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(ABSTRACT)

We consider the problem of optimal evasion when the pursuer is known to em-

ploy fixed gain proportional navigation . The performance index is a mcasure of

closest approach. The analysis is done for planar motions at constant speed . The

kinematics are first linearized around a nominal eollision course. The dynamics

of the opponents are modeled by first order systems and their accelerations may

be bounded.

Three cases are studied : unconstrained optimal evasion ( where the evader is not

subjected to any path constraint ) against a single pursuer, optimal evasion with

a terminal path angle constraint for the evader and optimal evasion against more

than one pursuer.

The optimal controls are shown to be ’bang - bang' with the number of switches

depending on the pursuer’s navigation gain and on the particular constraints of

each case.
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1. Introduction

1.I Historical Background

Pursuit-evasion problems have been traditionally classificd among the classical

examples of differential game theory. ln the last 15 years a different approach

has been applied to these problems, namely, to fix the pursucr’s strategy and to

form a one -sided optimal control problem for the evader. This approach, being

conceptually simpler than the former, enablcs more realistic models to be applied

for the dynamies of the opponents. In general the fixed pursuer’s strategy has

been taken as eonstant gain proportional navigation whieh,under some formu-

lations, is an optimal strategy for the pursuer.

The problem, so formulated, was solvcd by Julich and Borg [2] who applied a

two-dimensional non-linear model and used a direct numerieal technique for the

solution.
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Slater and Wells [3], followed by Shinar and Steinberg [4], used linear kinematics

to model the two-dimensional problem. Accordingly the associated two point

boundary value problem (TPBVP) has been solved, and in some cases an ana-

lytical solution has been obtained.

Additionally, Shinar, Rosenzstein and Bezner [5], studied a 3-D linearized model

by which a solution to the problem was formulated defining the optimal evasive
‘

maneuver in three dimensional space.

The optimal control analyses have demonstrated, by applying a more realistic

model for the pursuer’s dynamics, (such as pure time delay in [3] or some linite

order system in [2],[4]) that the evader can guarantee a finlte miss-distance even

in conflict with a pursuer of unlimited maneuverability, for which a zero miss

distance was predicted by the differential game theory [6].

lt is important to note that complete information concerning the pursuer’s sys-

tem has been assumcd, sometimes implicitly, to be possesscd by the evader. This

information contains knowledge about the future behavior of the pursuer (or

about its present time derivatives) which is more than generally assumed in the

differential game formulation [l]. Consequently, the above result does not nec-

essarily hold for the zero sum differential game even under more realistic models.
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1.2 Objectives and Motivation

The optimal control approach for the evasion problem [2-5] indicated the impor-

tance of applying a realistic model for the pursuer, and demonstratcd that either

a finite order system or pure time delay leads to an optimal evasive maneuver

that guarantees a non-zero miss-distance.

However, the formulations employed in [2-5] do not treat the evader with the

same degree of accuracy as the pursuer. Evader dynamics are either ignored

(assuming an ideal system ) or approximated by imposing some bounds.

In the present work our first objective is to provide an analysis for the optimal

evasion problem by applying equally realistic models for the pursuer and the

evader, and to carry out a parametric study considering the more important pa-

rameters of these models and their infiuence on the optimal strategies and the

payoffs.

The second problem to be considered in this work is the optimal evasion with a

terminal path angle constraint. The motivation for this problem is derived from

cases where the evading vehicle is a missile, guiding toward fixed target, and the

pursuer is an interceptor trying to protect this target.Thus, the evasive maneuver

is constrained by a terminal path (or hcading) angle eonstraint to guarantee

capture of the fixed target. The interceptor is successful if the evader is de-

stroyed or if it is made to deviate signiiicantly from its course.
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lt will be shown that this problem has some interesting features whose impor-

tance may excced the bounds of the pursuit-evasion conflict.

The motivation for the next -and last- problem is self evidcnt. We shall consider

the problem of optimal evasion against more than one, starting with two,

pursuers. Again the question of guaranteeing a miss-distance shall be investi-

gated allowing the pursuers to select their launeh time so as to minimize the

elosest approach.

