractBagOfWords 0.195
Co-citation 0.273
AbstractOkapi 0.339
AbstractCosine 0.343
Bib Coup 0.347
Amsler 0.412
Title BagOfWords 0.492
Title Cosine 0.525
Title Okapi 0.525

Table 8.8: Macro F1 on individual evidence

From Table 8.8 it can be seen that, for this collection, the best similarity measures for use in the kNN al-
gorithm are the title-based ones, followed by the Amsler measure. Surprisingly, for this task, these measures
are significantly better than the measures based on abstracts.

8.2.7 Timeliness

Timeliness of a digital object is the extent to which it is sufficiently up-to-date for the task at hand [159]. It
can be a function of the time when the digital object was created, stored, accessed, or cited.

113



Since the timeliness of an object is directly related to the information it carries, which can still be timely
even if the object is “old”, a good quality indicator of this quality dimension is the time of the latest citation,
since it’s a measure that:

1. captures the fact that the information carried by the object is still relevant by the time the citing object
was published;

2. is independent from the actor that receives the object andthe time the object is delivered;

3. reflects the overall importance of the object inside its community of interest.

As it is known that many documents are never cited, an alternative is to consider the age of the object
itself. Therefore the timeliness of a digital objectdoi can be defined as:

• (current time or time of last freshening) - time of the latestcitation, if object is ever cited

• age = (current time or time of last freshening) - (creation time or publication time), if object is never
cited.

Time of last freshening, which is defined as the time of the creation/publication of the most recent object
in the collection to whichdoi belongs, may be used instead of current time if the collection is not updated
frequently.

Example of use. ACM Digital library
Figure 8.5 shows the distribution of degree of timeliness (0through 10) for documents in the ACM

Digital Library with citations. Time of last freshness is 2002, representing years. It can be seen, discounting
the first set of values (timeliness=0), that there is a inverse relation between timeliness/size of the set of
documents with that value: the smaller the value, the biggerthe set, meaning that as time passes there is less
chance that a document will be cited.

8.3 Metadata Specifications and Metadata Format

Three main dimensions of quality can be associated with metadata specifications and metadata formats:
accuracy, completeness, and conformance.

8.3.1 Accuracy

Accuracy is defined in terms of properties of a metadata specification of a digital object. Accuracy of a
triple 〈r, p, v〉 (i.e.,〈resource, property12, value〉) refers to the nearness of the valuev to some valuev′ in
the attribute domain which is considered as the correct one for the pair: resourcer and propertyp [166].
A metadata specification for a digital object is completely accurate with respect to a digital object if all
the triples are accurate, assuming some appropriate accuracy threshold. The degree of accuracy of attribute
attxy can be defined as an indicator function or with specific rules for a particular schema/catalog. It is
dependent on several factors, including the attribute’s domain, intended use, etc. Examples are given below.
Thus, the degree of accuracyacc(msx) of a metadata specificationmsx can be defined as

acc(msx) =

∑

∀attributeattxy of msx
degree of accuracy ofattxy

total number of attributes ofmsx
(8.9)

12In this work we will use the terms ‘metadata property’, ‘metadata attribute’, and ‘metadata field’ interchangeably.

114



Figure 8.4: Timeliness in the ACM Digital Library

Example of Use. OCLC’s WebCat
To illustrate the application of such a indicator we used OCLC’s WebCat Union. We chose Webcat

because of its numerous problems regarding metadata accuracy, observed while creating a collection for
filtering experiments [234]. For example, author information is very commonly found in the title field (e.g.,
“The concept of the church in the thought of Rudolf Bultmann –by Paul E. Stambach.”) and sometimes the
abstract contains all kinds of information (see below) but not the thesis/dissertation’s summary. We defined
the following rules for the dc.author13, dc.title, and dc.abstract fields:

• Degree of accuracy of dc.title for OCLC = 1, if it does not contain author information; 0.5 otherwise.

• Degree of accuracy of dc.abstract = (number of abstract fields in which the field corresponds to the
thesis or dissertation’s summary)/ (number of dc.abstractfields). The decision of whether a dc.abstract
field corresponds to a summary or not was based on the size of the text and a number of heuristics, for
example: 1) if dc.abstract is equal to “Thesis” or “Dissertation”, it is not a summary; 2) if dc.abstract
contains phrases like “Title from *” (e.g., “Title from firstpage of PDF file”); “Document format-
ted into pages”, “Includes bibliographical references”, “Mode of access”, among others, it is not a
summary.

Using these two rules the average OCLC accuracy for all its metadata records (approx. 14,000 records, in
September 200314) was calculated as around 0.79, assuming a maximum of 1.

13The author field in the Dublin Core standard
14Approximately 129K in Sept. 2004

115



8.3.2 Completeness

Completeness is a pervasive quality dimension which is associated with many of the DL concepts (as can
be seen in Table 8.1). The general notion of completeness canbe defined as: number of units of a particular
concept / ideal number of units of that concept. This notion can be adapted or instantiated to specific DL
concepts.

Completeness of metadata specifications refers to the degree to which values are present in the descrip-
tion, according to a metadata standard. As far as an individual property is concerned, only two situations
are possible: either a value is assigned to the property in question, or not. The degree of completeness of a
metadata specificationmsx can be defined as15

Completeness(msx) = 1 −
no. of missing attributes inmsx

total no. of attributes of the schema to whichmsx conforms
(8.10)

Example of application. OCLC NDLTD Union Catalog
Figure 8.5 shows the average of completeness of all metadataspecifications (records) of the NDLTD

Union Archive administered by OCLC as of February 23, 2004, regarding to the Dublin Core metadata
standard (15 attributes). Table 8.9 shows the corresponding institution and number of metadata records per
institution.

Figure 8.5: Average completeness of catalogs in NDLTD (as ofFebruary 2004)

8.3.3 Conformance

The conformance of a metadata specification to a metadata standard/format/schema has been formally de-
fined in Chapter 2, Definition 14. In that definition a value of an attribute is conformant to its schema if it
belongs to the defined domain of the attribute (e.g., string,date, number, etc.). That definition can be ex-
tended to include cardinality (i.e., considering mandatory/optional fields) and multiplicity (i.e., considering
repeatable fields) issues.

A metadata specificationmsx is cardinally conformantto a metadata format if:

1. it conforms with its schema in terms of the domain of its attributes according to Definition 14 in
Chapter 2;

15According to definition of conformance in Chapter 2

116



Institution # of records Institution # of records Institution # of records
GWUD 8 PITT 200 MUENCHEN 181
LSU 646 HKU 9243 UTENN 3751
VTETD 4711 HUMBOLT 346 CCSD 59
MIT 8686 OCLC 14160 WATERLOO 154
UBC 3 BGMYU 76 NSYSU 502
PHYSNET 224 DRESDEN 4 LAVAL 2
VTINDIV 23 VIENNA 261 UPSALLA 1218
VANDERBILT 43 GATECH 482 CALTECH 802
NCSU 1473 ETSU 367 UCL 30
USASK 64 USF 212 WagUniv 2837

TOTAL 50768

Table 8.9: Institutions in the OCLC NDLTD Union Catalog withcorresponding number of records (as of
February 2004)

2. each attributeattxy of msx appears at least once ifattxy is marked as mandatory in the schema; and

3. attxy does not appear more than once if it is not marked as repeatable in the schema.

From now on, we will use conformance to refer to the stronger definition ofcardinally conformant. Dif-
ferently from completeness, an attribute may be missing in arecord, but still can be considered conformant,
if it is not marked as mandatory. The degree of conformance ofa metadata specificationmsx can be defined
as

Conformance(msx) =

∑

∀ attributeattxy of msx
degree of conformance ofattxy

total number of attributes
(8.11)

The degree of conformance ofattxy is an indicator function defined as 1 ifattxy obeys all conditions
specified in the above definition; 0 otherwise.

Example of use. The ETD Union Archive
Figure 8.6 shows the average conformance of the metadata records in the NDLTD Union Archive, related

to the ETD-MS metadata standard for electronic theses and dissertations. ETD-MS, differently from Dublin
Core in which all fields are optional, defines six mandatory fields: dc.title, dc.creator, dc.subject, dc.date,
dc.type, dc.identifier. Also the domain for the dc.type is defined as the set{‘Collection’, ‘Dataset’, ‘Event’,
‘Image’, ‘InteractiveResource’, ‘Software’, ‘Sound’, ‘Text’, ‘PhysicalObject’, ‘StillImage’, ‘MovingIm-
age’, ‘Electronic Thesis or Dissertation’}. If any value other than these words is used for the attribute, it is
defined as non-conformant.

8.4 Collection, Metadata Catalog, and Repository

8.4.1 Collection Completeness

A complete DL collection is one which contains all the existing digital objects that it should hold. Measuring
completeness of a collection can be extremely hard or virtually impossible in many cases when there is
no way to determine the ideal real-world collection such as in the Web or in hidden databases. Advanced
judicious sampling or probing of alternative repositorieswhose completeness has been established manually
can give crude estimates [142, 106]. An example could be to approximate a measure of the completeness of a

117



Figure 8.6: Average conformance of catalogs in NDLTD

computer science collection of papers on a specific topic by sampling the ACM or IEEE-CS digital libraries,
DBLP, and some other commercial publishers’ on-line databases. In other cases such as for harvested or
mirrored collections those estimates are easier to establish. More formally, Completeness(Cx) of a collection
Cx, can be defined as the ratio between the size ofCx and the ideal real-world collection, i.e.,

Completeness(Cx) =
|Cx|

|ideal collection|
(8.12)

Example of use. Computing collections
The ACM Guide is a collection of bibliographic references and abstracts of works published by ACM

and other publishers. Statistics on the number of entries and types of works are shown in Tables 8.10 and 8.11
(as of March 28, 2004). The Guide can be considered a good approximation of an ideal computing collection
for a number of reasons including the fact that it contains most of the different types of computing-related
literature and for each type it can be considered fairly complete. For example, the set of theses in the Guide
comes from Proquest-UMI, which receives copies of almost all dissertations defended in USA or Canada;
the number of tech reports is close to that of NCSTRL (http://www.ncstrl.org), the largest repository of
CS technical reports, and it contains large numbers of records from many of the most important publishers
in computer science (see Table 8.11). Table 8.12 shows the degree of completeness of several CS-related
collections16 when compared with the Guide.

8.4.2 Catalog Completeness and Consistency

Catalog completeness and consistency have been formally defined in Chapter 3 (in the context of thede-
scribesrelationship). The degree of completeness of a catalogDMC can be defined accordingly as

Completeness(DMC) = 1 −
no. of do’s without a metadata specification

size of the described collection
(8.13)

Consistency, on the other hand, is an indicator function defined as:

• 0, if there is at least one set of metadata specifications assigned to more than one digital object;

• 1, otherwise.

16All subsets of the Guide.

118



ACM Guide: Types of Works No. of entries
Journal (articles) 256527
Proceeding (papers) 299850
Book(chapters) 107870
Theses/Dissertations 46098
Tech. Reports 25081
Bibliography 2
Play 1
Total 735429

Table 8.10: ACM Guide partitioned by genre.

IEEE J(29,018) Springer J(3,524) ACM J(4,017) Elsevier J(7,549) Kluwer J(17,253)
123,844 P(90,760) 108,193 P(96,203) 107,887 P(96,203) 87,777 P(76,335) 27,320 P(3,756)

B(2,071) B(7,886) B(7,886) B(1,527) B(3,532)
SIAM J(12,321) Wiley J(5,569) Pergamon J(9,170) MIT J(3,252)
15,032 P(1,627) 14,486 P(367) 11,482 P(1,419) 9,593 P(1,770)

B(7) B(7,271) B(70) B(4,179)

Table 8.11: ACM Guide sizes of subsets partitioned by genre (key: J= journal; P = proceedings, B = book )
and publisher.

Collection Degree of Com-
pleteness

ACM Guide 1
DBLP 0.652
CITIDEL(DBLP(partial) + ACM(partial) + NCSTRL + NDLTD-CS) 0.467
IEEE-DL 0.168
ACM-DL 0.146

Table 8.12: Completeness of several collections

119



Example of Use. In April 2004, the NDLTD Union catalog administered by OCLC tried to harvest data
from the Brazilian Digital Library of Electronic Theses andDissertations (BDTD). Because of problems
in BDTD’s implementation of the OAI protocol and problems with the Latin character set handling by
OCLC, only 103 records were harvested from the repository. The BDTD collection contained 4446 records.
Therefore the completeness of the harvested catalog for BDTD in OCLC would be completeness(BDTD in
OCLC Union Catalog) = 1 - (4446 - 103)/4446 = 0.023

8.4.3 Repository Completeness and Consistency

A repository is complete if it contains all collections it should have. The degree of completeness of a
repositoryRep is defined as

Completeness(R) =
number of collections in the repository

ideal number of collections
(8.14)

If the repositorystorescollections with their respective metadata catalogs, its consistency can be defined in
terms of these two components. Therefore, repository consistency is an indicator function defined as:

• 1, if the consistency of all catalogs with respect to their described collections is 1;

• 0, otherwise.

