A DESCRIPTIVE/PRESCRIPTIVE
MODEL FOR MENU-BASED INTERACTION

by
James D. Arthur
~ January 1986
TR-86-3

A Descriptive/Prescriptive Model for Menu-Based Interaction

James D. Arthur

Department of Computer Sciences
Virginia Polytechnic Institute
Blacksburg, VA 24061
(703) 961-7538

ABSTRACT

As software systems continue to increase in sophistication and complexity, so do the inter-
face requirements that support user interaction. To select the proper blend of ingredients
that constitutes an adequate user interface, it is essential that the system designer have
a firm understanding of the interaction process, i.e, how the selected dialogue format
interacts with the user and with the underlying task software. One major approach to un-
derstanding the software design process and improving the quality of a product is through
the use of models. The application of models to user/system interaction can provide the
crucial feedback and innovative insights for designing and developing exemplary interactive
systems. .In this paper, we present one such model that describes as well as prescribes the
critical elements for menu-based interaction and their interface dependencies. The model
structure provides the flexibility for characterizing menu-based interactions that vary in
levels of sophistication, and include 1) computational and decision capabilities based on
task oriented actions, 2) user response reversal for error recovery, and 3) user directed
movement. Finally, to illustrate the intrinsic power of our model, we present a “descrip-
tive” narrative of two prominent menu-driven systems, Smalltalk and Zog, followed by
a discussion of the model’s “prescriptive” influence on the design and development of a
third menu-based system, Omni.

A Descriptive /Prescriptive Model for Menu-Based Interaction

Categories and Subject Descriptors: C.0 [Computer System Organizations|: General - sys-
tems specification methodologies; D.2.2 [Software Engineering]: Tools and Techuiques - user
interfaces, modules and interfaces; H.1.2 (Information Systems]: Models and Principles -

user/machine systems, human snformation processing
General Terms: Menu-Driven Systems, Man/Machine Interaction, User Interfaces

Additional Keywords: Frames, Item selection, User response reversal, History, Frame memory

1, Introduction

The software development life cycle model [11] defines a systematic approach for constructing
software systems. One major step in this cycle addresses the system design process, that is, trans-
lating system requirements into an integrated set of task specifications that defines the functional
(or logical} capabilities of a software system and its physical components. Throughout the design
process, system engineers often exploit the power of models to guide them in selecting design

alternatives that achieve desired goals.

Models have not always played such an important role in system development. As a general
rule, they have been used for ez post facto characterizations of physical systems that cannot be
altered, e.g., chemical reactions and planetary motion. In addition to describing system behavior,
models can also prescribe design alternatives. Model elements that characterize physical properties
can serve as a blueprint for constructing systems that possess such properties. Because of the
traditional emphasis on the descriptive power of models, their prescriptive capabilities are often
| overlooked. Today, however, the complexity of software systems demands that we fully exploit the

potential of every available tool to develop a better understanding of software system intricacies,

1

and subsequently, the software design process. In particular, software system models must be
designed and used for describing and predicting system behavior as well as prescribing system

attributes and components.

A very real need exists for such models that address buman/computer interaction. As software
systems continue to increage in sophistication and complexity, so do the interface requirements that
support user interaction. To select the proper blend of ingredients that constitutes an adequate
user interface, it is essential that the system designer have a firm understanding of the interaction
process, i.e., how the selected dialogue format interacts with the user and with the underlying
task software. To promote such an understanding, this paper presents a model that characterizes
one prevalent dialogue format: menu-based interaction. The adaptability of menu-based systems
to many diverse applications and their simplistic approach to user interaction has contributed
significantly to the widespread acceptance of menu-driven systems. The continued integration of
menu-based interaction with increasingly sophisticated software systems necessitates a comprehen-
sive understanding of their capabilities, as well as their limitations. The descriptive/prescriptive
model presented in this paper provides a basis for achieving this understanding. It not only pro-
vides a scheme for classifying and characterizing menu systems but serves as a tool for prescribing

necessary components and interface requirements.