The models to be used are all linear, due to the relative complexity of the prob-

lems. Conscquently, the results will be valid in the vicinity of the nominal colli-

sion courses.
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2. Optimal Evasion Against a Single Pursuer

2.1 Basie Assurnptions and Equations

We shall make the following assumptions:

1. The pursuit-evasion eonflict is two-dimensional, in the horizontal plane.

2. The specds of the pursuer (P) and the evader (E) are constant.

3. The trajeetories of P and E can be linearized around their collision triangle.

4. P applies a fixed gain proportional navigation .

5. E has complete information on
P’s

system and on the collision course.

6. Each vehicle’s aceeleration is subject to a first—order lag.

2. Optimal Evasion Against a Single Pursuer 5



7.
E’s

latcral acceleration is boundcd. (P’s lateral accelcration may or may not

be bounded.)

lt is of importance to note that although the lateral accclerations are state vari-

ables, they are by no means small and will not be taken as such in the

linearization process.

Referring to Fig 1, by assumptions 1-3 we get the following equations:

Sintre, + ve) = Si¤(ve„> + ¤¤S(ve„> Ygv

R = - V, = VP cos(y,,o) - VP cos(yeo) = const.,

and

y = ye — yp = Ve ¢¤S<re,,) Ye — V,, ¤¤S<v„„,) vp-

Since the nominal course leads to collision we have the relation :

VP sin(y,eo) — VP sin(ypo) = 0.

P’s commandcd accelcration is by assumption 4)

ye, = N' Veö ; N' = /V<V,,/V,) ¤¤Sv„„„

where the line of sight (LOS) rate is dctermincd by

2. Optimal Evasion Against a Single Pursucr 6



¤=%<%>=—-—y2+———’ —
[ V,(zf — Z) V,<[,· — [>

E is free to choose its required acceleration based on the information available to

it by assumption 5).

The dynamics of P is by assumption 6)

dyP
= YP. “ YP

dz rp

where jipc is
P’s

commanded acceleration. A similar equation applies for E.

Finally, in applying the last assumption we shall distinguish between P whose

actual acceleration shall be bounded by jßpm and E whose commanded acceler-

ation shall be bounded (and by the sixth assumption so is its actual acceleration)

by ye"' . Evidently the miss distances under this assumption are smaller than in

the other possible combinations of the bounded acceleration problem.

2.2 Problem Fonnulation

We shall define the following state vector x :

x = w!(Y„^Z[.„y,Y,,„Y,,)

2. Optimal Evasion Against a Single Pursucr 7



and , the control function u :

Yes
u

1YZ",.

where y% = 7% Vs cos 7%.

The linear state equations relating x to u are :

. X1 . ll
xl = —- ...- + ·Y€m1..

Te T6

X2 = X1

X3 = Vlgxz
-

VIPX4

X4 = X5

The equation for xs is complicated by the limit imposed on the pursuer’s turn

rate.

.
NI Vlg N;

X5 = .X'2 + l—·—i·—T.X'3 '
I —·

' .-
P P f tp V p (tf I)

N' 1 _
————¤<4 · ——><5 fw lxsl < 1„„
TP — Ü) Ip

xs = 0 jbr IJCSI = 7.%
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In the above equations the following notation has been used:

V'P = VP cos ypo

V'€ = VP cos yeo

The optimal control problem is to find u that minimizes the payoff:

2 „
J = " .X°3(l‘f)

subject to the differential equations for x,(t) — x5(t) with specified initial condi-

tions x,(0) — x5(0) and to the control bound Iu(z)l S l. The terminal time y

is fixed and is equal to the nominal collision time.

2.3 Problem Analysis

We shall define the Hamiltonian :

H(7t,x,u) = Xj?t1+ ißt; + ißt; + X4)t4 + ißt;

where at, denotes the right hand side of the associated state equation. The adjoint

variables should satlsfy:

' ÖH
Xi i Yexi-
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The transversality conditions are :

X,—(tf) = 0 for i = 1,2,4,5

And at the discontinuity point td, where the right hand side of xs changes, we get

X,(td + ) = X,(td -) i = 1,2,3,4 .