Example of use. CITIDEL
We will use the ACM Guide as the ideal collection. Not considering the Bibliography and Play sub-

collections of the Guide and considering each publisher as adifferent sub-collection, the completeness of
CITIDEL can be calculated as 4 (ACM + IEEE + NCTRL + NDLTD-CS) /11 (total number of collections)
or 0.36.

8.4.4 Collection Impact Factor

Building upon an analogy between DL collections and journals, theimpact factorCIF of a DL collectionC
can be measured as the number of citations or links to digitalobjects inC 17. The absolute external collection
impact factor eCIF is a variant which does not count self-citations, i.e., citations/links from digital objects
in C to other objects inC are not counted.

Example of use. ACM and DBLP
As an example, we applied this metric to the ACM digital library and the DBLP collection, both of which

are partially covered by CITIDEL. Table 8.13 shows the CIF for ACM and DBLP (which covers ACM) and
eCIF for DBLP alone (removing ACM). Considering that the total number of citations in ACM used in this
computation was 1,094,108, it is worth noticing that the CIFfor ACM implies that approximately 20.4% of
all citations in ACM point to ACM itself. That fact along withthe eCIF of DBLP (Approximately 13.48%),
which includes many other CS collections like IEEE and the LNCS series, reinforce the high importance of
the ACM collection in the computer science domain.

8.5 DL Services

Dimensions of quality for DL services can be classified as external or internal [219]. The external view
is related to information satisfaction services and is concerned with the use and perceived value of these

17If known, this value can be normalized by the total number of citations in the DL.

120



ACM DBLP
CIF 223,198 369,557
eCIF none 146,359

Table 8.13: Impact Factor for the ACM DL and DBLP

services from the point of view of societies of end users. Theinternal view addresses the construction and
operation necessary to attain the required functionality given a set of requirements that reflect the external
view. Issues in system construction, operation, design, and implementation should be considered here.

8.5.1 Effectiveness and Efficiency

The two most obvious external quality indicators of DL services, as perceived by end users, are efficiency
and effectiveness. Efficiency is most commonly measured in terms of speed, i.e., the difference between
request and response time. Infrastructure services also may be subject to specific efficiency metrics, for
example, speed and space saving for indexing. More formally, let t(e) be the time of an evente, and leteix

andefx be the initial and the final events of servicesex. The efficiency of servicesex is defined as18:

Efficiency(sex) = t(efx) − t(eix) (8.15)

Effectiveness is normally related to information satisfaction services and can be measured by batch
experiments with test collections or through experiments with real users. Different types of information
services can use different metrics, the most common ones being precision and recall [13], extensively used to
assess quality of searching or filtering services. Let|C| be the size of a collection andq a query expressing a
patron’s information need. A searching service processesq and returns a document setA. Let |A| be the size
of this set. Moreover, letRq be the set of all documents relevant toq in C (as judged by external-judges),
or pertinent to the information need represented by the query (as judged by a user), andRa = A ∩ Rq.
PrecisionP is the fraction of the relevant/pertinent documents retrieved by q, i.e.,P = |Ra|/|A|. It is
useful as an indication of how accurate the service is when retrieving the answers to the user’s query. Recall
R is the percentage of all the relevant/pertinent items that were retrieved, i.e.,R = |Ra|/|Rq|. It indicates
if the system is able to retrieve all of the relevant/pertinent items. High recall is especially useful when
the user needs to be certain that all relevant/pertinent information will be found. These two measures can
be combined into a single value providing a simple way of evaluating the service’s overall effectiveness,
for example the F1 measure combines precision and recall with equal weights and is defined asF1 =
2PR/(P + R). More recently, other quality criteria indicators such as separability and connectivity have
been proposed for information satisfaction services such as image retrieval and recommendation [51, 137].

Example of use. Effectiveness: CITIDEL and Structured Queries
Table 8.14 shows the effectiveness of a pure vector space search engine, ESSEX, which implements

searching services for CITIDEL and PlanetMath, and a modified, experimental version of the system. In its
basic form, ESSEX takes queries as a simple bag of words. The system is also able to handle structured or
fielded queries (e.g., author:fox abstract:digital, libraries). The experimental version is able to automatically
find a suitable set of structured queries from the original ‘bag-of-words’ version, ranked by the probability
they better represent the user’s information need [87]. These following results are based on an experiment
conducted using the CITIDEL collection (then with approx. 440,000 records), with 20 subjects19, each

18Here, the smaller the value (i.e., the faster), the more efficient a service is.
19Since subjects evaluated items returned by queries representing their own information need, it is reasonable to say that a

pertinence view was used here.

121



issuing 5 bag-of-words queries, with half of them also having to issue manually structured versions of the
queries. More details on this experiment and results can be found in [87]. The third row in Table 8.14 reports
the performance of the best of the top 5 automatically structured queries. To present the results, besides F1,
we also consider two forms of precision: 10-precision and R-precision. The 10-precision measure indicates
the precision for the first 10 items retrieved by the system. This measure is important in practice since it
is known that users tend to only look at the top results in a ranked answer set. The R-precision measure
indicates the precision when all relevant/pertinent documents were retrieved (recall=1). It is a measure
of how many spurious results the user has to look at before allrelevant/pertinent results are seen. Both
measures are useful in determining not only if the system is able to show relevant/pertinent results at the top
of the list of retrieved items, but also if it can discover allrelevant/pertinent information while still keeping
the noise level to a minimum.

Average F1 10-precision R-precision
Bag of words 28.9 31.1 29.4
Manually structured query 55.6 72.5 70.2
Best of the top 5 automatically
structured queries

59.8 83.4 84.7

Table 8.14: Effectiveness of structured queries

Example of Use. Efficiency: The WISE search engine
Table 8.15 shows efficiency figures for indexing and searching services provided by an experimental

search engine – WISE (Web Intelligent Search Engine) [233],built to provide a plataform for experiments
with adaptive ranking functions.

WISE
Indexing 0.40 Gigabytes/hour
Searching 1.2 seconds/query

Table 8.15: Efficiency of indexing and searching services ofa search engine

8.5.2 Extensibility and Reusability

Regarding design and implementation of DL services, there are two main classes of quality properties: 1)
those regarding composability of services; and 2) those regarding qualitative aspects of the models and im-
plementations. The latter include issues such as completeness, consistency, correctness, and soundness. In
this work we will concentrate on composability aspects but we acknowledge the importance and complexity
of the latter issues.

Composability can be defined in terms of reusability and extensibility, both properties being formally
defined in terms of DL relationships in Chapter 3. In short, a service Y reuses a service X if the behavior
of Y incorporates the behavior of X. A service Y extends a service X if it subsumes the behavior of X and
potentially includes conditional subflows of events. A composed service either extends or reuses another
service. A composable service has to satisfy a number of requirements including exporting clear interfaces,
providing mechanisms/protocols for connections and passing of parameters, offering gateway or mediator
services to convert between disparate document formats andprotocols [61], and satisfying circumstantial

122



conditions such as satisfaction of any pre-condition basedon the service’s current state and input values to
any called service. All of these make it very hard to quantifythe composability of a service. However, even
if an indicator of composability can be determined, a service is still only potentially reusable and extensible.
One more pragmatic indicator of the actual composability isto check from a set of services and service
managers that run or implement those services, which managers are actually inherited from or included by
others. Therefore given a set of servicesServ and a set of service managersSM that run those services,
two quality indicators of extensibility and reusability can be defined.

• Macro-Extensibility(Serv) =
P

sei∈Serv extended(sei)

|Serv| , whereServ is the set of services of the DL and
extended(sei) is an indicator function defined as :

– 1, if ∃sej ∈ Serv : sej extendssi;

– 0, otherwise.

• Micro-Extensibility(Serv) =
P

smx∈SM,sei∈Serv LOC(smx)∗extended(sei)
P

sm∈SM LOC(sm) , where LOC corresponds to the

number of lines of code of all operations of a service managerandsmx runssei.

• Since reuse/inclusion has a different semantics of extension, reusability can accordingly be defined as

Macro-Reusability(Serv) =
P

sei∈Serv reused(sei)

|Serv| , wherereused(sei) is an indicator function defined
as :

– 1, if ∃sej ∈ Serv : sej reusessi;

– 0, otherwise.

• Micro-Reusability(Serv) =
P

smx∈SM,sei∈Serv LOC(smx)∗reused(sei)
P

sm∈SM LOC(sm) , where LOC corresponds to the num-

ber of lines of code of all operations of a service manager andsmx runssei.

Example of use. ETANA-DL services
Table 8.16 shows the lines of code (LOC) needed to implement service managers which run several

services in the ETANA archaeological digital library. Let’s assume a 1:1 cardinality between the set of
services and set of service managers. Reused services (and included service managers) are implemented as
ODL components [199]. These services are searching, annotating, recommending, and (union) cataloging.

The wrapping services, the ones that really reuse and provide the services offered by the DL compo-
nents, are necessary in order to deal with issues such as invoking operations, parsing results, and interfacing
with other components (like the user interface). However, the additional code for those wrappers is only a
very small percentage of the total lines of code required forimplementing the components. In the current
ETANA-DL prototype, only a few important services are componentized and therefore reused (Macro-
Reusability(ETANA DL Services) = 4/16 = 0.25. However, Micro-Reusability = 3630/11910 = 0.304 makes
it clear that we can re-use a very significant percentage of DLcode by implementing common DL services
as components. Moreover, as more service managers get componentized, more code and managers are
potentially inherited from/included by more DLs.

8.5.3 Reliability

Regarding operation, the most important quality criterionis reliability. Service reliability can be defined as
the probability that the service will not fail during a givenperiod of time [100]. We define the reliability of
a servicesex as:

Reliability(sex) = 1 −
no. of failures
no. of accesses

(8.16)

123



Service Component
Based

LOC for im-
plementing ser-
vice

LOC reused
from compo-
nent

Total
LOC

Searching . Back-end Yes - 1650 1650
Search Wrapping No 100 - 100
Recommending Yes - 700 700
Recommend Wrapping No 200 - 200
Annotating . Back-end Yes 50 600 600
Annotate Wrapping No 50 - 50
Union Catalog Yes - 680 680
User Interface Service No 1800 - 1600
Browsing No 1390 - 1390
Comparing (objects) No 650 - 650
Marking Items No 550 - 550
Items of Interest No 480 - 480
Recent Searches/Discussions No 230 - 230
Collections Description No 250 - 250
User Management No 600 - 600
Framework Code No 2000 - 2000

Total 8280 3630 11910

Table 8.16: Analysis of prototype using the metric of Lines of Code

A failure is characterized as an event that:

1. was supposed to happen in a scenario but did not; or

2. did happen but did not execute some of its operations; or

3. did happen, where the operations were executed, but the results were not the expected ones.

Example of use. CITIDEL services
Table 8.17 shows reliability figures for the most popular services of CITIDEL, according to a log analysis

done on April 1, 2004. The low reliability for thestructured searchingservice can be explained by the fact
that it was an experimental one, which ran only for a short period of time. However, entry points and links
to this service were not removed after the experiments, and users kept using it without getting answers. This
also shows how flaws in design can be found with such quality-oriented analysis.

CITIDEL service No. of failures/No. of accesses Reliability
searching 73/14370 0.994
browsing 4130/153369 0.973
requesting (getobject) 1569/318036 0.995
structured searching 214/752 0.66
contributing 0/980 1

Table 8.17: Reliability of CITIDEL services

124



8.6 Quality and the Information Life Cycle

Given the fact that information in digital libraries is carried by digital objects and their respective metadata
specifications, the proposed dimensions of quality for these two concepts can be connected to the life cycle
of information in digital libraries [28]. Such connectionscan be used to determine when and where quality
issues can be measured, assessed, and improved – as well as how possible quality problems can be prevented,
detected, and eliminated.

Figure 8.7: Information Life Cycle (adapted from [28]) withrespective dimensions of quality added for each
major phase and related activities.