To provide a foundation for presenting our model, we first give an intuitive view of menu-
based interaction including the concepts of frames, frame networks, and frame item selection.
Next, we formalize a descriptive/prescriptive model for menu based interaction and discuss its
characterization capabilities. The last two sections illustrate how the model can be used to

describe and prescribe menu-based systems.
2. Menu-Driven Systems

Intuitively, a system is menu-driven if each user response is predicated on a set of choices
provided by the system. The system presents the user with a sequence of frames (often called

menus), each containing some descriptive text and a list of stems. The text provides a description

2

of the frame, and the items present a set of choices to the user. The user responds by selecting one
of the items, causing the system to perform an action associated with that item selection. Usnally,

this action includes displaying frames. A typical selection process cycle is illustrated in Figure 1.

(0) Display initial frame

(1) Get item selection indicator

(2) H pot valid, go to (1)

(3) Execute selected item action, if any
(4) Display next frame, if any

(8) Execute frame action, if frame changed
{6) Goto (1)

Figure 1
Menu Selection Process Cycle

By successively selecting a sequence of items, the user traverses a network of frames that, at
times, can be very large [17] and quite complex 5, 3]. A simplified frame network is illustrated
in Figure 2. To help the user navigate such networks, many menu systems provide additional
facilities beyond those of simply accepting a response and displaying frames. For example, the user
may need to revisit a frame, review previous responses, or negate an item selection. Such facilities

include commands like:

history : display a history of the items selected,
undo : remove all effects of the last command, and

redo : execute asequence of previously specified responses as if the user had entered them.

These commands and others like them are independent of the system application, and help provide

a standard interface for the user.

Menu-based systems host a variety of operational characteristics, Before presenting the model,
we would like to distinguish between a system’s features and operations that are intrinsic to the

underlying menu system. System features are operational characteristics that work in tandem with

3

ROCT

\

Figure 2
Frame Network Accessible From: Root

operations that affect frame network traversal. For example, multiple windows are integral parts
of Interlisp {18] and Smalltalk [10]. They are system features, however, and not characteristics of
the underlying menu system; essentially the same results can be achieved without them. On the
other hand, operations supported by commands like the undo and goto directly affect the sequence
of frames presented to the user. They are not system features because their removal changes the
nature of the system. The model presented below characterizes operational characteristics inherent

to menu-driven systems, while ignoring details of particular “features”.
3. The Descriptive/Prescriptive Model for Menu-based Interaction

Menu systems can be classified according to their characteristic behavior [4]. For example,
menu-based systems like Browse [6] and the information subsystems found in Emacs [8] are primarily
information dissemination systems; Menunix [14], Quickchart [16], and Promis [20], on the other
hand, are task oriented systems. The discriminating characteristics that provide a basis for

classifying menu-based systems also serve as a foundation for defining our model.

3.1 The Discriminating Elements

The minimal set of elements inherent to any menu system are: a finite set of frames, a set of
user responses, and a mapping from each frame/reésponse pair to another frame, Systems that can
be modelled by these elements alone are said to be information systems because their response to
any valid item selection is simply the displaying of another frame. By extending this minimal set of
elements to include a set of actions associated with frame item selection, we can characterize basic
task oriented systems. Such menu-based systems can support computational as well as decision
operations. The fifth discriminating element, an fncremental history sequence, is needed to model
menu systems that provide user support facilities such as response reversal, item selection histories,
and passive response recognition. Finally, to characterize user directed movement within a frame
network, we associate with each frame a modicum of memory that permits both the naming and
marking of frames. Frame names are a prerequisite for operations like the “goto” and “find”, while

frame marking provides a basis for gathering statistics like frame visit and frequency counts.

In terms of these discriminating elements, basic model components can be intuitively described

as follows:

F: Frames. Let F represent a set of frames, each of which, possesses a small, finite amount
of user-accessible memory. This set of frames and their respective items define a rigid menu
network topology. In general the user traverses the network by selecting frame items. By
using frame-associated memory to attach a unique designator (or name) to each frame, the
user can locate and specify the next frame to be visited. This property embodies the salient
characteristics of a broad class of operations, namely those that support teztual search and

user directed movement.

R: User Responses. Let R represent the set of user responses consisting of frame item selection,
user response reversal, and user directed movement. These three classes of responses are

particularly significant because they alome represent all user responses that can alter the

5

effective state of a menu-based system. There are, of course, other “responses” such as
show_history and find_frame, but we designate them as user commands, and not user responses,

because they do not alter the current system state; they only provide information.

