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Synopsis

The properties of long glass fiber reinforced parts, such as those manufactured by means of

injection molding and compression molding, are highly dependent on the fiber orientation

generated during processing. A sliding plate rheometer was used to understand the transient stress

and orientation development of concentrated long glass fibers during the startup of steady shear

flow. An orientation model and stress tensor combination, based on semiflexible fibers, was

assessed in its ability to predict fiber orientation when using model parameters obtained from the

fits of the stress responses. Specifically, samples of different initial fiber orientations was subjected

to the startup of steady shear flow, and an orientation model based on bead and rod theory was

coupled with a derived stress tensor that accounts for the semiflexibility of the fibers to obtain the

corresponding model parameters. The results showed the semiflexible orientation model and stress

tensor combination, overall, provided improved rheological results as compared to the

Folgar–Tucker model when coupled with the stress tensor of Lipscomb et al. [J. Non-Newtonian

Fluid Mech. 26, 297–325 (1988)]. Furthermore, it was found that both stress tensors required em-

pirical modification to accurately fit the measured data. Finally, orientation models provided

encouraging results when predicting the transient fiber orientation for all initial fiber orientations

explored. VC 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4717496]

I. INTRODUCTION

The phrase “long fiber” is used in this context to describe fibers that are able to bend

or flex during flow and thus during processing. This bending and flexing, in general, can

affect both the material’s microstructure and properties. Subsequently, the term

“flexibility” will be used to describe the fiber’s tendency to bend in the presence of flow.
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Specifically, a fiber exhibiting a larger degree of flexibility is easier to bend within a

specified flow field. Switzer and Klingenberg (2003) quantified the effective stiffness

(Seff) of a fiber in a viscous medium by proposing a dimensionless group that contains

both the viscosity of the matrix, the fiber aspect ratio (ar¼L=d, where L is the fiber

length and d is the diameter) and the Young’s modulus (EY) of the fiber

Seff ¼ EYp

64gm c
:
a4

r

: (1)

In Eq. (1), gm is the matrix viscosity and c
:

is the shear rate. From this expression, the

stiffness of a fiber can be seen to decrease (increased flexibility) with aspect ratio for a

given material (i.e., fixed Young’s modulus). For the case of glass, fibers less than 1 mm

in length are often considered to be “short” (and hence rigid) while fibers of length

greater than 1 mm are considered to be “long” (and hence flexible). This length is some-

what arbitrary but is related to the influence of fiber length on the mechanical properties

of the solid composite, see, for example, Crosby (1991).

Predicting the transient rheological response of long fiber suspensions is complex

because of various factors such as fiber-matrix and fiber-fiber interactions. These fac-

tors become more prominent in high concentration regimes, where the volume fraction

of fibers, /, is � a�1
r [Doi and Edwards (1988)]. This is because as fiber concentration

is increased, short range hydrodynamic forces, frictional, and other mechanical interac-

tions between the fibers also increase. To study these interactions and understand fiber

orientation from a fundamental approach, direct simulations of individual fibers have

been used. In such simulations, model fiber equations are usually constructed for a sin-

gle or small population of fibers and consist of the equations of forces and torques that

evolve the particles and fiber configurations over time. Many authors use direct simula-

tions to try and explore phenomena believed to be of interest, such as long and short

range hydrodynamic effects, flexibility, Coulombic forces, and frictional forces, for

example, see the work of Yamamoto and Matsuoka (1993, 1995), Skjetne et al. (1997),

and Joung et al. (2001). Direct simulations, however, are currently very limited in their

application to real processing flows due to the high computational resources needed to

use them.

Keshtkar et al. (2009) were one of the first groups to study the effect of flexibility on

the transient shear rheology of fiber suspensions. They studied the start-up and flow re-

versal rheology of fibers with different flexibilities in a Newtonian oil using a parallel

disk rheometer. They found an increase in both the start-up viscosity and first normal

stress difference with increased flexibility and also a delayed response in flow reversal.

Later, Keshtkar et al. (2010) also began a quantitative analysis of the transient fiber orien-

tation. Experimentally, they found fibers with increased flexibility orientated more slowly

than rigid fibers. In this work, they used rheological data to obtain orientation material

parameters for an orientation and a stress model combination based on the GENERIC

framework of Rajabian et al. (2005). This model, applicable for nondilute suspensions,

was constructed to supply a mesoscopic level of information pertaining to the fiber

microstructure evolution and the resulting stresses within the suspension. This model has

the advantage of supplying consistency between the flow dynamics equations and ther-

modynamics. Simulation results showed that the viscosity could be fitted reasonably

well, but obtained relatively poor performance in fitting the normal stress difference. On

comparison between the model’s predicted transient orientation and experimentally

measured values, they found that the model parameters obtained from the rheology only

qualitatively represented the transient orientation.
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The conventional way of handling fiber orientation stems from short fiber theory

wherein the orientation of a rigid fiber can be described as a vector that is parallel to the

fiber, denoted in Fig. 1 as p. For a given orientation distribution function w, wherein w
describes the probability of finding a fiber of specific orientation within an h, u, and

hþ dh, uþ du, the second moment of w may be evaluated in the following way to form

an orientation tensor (A), as presented in the works of Advani and Tucker (1987).

AðtÞ ¼
ð

ppwðp; tÞdp: (2)

The orientation tensor provides a convenient means of describing the orientation of a

population of fibers. For example, if the fibers are all oriented in the 1-direction (i.e., the

flow direction), the orientation tensor will have an A11 component of 1.0, and 0 for all

other components. Likewise, an initial 3-direction orientation would have an orientation

tensor, whose A33 component is 1.0, and 0 for all other components. Consequently, fibers

randomly oriented in the 1–3 plane will have components A11¼A33¼ 0.5, with 0 for all

other components.

Originally, Jeffery (1922) derived an expression describing the motion of an ellipsoi-

dal particle in a flow field. In a continuum sense, Jeffery’s model is

DA

Dt
¼W � A� A �Wþ nðD � Aþ A � D� 2D : A4Þ; (3)

wherein W¼ [($v)t�$v]=2 is the vorticity tensor, D¼ [($v)tþ$v]=2 is the rate of

strain tensor, and n is a shape factor defined in terms of the particles aspect ratio as

n ¼ ða2
r � 1Þ=ða2

r þ 1Þ as has been presented in the work of Advani and Tucker (1987).

In this context, the velocity gradient is defined as $vij¼ @vj=@xi. The fourth order

FIG. 1. Rigid fiber with orientation vector p.
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orientation tensor is defined as the fourth moment of the orientation distribution function

as given

A4ðtÞ ¼
ð

ppppwðp; tÞdp: (4)

A4 requires a closure approximation to decouple this fourth order tensor in terms of the

second order orientation tensor A. Common forms of this closure approximation are

expressed through linear, quadratic, hybrid, and higher order polynomial closures such as

the invariant-based optimal fitting (IBOF) approximation, Chung and Kwon (2001). As

the aspect ratio of the ellipsoid becomes larger, the period of orbital dynamics becomes

much longer. If the aspect ratio is forced to be infinitely large, as has been used to ap-

proximate the aspect ratio of fibers, n approaches unity and the period of rotation

becomes infinite and allows this particle to asymptotically orient with the flow field. In

retrospect, it can be seen that Jeffery’s model provides a way of describing the motion of

a rigid, mass-less, fiber in an infinitely dilute suspension. All dynamics are purely hydro-

dynamic (no fiber interactions), but this model provided a starting point for exploring

more realistic dynamics such as fiber interactions.