The connections are shown in Figure 8.7. The cycle (see innerportion) has four major phases: inform-
ation creation, distribution, discovery, and utilization. The outer arrows show in which stage information is
active, semi-active, or inactive with regard to the phases.Each major phase (see next inner portion) is con-
nected to a number of activities or services. Finally (see outer ring), each dimension of quality is associated
with the corresponding set of activities/services.

Similarity to other digital objects or versions can be assessed at time of creation and modification.
Preservability and timeliness (in relation to modifications) also are related to this phase. The next sub-
phase in the cycle deals with metadata creation and information organization and description; therefore
all quality dimensions associated with metadata specifications are located here. Special metadata quality
processes such as enforcing filling out of mandatory fields and use of specific formats (e.g., for dates) as well
schema validations, should be applied to related activities to guarantee quality (e.g., accuracy, completeness,
conformance).

125



In the next phase of archiving and distribution, the aspectsof accessibility and preservability (e.g.,
means of storage, format, position in an organizational scheme, etc.) should be taken into consideration.
In the discovery (e.g., searching) phase, relevance of information as returned by the several information
satisfaction services can be measured. Finally most of the dimensions associated with the perceived value
of the information (pertinence, significance) can be assessed during the utilization phase.

8.7 Evaluation: Focus Group

In order to assess the potential practical utility of the proposed quality model in the library and information
science (LIS) world, we conducted a focus group with three librarians with experience in practical library
work and digital libraries.

This focus group meeting included a presentation of approximately 60 minutes duration about 5S and
the proposed quality indicators (with examples) by the researchers /moderators followed by a 30-minute
discussion. Questions, comments, and discussions were allowed during the presentation. In particular, the
discussions were focused around these questions:

• Are you able to understand the 5S model?

• How does it relate to (your) library world?

• How do the proposed indicators relate to your practices in the library?

• Would you be willing to apply these measures to your (digital) libraries?

8.7.1 Presentation – Discussions

Discussions during the presentation centered around 5S itself and the utility of the quality model. The
discussion started with the raising of the basic question of“What’s a DL?” by one of the participants. The
moderator emphasized that to precisely define DLs was one of the main goals of the work.

When first confronted with 5S, some of the participants felt that the framework made sense but the
concepts of scenarios and spaces were the least intuitive. Regarding streams, it was felt that intuitively
they seem active and dynamic but the ones used in this work were more static, which was a bit counter-
intuitive. One of the participants also said that she had a hard time seeing how the 5S terminology maps
to the concepts normally used in the library world. A mappingof conventional LIS terms into the 5S
framework was suggested. For example, another participantraised the question of “what a database means
in this framework?”. After learning that for that participant a database means a storage of documents, we
concluded that it corresponded to their notions of collections and repositories.

One of the most discussed aspects was the “minimalist” approach we took in this work. It was almost
consensus that this was the right way to go. One of the participants suggested to add “reference service” –
essential in the library world – to the minimal DL. This raised concerns that we were dealing with DLs as
something outside of the library: “shouldn’t the DL be part of the library?” asked one of the participants. It
was explained why in a field with so many constructs we could bemore elegant and precise to clarify terms
with our approach. In the end it was the consensus that the framework was OK, if the focus is on DLs, not
(conventional) libraries. It was agreed that it would be challenging to do a metamodel for (conventional)
libraries. Another participant also raised concerns aboutthe higher level constructs being understandable
by the general public and librarians. Finally some of the relationships among the services (e.g., between
indexing and searching) and additional (traditional) DL services were discussed. The moderator did not
present the taxonomy of DLs services to the participants in the slides. When it was shown that portions of
the dissertation dealt with such issues, they felt happy that this was being covered.

126



In the second phase of the presentation, discussion concentrated around the quality model. One of the
first questions raised was the difference between pertinence and relevance. The explanation was accepted by
the participants. Another question which drove part of the discussion was “what do you mean by ‘good’?”
and “by good you mean only from the user perspective’?’ This shifted the presentation to the connections
between the proposed quality indicators and the several phases of the information cycle.

The discussion now shifted to each proposed quality indicator. Participants seemed to agree with most
of the dimensions and definitions. First concerns were raised regarding the “timeliness” indicator for digital
objects. One participant argued that in some instances it isimpossible to find the age of every object. It was
proposed to have a category for “ageless” objects – those never reviewed, reviewed in 5 years, etc. The issue
of the age of digital objects which are surrogates of real world artifacts also was discussed. In the context of
collection-related indicators, a participant suggested that some of these quality measures could be used for
collection management mainly as selection criteria to “getrid of things” in her own words. It was consensus
that practical aspects of dealing with storage space and limited resources are rarely discussed in the field.

The strongest reactions were generated by the issues of catalog and collection completeness. It was
thought that in some cases, like for example, catalogs basedon Dublin Core (15 attributes) this indicator
made sense, but in the case of MARC (hundreds of attributes) it would not. It was felt that the context
in which those measures would be more applicable should be more elaborated and that these indicators in
some cases had more theoretical value than practical application. In the particular case study presented
(i.e., OCLC NDLTD Union Catalog), it was conjectured if the low values for completeness of one catalog –
MIT – were due to the fact that objects in the respective collection were scanned, not born digital. Finally
since we had many indicators for each concept, one argued if we really did need several indicators to get
something meaningful.

8.7.2 Post-Presentation Discussion

The post-presentation discussion started with one of the moderators encouraging the participants to think out
aloud about how they felt about the whole thing. One of the participants started by expressing his view that
the two pieces of the presentation were a bit disconnected, i.e., he felt that the quality model was not very
much associated with 5S. He suggested that if the discussionwas viewed like a novel, he would think that the
“5S” character had disappeared when quality was considered. As a direct consequence of this criticism, we
added Table 8.2. The same participant expressed his view that we were proposing two kinds of indicators: 1)
some measures against a perfect thing that can not always be known or defined; and others which are highly
specific, arguably useful. In the real world, something in between would be the ideal. But the criticism
was not restricted to our study, but also applies to most similar studies and other types of quality measures
he knows and applies in the library in his work. It was suggested that expressing the contexts where these
indicators would be more or less useful would help in their adoption.

Another important question was raised by another participant. In her own words: “What do I do with
these measures?”. It was agreed that the goal is to promote improvements and make things better. It also
was suggested that these could be used somehow in training ofdigital librarians and DL administrators.

One of the moderators shifted the discussion to the broader questions of “Which ideas apply to LIS?
Which to DL? Which to both?” The first reaction was that DL is only a part of the library; some things can
not be digitized. Another participant said that it helped tohear about our minimalist focus – it would help
to be more acceptable to LIS. The same participant expressedthe personal opinion that 5S would not be
much use to him but it might be very helpful to IT people involved with (digital) library issues; impact on
LIS was uncertain. Another suggested a study to correlate user satisfaction with the quality indicators. For
the explanation of the indicators themselves it was suggested that the application of all of them in a running
example would be really helpful. Regarding the proposed quality toolkit, one participant felt more work on

127



services, including infra-structure services and preservation, was necessary20. We needed to go beyond the
minimal DL for this work to be practical and useful.

In the end, everybody felt the work was very interesting and useful, with potential to help the field of
digital libraries. In the words of one of the participants who was a little bit familiar with the 5S framework:
“you have come a long way with 5S and that is extremely impressive, but more needs to be done before this
thing gets widely accepted and practically used”.

8.8 Related Work

The Informetrics and Bibliometrics subfields of Library Science utilize quantitative analysis and statistics
to describe patterns of publication within a given field or body of literature. More specificallyevaluative
link/citation analysisis a subfield of Bibliometrics which uses link/citation accounts as indicators or mea-
surements of the level of quality, importance, influence, orperformance of individual documents, people,
journals, groups, domains, or nations [30]. In computer science, much of the related work has considered the
issue of data quality within the database community (e.g., [166, 219, 142, 159]). A comprehensive survey
of data quality research [221] has determined that most of the work in data quality has been done in: 1)
analysis and design of the data quality aspects of data products; 2) design of data manufacturing systems
that incorporate data quality aspects; and 3) definition of data quality dimensions and the measurement of
their values. The work proposed here touches several of the aforementioned aspects but is for the digital
libraries field, for which this a type of study, mainly one that is based on a formal theoretical foundation,
is necessary but has been missing. Indeed, the data/information quality field has mostly defined quality
measures/indicators such as completeness in general, nonquantifed terms, such as “the extent to which data
is not missing and is of sufficient breadth and depth for the task at hand” [159]. Dhyani et al. [56] present
an extensive survey of Web metrics. While many of the suggested Web metrics can be used or adapted to
the DL context (and have been), we have seen that DLs differ from the Web in many ways and therefore a
specific study of DL quality dimensions and metrics is necessary.

DL quality and evaluation is a very underrepresented research area in the digital library literature. Sara-
sevic [183] was one of the first to consider the problem. He argues that any evaluation has to consider a
number of issues such as the context of evaluation, the criteria, the measures/indicators, and the method-
ology. However, in his analysis, it is concluded that there are no clear agreements regarding the elements
of criteria, measures/indicators, and methodologies for DL evaluation. In an attempt to fill some gaps in
this area, Fuhr et al. [75] propose a description scheme for DLs based on four dimensions: data/collection,
system/technology, users, and usage. We see the work proposed in this dissertation regarding DL quality
issues and evaluation as a next, complementary step in this area, one that is based on a sound, formal theory
for DLs.

Finally, works in a recent workshop on “Evaluation of Digital Libraries” have touched some of the issues
discussed here. Quoting one of the papers in the proceedingsof that workshop [5]: “thus it could be worth
discussing whether the 5S is an appropriate model for facingthis kind of (evaluation) issues and whether it
could further a better understanding in this research field”. That is exactly what we have tried to do in this
chapter.

8.9 Discussion

It is almost impossible to argue for the completeness of the set of quality indicators here presented, defined,
and formalized. While the same argument of being literature-motivated helps, it does not close the matter.

20Again, the taxonomy of DL services was not presented to this group.

128



For example, it is very easy to see that in this work we took a very system-orientedview of the quality
problem, and, as a self-criticism, we partially neglected its usagedimension (as represented by the ‘uses’,
‘participatesin’, and ‘recipient’ relationships of the ontology) where the log analysis could be further benef-
ical. Measures/indicators such as popularity of scenariosand digital objects, correctness of scenario models,
usability of services, educational potential of resources[203], etc. could be defined under this dimension.
However, as is exemplified by the complexities of Tables 3.1 thorugh 3.4, there are many ways that users
can interact with services and with the static components ofthe DL through those services. We leave this
for future work.

129



Chapter 9

Conclusions and Future Work

9.1 Conclusions

Motivated by the almost forty-year-old unanswered challenge from Licklider to construct a unified Computer
Science (CS)/ Library and Information Science (LIS) theory, we have, in this dissertation, developed and
presented the first comprehensive formal framework for digital libraries – the 5S framework of Streams,
Structures, Spaces, Scenarios, and Societies. We show thatformal definitions allow the 5S framework to be
precisely described and make it possible to clearly and formally define a minimal digital library. Ontological
relationships complement the initial conceptualization to compose our theory/framework for DLs. Using
that framework we demonstrate its utility: to discuss the terminology found in the digital library literature,
to describe a representative digital library and the Open Archives Initiative, to formally define a set of DL
constructs and settings in the context of the NDLTD Union Archive, to formally characterize the most typical
DL services, and, from that characterization, arrange a taxonomy of services which helps to reason about
issues of composability in DLs.

Moreover, we demonstrated how to move from theory to practice by applying the framework to the prob-
lems of modeling, generating, and evaluating (by logging and assessing the quality of) digital libraries. Each
of these applications is materialized in a number of forms, including: declarative specification languages,
visualization and generation tools, standardized XML-based log formats, and formal DL quality models.
Throughout this dissertation, we have explained these applications and evaluated them (e.g., through usabil-
ity studies, focus groups, prototyping, etc).

In summary, this dissertation has made theoretical and practical contributions to the digital library field,
which in our opinion are timely and have the potential to leadto significantly positive impact on the future
of the field. Yet, much still needs to, and can be done. This is the subject of the next section.

9.2 Future Work

Each of the facets of research in this dissertation could be further studied and developed through future
work. We will cover some possibilities in the next sections,following the organization of the dissertation
itself.