A: Actions. Let A be the finite set of actions that are initiated each time the user issues a response
to the currently displayed frame. These actions can be partitioned into two distinct groups. We
classify the first group to be task actions because they are directly related to the application of
a given menu system. Task actions include operations that make decisions, calculate, evaluate,
and store results for later use. In general, task actions provide an incremental progression
toward the user’s task solution. The second group of actions are associated with sysiem
facilities that support user functions, e.g., maintaining history sequences and providing user-
directed movement. There is a third group of actions that support basic frame management
operations and user commands, but they only display frames and provide information. They
are not directly associated with specific frame/response pairs, and hence, are not considered

elements of A.

IH : The Set of History Sequences. Let JH be a set of all possible history sequences where
each individual sequence, H € I, is composed of zero or more 3-tuples from F x R x A.
Intuitively, a history sequence is an ordered list that describes the interaction between the
system and the user in a stepwise, progressive manner. By mcluding the appropriate elements
in this sequence, we can characterize operations such as viewing previous responses, revisiting

frames, and most importantly, user response reversal.

T: The Transstion Function. The transition function T defines the relationship between elements
of Fx Rx IH and F x A x JH. In effect, given a current frame and history sequence, for any
valid user response, the transition function defines the next frame to be displayed, actions to

be initiated, and the new history sequence.

3.2 The Model
Menu-based interaction can be described and prescribed by the 5-tuple
M = (F’ R, A’ ‘HJ T),

where

F is a finite set of frames, each of which possesses a modicum of memory,

R is a finite set of user responses,

b

is a finite set of actions that support system and task oriented operations,

IH is the set of all sequences over F x R x A, ie., the set of all possible history sequences,

and
T is a transition function that maps F x R x IH into A x F x I as follows:

Let H € JH and define

app: B x (F x R x A} = H such that app(H, «) is the sequence obtained when the 3-tuple

z is appended to H.

Vifl€e Fir €R, a € A, and B, H' € IH then T(f,r,H) = (a, f', H') where H' =
app(H, (f,r,a)).

Within the basic framework of our model, we can now describe a basic set of concepts that
play important roles in menu-based interaction, i.e., user movement, mcremental history sequences,

and individual system states.

Let {to,21,¢2,...,%,} be the set that represents discrete times at which frames are displayed.
We use to to denote the time at which the initial frame is displayed and ¢, to denote the time at
which the current frame is displayed. Let f; denote the frame displayed at time ¢; and r; denote

the user response to frame f;. Some distinguished frame, fo, is always the first frame displayed.

7

User Movement Within a Menu-driven System

When a frame is displayed on the terminal it is said to be visited and is called the current

frame, denoted as f,. Iitially, f. = fo. The user moves from the current frame f, to frame f.4,
Te

by issuing response r, and is denoted by f. };D Je+1, where a, is the associated action. We define a

move by the relation

L={(ferre, He, e, foyt, Hog1) | T(fe,70, Ho) = (G0, forr, Hopr)},
where H, , H,41 € IH and denote history sequences at times t, and fe+1, Fespectively.
The Incremental History Sequence

A response path from time £, to i,, denoted by Py, is defined by the sequence of moves

Tt Pwmdn=-1i

[1
{fm B fm-l-—lx fm+l a,_!;l fm+2,...,fm+n_1 Gm_!__"_l fm.+n}-

A response path describes a sequence of frames visited, the user response to each frame, the

4

resulting action, and the next frame displayed.

The history sequence H is an ordered list of triples

{(fo;rﬂa GO))(f.hrl)al)s . "!(fc—l}rt:“l’ac—l)}

that provides a system accessible representation of the complete response path P§. H is said
to be an fncremental history sequence because the first element, f;, in each triple is defined by

T(fimt,riy, Hiy).
The Current State of the System

As the user traverses a given network topology, new system states are induced. We define a
eystem state to be the minimal set of information sufficient to uniquely determine the next system

response to a given user response. Intuitively, this means that if we are given the current history

8

T T b e e e e e

sequence, the current frame, and user response to that frame, the resulting new state of the system
can be uniquely determined. At any given time ti, the corresponding system state, denoted as Si,
can be defined by §; = (f;, G;, H;), where G; represents the compound effects of all actions, a € 4,

resulting from valid user responses. Intuitively, S; is a snapshot of the system at time ¢;.