Folgar and Tucker (1984) hypothesized in nondilute suspensions that fiber interactions

could be captured by an isotropic rotary diffusion term which is added to Jeffery’s model

as shown

DA

Dt
¼W � A� A �Wþ nðD � Aþ A � D� 2D : A4Þ þ 2CI c

:
I� 3Að Þ; (5)

where CI is the isotropic rotary diffusion coefficient and I is the identity tensor, and

_c ¼ ð2D : DÞ1=2
is the scalar magnitude of D. Much researches have been conducted with

Eq. (5), but this model in many cases over predicts the rate of fiber orientation and, in

general, was found to describe the orientation of short fibers only qualitatively well, such

as shown in the work of Bay (1991) and Eberle et al. (2010). In a later paper, Eq. (5) was

modified to incorporate a method that allowed for the slowing of the orientation dynam-

ics and is referred to as the reduced strain closure (RSC) model [Wang et al. (2008)]. The

RSC model is much more complex as compared to Eq. (5), and instead a simpler method

has been proposed in the past by Huynh (2001) by incorporating a slip coefficient (a) to

be multiplied by the right hand side of Eq. (5) to form

DA

Dt
¼ a W � A� A �Wþ nðD � Aþ A � D� 2D : A4Þ þ 2CI c

:
I� 3Að Þð Þ: (6)

In Eq. (6), a is a number between 0 and 1 and reduces the rate of fiber orientation. Adding

the slip coefficient to the Folgar–Tucker equation results in a loss of material objectivity,

for example, see the work of Wang et al. (2008), but the behavior of the model is still

valid in the case of simple shear flow, as shown by Eberle et al. (2010). Additionally, an

anisotropic rotary diffusion (ARD) form of the Folgar–Tucker equation exists, but will

not be discussed in this research, and instead the reader is referred to the work of Phelps

and Tucker (2009).

A continuum model that accounts for the orientation evolution of semiflexible fibers is

that proposed by Strautins and Latz (2007) and is referred to here as the Bead–Rod

model. In this model, a semiflexible fiber is modeled as two connected “rods” of orienta-

tion p and q, each of length lB that may flex about a central pivot point, as shown in

Fig. 2. The semiflexible fiber has a resistance to bending and is accounted for by a
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resistance potential that exists between both rods. When the fiber is perfectly straight no

restorative force exists within the fiber. However, if the fiber is placed in a flow that may

induce fiber curvature, the fiber bends in response to the drag flow on the “beads.”

To model the orientation changes of such fibers, Strautins and Latz (2007) developed

the kinematic equations for the bead and rod fiber in Fig. 2. Several assumptions were

made. First, this model applies for fibers that are only semiflexible for which p � �q.

The exact extent to this restriction, however, was not fully described. Second, similar to

Jeffrey’s equation, the model fiber is assumed to be in an infinitely dilute suspension

where only hydrodynamic effects may exist and does not allow for interactions between

different fibers. The model describes the evolution of Eq. (3) moments of the p and q

vectors in the following manner:

AðtÞ ¼
ð ð

pp wðp; q; tÞdpdq; (7)

BðtÞ ¼
ð ð

pq wðp; q; tÞdpdq ; (8)

CðtÞ ¼
ð ð

p wðp; q; tÞdpdq; (9)

Equation (7) is similar to what exists in rigid rod theory [Eq. (2)] and describes the sec-

ond moment of any one of the rods with respect to the orientation distribution function.

Another orientation tensor describes the mixed product of both rod vectors with the ori-

entation distribution function, Eq. (8). Finally, the first moment of the distribution func-

tion, using either rod’s orientation vector, Eq. (9) is also formed. It is important to note

that this single moment, Eq. (9), does not always vanish in the case of the Bead–Rod

model as it does for a purely rigid rod model. The equations describing the evolution of

these moments are given

DA

Dt
¼ W � A� A �Wð Þ þ D � Aþ A � D� 2D : A4ð Þ

þ lB
2
½CmþmC� 2ðm � CÞA� � 2k B� A trðBÞ½ �; (10)

DB

Dt
¼ W � B� B �Wð Þ þ D � Bþ B � D� 2D : Að ÞBð Þ

þ lB

2
½CmþmC� 2ðm � CÞB� � 2k A� B trðBÞ½ �;

(11)

DC

Dt
¼ rvt � C� ðA : rvtÞCþ lB

2
½m� C m � Cð Þ� � k C½1� trðBÞ� ; (12)

FIG. 2. Semiflexible (bead and rod) fiber model of Strautins and Latz (2007). Fiber is constructed by two con-

nected orientation vectors p and q.
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m ¼
X3

i¼1

X3

j¼1

X3

k¼1

@2vi

@xj@xk

Ajk ei: (13)

Within these equations, tr() represents the trace of a specified tensor and k is the resistive

bending potential coefficient. Physically, as the value of k increases, the Bead–Rod model

behaves more like a rigid fiber, and in the limit as k approaches infinity, reproduces Jeff-

ery’s model [Eq. (3)] for high aspect ratio particles. Conversely, as k approaches 0, the

fiber behaves more flexibly. In these equations, flexibility is induced only by hydrody-

namic effects, as quantified by the second order spatial derivatives of the velocity term

that exists in Eq. (13). Within Eq. (13), m is a vector formed by the summation over the

indices ijk, and ei are the directional unit vectors.

To predict the stress response of a fiber suspension, a stress tensor is also needed (in

combination with an orientation model). Most of the works pertaining to the understand-

ing of stress theory for fiber suspensions can be traced back to Ericksen (1960), Batchelor

(1971), Goddard (1978), Dinh and Armstrong (1984), Shaqfeh and Fredrickson (1990),

and Gibson and Toll (1999). In general, researchers often look for a form of a stress equa-

tion such that the total stress (r) on the suspension is a linear combination of stresses con-

tributed by the suspending medium and the stresses contributed by the particles as

r ¼ �PIþ sMatrix þ sParticles: (14)

In Eq. (14), P is the isotropic pressure, sMatrix is the stress contribution from the matrix.

Equivalently, sMatrix may be replaced with sMatrix¼ 2gm D. The most general form for the

viscous stress tensor for a suspension of rigid, nonconcentrated, ellipsoid particles is

r ¼ �PIþ 2gmDþ 2gm/faA4 : Dþ bðD � Aþ A � DÞ þ cDþ f ADrg; (15)

wherein a, b, c, and f are geometric shape factors and Dr is the rotary diffusivity due to

Brownian motion. For high aspect ratio particles, such as fibers, b¼ 0. For glass fibers

(long and short), Brownian motion is negligible and so Dr may considered to be negligi-

ble. This reduces Eq. (15) to the form suggested by Lipscomb et al. (1988) for high as-

pect ratio particles as

r ¼ �PIþ 2gmðDþ c/Dþ NA4 : DÞ: (16)

In Eq. (16), N is a function of the fiber concentration and aspect ratio and c is a parameter

attributed to a stress enhancement caused by the presence of a volume fraction of fibers.

For completeness, in the case where c¼ 0, the stress theory of both Ericksen (1960) and

Hand (1962) is presented. We will, however, retain the stress tensor written in Eq. (16)

for this research. Much works have gone into analytically determining the values of c and

N in the dilute through semidilute regimes, see, for example, the work of Lipscomb et al.
(1988). No theory, however, exists for fiber systems that are concentrated and some

authors have chosen not to use analytical expressions for c and N, but rather have chosen

to use them as a fitting parameter, such as in the work of Eberle et al. (2009). Addition-

ally, strictly speaking, no stress theory to date considers fibers that are flexible. Finally,

the fourth order orientation tensor appears in Eq. (16) and may be accompanied by the

use of a closure approximation.

Combining this stress expression with the Folgar–Tucker orientation model previously

discussed has yielded varying degrees of success depending on the concentration level.

For example, in the work of Eberle et al. (2010), rheological measurements for
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concentrated short fiber suspensions were modeled using the Folgar–Tucker model and

the stress tensor in Eq. (16). Their results yielded shear stress and normal stress differ-

ence values that could not be fit in either the magnitude or peak breadth. This perform-

ance is due to a general lack of understanding of concentrated fiber interactions and is

especially suspected when fiber flexibility is a non-negligible variable. No other studies

seem to exist in which the transient rheology of concentrated fiber suspensions (short or

long) is studied to obtain necessary modeling parameters.