9.2.1 Theory

As correctly argued in [97], an external review of the 5S TOISpaper, the most effective test for 5S is to
examine its ability to describe other DL systems. Accordingly, we intend to use 5S to formally specify and
compare some of the most used (and heterogeneous) existing DL systems. Initially, we plan to perform such

130



a task for the three following systems: Fedora [198], SODA [146], and Greenstone, for the exact reasons
just mentioned. The reduction of the different characteristics of these systems to our formal framework will
allow formal comparisons, emphasize strengths and weaknesses of the systems, and ultimately help to point
out where more work is necessary in the DL field as a whole.

Another obvious extension regarding theory is to complete aformal definition for all services in Tables
3.1–3.4 in a way similar to that done for searching, browsing, and indexing in Chapter 2. The idea is to
further specify additional events and properties for thoseservices. Such definitions will help us to continue
exploring issues of reusability/extensibility of services at a finer level of granularity.

One other possible extension is to load a knowledge base system with the axioms of the ontology. This
can serve to:

• find any inconsistencies that may exist in the ontology level;

• latter find any inconsistencies within specific DL models (bytranslating 5SL models to rules in the
knowledge base system)

9.2.2 Application/Tools

Language

5SL has already been shown to be useful to describe and generate prototype systems (e.g., for CITIDEL,
NDLTD, BDBComp [55]). However the versions of the language currently used in 5SGraph and 5SGen
have some incompatibilities. These versions need to be madeuniform. Other extensions also can make the
language more useful and powerful. For example, METS (Metadata Encoding and Transmission Standard
(METS)) [129], a new standard proposed by the Library of Congress to encode descriptive, administrative,
and structural metadata regarding objects within a digitallibrary, expressed using the XML Schema lan-
guage, is a perfect choice to be used in the structural model.Also the scenario and societal models could
be made less complex by increasing the level of abstraction and removing unnecessary details. Finally, we
want to make use of some features of the spatial model in the generation process, mainly regarding aspects
of the retrieval model and the user interface.

Regarding meta-models, a line of investigation that is already being pursued is the development of new
meta-models for “application-oriented” digital libraries. The one developed in this dissertation was based
on a minimal set of DL concepts. Currently other meta-modelsfor archaelogical digital libraries [63] are
being developed and others for “educational” digital libraries are being considered [66].

Visualization

For the current version of 5SGraph, there are a number of possible extensions. First, we need to integrate
5SGraph with other modeling tools. Many conceptual components in the 5S framework and language are
based on existing models, which have their own modeling and editing tools. One obvious example is for the
modeling of scenarios as sequence diagrams. 5SGraph shouldbe able to associate conceptual components
of its meta-model with other existing tools. The result of modeling with those tools should be integrated
into 5SGraph and included in the final 5SL file.

Second, in this same direction, 5SGraph needs to be better integrated with 5SGen. As discussed above,
the two current implementations of the tools use different,almost incompatible versions of 5SL. One idea
would to go one step further and have a better integrated “environment” based on a “Wizard-of-Oz” phi-
losophy. This environment, working as a “meta-tool”, wouldcontrol the whole process of modeling and
generating DLs, by invoking the appropriate tools at the appropriate phases in the DL development cycle,
thus guaranteeing integration and correctness of the modeling/generation process. A new improved 5SL
version would help the communication among the tools in the environment.

131



A third category of extensions concerns the visualization functionalities. 5SGraph currently displays
the model tree in a truncated way, which simplifies the layoutproblem and helps users focus on the present
context. However, a complete view of the entire tree also maybe helpful and useful because sometimes the
user would like to see an overview of the entire tree. In addition, a print capability could be added to provide
documentation of a completed model. Further, 5SGraph presently supports two cardinality indicators. More
indicators can be added to enrich the syntax/semantics.

Fourth, we have seen how 5SGraph has helped users to better understand 5S and consequently better
appreciate digital libraries. A natural future application could be to employ the tool as an educational
resource for teaching about digital libraries and to further evaluate learnability.

Fifth, we need more tests, mainly including more librariansas our participants. We had only one librarian
in our study of 5SGraph, who had the slowest speed in completing the experiment, but showed the best
improvement in the understanding of the 5S theory. Better evaluation tests also should be added. These
should only give participants some general descriptions ofthe requirements. Participants then could be
asked to create a model from scratch, without step-by-step instructions. 5SGraph also could be testedin situ
so as to allow digital library designers to benefit from its capabilities.

Sixth, once new meta-models are developed for new areas of application, we should be able to load them
in the tool and test them with target audiences.

Generation

5SGen is based on two principles: integration of multiple (related) scenarios for (semi-) automatic gener-
ation of service implementations, and reuse of software components, more specifically ODL components.
Several extensions of the tool are possible, including:

• Use of Web Services

The ODL components use XOAI, a locally developed extension of the Open Archives Initiative Pro-
tocol for Metadata Harvesting (OAI-PMH), for component inter-communication. While OAI-PMH
is standard, XOAI is a non-official extension, which complicates interoperability with other systems.
One idea is to extend the tool to support Web services, an emergent trend to help promote systematic
and extensible service-to-service interactions using Webstandards such as SOAP, UDDI, and WSDL
as basis for interoperability. Besides enforcing standardization and promoting interoperability, such
extensions offer the possibility of using Web Services developed by others to construct our new pro-
totypes.

• Incorporation of Native XML repositories as the basis for storage

The ODL components used relational databases (e.g., MySQL)as a basis for the storage of data and
indexes for services such as searching and browsing. One hypothesis that could be investigated is
whether XML native repositories offer a more scalable and efficient alternative for building DL com-
ponents, since XML is the ‘de facto’ language of representation in digital libraries. More specifically,
we intend to investigate the use of FEDORA, system that already offers support for Web Services at
the repository level, and XIR-QL [73] which offers a mixed IR/DB functionalities for XML docu-
ments

• Improvement of the Scenario Integration Algorithms

The current 5SGen’s algorithms, despite being innovative,produce a unique object responsible for
managing all the integrated and generated services, which makes the tool suffer from scalability prob-
lems. We intend to investigate a more scalable architecturewith multiple (personal) interaction man-
agers [157]. Such an architecture also will serve as a basis for future investigation of personalization
issues in DLs.

132



Logging

Future work will proceed on several fronts regarding our logging efforts. We will be using our log format
to allow evaluations of several of our projects, collections, and systems, including those in the context of
the Networked Digital Library of Theses and Dissertations (NDLTD, www.ndltd.org) and the Computing
and Information Technology Interactive Digital Educational Library (CITIDEL, www.citidel.org). Since
CITIDEL is a part of the National Science (technology, engineering, and mathematics) education Digital
Library (NSDL, www.nsdl.org), we will advocate use of the log format and tools throughout NSDL. We
will test the log tool with other DL systems. A major concern of any comprehensive log format such as ours
should be user privacy. We should allow users to choose the level of detail they want the system to log about
their activities. Ideally, user information should be logged and maintained at the client side [36] so that users
can use that information as they desire, for example, to provide portions of the data to personalization tools
in order to get personalization services.

The current XML format can be very verbose. We intend to investigate efficient compression techniques
to allow scalable analysis of our DL logs. Also, we will consider the application and possible extensions of
our XML format and tools to support new actions. These extensions should follow the guidance of Tables
3.1–3.4. Finally, our log proposal needs to be discussed andrelated to standards and framework activities
like OAIS [175].

9.2.3 Quality

Several extensions are possible in the quality portion of this dissertation. First and more obvious is the
definition and formalization of new quality measures. The measures that were proposed here are, in a sense,
too system-oriented. We could envision the definition of measures more focused on the actualusageof the
DL. Here the role of the XML Log format would be essential. Second, we could materialize the proposed
quality model in a new Quality tool – 5SQual.

Besides implementing all the proposed measures 5SQual would have few interesting features such as:

• extensive use of the XML Log standard

The tool would take log entries in our XML log format, as well as other kinds of information such as
XML schemas, consistency rules, etc., and produce statistics on the quality of the several DL parts.
A specific sub-module would provide visual aids for DL managers to help mapping between their
internal log format and our proposed standard.

• Visualization

Visualization facilities to produce graphs and charts as the ones shown in Chapter 8, would also be
incorporated into the tool

• Decomposition according to the life cycle

As was discussed in Chapter 8, quality indicators should be measured/assessed at different phases of
the information life cycle. Accordingly 5SQual should be decomposed into different modules to be
used in each of these different phases.

9.2.4 Others

Personalization

We have already experimented using a combination of 5SL specifications and PIPE, a personalization en-
gine, to customize some aspects of DLs. One possible interesting application is to build a theory of per-

133



sonalizable DLs using 5S. For example, DLs could be personalized over all 5 S dimensions. More concrete
examples include:

• a DL should present/transmit only streams supported by the user’s enviroment in terms of network
speed, hardware, etc.;

• the DL content could be re-organized in terms of personal organizational structures representing users’
interests;

• retrieval spaces could be specialized to support personal filters or geographical preferences (e.g., only
retrieve information within my home town) or user interfaces could be customized for specific prefer-
ences;

• non-useful scenarios could be removed to reduce the complexity of interaction or could be added to
allow more personal interactions;

• particular communities of the DL society should be only be able to use services and view content to
which they have the appropriate rights.

We think that formalizing DL personalization according to 5S and developing these notions into tools,
languages, methods, etc. would be a very interesting futurework.

134



Bibliography

[1] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active views for electronic
commerce. InProc. of the 21th Int. Conf. on Very Large Databases, Edinburgh, Scotland, 7–10
September, 1999, pages 138–149, 1999.

[2] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web - From Relations to Semi-structured Data
and XML. Morgan Kaufmann Publishers, San Francisco, 1999.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language for
Semistructured Data.Int. Journal on Digital Libraries, 1(1):5–19, April 1997.

[4] ACM-DL. The ACM Digital Library. http://www.acm.org/dl, 2004.

[5] M. Agosti, G. M. D. Nunzio, and N. Ferro. Evaluation of a digital library system. InProc. of the
DELOS WP7 Workshop on the Evaluation of Digital Libraries, pages 73–76, Padova, Italy, October
4-5, 2004.

[6] C. R. Anderson, A. Y. Levy, and D. S. Weld. Declarative website management with Tiramisu. In
WebDB (Informal Proceedings), pages 19–24, 1999.

[7] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott, S. A. McIlraith,
N. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web service description for the
Semantic Web.Lecture Notes in Computer Science, 2342:348–363, 2002.

[8] W. Arms. Digital Libraries. MIT Press, Cambridge, Massachussetts, 2000.

[9] A. Atkins, E. Fox, R. France, and H. Suleman. Interoperability metadata standard for electronic
theses and dissertations. http://www.ndltd.org/standards/metadata/current.html, 2001.

[10] D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A domain-specific language for form-based
services.IEEE Transactions on Software Engineering, 25(3):334–346, May/June 1999.

[11] E. Babbie.The Practice of Social Research. Wadsworth Publishing Company, Belmont, California,
6th edition, 1990.

[12] R. Baeza-Yates and G. Navarro. XQL and Proximal Nodes. In Proc. of the ACM SIGIR 2000 –
Workshop on XML and Information Retrieval, Athens, Greece, 2000.

[13] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley, May 1999.

[14] D. Bainbridge, J. Thompson, and I. H. Witten. Assembling and enriching digital library collections.
In JCDL’03: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, pages
323–334, Houston, Texas, 2003.

135



[15] D. Bainbrigde, K. J. Don, G. R. Buchanan, I. h. Witten, S.Jones, and M. J. nad Malcolm I. barr.
Dynamic digital library construction and configuration. InProc. 8th European Conf. Research and
Advanced Technology for Digital Libraries, ECDL, number 3232 in LNCS, pages 1–13, Bath, UK,
Sept. 2004. Springer-Verlag.

[16] J. Barclay. Assessing the benefits of learning logs.Education and Training, 38(2):30–38, 1996.

[17] L. Baresi, F. Garzotto, and P. Paolini. Extending UML for modeling web applications. In R. H.
Sprague, Jr., editor,Proc. 34th Annual Hawaii International Conference on System Sciences (HICSS-
34). IEEE Computer Society, 2001.

[18] D. Batory, C. Johnson, B. MacDonald, and H. Heeder. Achieving Extensibility through Product-Lines
and Domain-Specific Languages: A Case Study.ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2):191–214, 2002.

[19] K. D. Bayley. Typologies and Taxonomies – An Introduction to Classification Techniques. SAGE
Publications, Thousand Oaks, California, 1994.

[20] M. Bayraktar, C. Zhang, B. Vadapalli, N. A. Kipp, and E. A. Fox. A web art gallery. InDL’98: Proc.
of the 3rd ACM Int. Conf. on Digital Libraries, pages 277–278, Pittsburgh, PA, 1998.