ASM: + ) = Aslla " ) + C

H(rd+)=H(z,,-).

A derivation of the maximum principle for control problems with discontinuous

system of equations is given in [10](see pp.31l-312). The optimality condition

requires

MU) = · San MU)

Henee, X, is the control switching function . (The linearity of the system rules out

singular arcs.) Thus, the solution is a bang-bang type of control for E’s com-

manded acceleration similarly to the ideal system case [4], where its actual ae-

eeleration was bang-bang.

2. Optimal Evasion Against a Single Pursuer 10



2.4 Computational Results

The solutions for the TPBVP were obtained numerically using a multiple shoot-

ing algorithm (MSA)[ll]. The initial states are all zero and the following nu-

merical values are used:

N' = 3

V'}, = l000fp.s.

V’€
= 500fp.s.

i/em = 0.3rad/ sec

tp = 0.5 sec

tf = 3.75 sec

A two-parameter family of solutions has been obtained by varying (ypm/ygm) and

(t„/tp) i.e. the relative maneuverability and the relative time response of the op-

ponents are used as parameters. The miss-distance results are presented as a

function of these parameters in Fig 2. Note that
E’s

time constant need not be

smaller than
P’s

for evading with a significant miss distance ,and that a non-zero

miss distance is guaranteed even when the pursuer has unlimited

maneuverability.

2. Optimal Evasion Against xx Single Pursucr Il



The problem as formulated has a closed form solution for ta = 0 ,yam = 00 which

has been obtained in [4]. For this case E applies a bang-bang type of control with

two switching points , (for N' = 3 ) , the first of which is at time t = 0 and the

second is at 0 E = 2. For other values of ta and yam the solution still has
P

two switching points , the first is at t=0 and the corresponding 9 parameter is

shown in Fig 3. ln all these results the guidance parameter N' is three.

In [4] E’s system was approximated by a ramp function with 2, as the ramp

time ( the minimum time to change the lateral acceleration from — yam to yam) .

Their results may be compared to ours by approximating :

tr = 3 ta

ln general the comparison is satisfactory for both the miss distance and the

switching point.For "sl0w" evader 1 ) but with relatively high

maneuverability (yam/yam > 0.25 ) the ramp time approximation results are more

optimistic (for E ) and the predicted miss distances are greater than the first order

model ones. For "fast" evader and/or for less maneuverable one the results arc

in a very good agreement.

2. Optimal Evasion Against a Single Pursuer l2



3. Optimal Evasion With a Path Angle Constraint

3.1 Problem Fomiulation

We shall continue to employ assumptions l)-5) of the previous section. However,

assumptions 6) and 7) will be further restricted to:

6’) P is a first order system, E is an ideal system (no time lag)

7’) E’s
lateral acceleration is bounded while

P’s
is unboundcd.

As will be shown, these assumptions simplify the problem by reducing the di-

mension of the model.

Fig 4 presents the relative geometry of the problem. T is a fixed target to which

E is homing. P is an interceptor that dcfends T. Therefore
E’s

mission in general

is to first evade from P and then to dcstroy T. lf, however, EC is larger than

ET (C is the collision point ) then the evasion problem is irrelevant.
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In general the hcading error of
E’s

velocity vector from its line of sight to T will

determine the miss-distance of its homing mission. Thus, our linear model im-

plies a terminal path (or hcading )angle constraint on the optimal evasion

problem.

The state vector for this case is :

X = vv/(v„y„ YP, ip)

and , the control u :

- iv
ll — T·—

Yém

The linear state equations relating x to u are :

X1 = Yem ll

X2 = ' VIP X3

X; = X4

3. Optimal Evasion \Vith a Path Angle Constraint I4



_ N' V', N'
X4 = ''**".Xl 'l' ""

rp V,, (rf — 0 rp z)

.l;.M - LM
rp (z/ — z) Q,

The optimal problem therefore is to find u that minimizes the payoff

J = — x§(g) subject to lu(t)| S l and to I7„(t/)I S 7/. The terminal time

is fixed and is dctermined by the nominal collision time of P and E.