In this research, we use a sliding plate rheometer to explore the behavior of long glass

fibers (LGFs) in simple shear flow. The sliding plate is chosen instead of conventional

rotational rheometers due to the deficiencies associated with their measurement of fiber

suspensions. Specifically, rotational devices such as parallel disk rheometers are known

to cause inhomogeneous fiber orientation development, due to the inhomogeneous shear

field between the disks, and the results in superficially enhanced stress measurements and

longer stress responses than would exist if the shear field was homogenous, as shown by

Eberle et al. (2009). A cone-and-disk with bored out center is the more appropriate

choice for short fiber suspensions but still is unable to provide a large enough gap for

LGFs. Hence, the sliding plate rheometer provides unique and useful benefits for meas-

uring long fiber suspensions, because it provides a homogenous shear field and may be

constructed to give gaps of various thicknesses, as demonstrated by Giacomin et al.
(1989).

The purpose of this paper was to determine if Bead–Rod theory, when coupled with a

stress tensor that accounts for flexibility, could be used to fit the rheological responses of

LGF suspensions. We used rigid fiber theory (Folgar–Tucker model coupled with the

Libscomb stress model) as a basis for performance comparison. Finally, we wished to

assess the performance of the parameters (obtained from the rheological fits) in their abil-

ity to predict the transient fiber orientation, with the hopes of later using these parameters

to predict fiber orientation in more complex flows such as those found in injection

molding.

II. THEORY

In this section, we discuss modifications made to extend the Bead–Rod theory to non-

dilute suspensions. Next, we derive an appropriate stress contribution due to the semiflex-

ible nature of the Bead–Rod model. Finally, we suggest empirical modifications, to the

stress theory, that are needed to obtain better performance at fitting the rheological

response of long fiber suspensions.

A. Bead-rod modifications

As derived, the Bead–Rod model is theoretically only applicable to dilute semiflexible

fiber suspensions. Consequently, in an attempt to extend this model for the purpose of

exploring nondilute suspensions, such as those of commercial interest, we considered

that the isotropic rotary diffusion term, suggested by Folgar and Tucker (1984), be added

to the Bead–Rod model. The Bead–Rod model, now applicable for nondilute suspen-

sions, is given as

DA

Dt
¼ a W � A� A �Wð Þ þ D � Aþ A � D� 2D : A4ð Þ � 6CI c

:
A� 1

3
I

� ��

þ lB

2
½CmþmC� 2ðm � CÞA� � 2k B� A trðBÞ½ �

�
; (17)
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DB

Dt
¼ a W � B� B �Wð Þ þ D � Bþ B � D� 2D : Að ÞBð Þ � 4CI c

:
Bð

þ lB
2
½CmþmC� 2ðm � CÞB� � 2k A� B trðBÞ½ �

�
; (18)

DC

Dt
¼ a rvt � C� ðA : rvtÞCþ lB

2
½m� C m � Cð Þ� � k C½1� trðBÞ� � 2CI c

:
C

� �
;

(19)

m ¼
X3

i¼1

X3

j¼1

X3

k¼1

@2vi

@xj@xk

Ajk ei: (20)

Each term containing CI in Eqs. (17)–(19) is the associated isotropic rotary diffusion term as

it applies to the Bead–Rod model. The derivation of these terms can be found in the Appen-

dix A. Additionally, a has been added to each of the above equations and retains the identi-

cal meaning, as it does when used with the Folgar–Tucker model, Eq. (6). In this form,

flexibility may be exhibited not only by the fluid velocity field [Eq. (20)] but also by fiber-

fiber interactions accounted through rotary diffusion. For example, in the work of Strautins

and Latz (2007), they mathematically demonstrated the case of a semiflexible fiber in the

presence of a parabolic (channel) flow and showed the flow field was able to bend the fiber

due to the presence of second order derivatives of the velocity field [i.e., Eq. (20)]. With the

addition of the isotropic rotary diffusion term [terms containing CI in Eqs. (17)–(19)], bend-

ing may also be mathematically introduced phenomenologically by fiber-fiber interactions.

This source of bending may be thought of as a rotary diffusion induced bending. Physically,

this exists because each fiber segment may interact with other fibers. Mathematically, the

isotropic rotary diffusion term drives the orientation of the fibers to a random state, such as

in the Folgar–Tucker model. The same phenomenon occurs with the Bead–Rod model, but

in addition to randomizing orientation, the bending angle of this semiflexible model is also

driven to a random state. This is a unique consequence of the semiflexible model. Hence,

two sources of bending, in general, exist for the modified Bead–Rod model.

B. Bending stress addition

A bending stress may be derived from the bending potential function of the Bead–Rod

model and is added to Eq. (16), see Appendix B for the derivation. This contribution to

the suspension stress is caused by an average nonzero bending angle of the fibers with a

restorative potential coefficient, k. In this case of the Bead–Rod model, the total stress

tensor of the suspension becomes

rBR ¼ rþ gmk
3/ar

2
B� A trðBÞð Þ: (21)

Equation (21) can be written in terms of a tensor, r, derived from the second moment of

the end-to-end vector of the Bead–Rod fiber. In this manner, Eq. (21) becomes

rBR ¼ rþ gmk
3/ar

2

trðrÞ
2l2

B

A� Rð Þ; (22)

where the dimensional end-to-end orientation tensor, r, is defined as the second moment

of the end-to-end vector, lB(p� q), with respect to w in Eq. (23). Upon full evaluation,
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Eq. (23) simplifies to Eq. (24). Additionally, R may be defined as a normalized and

dimensionless form of r as in Eq. (25).

r �
ð ð

l2
Bðp� qÞ ðp� qÞwðp; q; tÞdpdq; (23)

r ¼ 2l2
BðA� BÞ ; (24)

R � r

trðrÞ ¼
A� B

1� trðBÞ : (25)

As can be seen in Eq. (22), when R¼A, corresponding to a perfectly straight fiber sys-

tem (q¼�p), the bending stress term drops out and the original stress equation for a

rigid fiber is regained, Eq. (16). This occurs in the absence of bending when the flexible

fiber is perfectly straight or behaves like a rigid rod. On the other hand, when the fiber

does exhibit bending, the bending stress term is not zero and is a function of both the

end-to-end distance, as quantified by tr(r), and the difference between the A and R ori-

entation tensors, Eq. (22). To elaborate, the root-mean squared end-to-end distance of

the population of fibers is simply equal to the square root of tr(r). Thus, for the special

case of a population of straight fibers (wherein q¼�p and hence B¼�A), the root-

mean squared end-to-end distance is simply 2lB, which is equal to the summed length

of both fiber legs (see Fig. 2). In general, this distance will be reduced by the degree of

bending within the fibers (<2lB) and R will differ from A. For semiflexible fibers (small

bending angles), the values of the components of these two orientation tensors will

always be similar, however. Like A, the tr(R)¼ tr(A)¼ 1 and R is symmetric. Equa-

tions (24) and (25), in combination with Eq. (22), provide a means for calculating the

total stress contribution of the fiber suspension, including effects due to the semiflexi-

bility of the fibers.