[21] C. Beeri. A formal approach to object-oriented databases. IEEE DKE, 5:353–382, December 1990.

[22] N. J. Belkin, R. N. Oddy, and H. M. Brooks. ASK for information retrieval.Journal of Documenta-
tion, 33(2):61–71, June 1982.

[23] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5), May
2001.

[24] D. Bolchini and P. Paolini. Goal-oriented requirements specification for digital libraries.Lecture
Notes in Computer Science, 2458:107–117, 2002.

[25] G. Booch. UML in action.Communications of the ACM, 42(10):26–28, 1999.

[26] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide. Addison-
Wesley, Reading, Massachusetts, USA, 1st edition, 1999.

[27] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard. Web Services
Architecture. http://www.w3.org/TR/ws-arch/, October,2004.

[28] C. L. Borgman. Social aspects of digital libraries. InDL’96: Proceedings of the 1st ACM Interna-
tional Conference on Digital Libraries, D-Lib Working Session 2A, pages 170–171, 1996.

[29] C. L. Borgman. What are digital libraries? competing visions.Information Processing and Manage-
ment, 35(3):227–243, January 1999.

[30] C. L. Borgman and J. Furner. Scholarly communication and bibliometrics. InAnnual Review of
Information Science and Technology – Volume 36, 2002, pages 3–72. ASIST, Medford, NJ, USA,
2002.

[31] C. L. Borgman, S. G. Hirsh, and J. Hiller. Rethinking online monitoring methods for information
retrieval systems: From search product to search process.Journal of the American Society of Inform-
ation Science, 47(7):568–583, 1996.

136



[32] P. Borlund and P. Ingwersen. The development of a methodfor the evaluation of interactive inform-
ation retrieval systems.Journal of Documentation, 53(3):225–250, June 1997.

[33] M. D. Boualem Benatallah, Quan Z. Sheng. The self-serv environment for web services composition.
IEEE Internet Computing, 7(1):40–48, 2003.

[34] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andM. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, 1996.

[35] J. M. Carrol.Scenario-Based Design:Envisioning work and technology insystem design. John Wiley,
New York, 1995.

[36] L. N. Cassel and U. Wolz. Client Side Personalization. In Proc. of the Joint DELOS-NSF Workshop
on Personalization and Recommender Systems in Digital Libraries, pages 8–12, Dublin, Ireland, June
18-20, 2001.

[37] D. Castelli, C. Meghini, and P. Pagano. Foundations of amultidimensional query language for digital
libraries. Lecture Notes in Computer Science, 2458:251–265, 2002.

[38] D. Castelli and P. Pagano. A system for building expandable digital libraries. InJCDL’03: Pro-
ceedings of the 3rd ACM/IEEE-CS Joint Conference on DigitalLibraries, pages 335–345, Houston,
Texas, 2003.

[39] R. G. G. Cattell, T. Atwood, J. Dubl, G. Ferran, M. Loomis, and D. Wade.The Object Database
Standard: ODMG. Morgan Kaufmann Publishers, Los Altos, CA, USA, 1994.

[40] S. Ceri, P. Fraternali, and S. Paraboschi. Data-driven, one-to-one web site generation for data-
intensive applications. InProc. of the 25th Int. Conf. on Very Large Data Bases (VLDB ’99), pages
615–626, San Francisco, Sept. 1999.

[41] CITIDEL. Computing and Information Technology Interactive Digital Educational Library.
http://www.citidel.org, 2004.

[42] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath,
1999.

[43] C. L. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for structured text search and a
framework for its implementation.The Computer Journal, 38:43–56, 1995.

[44] E. F. Codd. A relational model for large shared data banks. Communications of the ACM, 13(6):377–
387, 1970.

[45] J. H. Coombs, A. H. Renear, and S. J. DeRose. Markup systems and the future of scholarly text
processing.Communications of the ACM, 30(11):933–947, 1988.

[46] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press/McGraw-
Hill, Cambridge, Massachusetts, 1990.

[47] A. Crabtree, M. B. Twidale, J. O’Brien, and D. M. Nichols. Talking in the library: implications for the
design of digital libraries. InProc. of the 2nd ACM Int. Conf. on Digital Libraries, pages 221–229,
New York, July 1997.

[48] A. Crespo and H. Garcia-Molina. Archival storage for digital libraries. InDL’98: Proceedings of the
3rd ACM International Conference on Digital Libraries, pages 69–78, 1998.

137



[49] F. Crestani, M. Lalmas, C. J. van Rijsbergen, and I. Campbell. “Is this document relevant? ... proba-
bly”: A survey of probabilistic models in information retrieval.ACM Computing Surveys, 30(4):528–
552, Dec. 1998.

[50] F. Curbera and et al. Unraveling the Web services web: Anintroduction to SOAP, WSDL, and UDDI.
IEEE Distributed Systems Online, 3(4), 2002.

[51] R. da S. Torres, A. X. Falcão, and L. da F. Costa. A Graph-based Approach for Multiscale Shape
Analysis.Pattern Recognition, 37(6):1163–1174, June 2004.

[52] L. Davis and M. Dawe. Collaborative design with use casescenarios. InJCDL’01: Proc. of the 1st
Joint Conf. on Digital Libraries, pages 146–147, Roanoke, Virginia, 2001.

[53] M. D. Davis, R. Sigal, and E. J. Weyuker.Computation, Complexity, and Languages (second edition).
Academic Press, 1994.

[54] M. C. F. de Oliveira, T. Turine, and P. C. Masiero. A statechart-based model for hypermedia applica-
tions. ACM Transactions on Information Systems, 19(1):28–52, 2001.

[55] D. P. V. del Pozo, L. V. e Silva, A. H. F. Laender, and M. A. Gonçalves. Modelagem de bibliotecas
digitais usando a abordagem 5s: Um estudo de caso. InAnais do XIX Simpsio Brasileiro de Bancos
de Dados, page (to be published, Brasilia, DF, Brazil, 2004. SBC.

[56] Dhyani, Ng, and Bhowmick. A survey of web metrics.ACM Computing Surveys, 34(4):469–503,
2002.

[57] A. Doan, J. Madhavan, R. Dhamankar, et al. Learning to match ontologies on the Semantic Web.
VLDB Journal: Very Large Data Bases, 12(4):303–319, Nov. 2003.

[58] A. Dong and A. M. Agogino. Design principles for the information architecture of a SMET education
digital library. InProc. of the 1st Joint Conf. on Digital Libraries, pages 314–321, Roanoke, Virginia,
June 24-28, 2001.

[59] D. Ellis. The physical and cognitive paradigms in information retrieval research.Journal of Docu-
mentation, 48:45–64, 1992.

[60] W. Fan, M. D. Gordon, and P. Pathak. Personalization of search engine services for effective retrieval
and knowledge management. InThe Proceedings of the International Conference on Information
Systems 2000, pages 20–34, 2000.

[61] M.-C. Fauvet, M. Dumas, F. Rabhi, and B. Benatallah. Patterns for e-service composition. In J. Noble,
editor,Pattern Languages of Programs 2002. Revised papers from theThird Asia-Pacific Conference
on Pattern Languages of Programs, (KoalaPLoP 2002), volume 13 ofConferences in Research and
Practice in Information Technology, page 37, Melbourne, Australia, 2003. ACS.

[62] M. Fernández, D. Florescu, A. Levy, and D. Suciu. Declarative specification of Web sites with
Strudel.VLDB Journal: Very Large Data Bases, 9(1):38–55, 2000.

[63] J. W. Flanagan, E. A. Fox, and W. Fan. Managing complex information applications: An archaeology
digital library. http://feathers.dlib.vt.edu/, 2003.

[64] D. J. Foskett. A note on the concept of relevance.Information Storage and Retrieval, 8(2):77–78,
1972.

138



[65] D. J. Foskett. Thesaurus. InEncyclopedia of Library and Information Science - Volume 30, pages
416–462. Marcel Dekker, New York, 1980.

[66] E. Fox, J. Carroll, P. fan, L. Cassel, M. Zubair, K. Maly,G. McMillan, N. Ramakrishnan, and H. Hal-
bert. Science of digital libraries(sciDL). Technical report, Virginia Tech, Feb. 01 2003.

[67] E. A. Fox, R. M. Akscyn, R. K. Furuta, and J. J. Leggett. Digital libraries. Communications of the
ACM, 38(4):22–28, 1995.

[68] E. A. Fox, J. L. Eaton, G. McMillan, N. A. Kipp, P. Mather,T. McGonigle, W. Schweiker, and
B. DeVane. Networked digital library of theses and dissertations: An international effort unlocking
university resources.D-Lib Magazine, 3(9), September 1997.

[69] E. A. Fox, M. A. Gonçalves, G. McMillan, J. Eaton, A. Atkins, and N. Kipp. The Networked Digital
Library of Theses and Dissertations: Changes in the University Community. Journal of Computing
in Higher Education, 13(2):3–24, Spring 2002.

[70] E. A. Fox and G. Marchionini. Toward a worldwide digitallibrary. Communications of the ACM,
41(4):22–28, 1998.

[71] P. Fraternali and P. Paolini. Model-driven development of Web applications: the AutoWeb system.
ACM Transactions on Information Systems, 18(4):323–382, 2000.

[72] J. Frew, M. Freeston, N. Freitas, and L. Hill. The Alexandria digital library architecture.Lecture
Notes in Computer Science, 1513:61–73, 1998.

[73] N. Fuhr, , and K. Grobjohann. XIRQL - an XML query language based on information retrieval
concepts.ACM Transactions on Information Systems, 22(4):313 – 356, 2004.

[74] N. Fuhr. XIRQL - An Extension of XQL for Information Retrieval. InProc. of the ACM SIGIR 2000
– Workshop on XML and Information Retrieval, Athens, Greece, 2000.

[75] N. Fuhr, P. Hansen, M. Mabe, A. Micsik, and I. Sølvberg. Digital libraries: A generic classification
and evaluation scheme.Lecture Notes in Computer Science, 2163:187–199, 2001.

[76] N. Fuhr, C.-P. Klas, S. Schaefer, and P. Mutschke. Daffodil: An integrated desktop for support-
ing high-level search activities in federated digital libraries. Lecture Notes in Computer Science,
2458:597–612, 2002.

[77] R. Furuta. Defining and using structure in digital documents. InProc. of the 1st Annual Conf. on the
Theory and Practice of Digital Libraries, College Station, Texas, 1994.

[78] R. Furuta, V. Quint, and J. Andre. Interactively editing structured documents.Electronic Publishing—
Origination, Dissemination, and Design, 1(1):19–44, Apr. 1989.

[79] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison Wesley Professional
Computing Series. Addison Wesley, 1995. http://www.aw.com.

[80] D. A. Garza-Salazar. Phronesis. http://copernico.mty.itesm.mx/ tempo/Proyectos/, 2001.

[81] H. Gladney, E. A. Fox, Z. Ahmed, R. Ashany, N. J. Belkin, and M. Zemankova. Digital library: Gross
Structure and Requirements: Report from a March 1994 Workshop. InProc. 1st Annual Conf. on the
Theory and Practice of Digital Libraries, pages 101–107, Texas, 1994.

139



[82] H. M. Gladney and A. Cantu. Authorization management for digital libraries. Communications of
the ACM, 44(5):63–65, 2001.

[83] R. Godement.Algebra. Kershaw Publ. Co. Ltd, London, 1969.

[84] D. Goh and J. Leggett. Patron-augmented digital libraries. InDL’00: Proc. of the 5th ACM Int. Conf.
on Digital Libraries, pages 153–163, San Antonio, TX, USA, 2000.

[85] C. F. Goldfarb and P. Prescod.The XML Handbook. Prentice-Hall PTR, Upper Saddle River, NJ
07458, USA, 1998.

[86] M. A. Gonçalves and E. A. Fox. 5SL – A language for declarative specification and generation of
digital libraries. InProc. of the 2nd Joint Conf. on Digital Libraries (JCDL’2002), pages 263–272,
Portland, Oregon, July 14-18, 2002.

[87] M. A. Gonçalves, E. A. Fox, A. Krowne, P. Calado, A. H. F.Laender, A. S. da Silva, and B. Ribeiro-
Neto. The Effectiveness of Automatically Structured Queries in Digital Libraries. InProc. of the 4th
Joint Conf. on Digital Libraries (JCDL’2004), pages 98–107, Tucson, Arizona, June 7-11, 2004.