3.2 Problem Analysis

We shall define the I-Iamiltonian :

"l"The

adjoint variables should satisfy the following equations :

‘
ÖH—- i-—1

' Öxl-

The transversality conditions for this problem are [9]:

K/(t/) = 0 for i = 3,4

}~2([j) = ‘2xz(fj) '
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V 2 0 V wirf) = V)

Äiiü) = 0 ÜF ’ Y; < 'YÄQ) < Y;

VS0 U v.(t;>= —v;

The last condition is a l<uhn—Tucker like condition for our inequality end-

constraint which implics that violating the constraint would yield a better per-

formance index.

From the maximum principle we get (similarly to the previous section)

u(t) = ·— sgn 7t1(t) .

Hence, It, is the control switching function. Thus, the solution is a bang-bang

type of control for E’s actual acceleration.

The problem without the path·angle constraint was solved analytically in [4] by

Laplace transforms. For this problem 7„,(q) = 0

Let 9 = (tf — t)/rp. (normalized time to go). The adjoint cquations are :

1 V' )?t + (

Nil/,8
)7t40 P P 2 :;,1/4;,0

‘*·

dl N'

xy? * (7*7)*4
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CÜ-376* · — (TpV,„)7~z (*$)M

M4 —‘* TPÄ3 ' )\„4

The solution for 7t,(0) has the form

M9) = p(9) ¤><r>( ·· 9), ‘

where p is a polynomial of order N'-l(for an integer effective gain N'). Conse-

quently there are N'-l switching points (including the final time). The more

general result (for any N', integer or not) is the inverse Laplace transform of:

.. SN -2^1(5) = —·;6‘-
(5 + l)

This result is valid for our problem only if

|r.(y)| = Yam llt?-<g¤ii(¢) df! < rf-

We now consider the case where the terminal path angle constraint is binding and

note that the solution for the last three adjoint equations is unchanged (since this

set is independent of the the first co-state variable). However, the first eo-state

(the switching function) is now

?~i(9) = M9) + v,

3. Optimal Evasion With a Path Angle Constraint l7



where v will be determined by

— vf(Ysgn(Xl +

v)dtConsequently,the solution contains up to
N’

switching points that are the zeros

of X, . (N'-l from the polynomial term and an additional one from the expo-

nential term.) Since these zeros determine its integrand, the last integral is con-

tinuous with v ( from the continuous behavior of the roots ) but is not, in general,

differentiable. Consequently the implicit function theorem is not applicable and

the solution for v may not be unique.

ln Fig 5 two alternatives for the solution are presented (
N’=3

).Both of them

satisfy the terminal constraint and both are locally optimal, however only one of

these is the global optimum. The other solution can be eliminated by the termi-

nal sign of K, (i.e. the sign of u(t), as required by the transversality conditions).

3. Optimal Evasitm \Vith a Path Angle ctmstiaiiit l8



3.3 Computational Results and Problem Decomposition

The problem was solved using the data given in 2.3 for two terminal times :

tf = 10rp and tf = 6rp. Fig 6 and Fig 7 present the payoff as a function of the

terminal constraint, while Fig 8 and Fig 9 present the switching points of the

optimal control function for those values.

As it is shown in Fig 7 for tf > > tp the original switching point hardly movcs

as the constraint is tightened and the additional switching point is the one that

is responsible for satisfying the path angle constraint. This fact is true in general

for any N'.

To explain this interesting phenomena we shall present two considerations: the

first will be purely mathematical and the second will be of a more physical and

heuristic type.

The adjoint system analysis, as indicated in [4], interprets X] as the influence

function of the control u on the miss distance. From the Bode represcntation of

X, (Fig 10) we conclude that it behaves as a band-pass filter, hence the low fre-

quency content of the control has little effect on the payoff. The path-angle is

an integral of the control and is effected by the control history from to onward(as

a low—pass filter). Thus, in the optimal control the constraint is satisfied by

appropriatetly selecting the early switching point. Altering the constraint causcs

the early switching point to move but has little effect on the late switches.