C. Empirical modifications to the stress tensor

In this research, we considered empirical modifications to the stress tensor. Specifi-

cally, we propose empirically modifying the Lipscomb model [Eq. (16)] by weighting

each term by a function rather than a constant, as shown in the following equations:

rmod ¼ �PIþ 2gm Dþ f1/Dþ f2A4 : Dð Þ; (26)

f1 ¼
(

c1

c
:

b
min

for c
: � c

:
min

c1

c
:

b for c
:
> c

:
min

; (27)

f2 ¼ c2 IAIIAIIIA; (28)

where

IA ¼ trðAÞ ¼ 1; (29)

IIA ¼
1

2
trðAÞ2 � trðAAÞ
h i

; (30)

IIIA ¼ detðAÞ: (31)

963PREDICTING LONG FIBER ORIENTATION

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

128.173.125.76 On: Thu, 30 Jan 2014 15:40:42



The purpose of these modifications [Eqs. (27) and (28)] is to aid in the fitting of the over-

shoot magnitude and steady-state stress values, Eqs. (27) and (28), respectively, which

otherwise would yield poor results if constant weights were used [such as Eq. (16) or

(22)]. Such difficulty in using the conventional Lipscomb stress model, in combination

with the Folgar–Tucker model, to fit the experimentally observed overshoot, for example,

has been reported by Eberle et al. (2009). In their work, the Lipscomb model did not pre-

dict any stress overshoot when using experimentally consistent initial fiber orientation

conditions, even though one existed experimentally. To avoid this difficulty, an empirical

modification is suggested, f2, whose value [Eq. (28)] is the product of the invariants of A,

as defined in Eqs. (29)–(31), and is scaled by a fitting parameter c2. The purpose of this

term is to aid in capturing large stress overshoots experimentally observed, which would

otherwise be very difficult to describe with its original form, i.e., Eq. (16). The invariants

were chosen as weighting functions because they represent scalar quantities that are de-

pendent solely on the orientation state of the system and additionally are not affected by

the choice of coordinate system. It is believed that other functions involving the invari-

ants of A may also be of use. Equation (28) represents a simple choice for the purpose of

exploring such an empirical modification. A second empirical modification, f1, is also

suggested. The purpose of f1 [Eq. (27)] in practice is to fit experimentally observed shear

thinning in excess of that exhibited from just the polymer matrix. More specifically, the

value of the weighting function f1 is largest at low _c and decreases with increasing _c and

mathematically allows for a reduction in the steady-state stress contribution from the vol-

ume fraction term in Eq. (26), which has been observed experimentally by Ortman et al.
(2011). Without this modification, experimentally observed steady shear stress values

would be restricted to only vary with the shear rate dependence of the neat matrix, and

not necessarily with the suspension. In this function, b is a fitted exponent that quantifies

how the value of f1 changes with _c, and c1 is a linear fitting parameter. One obtains the

conventional Lipscomb’s form of this term by setting b¼ 0. To prohibit f1 from becom-

ing infinite at very low rates of strains, a restraint is enforced below a minimum _c( _cmin)

such that f1 becomes constant. For example, _cmin can simply be equated to the lowest _c
employed in the measurements. Again, f1 and f2 are examples of empirical adaptations

believed needed to more accurately match the experimentally measured rheological

responses of our long fiber suspensions. An example of fitting rheological data with and

without the suggested empirical modifications [Eqs. (27) and (28)], in combination with

the Folgar–Tucker model, will be shown in Sec. IV. Finally, the Bead–Rod stress tensor

was modified in an identical manner and yields the following form:

rBR�mod ¼ �PIþ 2gm Dþ f1/Dþ f2A4 : Dð Þ þ gmk
3/ar

2

trðrÞ
2l2

B

A� Rð Þ: (32)

III. EXPERIMENTAL AND COMPUTATIONAL METHODS

A. Materials and preparation

The LGF reinforced polypropylene material was provided by SABIC Innovative Plas-

tics and had an initial concentration of 30 wt. % (/ ¼ 0:145). The material was extruded

to provide fiber mixing and erase the thermal history of the matrix. The initial fiber pel-

lets of length of 13 mm was reduced significantly during the extrusion process, and it was

found via digital imaging that the materials had an average fiber length (LN) of 2.92 mm.

The average diameter of the fibers was d¼ 14.5 lm. The extrudate was collected and pel-

letized into long strands to be compression molded for rheological testing. An additional
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concentration of 10 wt. % (/ ¼ 0:048) material was prepared in the same manner. In all

cases, the glass fiber systems used in this research possessed a / such that, using the

theory of Doi and Edwards (1988), the suspensions were classified as concentrated,

/ � a�1
r .

LGF samples were prepared having three different prescribed initial fiber orienta-

tions. The sample material was made by extruding, collecting, and cutting the fiber ma-

terial into strands. These strands were then manually placed in a rectangular mold with

preferential orientation. The orientation was confirmed using digital imaging, as dis-

cussed in Sec. III B. These samples were initially oriented either in the flow direction

(x1 direction), the neutral direction (x3-direction), or random in the plane (x1-x3 plane)

with respect to the coordinate system in Fig. 3, and will be referred to as D1, D3, and

DX samples, respectively. The D1 samples were prepared by laying 76 mm strands par-

allel to each other in the flow direction of a 254 mm	 76 mm mold, and then were

compression molded at 180 
C for 15 min. Rheological tests were performed on the

neat matrix to verify its integrity after being heated for this length of time, and no signs

of degradation were observed. Similarly, D3 samples were prepared by laying 76 mm

strands in the neutral direction of the mold. The samples having fibers oriented

randomly in the 1–3 plane (DX) were fabricated by randomly distributing 15 mm

strands of the extruded strands in the mold and then compression molding them. Two

different lengths of extruded strands (76 and 15 mm) were used to achieve the intended

initial orientations more accurately. Specifically, the DX samples required a smaller

length strand to achieve better homogeneity and random orientation. All the samples

prepared had final dimensions of 254 mm	 76 mm	 1.70 mm. However, the thickness

varied between 1.65 and 1.85 mm. All samples were prepared and experimented with

at 180 
C.

B. Measurement of fiber orientations

Fiber orientation of the sheared samples was measured using a micrographic technique

proposed by Hine et al. (1996). In this method, a solidified sample is cut and carefully

polished to expose the elliptical cross-sections of the intersecting fibers within the poly-

mer sample. The phrase “elliptical cross-section” refers to a fiber in a polished plane

intersection that is captured on a micrograph. This cross-section is quantitatively ana-

lyzed to determine the projection of the fiber, and hence the orientation for a population

of fibers. Samples were polished using alumina oxide based polishing grits and slurries.

A polished sample length of three times the average fiber diameter was imaged using an

optical microscope along the full part thickness. Specifically, each sample taken was 10

mm	 1.5 mm. A digital imaging program was written to analyze the cross-sectional

ellipses to determine the values of the orientation tensor. The results shown in this

research depict the average of three independent samples. Within each polished sample,

at least 1000 fibers for each 10 wt. % sample and 3000 fibers for each 30 wt. % sample

were analyzed over the polished sample dimensions.

FIG. 3. Sliding plate rheometer and defined coordinate system, Ortman et al. (2011).
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C. Sliding plate rheometer

The sliding plate rheometer used in this work was fabricated based on the design ini-

tially developed by Giacomin et al. (1989). The apparatus was encased in a forced con-

vection oven (Russells Technical Products, Model RB-2-340) and was mounted

vertically in an electromagnetic drive system, specifically an Instron-4204. The Instron

can be programmed to drive the moving plate at a desired speed (limited to a plate veloc-

ity of approximately 450 mm=min and total shearing displacement of 200 mm). Once the

plate is set into motion, the melt sample therein is sheared homogeneously. The resulting

shear stress is measured using a shear stress transducer (SST) that is flush mounted to the

stationary plate. The rigid lever in the SST, suspended by a diaphragm, deflects in

response to the applied stress of the moving fluid. It causes the other end of the lever to

deflect in the opposite direction. This deflection is measured using a capacitance probe,

Capacitec, Model HPT-75G-E-L2-2-B-D. The signals from the probe are amplified in a

signal amplifier (Capacitec 4100-SL-BNC Amplifier Card) and then sent to a data acqui-

sition card (National Instruments USB-6008). The device has been calibrated to convert

and quantify the resulting deflection into a shear stress. The calibration was performed

using a fluid of known viscosity. A detailed discussion of the calibration procedure

adopted for the constructed device can be found elsewhere, for example, in the work of

Koran and Dealy (1999) and Agarwal (2009). Two different diaphragms were con-

structed with different sensitivities to allow a range of materials to be tested in the SPR.

The gap between the stationary and moving plate of the SPR was kept at 1.50 mm and

yields a gap to fiber diameter ratio of approximately 100 for all glass systems analyzed.