[88] M. A. Gonçalves, E. A. Fox, and L. T. Watson. Towards a digital library theory: A formal digital
library ontology. InProceedings of the ACM SIGIR Workshop on Mathematical/Formal Methods in
Information Retrieval, Sheffield, England, 2004.

[89] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. Kipp. Streams, structures, spaces, scenarios,
societies (5s): A formal model for digital libraries. Technical Report 03-04, Virginia Tech, 2003.

[90] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. Kipp. Streams, structures, spaces, scenarios,
societies (5S): A formal model for digital libraries.ACM Transactions on Information Systems,
22(2):270–312, 2004.

[91] M. A. Gonçalves, E. A. Fox, B. Zhang, and L. T. Watson. Towards a quality model for digital
libraries. InProceedings of the DELOS Workshop on the Evaluation of Digital Libraries, pages
39–40, University of Padua. Italy, 2004.

[92] M. A. Gonçalves, R. K. France, and E. A. Fox. MARIAN: Flexible Interoperability for Federated
Digital Libraries. InProc. of the 5th European Conf. on Research and Advanced Technology for
Digital Libraries, pages 173–186, Darmsdadt, Germany, 2001. Springer.

[93] M. A. Gonçalves, M. Luo, R. Shen, M. F. Ali, and E. A. Fox.An XML log standard and tool for
digital library logging analysis.Lecture Notes in Computer Science, 2458:129–143, 2002.

[94] M. A. Gonçalves, P. Mather, J. Wang, Y. Zhou, M. Luo, R. Richardson, R. Shen, L. Xu, and E. A.
Fox. Java MARIAN: From an OPAC to a modern digital library system. InProc. of SPIRE’02, pages
194–209, Lisbon, Portugal, September 11-13 2002.

[95] M. A. Gonçalves, A. A. Zafer, N. Ramakrishnan, and E. A.Fox. Modeling and Building Personalized
Digital Libraries with PIPE and 5SL. InProc. of the Joint DELOS-NSF Workshop on Personalization
and Recommender Systems in Digital Libraries, pages 67–72, Dublin, Ireland, June 18-20, 2001.

[96] M. A. Gonçcalves, G. Panchanathan, U. Ravindranathan, A. Krowne, F. Fox, F. Jagodzinski, and
L. Cassel. The XML log standard for digital libraries: analysis, evolution, and deployment. In
JCDL’03: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, pages 312–
314, 2003.

140



[97] M. M. Gonzalez. Review for Streams, structures, spaces, scenarios, societies (5s):a formal model for
digital libraries by Gonalves M., Fox E., Watson L., Kipp N.,July, 2004.

[98] H. Greisdorf. Relevance thresholds: a multi-stage predictive model of how users evaluate information.
Information Processing and Management, 39(3):403–423, 2003.

[99] H. Han, C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang, and E.A. Fox. Automatic document metadata
extraction using support vector machines. InJCDL’03: Proceedings of the 3rd ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 37–48, Houston, Texas, 2003.

[100] J. V. Hansen. Audit considerations in distributed processing systems.Communications of the ACM,
26(8):562–569, 1983.

[101] D. Harel. Statecharts: A visual formalism for complexsystems.Science of Computer Programming,
8(3):231–274, June 1987.

[102] L. S. Heath, D. Hix, L. T. Nowell, W. C. Wake, G. A. Averboch, E. Labow, S. A. Guyer, D. J. Brueni,
R. K. France, K. Dalal, and E. A. Fox. ENVISION: A user-centered database of computer science
literature.Communications of the ACM, 38(4):52–53, 1995.

[103] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C.Chen. Formal approach to scenario
analysis.IEEE Software, 11(2):33–41, Mar. 1994.

[104] J. Hunter and S. Choudhury. A semi-automated digital preservation system based on semantic web
services. InProceedings of the Fourth ACM/IEEE-CS Joint Conference on Digital Libraries, pages
269–278, Tucson, Arizona, 2004.

[105] P. Ingwersen, K. van Rijsbergen, and N. Belkin. Context in Information Retrieval.
http://ir.dcs.gla.ac.uk/context/IRinContextWorkshopNotesSIGIR2004.pdf, 2004.

[106] P. G. Ipeirotis and L. Gravano. Distributed search over the hidden Web: Hierarchical database sam-
pling and selection. In P. A. Bernstein et al., editors,VLDP 2002: proceedings of the Twenty-Eighth
International Conference on Very Large Data Bases, Hong Kong SAR, China, 20–23 August 2002,
pages 394–405, Los Altos, CA 94022, USA, 2002. Morgan Kaufmann Publishers.

[107] S. C. Jane Hunter. Implementing Preservation Strategies for Complex Multimedia Objects. InProc.
7th European Conf. Research and Advanced Technology for Digital Libraries, ECDL 2003, pages
473–486, Trodheim, Norway, August 17-22, 2003.

[108] K. S. Jones and P. Willett, editors.Readings in Information Retrieval. Multimedia Information and
Systems. Morgan Kaufmann Publishers, 1997.

[109] B. Kahin and H. R. Varian.Internet Publishing and Beyond: The Economics of Digital Information
and Intellectual Property. MIT Press, Cambridge, Massachusetts, 2000.

[110] L. A. Kalinichenko, D. O. Briukhov, N. A. Skvortsov, and V. N. Zakharov. Infrastructure of the
subject mediating environment aiming at semantic interoperability of heterogeneous digital library
collections. InProc. of the 2nd Russian Scientific Conf. on Digital Libraries: Advanced Methods and
Technologies, 2000.

[111] N. K. Kaske. Research methodologies and transaction log analysis: Issues, questions and a proposed
model.Library Hi Tech, 42(11):79–86, 1993.

141



[112] H. Kautz, B. Selman, and M. Shah. Referral Web: Combining social networks and collaborative
filtering. Communications of the ACM, 40(3):63–65, 1997.

[113] R. Kelapure. Scenario-Based Generation of Digital Library Services. Master’s thesis, Virginia Tech
– Departement of Computer Science, July 21 2003.

[114] R. Kelapure, M. A. Gonçalves, and E. A. Fox. Scenario-based generation of digital library services. In
Proc. 7th European Conf. Research and Advanced Technology for Digital Libraries, ECDL, number
2769 in LNCS, Trondheim, Norway, Aug. 2003. Springer.

[115] D. A. Kemp. Relevance, pertinence, and information system development.Information Storage and
Retrieval, 10(2):37–47, 1974.

[116] M. M. Kessler. Bibliographic coupling between scientific papers. American Documentation,
14(1):10–25, Jan. 1963.

[117] T. Kochtanek and K. K. Hein. Delphi study of digital libraries.Information Processing and Manage-
ment, 35(3):245–254, 1999.

[118] M. Kying. Creating contexts for design. InScenario-Based Design: Envisioning Work and Technol-
ogy in System Development. John Wiley & Sons, New York, NY, USA, 1995.

[119] A. H. F. Laender, B. A. Ribeiro-Neto, and A. S. da Silva.DEByE - data extraction by example.Data
and Knowledge Engineering, 40(2):121–154, 2002.

[120] C. Lagoze. The Warwick framework: A container architecture for diverse sets of metadata.D-Lib
Magazine, 2(7), July 15 1996.

[121] C. Lagoze and H. V. de Sompel. The Open Archives Initiative. In Proc. of the 1st Joint Conf. on
Digital Libraries (JCDL’2001), pages 54–62, Roanoke, Virginia, June 24-28, 2001.

[122] C. Lagoze, D. Fielding, and S. Payette. Making global digital libraries work: Collection services,
connectivity regions, and collection views. In I. Witten, R. Akscyn, and F. M. Shipman, editors,
Proc. of the 3rd ACM Conf. on Digital Libraries (DL-98), pages 134–143, New York, June 23–26 ,
1998. ACM.

[123] A. V. Lamsweerde and L. Willemet. Inferring declarative requirements specifications from opera-
tional scenarios.IEEE Trans. on Soft. Engineering, 24(12):1089–1114, December 1998.

[124] R. Larsen. Knowledge Lost in Information – Report of the NSF Workshop on Research Directions
for Digital Libraries. http://www.sis.pitt.edu/ dlwkshop/report.pdf, 2004.

[125] S. Lawrence, C. L. Giles, and K. D. Bollacker. Digital libraries and autonomous citation indexing.
IEEE Computer, 32(6):67–71, 1999.

[126] M. Lesk. Expanding digital library research: Media, genre, place and subjects. InProc. of the Int.
Symposium on Digital Libraries 1999: ISDL’99, Tsukuba, Ibaraki, Japan, September 28-29, 1999.

[127] D. M. Levy. Heroic measures: reflections on the possibility and purpose of digital preservation. In
DL’98: Proceedings of the 3rd ACM International Conferenceon Digital Libraries, pages 152–161,
Pittsburgh, PA, 1998.

[128] D. M. Levy and C. C. Marshall. Going digital: a look at assumptions underlying digital libraries.
Communications of the ACM, 38(8):77–84, 1995.

142



[129] LibraryOfCongress. METS - Metadata Encoding and Transmission Standard.
http://www.loc.gov/standards/mets/, 2003.

[130] J. C. R. Licklider.Libraries of the Future. MIT Press, Cambridge, Massachusetts, 1965.

[131] R. A. Lorie. Long Term Preservation of Digital Information. In Proc. of the 1st Joint Conf. on Digital
Libraries (JCDL’2001), pages 346–352, Roanoke, Virginia, June 24-28, 2001.

[132] D. Lucarella and A. Zanzi. A visual retrieval environment for hypermedia information systems.ACM
Transactions on Information Systems, 14(1):3–29, Jan. 1996.

[133] C. Lynch. Personalization and recommender systems inthe larger context: New directions and re-
search questions (keynote speech). InProc. of the DELOS Workshop: Personalisation and Recom-
mender Systems in Digital Libraries, pages 84–88, Dublin, Ireland, June 18-20, 2001.

[134] W. E. Mackay and M. Beaudouin-Lafon. DIVA exploratorydata analysis with multimedia streams.
In Proc. of CHI-98, pages 416–423, Los Angeles, CA, USA, Apr. 18-23, 1998.

[135] G. Marchionini. Advanced Interface Designs for the BLS Website: Final Report to the Bureau of
Labor Statistics. http://ils.unc.edu/m̃arch/blsreport98/final report.html, 1998.

[136] T. Miller. Annotation system for a collection of ETDs. http://www.ndltd.org/ndltd-
sc/990416/annsystem.pdf, 1999.

[137] B. J. Mirza, B. J. Keller, and N. Ramakrishnan. Studying recommendation algorithms by graph
analysis.Journal of Intelligent Information Systems, 20(2):131–160, 2003.

[138] S. Mizzaro. A cognitive analisys of information retrieval,. In Information Science: Integration in
Perspective – Proceedings of CoLIS2, pages 233–250, Copenhagen, Denmark, 1996.

[139] S. Mizzaro. How many relevances in information retrieval? Interacting With Computers, 10(3):305–
322, 1998.

[140] B. Mobasher, R. Cooley, and S. Srivastava. Automatic personalization based on Web usage mining.
Communications of the ACM, 43(8):142–151, Aug. 2000.

[141] E. L. Morgan. MyLibrary. http://dewey.library.nd.edu/mylibrary/, 2004.

[142] A. Motro and I. Rakov. Estimating the quality of databases. In T. Andreasen, H. Christiansen, and
H. L. Larsen, editors,Proceedings of the 3rd International Conference on Flexible Query Answering
Systems (FQAS-98), volume 1495 ofLNAI, pages 298–307, Berlin, May 13–15 1998. Springer.

[143] G. Navarro and R. Baeza-Yates. Proximal nodes: A modelto query document databases by content
and structure.ACM Transactions on Information Systems, 15(4):400–435, 1997.

[144] NDLTD. Networked Digital Library of Theses and Dissertations. http://www.ndltd.org, 2004.

[145] M. L. Nelson and K. Maly. Buckets: Smart objects for digital libraries.Communications of the ACM,
44(5):60–61, 2001.

[146] M. L. Nelson, K. Maly, M. Zubair, and S. N. T. Shen. SODA:Smart objects, dumb archives. InProc.
3rd European Conf. Research and Advanced Technology for Digital Libraries, ECDL, number 1696
in LNCS, Paris, France, Sept. 1999. Springer-Verlag.

143



[147] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring structure in semistructured data.SIGMOD
Record, 26(4):39–43, 1997.

