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(ABSTRACT) 

Advances in very large scale integration (VLSI) technologies impose challenges for 

voltage regulator modules (VRM) to deliver high-quality power to modern 

microprocessors. As an enabling technology, multiphase converters have become the 

standard practice in VRM industry. The primary objectives of this dissertation are to 

develop advanced topologies and innovative integrated magnetics for high-efficiency, 

high-power-density and fast-transient VRMs. The optimization of multiphase VRMs has 

also been addressed. 

Today’s multiphase VRMs are almost universally based on the buck topology. With 

increased input voltage and decreased output voltage, the multiphase buck converter 

suffers from a very small duty cycle and cannot achieve a desirable efficiency. The 

multiphase tapped-inductor buck converter is one of the simplest topologies with a decent 

duty cycle. However, the leakage inductance of its tapped inductors causes a severe 

voltage spike problem. An improved topology, named the multiphase coupled-buck 

converter, is proposed. This innovative topology enables the use of a larger duty cycle 
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with clamped device voltage and recovered leakage energy. Under the same transient 

responses, the multiphase coupled-buck converter has a significantly better efficiency 

than the multiphase buck converter.  

By integrating all the magnetic components into a single core, in which the windings 

are wound around the center leg and the air gaps are placed on the two outer legs, it is 

possible for multiphase VRMs to further improve efficiency and cut the size and cost. 

Unfortunately, this structure suffers from an undesirable core structure and huge leakage 

inductance. An improved integrated magnetic structure is proposed to overcome these 

limitations. All the windings are wound around the two outer legs and the air gap is 

placed on the center leg. The improved structure also features the flux ripple cancellation 

in the center leg and strongly reverse-coupled inductors. Both core loss and winding loss 

are reduced. The steady-state current ripples can be reduced without compromising the 

transient responses. The overall efficiency of the converter is improved. The input 

inductor can also be integrated in the improved integrated magnetic structure. 

Currently, selecting the appropriate number of channels for multiphase VRMs is still 

an empirical trial-and-error process. This dissertation proposes a methodology for 

determining the right number of channels for the optimal multiphase design. The problem 

formulation and general method for the optimization are proposed. Two examples are 

performed step by step to demonstrate the proposed optimization methodology. Both are 

focused on typical VRM 9.0 designs for the latest Pentium 4® microprocessors and their 

results are compared with the industry practice. 
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