This ratio is above the ratio used for short glass fiber samples, as proposed in the work of

Sepehr et al. (2004) and Eberle et al. (2010). The effect of gap on LGF samples, how-

ever, has not yet been determined. Samples were squeezed down to the rheometer gap

(1.50 mm) during the insertion process and allowed better wall-matrix contact before

they were sheared. In all rheological experiments conducted within this research, at least

three samples were tested per experiment. Reported results are an average of the samples

tested and have an average standard deviation<15% for the 10 wt. % fiber samples, and

<20% for the 30 wt. % fiber samples. Additionally, each sample’s deformed length was

measured after shearing and compared to the programmed Instron displacement. In all

cases, less than 63% discrepancy exists between repeated runs, and this suggests slip-

page between the sample and plates is negligible.

D. Physical property values

This section discusses our choice for handling the physical property values of lB, k,

and gm. Two model variables, both lB and k, are present in the Bead–Rod model and are

related to physical characteristics of the fibers. First, lB is defined as the half length of a

fiber. In the case of our samples, a population of fiber lengths exists. Hence, to describe

the population of fibers with one lB value, we have chosen to use the number average lB
associated with our fiber length distribution. Hence, this length scale simply becomes

lB¼ LN=2 or lB¼ 1.46 mm. Likewise, we need to associate a single k value to the popula-

tion of fibers. To do this, we chose to calculate the number average k value over the fiber

length distribution, where ni is the number of fibers associated with each ki, in the follow-

ing manner:

k ¼

P
i

nikiP
i

ni
: (33)
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As a reminder, k is the bending potential (energy) coefficient associated with the inter-

nal rigidity of a fiber. In physical terms, we have chosen to associate this term with the

bending potential of a beam under small deflection. This allowed us to determine the

value of k using the physical properties of the fibers. An expression for k can be

obtained by equating the potential energy of a beam under deflection with the potential

energy expression for the bead and rod fiber. Please refer to Strautins and Latz (2007)

concerning the expression of the Bead–Rod energy expression. Additionally, one would

need to equate the magnitude of force on the hypothetical beam with the magnitude of

the sum of the internal restorative vector forces from the rods of the fiber, wherein the

beam (fiber) is in static equilibrium. Once accomplished, the expression can be alge-

braically solved for k and approximated in the limit as q approaches –p (semiflexible

approximation). Finally, expressions for the second moment of inertia for the hypothet-

ical beam and coefficient of drag on a sphere in Stokes’ flow may be inputted, and an

expression for k is obtained. For a population of fiber lengths, each ki is found to be a

function of EY, d, gm, and the lB of each fiber in the population (lBi). In these terms, ki

becomes

ki ¼
EY

64 gm

� �
d3

l3
Bi

: (34)

Assuming EY¼ 80 GPa and gm¼ 560 Pa s, then after using Eqs. (34) and (33) in combi-

nation with our fiber length distribution, k¼ 218 s�1. As k approaches infinity it becomes

stiffer, and as it approaches 0 it becomes perfectly flexible. Our value will demonstrate

itself to be only semiflexible within our rheological experiments.

Finally, for the purpose of the stress tensors used in this research, the experimentally

measured matrix viscosity was calculated at each shear rate and inputted for gm within

the stress equations [Eqs. (26) and (32)]. This eliminated the need to fit a generalized

Newtonian model to the matrix viscosity.

E. Parameter fitting and numerical methods

The major goal of this work was to obtain a unique set of rheological model parame-

ters for a given material (i.e., fiber length, concentration, and matrix properties) and

then assess the accuracy of the models in their abilities to predict the transient fiber

orientation. Although being able to model the rheology is important, the most important

aspect is the ability to predict the evolution of fiber orientation and then eventually

translate this information to be useful with general (complex) flow situations. To obtain

these model parameters, we chose to best fit our models to the DX samples (i.e., sam-

ples with an initial random fiber orientation) for both the 10 wt. % and 30 wt. %

materials.

The method for obtaining the parameters is outlined in Fig. 4. The initial orientation

for our samples was measured, using the method described in Sec. III B, and numeri-

cally specified for each simulation. As Fig. 4 shows, the orientation and stress model

parameters are initially guessed. Next, the orientation equations are solved, and the

stress equation is calculated and numerically compared to rheological data. The differ-

ence between the calculated stress and the rheologically measured stress, or residual

difference, is squared and summed. Next, stress parameters values are iterated on to

find a local minimum residual difference. Once accomplished, orientation model pa-

rameters are then again revisited to try to obtain an even lower residual difference.

This process is continued several times until the best fit is obtained. A commercial
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solver (MATHEMATICA) was used to solve the initial value, differential orientation

equations.

F. Closure approximations

A closure approximation was used to decouple the fourth order orientation tensor A4

in terms of the second order orientation tensor A. In this research, we used the 5th degree

polynomial IBOF closure approximation both in the Folgar–Tucker model and in the

Bead–Rod model, Eq. (17). The reader is referred to the work of Chung and Kwon

(2001) for a description of the IBOF closure approximation. It will be stated, for comple-

tion, that during the derivation of the Bead–Rod model higher mixed moments of both p

and q naturally arose. These moments too required closure, and Strautins and Latz (2007)

listed criteria that should be met to provide such closures. In the end, Strautins and Latz

suggested a closure relationship similar to the quadratic closure, see, for example, Advani

and Tucker (1990), to be used within Eqs. (18) and (19). Their closure was used in this

work as they suggested in Eqs. (18) and (19).

G. Initial conditions

Samples were prepared with various initial fiber orientations (DX, D3, and D1), and

this initial orientation was measured using the method discussed in Sec. III B. For a given

initial arrangement, the initial orientations only differed slightly between samples with

different fiber concentrations. This difference was within experimental error. Hence, for

each initial fiber arrangement (DX, D3, and D1), the same initial orientation conditions

were used for both 10 wt. % and 30 wt. % samples. Additionally, because we are inter-

ested in a two-dimensional (2D) simulation of the fiber orientation and assuming isotropy

in the neutral direction (x3), the off-diagonal orientation components in the neutral direc-

tion were set to 0 (i.e., Ai3, i=3¼ 0, and A3i, i=3¼ 0). The significance of this assumption

implies that our sample microstructures possessed no out-of-plane preference in the neu-

tral direction. For the simple shear flow experiments in this research, we have experimen-

tal evidence that suggests this assumption is actually quite good; otherwise, this work

would have required additional experimental considerations, needed to accurately mea-

sure these components, other than those discussed in this text. The reader, for example, is

referred to the work of Vélez-Garcı́a et al. (2011) for such a discussion. The initial meas-

ured orientation for each fiber arrangement is listed below

FIG. 4. Method for determining material parameters from rheological data.
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Að0Þ ¼
0:565 0:037 0

0:037 0:038 0

0 0 0:397

0
B@

1
CA

DX

; Að0Þ ¼
0:093 0:065 0

0:065 0:080 0

0 0 0:827

0
B@

1
CA

D3

;

Að0Þ ¼
0:863 0:025 0

0:025 0:043 0

0 0 0:094

0
B@

1
CA

D1

: (35)

For the Bead–Rod model, other initial conditions were needed for Eqs. (18) and (19). As

of now, fiber curvature cannot be measured, so we have chosen to assume that the fibers

are initially straight before each experiment, and hence, B(0)¼�A(0), and C(0)¼ 0.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the performance of the stress models’ ability to match the

transient rheology obtained with the sliding plate rheometer. A discussion of the rheolog-

ical behavior itself, however, has already been provided by Ortman et al. (2011) and for

brevity will not be reproduced here. We will also discuss the ability of the models to pre-

dict fiber orientation for a variety of different initial fiber orientations and shear rates.

A. 30 wt. % materials

Modeling parameters for all the materials were determined using the transient viscos-

ity (shear) data obtained for the DX samples (at each concentration) and are listed in

Table I. To summarize the model parameters a, CI, c1, b, c2, and were obtained from the

rheology, and k (specific to the Bead–Rod model) was determined from fiber material

properties and fiber length distribution as described in Sec. III D. For the semiflexible

fiber predictions, a combination of the Bead–Rod model [Eqs. (17)–(20)] and its

TABLE I. Model parameters determined from rheological fits for both the 30 and 10 wt. % materials. For

completion, k is recorded but is not fit from the rheology and is instead determined in the manner discussed in

Sec. III D.