[148] F. D. Neves and E. A. Fox. A study of user behavior in an immersive virtual environment for digital
libraries. InProc. of the 5th ACM Conf. on Digital Libraries: ACM DL’00, pages 103–112, San
Antonio, Texas, 2000.

[149] NSDL. National science digital library. http://www.nsdl.org, 2004.

[150] OAI. Open Archives Initiative protocol for metadata harvesting - v.2.0.
http://www.openarchives.org/OAI/openarchivesprotocol.html, 2001.

[151] D. Oard, C. Peters, M. Ruiz, R. Frederking, J. Klavans,and P. Sheridan. Multilingual Information
Discovery and AccesS (MIDAS): A joint ACM DL’99 / ACM SIGIR’99 workshop.D-Lib Magazine,
5(10), Oct. 15 1999.

[152] A. Oberweis and P. Sander. Information system behavior specification by high-level Petri nets.ACM
Transactions on Information Systems, 14(4):380–420, Oct. 1996.

[153] R. Ogawa, H. Harada, and A. Kaneko. Scenario-based hypermedia: A model and a system. InProc.
of the ECHT’90 European Conf. on Hypertext, pages 38–51, 1990.

[154] OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2.
http://cgi.omg.org/docs/formal/02-01-01.pdf, 2002.

[155] S. Payette and T. Staples. The mellon fedora project.Lecture Notes in Computer Science, 2458:406–
421, 2002.

[156] S. Perugini, M. A. Gonçalves, and E. . A. Fox. Recommender systems research: A connection-centric
survey.Journal of Intelligent Information Systems, 23(2):107–143, 2004.

[157] S. Perugini, K. McDevitt, R. Richardson, M. Perez-Quinones, R. Shen, N. Ramakrishnan,
C. Williams, and E. A. Fox. Enhancing Usability in CITIDEL: Multimodal, Multilingual, and In-
teractive Visualization Interfaces. InProc. of the 4th Joint Conf. on Digital Libraries (JCDL’2004),
pages 315–324, Tucson, Arizona, June 7-11, 2004.

[158] T. A. Peters. The history and development of transaction log analysis.Library Hi Tech, 42(11):41–66,
1993.

[159] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality assessment. Communications of the ACM,
45(4):211–218, Apr. 2002.

[160] J. Powell and E. A. Fox. Multilingual federated searching across heterogeneous collections.D-Lib
Magazine, 5(8), 1998.

[161] R. Prince, J. Su, H. Tang, and Y. Zhao. The design of an interactive online help desk in the Alexandria
Digital Library. In Proc. of the Int. Joint Conf. on Work Activities and Collaboration: WACC ’99,
pages 217–226, San Francisco, CA, 1999.

[162] N. Ramakrishnan. PIPE: Web Personalization By Partial Evaluation. IEEE Internet Computing,
4(6):21–31, 2000.

[163] S. R. Ranganathan.A Descriptive Account of Colon Classification. Bangalore: Sarada Ranganathan
Endowment for Library Science, 1965.

144



[164] U. Ravindranathan, R. Shen, M. A. Gonçalves, W. Fan, E. A. Fox, and F. Flanagan. Prototyping digital
libraries handling heterogeneous data sources - the ETANA-DL case study. InProc. 8th European
Conf. Research and Advanced Technology for Digital Libraries, ECDL, number 3232 in LNCS, pages
186–197, Bath, UK, Sept. 2004. Springer-Verlag.

[165] R. Reddy and I. Wladawsky-Berger. Digital Libraries:Universal Access to Human Knowledge - A
Report to the President. President’s Information Technology Advisory Committee (PITAC), Panel on
Digital Libraries. http://www.itrd.gov/pubs/pitac/pitac-dl-9feb01.pdf, 2001.

[166] T. C. Redman.Data Quality – Management and Technology. Bantam Books, New York, 1992.

[167] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1985.

[168] D. Riecken. Introduction: personalized views of personalization. Communications of the ACM,
43(8):26–28, Aug. 2000.

[169] S. E. Robertson. The probability ranking principle inIR. Documentation J., 33:294–304, 1977.

[170] S. E. Robertson and K. S. Jones. Relevance weighting ofsearch terms.Journal of the American
Society for Information Science, 27(3):129–146, May-June 1976.

[171] M. B. Rosson. Integrating development of task and object models. Communications of the ACM,
42(1):49–56, 1999.

[172] M. B. Rosson and J. M. Carroll. Object-oriented designfrom user scenarios. InProc. of ACM CHI
96 Conf. on Human Factors in Computing Systems, pages 342–343, 1996.

[173] J. Rothenberg.Using Emulation to Preserve Digital Documents. Koninklijke Bibliotheek, The
Netherlands, Aug. 21 2000.

[174] M. Rowan, P. Gregor, D. Sloan, and P. Booth. Evaluatingweb resources for disability access. In
Fourth Annual ACM Conference on Assistive Technologies, pages 80–84, Arlington, Virginia, 2000.
ACM.

[175] P. Rdig, U. M. Borghoff, J. Scheffczyk, and L. Schmitz.Preservation of digital publications: an oais
extension and implementation. InProceedings of the 1st ACM Symposium on Document Engineering,
pages 131–139, 2003.

[176] A. B. S. Ceri, P. Fraternali. Web modeling language (WebML): a modeling language for designing
web sites. InProc. of the 9th Int. World Wide Web Conference, Amsterdam, 2000.

[177] G. Salton and M. E. Lesk. The SMART automatic document retrieval system—an illustration.Com-
munications of the ACM, 8(6):391–398, 1965.

[178] G. Salton and M. J. McGill.The SMART and SIRE Experimental Retrieval Systems. McGraw-Hill,
New York, 1983.

[179] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.Communications
of the ACM, 18(11):613–620, 1975.

[180] B. Sandore. Applying the results of transaction log analysis.Library Hi Tech, 42(11):87–97, 1993.

145



[181] S. Sanett. The Cost to Preserve Authentic Electronic Records in Perpetuity: Compar-
ing Costs across Cost Models and Cost Frameworks.RLG DigiNews, 7(4), August 2003.
http://www.rlg.org/preserv/diginews/v7n4 feature2.html.

[182] T. Saracevic. Relevance: a review and a framework for thinking on the notion in information science.
Journal of the American Society for Information Science, 26:321–343, 1975.

[183] T. Saracevic. Digital library evaluation: Toward evolution of concepts.Library Trends, 49(2):350–
369, 2000.

[184] K. Sayood.Introduction to Data Compression. Morgan Kaufmann Publishers, 2929 Campus Drive,
Suite 260, San Mateo, CA 94403, USA, 1996.

[185] P. Schauble and A. F. Smeaton. Summary report of the series of joint NSF-EU working groups on
future directions for digital library research: An international research agenda for digital libraries.
http://www.ercim.org/publication/ws-proceedings, October, 1998.

[186] S. Schönberger, R. K. Keller, and I. Khriss. Algorithmic support for model transformation in
object-oriented software development.Concurrency and Computation: Practice and Experience,
13(5):351–383, Apr. 2001.

[187] D. Schwabe, G. Rossi, and S. D. J. Barbosa. Systematic hypermedia application design with
OOHDM. In Proc. of the 7th ACM Conf. on Hypertext, pages 116–128, 1996.

[188] M. F. Schwartz and D. C. M. Wood. Discovering shared interests using graph analysis.Communica-
tions of the ACM, 36(8):78, 1993.

[189] D. E. Shackelford, J. B. Smith, and F. D. Smith. The architecture and implementation of a distributed
hypermedia storage system. InProc. of the 5th Conf. on Hypertext, pages 1–13, Seattle, Washington,
Nov. 1993.

[190] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–
423, 623–656, July, Oct. 1948.

[191] E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching on
compressed text.ACM Transactions on Information Systems, 18(2):113–139, Apr. 2000.

[192] M. Singhal and N. Shivaratri.Advanced Concepts in Operating Systems: Distributed, Database, and
Multiprocessor Operating Systems. McGraw-Hill, New York, 1994.

[193] H. G. Small. Co-citation in the scientific literature:A new measure of the relationship between
two documents.Journal of the American Society for Information Science, 24(4):265–269, July-Aug.
1973.

[194] A. G. Smith. Web links as analogues of citations.Information Research, 9(4), 2004. Available at
http://InformationR.net/ir/9-4/paper188.html.

[195] H. V. D. Sompel. Roadblocks. http://www.sis.pitt.edu/ dlwkshop/papersompel.html, 2003.

[196] M. Spiliopoulou. Web usage mining for Web site evaluation. Communications of the ACM,
43(8):127–134, Aug. 2000.

[197] J. Spivey.Introducing Z: A Specification Language and its Formal Semantics. Cambridge University
Press, 1988.

146



[198] T. Staples, R. Wayland, and S. Payette. The fedora project - an open-source digital object repository
management system.D-Lib Magazine, 9(4), Apr. 2003.

[199] H. Suleman.Open Digital Libraries. PhD thesis, Virginia Tech Department of Computer Science,
2003.

[200] H. Suleman, A. Atkins, M. A. Gonçalves, R. K. France, E. A. Fox, V. Chachra, M. Crow-
der, and J. Young. Networked digital library of theses and dissertations: Bridging the gaps
for global access - part 1: Mission and progress.D-Lib Magazine, 7(9), 2001. Available at
http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html.

[201] H. Suleman, A. Atkins, M. A. Gonçalves, R. K. France, E. A. Fox, V. Chachra, M. Crow-
der, and J. Young. Networked digital library of theses and dissertations: Bridging the gaps
for global access - part 2: Services and research.D-Lib Magazine, 7(9), 2001. Available at
http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html.

[202] T. Sullivan and R. Matson. Barriers to use: Usability and content accessibility on the web’s most
popular sites. InProceedings of the 2000 International Conference on Intelligent User Interfaces,
Easy Access and The Web, pages 139–144, 2000.

[203] T. Sumner, M. Khoo, M. Recker, and M. Marlino. Understanding educator perceptions of ”quality”
in digital libraries. InJCDL’03: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital
Libraries, pages 269–279, Houston, Texas, 2003.

[204] A. Sutcliffe. A technique combination approach to requirements engineering. InProc. of the 3rd Int.
Symp. on Requirements Engineering, pages 65–77, Annapolis, 1997. IEEE.

[205] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel. Supporting scenario-based require-
ments engineering.IEEE Trans. on Soft. Engineering, 24(12):1072–1088, 1998.

[206] J. Suzuki and Y. Yamamoto. Making UML models interoperable with UXF. Lecture Notes in Com-
puter Science, 1618:78–87, 1999.

[207] J. Tague, A. Salminen, and C. McClellan. Complete formal model for information systems. InProc.
of the 14th annual int. ACM/SIGIR conf. on research and development in information retrieval, pages
14–20, Chicago, IL, USA, October 13-16, 1991.

[208] J. Tanaka and S. Vasilache. Synthesizing statechartsfrom multiple interrelated scenarios, Oct. 01
2001. http://citeseer.ist.psu.edu/561606.html.

[209] R. Tansley, M. Bass, D. Stuve, M. Branschofsky, D. Chudnov, G. McClellan, and M. Smith. DSpace:
An institutional digital repository system. InProc. of the 3rd Joint Conference on Digital Libraries,
pages 87–97, Houston, Texas, 2003.

[210] R. S. Taylor. Question-negotiation and information seeking in libraries.College and Research Li-
braries, 29:178–194, 1968.

[211] H. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model.ACM Trans. on
Inf. Sys., 9(3):187, 1991.

[212] J. D. Ullman. Principles of Database and Knowledge-Base Systems. VolumeI: Classical Database
Systems. Computer Science Press, Rockville, Maryland, 1988.

147



[213] B. C. Vickery. Faceted classification schemes. InRutgers Series for the Intellectual Organization of
Information – Volume 5. Rutgers University Press, New Brunswick, NJ, USA, 1965.

[214] E. M. Voorhees. Evaluation by highly relevant documents. In Proceedings of the 24th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pages
74–82, 2001.

[215] VTLS. VTLS. http://www.vtls.com, 2001.

[216] W3C. Resource Description Framework (RDF) Model and Syntax Specification, 1998.
http://www.w3.org/TR/WD-rdf-syntax/.

[217] W3C. Resource Description Framework (RDF) Schema Specification 1.0.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, 2000.

[218] W3C. XML Schema Part 0: Primer, W3C Working Draft. http://www.w3.org/TR/xmlschema-0,
2000.

[219] Y. Wand and R. Y. Wang. Anchoring data quality dimensions in ontological foundations.Communi-
cations of the ACM, 39(11):86–95, Nov. 1996.