3. Optimal Evnsion With a Path Angle Constraint ' 19



The physical interpretation is more obvious. The basic principle of the evasion

maneuver, under our assumptions, is to take advantage of the tinite time lag of

P, hence only the last few time-constants are of importance. E however, knows

"the future" ( assumption 5 ) so it can adjust the terminal path angle to the

constraint by adding the initial switehing point without signiticantly affeeting the

payoff.
i

As a result, the constrained solution can be composed from the optimal uneon-

strained one, plus one more switehing point to satisfy the constraint. Unless tf is

of the same order as tp this will be a good approximation for the solution.

Moreover, we can concludc from Fig 10 that the higher is N' the better will be

the approximated solution.

3. Optimal Evasion With a Path Angle Constraint 20



4. Optimal Evasion Against Two (or more)

Pursuers.

4.1 Problem Formulation

We shall consider the problem of optimal evasion against two guided missiles

under the simplifying assumptions of the previous chapter for each of the

pursucrs and for the evader. Thus ,each pursuer constructs its own collision tri-

angle around which we may linearize the kinematics.

For simplicity we will further assumc that the pursucrs are identical i.e. they

have the same time delay tp and the same gain N'.

Let A denotes the nominal time difference between impacts, let P2 be the first of

the two pursucrs and let the state vector be

X = C0[(i/gaylv Ypp lilpz)

4. Optimal Evasion Against Two (or more) Pursuers. 21



and the control u

-
Ye

ll — %"*
YZ"'

The linear state cquations relating x to u arc :

X1 = Yen. Ll

VIZXI
“ V,p'x3

X3 = X4

„ N' V'. + N'
X4 = ""‘*"'*‘X1 *""'""*X2 °'

rp Vp, (rf — r) tp

x I x""l"” 3 " "“
4tp (Q F) tp

XS = (V’exl " VIPZXÖ) A - I)

x6 = (xy)/1(tf — A — z)
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Xv = "T‘—*"‘*“ Z y
“ " X1·

NI Vlg
1(1 A

r - A)

NI

+ —————Tl1(tf— A — t)x5 —

rp I/'p2(zf — z — A)

NI
h(z—A—z)x — I h(z—A——r)xI ° Ip I I

Where h(z) is defined by the Heaviside step function

l z 2 0
l(ZI {0 y Z < 0

Henee, after P2 finishes its mission, only the first 4 equations remain active .

The optimal control problem is to find u that minimizcs J,

J = — y?0,>

subject to

Iul S l
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and to

2 -y2(tf " A) — C

where 0 S c S y}, , and yß, is the optimal performance index in the case of the

single pursuer.Consequently, a simple survey over the parameter c will provide

the solution for the problem of maximizing the smaller of the two miss distances

in our case.

The time difference A will also be a parameter which may be adjusted by the

pursuers to maximize J. (We may think of two A/A missiles launched by the

same aireraft.)

4.2 Problem Analysis

We shall define the Hamiltonian to be

and introduce, as before, the non-dimensional time to go

Z — t9 = ———(ft ) .
p

The adjoint system is now (redelining A to be in tp units)

4. Optimal Evasion Against Two (or more) Pursuers. 24



JM
(

V’)>„
+(

Nil/ße
)7„+rdoP ‘P 7 tp:/Pmo " P — A) 7

dkz N'i' = (""")7~4dQ 2 , 2IPV mi)

am NP
j = ‘ (T,,V'p,)?~z ‘ (Q;‘g)7»4

= TPÄ3 “ )\.4

dlt;
=

N'/1(9 — A)
Ädö A)7 7

JAÖ N'/1(0 — A)——-= ·— V' hÜ·AÄ ·l—i—Ä
de TP PP( 75 rpm —A) 7

dlt
h(9 — A)7t7.

The transversality conditions for our case are :

7t,(0)=0 f0ri¢2
7

7~z(O) = — 2yi(0) ‘

4. Optimal Evasion Against Two (or more) Pursucrs. 25



At the time of the first nominal impact 9 = A we shall have the following con-

ditions:

X[(A+)=X[(A—) f0ri¢5

X6(A+)=X6(A—)+ v.