30 wt. % Folgar–Tucker Bead–Rod

CI 5.0	 10�3 5.3	 10�2

a 0.25 0.13

c1 15 24

b 1.0 0.65

c2 5.2	 105 1.4	 105

k N=A 218 s�1

10 wt. % Folgar–Tucker Bead–Rod

CI 3.5	 10�3 4.0	 10�2

a 0.32 0.27

c1 1.5 5

b 2.2 1.4

c2 3.1	 105 1.1	 105

k N=A 218 s�1
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corresponding stress model Eq. (32) was used and will be referred to as the BR-rBR-mod

combination. For the rigid fiber predictions, a combination of the Folgar–Tucker model

[Eq. (6)] and the modified Lipscomb stress tensor [Eq. (26)] was used and will be referred

to as the FT- rmod combination.

As can be seen in Fig. 5, the BR-rBR-mod combination does a better job at fitting the

transient viscosity values for the 30% DX samples at all shear rates than does the FT-

rmod. Specifically, the BR-rBR-mod combination provides a much better representation of

the experimentally measured stress overshoot. The necessity for stress tensor modifica-

tions may also be seen in this situation. For this example, one will notice in Fig. 5 that

when using the Folgar–Tucker and conventional Lipscomb stress tensor [Eq. (16)] with-

out modification (FT-r), very poor performance is obtained comparably, especially in its

ability to capture the stress overshoot. This lack of ability to capture the stress response is

what prompted the modifications discussed in Sec. II C. When the empirically modified

stress is used (i.e., FT-rmod), however, the model performs much better. In addition,

when using the BR-rBR-mod combination it was found that the magnitude of the bending

stress accounts for several percent reductions in the total stress contribution, Eq. (32), as

was the case at 1.0 s�1. The degree of bending may be calculated from the root-mean-

squared end-to-end distance using tr(r), see Sec. II B and Eq. (24). Although the degree

of bending is not graphically shown here, it was found that the k value in the Bead–Rod

model for the current fiber suspension corresponded only to a very slight degree of bend-

ing (reduction in the end-to-end distance�1%). This magnitude of fiber bending, though

very small, was found to increase fairly linearly with shear rate. This bending is directly

due to competing forces between the internal rigidity of the fiber and isotropic rotary dif-

fusion. But, again, the degree of bending was very small in all cases even for the current

semiflexible system. This is because, in the case of our glass fiber system, bending

induced from isotropic rotary diffusion is much smaller than the internal rigidity of the

fibers and contributes to a very small change to the degree of fiber bending. This bending,

as stated before, however, was shown to alter the stress response by several percents and

signifies that even small degrees in bending can result in non-negligible stress effects.

Another consequence to the rotary diffusion induced bending was that the Bead–Rod

model required larger CI values to obtain similar behavior as the Folgar–Tucker model,

even at sufficiently rigid k values. Consequently, when using the rotary diffusion term

within the Bead–Rod model, this simply means a larger range of CI values will be needed

as compared to that used with the Folgar–Tucker model. Note, it was found that for both

the Bead–Rod model and the Folgar–Tucker model, CI> 0 and a< 1 were required to

FIG. 5. Viscosity vs strain data for the 30 wt. % initially planar random oriented samples measured at 0.4 s�1

(^), 1.0 s�1 (n), and 4.0 s�1 (~). Also, fit of the Bead–Rod model and the (modified=proposed) stress tensor

[Eq. (32)] combination (solid plot), and fit of the Folgar–Tucker model and (modified) stress tensor [Eq. (26)]

combination (dashed plot). Finally, for reference, a fit of the Folgar–Tucker model and (conventional Lipscomb)

stress tensor [Eq. (16)] (dotted plot) at 1.0 s�1. Error bars denote the experimental standard deviation of the data.

970 ORTMAN et al.

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

128.173.125.76 On: Thu, 30 Jan 2014 15:40:42



best fit the transient viscosity (gþ). The significance of this remains in that both CI and a
are necessary to best fit the rheology.

Now that all the model parameters have been determined for the 30 wt. % material

(Table I), it is of interest to see how the models’ predictions of the orientation compare

with experimentally measured values. As can be seen in Figs. 6(a)–6(c), the overall per-

formance of both models is encouraging. In the case of both orientation models, good ac-

curacy in matching both the rise and steady-state values of the A11 and A33 orientation

components is met. Additionally, the Bead–Rod model offers slight improvement in

FIG. 6. Comparison of orientation vs strain predictions of the Bead–Rod (solid plot) and Folgar–Tucker (dashed

plot) models with experimental orientation data A11 (^), A22 (n), and A33 (~) for 30 wt. % initially planar ran-

dom oriented samples sheared at all shear rates, (a) 0.4 s�1, (b), 1.0 s�1, (c) 4.0 s�1. (d) Comparison of experi-

mental data A11 vs strain for 0.4 s�1 (^), 1.0 s�1 (n), and 4.0 s�1 (~). Error bars denote the standard deviation

of the data.

FIG. 7. Viscosity vs strain data for the 30 wt. % initially neutral-direction oriented samples measured at 0.4 s�1

(^), 1.0 s�1 (n), and 4.0 s�1 (~). Also, fit of the Bead–Rod model and (modified=proposed) stress tensor [Eq.

(32)] combination (solid plot), and fit of the Folgar–Tucker model and (modified plot) stress tensor [Eq. (26)]

combination (dashed plot).
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capturing the transient A11 component values. It is seen, however, that the Bead–Rod

model consistently over predicts the value of the A22 orientation component, where as the

Folgar–Tucker model more accurately predicts this component. This result was due to

the quadraticlike closure approximations used for the mixed orientation moments sug-

gested by Strautins and Latz, and described in Eqs. (18) and (19). To elaborate, it is

known that the quadratic closure, in general, is less accurate in a pure shear flow [see, for

example, Advani and Tucker (1987)]. Hence, we can strongly assume that the discrep-

ancy in the A22 predictions is influenced by the choice of closure used in Eqs. (18) and

(19). As can also be seen in Fig. 6(d), the transient orientation is only slightly dependent

on shear rate (for the values used here) and appears to be governed by strain. A slight

deviation from this might be seen at 4.0 s�1, wherein a dip is shown in the rise of the A11

(and A33) component at approximately 35 strain units. Both the Folgar–Tucker and

Bead–Rod models predict fiber orientation to be a function of strain.

At this point, it is of interest to discuss the performance of the parameters determined

using the DX samples as a unique set of material parameters for the purpose of predicting

gþ and orientation behavior of the D3 and D1 samples. Predictions for gþ obtained for the

D3 samples are shown in Fig. 7. In this case again, the BR-rBR-mod combination out per-

forms FT-rmod. Specifically, at both 1.0 s�1 and 4.0 s�1, the BR-rBR-mod combination

more accurately captures the overshoot and breadth of magnitude of the overshoots. The

FT-rmod combination, on the other hand, suggests a much broader and smaller overshoot,

which is experimentally indicative of the rheological results obtained at 0.4 s�1. At 0.4 s�1,

FIG. 8. (a) Comparison of orientation vs strain predictions of the Bead–Rod (solid plot) and Folgar–Tucker

(dashed plot) models with experimental orientation data A11 (^), A22 (n), and A33 (~) for 30 wt.% initially

neutral-direction oriented samples sheared at 1.0 s�1 and (b) 30 wt. % initially flow-direction oriented samples

at 1.0 s�1.

FIG. 9. Viscosity vs strain data for the 30 wt. % initially flow-direction oriented samples measured at 1.0 s�1

(n). Also, fit of the Bead–Rod model and (modified=proposed) stress tensor [Eq. (32)] combination (solid plot),

and fit of the Folgar–Tucker model and (modified) stress tensor [Eq. (26)] combination (dashed plot).
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the FT-rmod more accurately predicts the actual magnitude of the overshoot, but both mod-

els miss the viscosity values.