The rationale for including f; and H; in 8; is straightforward, they denote the current frame
and set of responses leading to the current frame. In addition to these, the combined effect of all
task actions resulting from frame item selection and the possible negation of item selections must

also be included in S;. G; embodies this information, and is characterized next.

Let G represent the set of global objects subject to modification by any action a € A. We
define G; to be the set @ at time ti; hence, Gy represents the initial state of . Define “A” to be
the binary operator that describes the result of applying & task action to elements of G. Let @ be

a function defined as foiiows

@(G,’, a;) =G, ha; = G€+15

where a, is the task action at time ¢;. In effect,
&(Gi,ai) = GoAagAas A . .. Aag,
and describes the element values of G, after § + 1 moves,

Next, define “7” to be the binary operator that describes the result of negating or nullifying

the application of an action to elements of G. Let ! be a relation defined by
"G aim1) = GiVai_y = Gyy.

Effectively, ®~! defines an inverse operation for . In reality, a program that implements such an
inverse operation may be difficult, or impossible, to construct. There exists, however, computational
methods that effectively negates an item without requiring a program for ! (see Algorithm 2
in the Appendix). Hence, the current state of a system modelled by M can be described by

Se = (fe, Ge, H,), where f, is the current frame, G, is constructed by ¢ successive invocations of ®

9

and 71, and H, is the current history sequence. Intuitively, if we let “®” represent the “A” and

the “¥” operators, then the current system state can be equivalently represented as

Scz(fcyGOOGOGGJ,@...@ac..l,Hc).

3.3 Comments on the Characterization Capabilities of Model! M

In general, memu-based interaction is initiated and controlled by the menu system. The system
presents a frame to the user and the user provides a response to that frame. In characterizing menu-
based systems, one must be able to describe all user/system interactions that induce changes to the
current state of the system. Because system states change as a direct response to user interaction,
characterizing the effects of elements in B on menu-based systems provide a characterization of

menu-based interaction. The following paragraphs discuss those elements.
Item Selections: Active Versus Passive Responses

There are actually two types of item selection: active selections, and passive selections.
Intuitively, an active item selection is a user response that selects a displayed item; a passive |
selection 13 a null response that causes frame Je—1 to be displayed at time ¢,1;. For example , a

simple return or newline is usually considered to be a passive response.

Active item selections move the user “forward” in the defined metwork topology. Given
the current system state, §, = (fe, G, H,), and an active item selection, denoted as re, then
T:(fe,r2 H,) v (@, for1, Hoy1) where fet1 is the new frame displayed at time tet1, G is the
action applied to G. (as defined by @), and H,4; = H, U {(fc,r2,a.)}. The new system state is

Sc+1 = (fc-{—l , Gc-{-l) Hc+l)

The passive response “selects” an item that causes a move to the previously displayed frame.
The implication of a passive response is a nondestructive transition to the last frame visited. That
is, the operations associated with the transition do not alter any actions initiated by previous item

selections. We emphasize nondestructive because a similar move can be initiated via the wndo

10

response, but destructively so. The advantages of the passive response are twofold. First, the
frame network designer can omit explicit paths back to a frame’s immediate predecessor; hence,
a reduction in network complexity. Second, by nondestructively returning to predecessor frames,
the user can add to the information acquired on previous visits. This is particularly attractive for

constructing variable length information like path names.

Given the current system state, S,, and a passive item selection, ¢?, then T : (f.,¢2, H,) s
(af,fc+1,Hc+1) where a2 is a null action, Je+1 = fooi,and Hypy = H. U{(f:,r?,a?)}. Effectively,
the new system state Set1 = (fom1, Gy Heqq). (See Algorithm 1 in the Appendix for further details

on item selection).
User Response Reversal

User response reversal is indispensable to any system that supports an interactive user interface.
It not only provides a method for correcting user errors and encouraging experimentation, but also
reduces the user’s anziety factor [9]. In menu-based systems user response reversal is exemplified by
the undo operation, and has three primary variations: it can function as 1) a meta-operation that
is not subject to negation [2], 2) an operation subject to negation by another distinct operation,
e.g., redo [1], or 3) a parameterized operation that allows the user to select and negate any previous

sequence of responses, including other parameterized undos [18].