From the maximum principle, as in the preceding sections, the first adjoint pa-

rameter X, is the switching function. Notice that the adjoint equations 2-4 and

5-7 are independent, thus the solution described in 3.2 applies to both. Moreover

the solution for the first adjoint variable is a superposition of the form:

X1 = 6lp(9) exp( — 9) + c2p(9 — A) exp( — 9 + A) h(9 — A)

To illustrate the solution we let N' =3 and V'„‘ =
V’„2

= V, ,then the solution for

the co-state vector is:

X1 = cltpl//, exp( — 9)(9 — 92/2) + CZYPVP exp(A — 9)((0 — A) — (9 — A)2/2)/z(() — A)

X2 = cl exp( - 9)(l — 9/2)

X3 = — 611/ptp exp( — 9)(9 — 92/2)

exp( — 9)(92/2 — 93/6)

X6 = 62 exp(A — 9)(l — (9 — A)/2)/1(9 — A)

X6 = —
62Vprp exp(A —— 9)((9 — A) — (9 - A)2/2) /z(9 — A)
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7.-, = — cz Vptg exp(A — 9)( exp(A — 9)2/2 + exp(A A)

We may draw now two conclusions regarding the switching points. First, there

will be no more than 2(N’-l) of them, and the second conclusion is that any

switching point of the single pursuer case that takes place after tf — A tp will

be also a switching point for our present case,. Both the conclusions may be

verified by checking the roots of lt, .

We can use now a simple parameter optimization procedure to find out the exact

location of the switching points, from which the miss-distance may be obtained,

as suggested in [4], by the simple relation

yl(tf)where

g(x)This relation is based on the observation made about X] ( the solution for the

single pursuer case ) as the impulse response function relating control to miss-

distance. ln general, as indicated in [4], the first term in the above expression for

the miss distance can be negleeted because of strong damping of exp( —— 90) .

4. Optimal Evasion Against Two (or more) Pursucrs. Z7



4.3 Computational Results

The solution can be eompletcd by employing a parameter optimization technique

to locate the switching points. To illustrate the procedure let N’=3, thus the

payoff to be maximized is

1 — 3 -1
‘

- 0 02 2— (gt ) <=><1>( 1) 1),

where O, is the i-th switching point and J is the the square of the miss distance

of Pl . l—lowever, this should be subjected to a constaint on the other miss dis-

tance

3 .
(§( — l)‘exp(A — 91) (A — 9i)2/z(t), — A))2 — c 2 0.
l

Notice that both the payoff and the constraint are analytically differentiable .

Fig ll presents the results (payoff versus constraint) for various A as obtained

by an optimization program which employs a gradient projection algorithm [l2].

The optimal switching points as obtained by the program are in agreement with

the prediction of the previous section.

As expected, the payoff is changed monotonically with the constraint. ln order

to maximize the closest approach of the pursuers we need to take the results from

the 45 degree line on which the two miss ~ distances are the same.
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Fig l2 presents the optimal miss distance against A. Notice the existcnce of an

optimum A , from the pursuer point of view, for which the maximal miss dis-

tance is minimized. The results for
N’=4

have been obtaincd in the same way

and a different optimal A was found as illustrated in Fig I2. For more than two

pursuers the analysis is virtually the same, and we end up with n (N' -1) as the

maximal number of switching points in the case of n pursuers.
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5. Conclusions

By applying linearized kinematics to the optimal evasion problem solutions for

some relatively complicated cases have been obtained. The optimal commanded

lateral acceleration is, in general, a ’bang- bang' non~singular one governed by a

switching function. The number of switching points and their location is de-

pendent on the dynamics of the pursuer and the evadcr and on the particular

constraints of the problem in hand.

The validity of the results is restricted by the assumption set given in section 2.l.

lt is of interest to examine briefly the sensitivity of the solution to those assump-

tions.

The first assumption rcstricted the discussion to the planar case. ln [5] the 3-D

case was investigated and as it turns out the optimal strategy may be decomposed

into two phases. The first is lift orientation to an optimal plane, and the second

5. Conclusions 30



phase comprises of ’bang-bang' maneuvers of 180 deg bank angle (for a bank to

turn vehicle) governed by a switehing function similar to the 2-D one.