The orientation predictions of both models for the D3 sample sheared at 1.0 s�1 are

shown in Fig. 8(a). Both models slightly over predict the transient A11 component and

under predict the A33 component, but certainly qualitatively capture the behavior. This

statement is slightly more true for the case of the Folgar–Tucker model, which shows bet-

ter orientation performance and provides results that are very close to those observed

experimentally. Again, the A22 component is over predicted by the Bead–Rod model and

was due to the quadratic nature of the closure approximations used for the mix moments

FIG. 10. Viscosity vs strain data for the 10 wt. % initially planar random oriented samples measured at 0.4 s�1

(^), 1.0 s�1 (n), and 4.0 s�1 (~). Also, fit of the Bead–Rod model and the (modified=proposed) stress tensor

[Eq. (32)] combination (solid plot), and fit of the Folgar–Tucker model and (modified) stress tensor [Eq. (26)]

combination (dashed plot). Error bars denote the experimental standard deviation of the data.

FIG. 11. Comparison of orientation vs strain predictions of the Bead–Rod (solid) and Folgar–Tucker (dashed)

models with experimental orientation data A11 (^), A22 (n), and A33 (~) for 30 wt. % initially planar random

oriented samples sheared at all shear rates, (a) 0.4 s�1, (b), 1.0 s�1, (c) 4.0 s�1. (d) Comparison of experimental

data A11 vs strain for 0.4 s�1 (^), 1.0 s�1 (n), and 4.0 s�1 (~). Error bars denote the standard deviation of the

data.
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in Eqs. (11) and (12), even though the IBOF approximation is used for A4, as discussed

in Sec. III F.

Finally, these parameters were used to predict the rheological response for the D1

samples, Fig. 9. Both models do a very poor job at capturing the overshoot magnitude of

the viscosity response, but both do capture the intermediate viscosity region. Viscosity

data past 80 strain units is a phenomenon not yet understood and was not expected to be

captured by any models discussed in this work. A more complete discussion of this rheol-

ogy was given by Ortman et al. (2011). Finally, the Folgar–Tucker model more accu-

rately captures the orientation transition, as seen in Fig. 8(b).

B. 10 wt. % materials

The same procedure was performed for the samples with a concentration of 10 wt. %

fiber. The results of the fitted parameters are indicative of suspensions characterized by less

fiber-fiber interactions, as compared to the 30 wt. % material, and are listed in Table I. Spe-

cifically, in both the BR-rBR-mod and the FT-rmod combinations, lower CI and c2 values

and higher a values were needed to fit gþ suggesting less fiber-fiber interaction. Concerning

the Bead–Rod model, less bending was predicted as a result from the lower CI value.

Again, this suggests less fiber-fiber interactions occur at lower fiber loadings, which is

expected. Also, lower c1 values and higher b values were needed to match the viscosity for

both models, which we believe suggests less interfiber frictional stresses, at steady state, as

FIG. 12. Viscosity vs strain data for the 10 wt. % initially neutral-direction oriented samples measured at 0.4

s�1 (^), 1.0 s�1 (n), and 4.0 s�1 (~). Also, fit of the Bead–Rod model and (modified=proposed) stress tensor

[Eq. (32)] combination (solid plot), and fit of the Folgar–Tucker model and (modified) stress tensor [Eq. (26)]

combination (dashed plot).

FIG. 13. (a) Comparison of orientation vs strain predictions of the Bead–Rod (solid plot) and Folgar–Tucker

(dashed plot) models with experimental orientation data A11 (^), A22 (n), and A33 (~) for 10 wt. % initially

neutral-direction oriented samples sheared at 1.0 s�1 and (b) 10 wt. % initially flow-direction oriented samples

at 1.0 s�1.
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compared to the 30 wt. % materials. To elaborate, lower c1 values reduce the stress contri-

bution in Eq. (27), and larger b values increase the denominator of this term and thus again

reduce the stress contribution more (especially at increased shear rates).

Looking at gþ in Fig. 10, similar fit performance is obtained in the 10 wt. % DX sam-

ples as was gained with the 30 wt. % DX samples. Specifically, the BR-rBR-mod performs

better at predicting the rheological response at the two lowest shear rates, but both models

overpredict the overshoot magnitude at 4.0 s�1. All model parameters are now specified

and it is of interest to assess the performance of the models’ orientation predictions. Refer-

ring to Figs. 11(a)–11(c), one can see the Bead–Rod slightly overpredicts the rate of orien-

tation at 0.4 s�1 and 4.0 s�1, whereas the Folgar–Tucker model captures this rise more

accurately. Conversely, the Folgar–Tucker model slightly overpredicts the magnitude of

the A11 component at 120 strain units, whereas the Bead–-Rod model more accurately cap-

tures this value. However, in all cases, the Folgar–Tucker model performs slightly better at

predicting the A22 and A33 orientation components. Finally, in Fig. 11(d), we again see that

experimental orientation is again predominantly a function of deformation (strain) and

does not vary much within the shear rates experimented in this research.

The performance of these parameters is now evaluated for the D3 samples, Fig. 12. As

once can see, the Folgar–Tucker model more accurately predicts the shape of the

response, where as the Bead–Rod model overpredicts the magnitude of the stress over-

shoot at each shear rate. Both models, however, due a poor job at accurately predicting

the stress values at each shear rate, with the exception of the FT-rmod performance at 1.0

s�1. The orientation predictions of both models for a D3 sample sheared at 1.0 s�1 are

shown in Fig. 13(a). Both models slightly overpredict the A11 component and underpre-

dict the A33 component values with strain, but still qualitatively capture the behavior.

Finally, these parameters were used to predict the D1 stress response, Fig. 14. The pre-

dicted rheological response greatly underpredicts the overshoot magnitude for both mod-

els explored. Additionally, both models also slightly underpredict the steady-state

viscosity. Both models, however, capture the orientation dynamics, as visualized in Fig.

13(b), and in this case the Bead–Rod model predicts a slightly more accurate description

of the A11 and A33 components.

V. CONCLUSIONS

In this research, we used a LGF suspension to explore an orientation model and stress

tensor designed to provide a first approximation for flexible fiber systems. Specifically,

we have extended the Bead–Rod orientation model to nondilute suspensions by including

FIG. 14. Viscosity vs strain data for the 10 wt. % initially flow-direction oriented samples measured at 1.0 s�1

(n). Also, fit of the Bead–Rod model and (modified=proposed) stress tensor [Eq. (32)] combination (solid plot),

and fit of the Folgar–Tucker model and (modified) stress tensor [Eq. (26)] combination (dashed plot).
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isotropic rotary diffusion and also derived an appropriate stress tensor term (based on this

model) that accounts for the semiflexibility of the fibers. Additionally, we showed the

Lipscomb model, when coupled with the either orientation model explored, was unable

to fit the transient stress data, and instead we have proposed empirical modifications to

the Lipscomb model that more accurately fits this data. Specifically, in this research we

explored empirical modifications to fiber stress theory that utilize weights that are func-

tions instead of the more classical method of using constant weights.

A method for determining model parameters based on the rheology of fiber systems

was demonstrated. Rheological fits showed the Bead–Rod model and associated stress

theory, overall, provided a more accurate description of the stress response of the LGF

systems explored. Additionally, stresses due to fiber flexibility were predicted to account

for small but non-negligible bending stresses. More flexible fiber systems will be studied

in the future, and it is believed that with increased flexibility the Bead–Rod model (and

associated stress tensor) will be of increased value.

Finally, the orientation predictions of both models produced encouraging results in

almost all cases. The Bead–Rod model and associated stress tensor, overall, produced

better rheological fits and A11 orientation component predictions. The Folgar–Tucker

model, however, produced better orientation results for the A33 and A22 in almost all the

cases studied. Experimentally, the transient fiber orientation was seen to be predomi-

nately a function of strain, and only varied slightly with shear rate.