In the model presenter above, user response reversal is based on the parameterized undo with
one restriction: the negation sequence specified by the user must be a sequence of immediately
preceding responses. In menu-based systems this restriction is desirable because the negation of
internal subsequences may produce system states that are difficult to anticipate or even understand.
Because the parameterized undo effectively subsumes the meta-undo and the undo/redo mechanisms,
we include its capabilities in model M and assume that the parameterized undo is the method used
for user response reversal. Using M, we now characterize the effects of the parameterized undo on
user response sequences.

11

Let r; € R denote a non-undo user response at time t; and u,(z,y) denote the invocation
of a parameterized undo at time #;, where x and y delimit the response scquence to be negated,

O0<z<yandy=1—1. Suppose that we are given the following sequence of responses:
V= {rﬂa ri,¥72,f3, ?4,“5(4, 4)5 36(3, 5)! rr, Ug(?, 7): t‘!'9(8} 8)}‘

In V, ug(4,4) negates response rq and ug(3,5) negates responses rs through u5{4,4) producing
S¢, where fs,G¢ € S5 are the same as f3,Ga € §3. Response ry is then given but immediately
negated by ug(7,7), hence, fz,3g € S3 are also identical to f3,G3 € S3. When response u9(8, 8)
is given r7 is reinstated. The final state of the system is $;0 = (f10,G10, h10) where Gy9 =

{(GoAagAayAa, Aay); frame fip is effectively produced by response ry to frame fs.

Because V has nested and overlapping undo ranges, a more detailed characterization is diffcult.
The sequence can, however, be translated into an equivalent form that is easier to analyze, produces

the same effective response sequence, but has no nested undo’s, Le.,
V= {}"0, 1,72, %3, rg, E--5‘.(3: 4)5 FG-J E‘?(ﬁr 6), FE}

where responses Fg =g = 7 € V. An analysis of sequence ¥V will yield a final state Sp, where fy

and G are equivalent to fip and G,q in the original sequence V.

By using an alternate, yet equivalent, user response sequence, we can more easily characterize
the parameterized undo within the framework of M. We note that even though the response
sequences are equivalent, their elements differ, and hence, produce different final history sequences.
This does not, however, affect the effective sequence of frames visited, actions initiated, nor the

end result of menu-based interaction.

The GOTO Response

A basic trait of menu-based interaction is that the system controls the dialogue and forces
the user to traverse predefined frame network paths. Menu systems that include frames with user

and system accessible information objects (i.e., frame-associated memory), however, can support

12

functions that allow the wuser to select the next frame. Iu such systems, the user can move to
any frame regardless of the network topology. By using frame-associated memory to attach a
unique designator (or name) to each frame, the user can locate and specify the next frame to be
visited. Two user support functions, characterized by the find and goto operations, implement

these capabilities,

The find takes as its argument a string of characters and systematically searches the frame
network topology for a frame that contains a matching string. H such a frame is found, find returns
the frame’s designated name. The find operation, however, is considered to be a user command
and has no effect on the current state of the system or on the current history sequence. It simply

provides the user with the name of the frame that contains the specified string.

The goto takes as its argument a user supplied frame name, and initiates a direct move to the
given frame. Unlike the find, the goto induces a change in both the current state of the system
and the history sequence. The set of user responses that correspond to a goto can be formally
described as

Rooto={r' | Vf7eF 0<j< I#], 377 = goto(£7)}.

That is, for each frame f9 € F where 7 denotes a frame’s unique des; ator, there exists a valid
q £n)

user response, r?, that corresponds to the command “goto(f7). It is assumned that Ry C R.

The transition function T induces the mapping F X Ryoto x H v+ A x F x H. In effect,

T(fe,rl, H,) = (ac,f;';_l,Hcﬂ) for all possible current frames fe€EFand v € R,
4. Using Model M as a Descriptive and Prescriptive Tool

It is crucial that modelling tools like M exist because they play important roles in categorizing,
characterizing and prescribing many facets of physical systems. The following two subsections

illustrate the intrinsic power of model M a3 a descriptive as well as a prescriptive tool.

13

4.1 Two Descriptive Applications
SMALLTALK

Smalltalk {7, 19} is an environment that supports a style of software development termed
“exploratory”. In Smalltalk, windows reflect the result of frame item selections and represent
global objects that are modified by actions associated with item selections. For clarity, all windows
will be denoted as objects. Smalltalk provides two distinct methods for representing frames and

items, depending on the type of object being manipulated.