The second assumption fixed the speed of the opponents. Removing this as-

sumption may change the nature of the solution since in general the control

function does not appear linearly in the state equations. However, the solution

may still be valid for the last few time-constants where the velocity change may

be negligible. This is an important problem which requires further investigation,

since in many realistic situations the constant speed assumption is not applicable.

ln removing the third assumption, which allowed us to linearize the state

equations, we get either a ’bang-bang' type of solution [2],[4],[8] or a singular

behavi0r.ln general, the computations are signiticantly more involved.

Assumption (4) imposed the fixed-gain proportional navigation strategy for the

persuer. ln general, different pursuit strategies imply different evasion strategies

and therefore the results for the proportionally guided pursuer problem are not

applicable to other problems.

ln assumption (5) we required that E has complete information on P. Fig I3

presents the sensitivity of the expected payoff to the uncertainty in the terminal

time. A uniform distribution between tf — A and tf + A has been assumed and

the optimal deterministie strategy was applied (assumptions 6 and 7 were re-

plaeed by
6’

and
7’

for simplicity) using the mean value. The results of this sim-
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ple analysis are sufficient to illustrate the importance of this assumption. Full

stochastic treatment should be employed once we decide to remove it.

In the sixth assumption a first order dynamic model has been assumed for P and

E. ln [4] it was found out that changing the order of P’s system has a slight affect

on the switching points but the payoff is significantly increased as the order of

P’s
system increases. No analogous analysis has been done yet for

E’s
system.

It is of interest to release the fixed control bounds imposed by the seventh as-

sumption and to introduce velocity dependent bounds (for non-constant speed

cases). This has been done for the differential game approach [7], and its appli-

cation to the one sided optimal control formulation is recommended for future

investigation of this approach.
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Figure 1 : Problem Geometry

35



_ -6 „F T] L: ’7·!>é„
N=3

40 EP
<„@6

éÖÜ >
ZÜ Lgloo

0.0 /_O
2 OQ/DP

Figure 2 : Miss Distance versus Time Lag Ratio

36



Q --
5L:

-—

E°° 1.7%/ $@,,1
N=3

OO /.0 3Tel •O

Figure 3 : Switching Point versus Time Lag Ratio

37



E

%/
C

K

T P

Figure 4 : Constraincd Problem Geometry

. ss



l
U

/ 2 3 4 5T [sec.]

U

T [sse]

l 2 3

Figure 5 : Control Options for the Constrained Problem

so



20M
{Fri /*/*3

7E*Ö ZP

/8

/6 ‘
O.! 02 0.3 lf}

Figure 6 : Miss Distance versus Terminal Path Angle for tf = 6tp

40



2 / 7} =/OZ?
l

/9 _
I

O3 0_6 Q9·F

Figure 7 : Miss Distance versus Terminal Path Angle for q = 10rp

4l



S
G!

4 ~

2 I I I

7}: ‘ 6 ZP

0./ 0.2 0,3 Ä/1

Figure 8 : Switching Points versus Terminal Path Angle for g = 6t,,

42



‘

8 N'=3
Ü/O Dv7 Q2

2

[ [
-O3 0.6

O9Figure9 : Switching Points versus Terminal Path Angle for 1} = 101:,,

43



GA 1 1v IT-,L
0 BJ 1126 ‘

...2 I

N:4//
I
I
I

I4,0.1/-0 /0 WLRW5]

Figure 10 : Miss Distance lnfluence Function

44



HO3ÖO2

l- \ ae Ä
V \\
i" <1¤:

l Ö l0/ i
N;3

‘
. , . i . .,‘ .1..

./ Q2 M
· L

note: The miss distance is normalized by Vctßygm

Figure ll : Payoff versus Constraint for the Two Pusuer Problem

45



M2
·

O2

0./ ·

0 [ 2 3 A 4

note: The miss distancevis normalized by Vgrjyem

Figure I2 : Payoff versus Nominal Time Between Impacts for the Two

Pursuer Problem.

46



LT"
E
$-•

Lu —I
N=3

IO2 I
0./ J

I 2 eil
3 4 A

note : Thc miss distance is normalizcd by Vzrliggm

Figure 13 : Expected Payoff versus Terminal Time Unccrtainty

47