This study showed the performance of current orientation models, in simple shear

flows, is very encouraging. Understanding the stress development of concentrated fiber

suspensions, on the other hand, still has room for improvement. The stress responses of

long fiber samples were shown to be highly dependent on the initial fiber orientation.

Current stress theory does not provide a complete description for such a class of fiber sus-

pension. The results determined in this study will be used in the future to explore the ori-

entation development of LGFs in an injection-molded processing flow.
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APPENDIX A: DERIVATION OF THE ISOTROPIC ROTARY DIFFUSION TERMS
IN THE BEAD–ROD MODEL

First, the isotropic rotary diffusion may be introduced into the orientation balance

equation. For the Bead-Rod model, this term enters as a combination of diffusion from

both rods, as written in Eq. (A1), where D is the rotary diffusion coefficient.

D
@

@p2
þ @

@q2

� �
wðp; qÞ: (A1)

The choice of Folgar and Tucker (1984) is to equate D ¼ CI c
:
. We now wish to form the

integral moments defined in Eqs. (7)–(9) with the rotary diffusion term. For Eq. (7), the

rotary diffusion term, after some manipulation [see, for example, Phelps and Tucker

(2009)], becomes
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ð ð
CI c

: @

@p2
þ @

@q2

� �
pp

� �
wðp; qÞdpdq: (A2)

After expansion, the term simplifies toð ð
CI c

: @

@p2
pp

� �
wðp; qÞdpdq: (A3)

This form is exactly the same as that of the Folgar–Tucker model (1984) and upon inte-

gration over all orientation spaces become Eq. (A4), which we originally presented in

Eq. (17)

� 6CI c
:

A� 1

3
I

� �
: (A4)

For Eq. (8), we are interested in the mixed moment of p and q in the following manner:

ð ð
CI c

: @

@p2
þ @

@q2

� �
wðp; qÞpqdpdq (A5)

¼
ð ð

CI c
: @

@p2
pqð Þwðp; qÞdpdqþ

ð ð
CI c

: @

@q2
pqð Þwðp; qÞdpdq: (A6)

After distributing the integrand within the first integral in Eq. (A6) (and realizing that

the second integral, on the average, is exactly equal to the first integral), Eq. (A6)

becomes

¼ 2

ð ð
CI c

: @

@p

@p

@p
qþ p

@q

@p

� �
wðp; qÞdpdq: (A7)

The derivative in Eq. (A7) involving the change of q with p is 0 and simplifies to become

¼ 2

ð ð
CI c

: @

@p

@p

@p
q

� �
wðp; qÞdpdq; (A8)

¼ 2

ð ð
CI c

: @

@p
I� ppð Þq½ �wðp; qÞdpdq: (A9)

Written in component form, the integrand of Eq. (A9) now becomes

¼ 2CI c
: @

@pl
Iij � pipj

� �
qk

� 	
: (A10)

After differentiation and simplification, the term becomes

¼ 2CI c
: � @pj

@pl
pjqk � pi

@pj

@pl
qk

� �
; (A11)

¼ 2CI c
: �pjqk � piqk

� �
: (A12)
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Upon addition, Eq. (A12) becomes

¼ �4CI c
:
pjqk: (A13)

Upon integration this term becomes Eq. (A14), which we originally presented in Eq. (18)

¼ �4CI c
:
ð ð

pqwðp; qÞdpdq ¼ �4CI c
:
B: (A14)

Finally, for Eq. (9) we are interested in the single moment of either p or q (identical solu-

tions will be obtained either way). Let us choose p for this discussion, hence the moment

of interest becomes

CI c
:
ð ð

@

@p2
þ @

@q2

� �
pwðp; qÞdpdq: (A15)

Upon the first round of differentiation, noting the independence of q on p, this term

becomes

¼ CI c
:
ð ð

@

@p
I� ppð Þwðp; qÞdpdq: (A16)

The integrand of Eq. (A16) is therefore

¼ CI c
: @

@pl
Iij � pipj

� �
: (A17)

The derivative of the identity tensor zeros out and using the chain rule of differentiation,

Eq. (A17) becomes

¼ CI c
: � @pj

@pl
pj � pi

@pj

@pl

� �
: (A18)

Simplification of Eq. (A18) yields

¼ �2CI c
:
pj: (A19)

Finally, upon integration this term becomes Eq. (A20), which we originally presented in

Eq. (19)

¼ �2CI

ð ð
c
:
pwðp; qÞdpdq ¼ �2CI c

:
C: (A20)

APPENDIX B: DERIVATION OF BENDING STRESS TERM FOR THE
BEAD–ROD MODEL

We start with the restorative potential function, U(p,q), for the Bead–Rod model, see

Strautins and Latz (2007).

Uðp; qÞ ¼ k
�

p: qþ 1ð Þ: (B1)
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The force on p, due to the internal restorative potential therefore is

Fp ¼ �
@Uðp; qÞ
@ðlBpÞ ¼ �

k
�

lB
I� ppð Þ : q; (B2)

where the derivative of the potential function is taken on the surface of a sphere. In Eq.

(B2), k
�

is the bending potential coefficient and its relationship to k (as seen in the Bead–-

Rod model) will soon be apparent. We will soon need the force on the q rod as well, but

this term simply results in another addition of Eq. (B2). One may notice that when

p¼�q, the term becomes 0 and no restorative force is exists within the fiber. We now

may use Kramer’s stress expression to quantify the fluid stress on the suspension result-

ing from the forces within it. The reader is referred to the work of Doi and Edwards

(1988) for a discussion of Kramer’s stress expression. Including the forces of the q rod,

we are lead to an expression for the stress tensor due to bending. The contribution of the

q rod is exactly the same as the p rod (on the average) and may be accounted for by tak-

ing twice the product of Eq. (B3) and integrating it with respect to Kramer’s stress

expression, resulting in

rbend ¼ �2 n
k
�

lB

ð ð
FpðlBpÞwðp; qÞdpdq

 !
; (B3)

where n is the number of fibers per unit volume. Inserting Eq. (B2) into Eq. (B3), see Eq.

(B4), and after some simplification, see Eq. (B5), we are left with two integrals to con-

sider in Eq. (B6)

rbend ¼ 2n k
�
ð ð

I� ppð Þ: qpwðp; qÞdpdq; (B4)

rbend ¼ 2n k
�
ð ð

qp� pp:qpð Þwðp; qÞdpdq; (B5)

rbend ¼ 2n k
�
ð ð

qpwðp; qÞdpdq�
ð ð

pp:qpð Þwðp; qÞdpdq

� �
: (B6)

At this point, we recognize the first integral as the definition of B, but the second integral

is unknown at this point. In general, this integral requires a closure approximation to be

written in terms of A and B. Such an integral also shows up in the derivation of the

Bead–Rod model, see Sec. III F for a discussion, and will be handled in the manner sug-

gested by Strautins and Latz (2007) by using a quadratic like closure for the mixed

moments, as

ð ð
pp: qpð Þwðp; qÞdpdq ¼

ð ð
ppp: qð Þwðp; qÞdpdq; (B7)

ð ð
ppp: qð Þwðp; qÞdpdq �

ð ð
ppð Þwðp; qÞdpdq

ð ð
p: qð Þwðp; qÞdpdq: (B8)

After identifying the first integral on the right hand side of Eq. (B8) as the definition of

A, the second integral is found to be the tr(B). Hence, after combining the results of Eq.

(B8) with Eq. (B6), the bending stress contribution becomes
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rbend ¼ 2n k
�

B� AtrðBÞð Þ: (B9)

After inserting definitions for k [Eq. (B10)] and the coefficient of drag on a sphere [Cd in

Eq. (B11)], using the theory of Doi and Edwards (1988) to quantify n [Eq. (B12)], and

algebraic simplification, we are then left with the stress equation [Eq. (B13)] as originally

presented in Eq. (21)

k ¼ 2 k
�

Cdl2
B

; (B10)

Cd ¼ 3pgmd; (B11)

n ¼ 4/a4
r

pð2lBÞ3
; (B12)

rbend ¼ gmk
3/ar

2
B� AtrðBÞð Þ: (B13)
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