The first method of representing frames assumes a standard format where one frame is pre-
sented at a time, the object is viewed as textual data, and frame items describe actions that
manipulate that text. The selection of any item within the frame implies a direct or indirect action
directed at the associated object. Because there are numerous items within the frame, we have
selected only a few representative ones for discussion. The user can select an editor item that
enables direct manipulation of the object, including defining a domain (text marking) for the next
action. If the user has appropriately marked the object, frame items can be selected whose actions
initiate copy, delete, and fnsert operations. If an action is needed for which no item exists, the
user types an appropriate Smalltalk command and then selects the dost item. The corresponding
action interprets the constructed command and applies it to the object. Modelling these operations
require only a global object (i.e., @.), and items whose implied actions are task oriented (i.e.,
elements of A). Smalltalk also provides an undo and cancel operations. The undo selection negates
the effects of the last item selection, and the cancel negates all selections back to the last edit
session. The Smalltalk undo is precisely modelled by the parameterized undo: u(?, 1) {ref. section
3.3). The cancel action can be modelled by u(7,7) where ¢ is time of the first user response that

followed the last edit session, and 7 represents the time at which the last user response was given.

The second method of representing frames is exemplified by “browse windows”. Unlike a

text object, the object associated with a browse window is manipulated by a set of five frames,

14

all of which can be viewed simultaneously {see Figure 5). By selecting elements in the first four
frames, the user defines a “path” to external, user-defined objects. Frame 4 displays the objects
available for viewing and modification. Selection of an item (external object) in frame 4 results in

the creation of a browse object whose contents are the selected external object.

Frame 1 Frame 2 Frame 3 Frame 4
—m —— —f—

Frame 5

Browse Object

Figure §

A Browsze Window

When the user requests a browse window, frame 1 contains a list of categories; the user selects
a category, at which time, frame 2 presents sub categories within the selected category of frame 1.
A similar relationship exists between frames 2 and 3, and frames 3 and 4. Although the method of
presenting frames has changed somewhat, their characterization is straightforward. There exists
a distinguished frame (frame 1), from which, a selected item initiates the display of frame 2, and
so forth. The fifth frame duplicates the single frame discussed in the previous method and is

characterized accordingly.

Z0G

Zog (12, 13, 15] is a rapid response, menu selection system developed at Carnegie-Mellon

University. The user traverses the network of frames by selecting the appropriate frame item. Each

15

time a new frame is visited, the previous frame is placed on a “backup list”, ie., a history list. The
backup list provides a history of previously visited frames, responses to those frames, as well as a

basis for response reversal (undo).

The user can also “mark” a frame before it goes on the backup list; such frames are considered
“anchor points®. The user support function return negates the effects of all selections back to the

last marked frame on the backup list.

¢

Zog also supports the user functions goto and find. Find searches for a specified text string
within frame specific memory and returns the appropriate frame name. The goto permits the uger
to select the next frame to be visited. If these two functions are used in tandem with the return
function, e.g., return followed immediately by find or goto, the set of applicable frames is restricted

to those on the backup list or the frames pointing to the last marked frame on the list.

The backup list, history facility, and simple response reversal are ﬁodelled by H, a history
command, and u(s,1), respectively; the return is precisely modelled by the parameterszed undo.
Frame marking, however, requires frame-associated memory; the supporting operations are actions
@ € A. The goto and find functions assume frame memory and are precisely characterized by the
like named functions described in section 3.3. Their restrictive invocations can be modelled by a

global test variable (in @,) that is set by return and checked by both find and goto,

4.2 A Prescriptive Application

Model elements that characterize physical properties also serve as a blueprint for constructing
systems that possess such properties. The model presented in section 3 was mstrumental in the
design and implementation of Omni [2], a menu-based, interactive environment for tool selection,

specification and composition.
OMNI

In Omni, the primary user interface js based on menu interaction. Model M dictates that

any system supporting menu interaction must include frames of items and be sensitive to user

16

responses. Moreover, M precisely defines the relationship between frames and responses, as well
as items and succeeding frames. That is, each frame is associated with a set of user responses
that correspond to item selection, and items may pomt to additional frames. Ompi follows this

prescribed approach exactly.