[220] B. Wang. A hybrid system approach for supporting digital libraries.Int. Journal on Digital Libraries,
2(2-3):91–110, 1999.

[221] R. Y. Wang, V. C. Storey, and F. Firth. A framework for analysis of data quality research.IEEE
Transactions on Knowledge and Data Engineering, 7(4):623–640, Aug. 1995.

[222] W. Wang and R. Rada. Structured hypertext with domain semantics.ACM Transactions on Inform-
ation Systems, 16(4):372–412, October 1998.

[223] A. Waugh, R. Wilkinson, B. Hills, and J. Dell’oro. Preserving digital information forever. InDL’00:
Proceedings of the 5th ACM International Conference on Digital Libraries, pages 175–184, San
Antonio, Texas, 2000.

[224] P. Weinstein and G. Alloway. Seed ontologies: Growingdigital libraries as distributed, intelligent
systems. InDL’97: Proceedings of the 2nd ACM International Conferenceon Digital Libraries,
Agents, pages 83–91, 1997.

[225] G. Wiederhold. Digital libraries, value, and productivity. Communications of the ACM, 38(4):85–96,
1995.

[226] R. Wilkison and M. Fuller. Integration of informationretrieval and hypertext via structure. InInform-
ation Retrieval and Hypertext, pages 257–271. Kluwer Academic Publishers, 1996.

[227] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foundations of
Computing series. MIT Press, Cambridge, MA, USA, Feb. 1993.

[228] I. Witten and D. Bainbridge.How to Build a Digital Library. Elsevier, New York, 2002.

[229] I. H. Witten, D. Bainbridge, and S. Boddie. Greenstone: Open-source DL software.Communications
of the ACM, 44(5):47, 2001.

[230] I. H. Witten, R. J. McNab, S. J. Boddie, and D. Bainbridge. Greenstone: A comprehensive open-
source digital library software system. InProc. of the 5th ACM Int. Conf. on Digital Libraries, pages
113–121, San Antonio, TX, June 2-7, 2000.

148



[231] T. W. Yan and H. Garcia-Molina. The SIFT information dissemination system.ACM Transactions
on Database Systems, 24(4):529–565, 1999.

[232] Y. Yang. Expert network: Effective and efficient learning from human decisions in text categorization
and retrieval. InProceedings of the Seventeenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Text Categorisation, pages 13–22, 1994.

[233] X. Yu, R. Yang, and M. Luo. Generalized search platformfor digital library. class project report.

[234] B. Zhang, M. A. Gonçalves, and E. A. Fox. An OAI-Based Filtering Service for CITIDEL from
NDLTD. In Proc. of the 6th International Conference on Asian Digital Libraries, ICADL 2003,
pages 590–601, Kuala Lumpur, Malaysia, December 8-12, 2003.

[235] Q. Zhu, M. A. Gonçalves, and F. Fox. 5SGraph demo: a graphical modeling tool for digital libraries.
In JCDL’03: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, Demon-
strations, page 385, 2003.

[236] Q. Zhu, M. A. Gonçalves, R. Shen, L. Cassell, and E. A. Fox. Visual semantic modeling of digital
libraries. InProc. 7th European Conf. Research and Advanced Technology for Digital Libraries,
ECDL, number 2769 in LNCS, Trondheim, Norway, Aug. 2003. Springer.

[237] N. Ziviani, E. S. de Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for next-generation
text retrieval systems.IEEE Computer, 33(11):37–44, Nov. 2000.

[238] M. Zubair, K. Maly, I. Ameerally, and M. Nelson. Dynamic construction of federated digital libraries.
In Proc. of the 9th Int. World Wide Web Conf., Amsterdam, May 15-19, 2000.

149



APPENDIX

Mathematical Preliminaries

Here, we briefly review the mathematical foundations necessary for the development of the following dis-
cussion. Since the goal is complete precision, all terms used in the other definitions must be carefully and
unambiguously defined. Authors’ definitions of terms even asbasic as “function” often disagree, so (for
completeness) we begin at the most fundamental level, with set notations, relations, functions, sequences,
tuples, strings, graphs, and grammars [46]. Readers familiar with these concepts can skip this section or
simply refer to it as needed when some of the concepts are usedin other definitions.

Formally,setand∈ (“element of”) are taken as undefined terms in the axioms of set theory. We remark
that a set cannot contain itself and the “set of all sets” doesnot exist. Thatx is an element of setS is denoted
x ∈ S. There is an “empty” set (∅). The notationS = {x|P (x)} defines a setS of precisely those objects
x for which the logical propositionP (x) is true. Standard operations between setsA andB include union:
A ∪ B = {x|x ∈ A or x ∈ B}; intersection:A ∩ B = {x|x ∈ A andx ∈ B}; and Cartesian product:
A×B = {(a, b)|a ∈ A andb ∈ B} where(a, b) is called anordered pair. A is called asubsetof B, denoted
by A ⊂ B, if x ∈ A impliesx ∈ B. The set of all subsets of setS (including∅) exists, is called thepower
setof S, and is denoted2S .

Appendix Definition 1 A binary relation R on setsA and B is a subset ofA × B. We sometimes write
(a, b) ∈ R asaRb. An n-ary relation R on setsA1, A2, ..., An is a subset of the Cartesian productA1 ×
A2 × ... × An.

Appendix Definition 2 Given two setsA andB, a function f is a binary relation onA × B such that for
each a∈ A there existsb ∈ B such that(a, b) ∈ f , and if (a, b) ∈ f and(a, c) ∈ f thenb = c. The setA
is called the domain off and the setB is called the codomain off . This is shown asf : A → B. We write
b = f(a) as a common notation for(a, b) ∈ f . The set{f(a)|a ∈ A} is called the range of f.

Appendix Definition 3 A sequenceis a functionf whose domain is the set of natural numbers or some
initial subset{1, 2, ..., n} of the natural numbers and whose codomain is any set.

Appendix Definition 4 A tuple is a finite sequence that is often denoted by listing the rangevalues of the
function as〈f(1), f(2), ..., f(n)〉.

Appendix Definition 5 A string is a finite sequence of characters or symbols drawn from a finite set with
at least two elements, called analphabet. A string is often denoted by concatenating range values without
punctuation. LetΣ be an alphabet.Σ∗ denotes the set of all strings fromΣ, including the empty string (an
empty sequenceǫ). A languageis a subset ofΣ∗.

Appendix Definition 6 A graph G is a pair (V,E), whereV is a nonempty set (whose elements are called
vertices) andE is a set of two-item sets of vertices,{u, v}, u, v ∈ V , callededges. A directed graph(or

150



digraph) G is a pair (V,E), whereV is a nonempty set of vertices (or nodes) andE is a set of edges (or
arcs) where each edge is an ordered pair of distinct vertices(vi, vj), with vi, vj ∈ V andvi 6= vj. The edge
(vi, vj) is said to beincident on verticesvi andvj , in which casevi is adjacent tovj , andvj is adjacent
from vi.

Several additional concepts are associated with graphs. Awalk in graph G is a sequence of not-
necessarily distinct vertices such that for every adjacentpairvi, vi+1, 1 ≤ i < n, in the sequence,(vi, vi+1) ∈
E. We callv1 the origin of the walk andvn the terminus. Thelength of the walk is the number of edges
that it contains. If the edges of the walk are distinct, the walk is a trail . If the vertices are distinct, the walk
is apath. A walk is closedif v1 = vn and the walk has positive length. Acycle is a closed walk where the
origin and non-terminal vertices are distinct. A graph isacyclic if it has no cycles. A graph isconnected
if there is a path from any vertex to any other vertex in the graph. A tree is a connected, acyclic graph. A
directed tree or (DAG) is a connected, directed graph where one vertex - called the root - is adjacent from
no vertices and all other vertices are adjacent from exactlyone vertex. A graphG′ = (V ′, E′) is asubgraph
of G = (V,E), if V ′ ⊆ V andE′ ⊆ E.

Appendix Definition 7 A context-free grammaris a quadruple(V,Σ, R, s0) where V is a finite set of
symbols called non-terminals,Σ is an alphabet of terminal symbols, R is a finite set of rules and s0 is a
distinguished element of V called thestart symbol.

A rule, also called a production, is an element of the setV × (V ∪ Σ)∗. Each production is of the form
A → α whereA is a non-terminal andα is a string of symbols (terminals and/or non-terminals).

Appendix Definition 8 A deterministic finite automatonis a 5-tuple(Q, q0, A,Σ, δ) whereQ is a finite
set of symbols called states,q0 ∈ Q is thestart automaton state,A ⊆ Q is a distinguished set of accepting
states,Σ is an alphabet (defining what set of input strings the automaton operates on), andδ is a function
fromQ × Σ into Q, called the transition function of the automaton.

The finite automaton begins in stateq0 and reads characters of an input string one at a time. If after
reading the string the automaton is in a stateq ∈ A the string isaccepted.

Appendix Definition 9 Let X be a set. Aσ-algebra is a collectionB of subsets ofX that satisfies the
following conditions:

1. every union of a countable collection of sets inB is again inB, i.e., if Ai ∈ B (i = 1, 2, 3, . . . ), then
⋃∞

i=1 Ai ∈ B;

2. if A ∈ B, thenÃ ∈ B, whereÃ is the complement ofA with respect toX.

One consequence of the definition ofσ-algebra is that the intersection of a countable collectionof sets
in B is again inB.

Appendix Definition 10 A measurable spaceis a tuple(X, B) consisting of a setX and aσ-algebraB of
subsets ofX.

A subsetA of X is calledmeasurable(or measurable with respect toB) if A ∈ B. A measureµ
on measurable space(X, B) is a nonnegative real-valued function defined for all sets ofB such that the
following conditions are satisfied:

1. µ(∅) = 0 where∅ is the empty set, and

151



2. µ (
⋃∞

i=1 Ai) = Σ∞
i=1µ(Ai) for any sequenceAi of pairwise disjoint measurable sets.

Appendix Definition 11 A measure space(X, B, µ) is a measurable space(X, B), with measureµ defined
on B.

Appendix Definition 12 A probability spaceis a measure space(X, B, µ), such that measureµ(X) = 1.

Appendix Definition 13 A vector spaceis a setV (whose elements are calledvectors) together with a field
of “scalars” 1 with an addition operation+ : V × V → V and a multiplication operation∗ : S × V → V
such that ifx, y, z are inV andα andβ are inS then:

1. there is a unique vector0 ∈ V such thatx + 0 = x for all x ∈ V (additive identity);

2. for each vectorx ∈ V there exists a vector−x ∈ V such thatx + (−x) = 0 (additive inverse);

3. (x + y) + z = x + (y + z) (associativity of+);

4. x + y = y + x (commutativity of+);

5. 1 ∗ x = x (identity);

6. (α ∗ β) ∗ x = α ∗ (β ∗ x) (associativity of∗);

7. (α + β) ∗ x = α ∗ x + β ∗ x (distributivity of∗ over+, right); and

8. α ∗ (x + y) = α ∗ x + α ∗ y (distributivity of∗ over+, left).

Appendix Definition 14 A topological spaceis a pair (X,T ) consisting of a setX and a familyT ⊂ 2X

of subsets of X such that:

1. ∅ (the empty set)∈ T andX ∈ T ;

2. for any collection of sets inT , {Ai ∈ T |i ∈ I}, ∪i∈IAi is also inT , and if the index setI is finite,
∩i∈IAi is in T .

T is said to be a topology for X, and elements ofT are calledopensets. The complement of an open
set is called aclosedset.

1In this context, the field of real numbers.

152



Vita

Marcos André Gonçalves concluded his doctoral degree in Computer Science at Virginia Polytechnic
Institute and State University in 2004. He earned a Master degree from State University of Campinas
(UNICAMP) in 1997 and a Bachelor degree from the Federal University of Ceará (UFC) in 1995, both
in Computer Science. He has published 5 book chapters, 10 journal/magazine papers, and more than 30
conference/workshop papers. In these papers, he has collaborated with more than 70 different researchers.
He received 5 awards including the Lewis Trustee Award from Laspau for promoting collaborative research
between the U.S. and Latin America (Brazil) and the ACM/IEEE2004 Joint Conference on Digital Li-
brary’s Best Student Paper Award. His research interests include Digital Libraries and Information Retrieval.
His next activities will include collaborating with his advisor on a book (tentative title: “Foundations for
Information Systems: Digital Libraries and the 5S Framework”) based on some of the ideas explored in his
dissertation.

153