If a menu system is to construct information that is not know a prioss, as is the case with
Omni, mode! M dictates the necessity of operations (actions) that perform the constructions. M
further prescribes a direct association between these operations and items selected. That is, each
selected item initiates an associated operation that assists in constructing the desired results. Once

again, Omni incorporates such an approach.

A third (and desirable) element for menu-based systems is user response reversal. In charac-
terizing such a facility, model M introduces the notion of history sequences as well as operations

that support it. Omni bases its undo operation on the approach prescribed by model M.
The History Sequence: A Prescribed Omni Component

In designing the Omnj environment, it was deemed sufficient to implement user response
reversal as a meta-undo operation rather that the more powerful parameterized undo. As suggested
by model M, however, we used an incremental history list as a basis for the undo command.
Elements of the Omni history list are triples of the form (fisriyg:), where gi represents a pre-
" modified copy of the elements of G; that are subject to change by action g;. (Storing g; rather
than e; in the triple was a pragmatic decision.) To negate the effects of a;, g; is used to restare

Giyq1 to its previous configuration.

User response reversal ig only one example of how model M served as an implementation
guideline. There are numerous others, e.g., item and frame marking. Although models are
primarily used as descriptive tools, their potential as prescriptive tools should not be overlooked. ¥
model M had not served a dual purpose, the implementation of Omni would have been considerably
more difficult.

17

5. Conclusion

One major approach to understanding the software process and its improvement is through
the use of models. The application of models to user/system interaction can provide the crucial
feedback and innovative insights for designing and developing interactive systems. In this paper we
have presented one such model that describes as well as prescribes the critical components and their
interface dependencies for menu-bhased interaction. The model structure provides the flexibility for
characterizing menu-based interaction, varying in levels of sophistication, that includes 1) task
oriented actions which support computational and decision capabilities, 2} user response reversal
for error recovery, and 3) user directed movement. Finally, to illustrate the intrinsic power of cur
model, we have presented a brief “descriptive” narrative of two prominent menu-driven systems,
followed a by discussion of the model’s “prescriptive” influence on the development of a third

menu-based system.

18

Appendix

Algorithm 1 describes a frame item selection. When the user selects an item, T maps the
current frame f,, the user response r,, and H, into action a., the next frame to Be displayed f.41,
and a new history sequence H.1 {(1)]. The history element {(fe,re, a:) is appended to the history
sequence H, [(2)]. The action a, is performed and G. is updated [(3)]. A move from frame Je to

fe+1 is initiated, resulting in a new current frame [(4)).

Algorithm 1: Frame Item Selection

Select: /*§, = (fe, G, H,) */

(1) (fot1, e, H.)= Ta(fo,7e, H,)

(2) where H .y = Append(H,,(f., ., a.))
(3) Gop1=¥(G,,a,)

{4) Move (f;, fot1)

[* Set1 = (fog1, Gogr, Hopy) */

Algorithm 2 describes the operations associated with undoing a sequence of previous responses.
The transition function, T, defines the next frame and new history sequence. Statements (3} - (16)
use the new history sequence to construct an effective action list [(3) - {10)] and then rebuild G;
from a global copy of Gy [(11) - (16)]. History elements are retrieved, starting with those associated
with time #,, by the Get command [(5)]. H the associated response at time ¢; was an undo, the
variable j is set to ignore all history elements affected by that undo [(6)]. If an item selection was
given at time ¢;, its associated action is pushed onto an effective action kst [(8)]. When 5 <0, an
action list has been constructed; when its elements are applied to a copy of G [(11) - (15)], G is

produced [(16)].

In presentmg model M, & and ®~! are introduced. The function ® describes the result of
applying an action to elements of the set G, while 1 represents the inverse of ®, i.e., negating
the effects of an action. A closer look at $~! reveals that it simply transforms G, into Go-1,

the representation of G before action @c—y was applied. In describing the parameterized undo in

19

Undo(i,c):

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16}
{17)

Algorithm 2, we have effectively given a method for computing 1,

Algorithm 2: Undo an Item Selection

/* Assume a global copy of (g exists */
/* 8e=(fo,Go, H,) */

(fs's Qe Hc-{-l} = T(fc; u(i, c), Hc)
where Hey1 = Append(H,,(f,, u.{3,¢),a,)) and
J=c¢
While y > 0 do
(firriya;) = Get(H,44,7)
if (r; = u(z,y)) then (j = z - 1)
else
Push (a;) onto Eff_Action_List
j=J3-1
Endwhile
Gtcmp =@y
While Eff_Action_List not empty
@ = Pop (Eff-Action_list)
Gtmp = @(Gﬁmpaa)
Endwhile
Gc-{-l = Géemp

Display (£;)
/* Sr:+1 = (.ffyGB')Hﬂ'f'l) */

. tantamount to issuing a u(c — 1,¢ — 1) response that reconstructs Gi_g.

20

Negating action a,—, is

10.

11.

12.

13.

LIST OF REFERENCES

. Archer, R. Conway, F. Schnider, “User Recovery And Reversal In Interactive Systems,”
Technical Report TR 81-478, Department of Computer Sciences, Cornell University, October,
1981,

J. Arthur and D. Comer, “Omni: An Interactive Programming Buavironment Based on Tool
Composition,” Proceedings of the IEEE Computer Software and Applications Conference,
Chicago, IL, November, 1984, pp. 28-36.

J. Arthur, “Partitioned Menu Networks for Multi-Level, Menu-Based Interaction,” to appear
in The fth Annual Phoeniz Conference on Computers and Communications, Phoenix, AZ,
March 1985,

J. Arthur,“An Interactive Environment for Tool Selection, Specification, and Composition,”
Purdue University Ph.D. Thesis, University Microfilms, Ann Arbor, Michigan, August 1983.

4. Brown, “Controliing the Complexity of Menu Networks,” Communications of the ACM,
Vol. 25, No. 7, July, 1982, pp. 412-418.

M. Fox and A. Palay, “The BROWSE System: An Introduction,” Proceedings of the Annual
Conference of the American Society of Information Sctence, Minneapolis, MN, October, 1979.

A. Goldberg and D. Robson, “A Metaphor for the User Interface Design,” Proceedings of the
12th Hawais International Conference on Systems Sciences, Vol.1, 1979, pp. 148-157.

J. Gosling, “Unix EMACS,” EMACS User’s Manual, Carnegie-Mellon University, December,
1981.

M. Hammer, et al, “Etude: An Integrated Document Processing System,” Proceedings of the
1981 Office Automation Conference, AFIPS, March, 1981.

D. Ingals, “The SMALLTALK-76 Programming System Design And Implementation,” The
Fifth Annual Symposium On The Principles Of Programming Languages, A.C.M., January,
1978.

R. Jensen, and C. Tonis, Software Engineering, Prentice-Hall, Inc.,Englewood Cliffs, N.J.,
1979.

D. McCraken and G. Robertson, “Editing Tools for ZOG, a Highly Interactive Man-machine
Interface,” International Conference on Commaunications, Vol. 1, Boston, MA, 1979, pp.
22.7.1-22.7.5.

A. Newell, D. McCracken, G. Robertson, “ZOG and the USS CARL VINSON,” CMU Com-
puter Science Review, 1980-81, pp. 95-117.

21

14. G. Perlman, “The Design Of An Interface To A Programming System,” University Of Cali-
fornia, San Diego Technical Report 8105, November, 1981.

15. G. Robertson, D. McCracken, and A. Newell, “The ZOG approach to man-machine commu-
nication,” International Journal on Man-Machine Studies, Vol. 14, 1981, pp. 461-488.

16. W. Schenker, “Physician-Generated Clinical Records Using A Menu-Driven, Touch-Panel
Microcomputer,” Proceedings of the fth Annual Symposium on Computer Applications In
Medscal Care, Vol. 1, November, 1980, Washington, D.C., pp. 1405-1411.

17. J. Schultz and L. Davis, “The Technology of PROMIS,” Proceedings Of The IEEE, Vol. 67,
No.9, September, 1979, pp. 1237-1244.

18. W. Teitelman and L. Masinter, “The Interlisp Programming Environment,” IEEE Computer,
April, 1981, pp. 25-33.

19. L. Tesler, “The Smalltalk Environment,” BYTE, August, 1981, pp. 90-147.

20. P. Walton, R. Holland, and L. Wolf, “Medical Guidance and PROMIS,” IEEE Computer,
Vol. 12, No. 11, November, 1979, pp. 19-27.

22

