Through careful study, scientists can understand the designs and
algorithms used in creation....Engineers can emulate these
designs and algorithms in the machines they develop.

— Phillip John McKerrow (1991)

2. Conceptual Design

Ultimately, design is a selection process. At the basic conceptual level, designing the
crawling vehicle consisted of selecting the physical structure of the robot and
determining how that physical structure would move in order to accomplish some
desired locomotion. These selection decisions were made with the overall goal of
developing a new category of vehicle that would be able to traverse difficult, uneven
terrain in a manner similar to caterpillars. Specifically, in order to achieve this design
goal, the design choices for the crawling vehicle were guided by the hypothesis that
the robot would achieve caterpillar-like mobility if its body structure and methods of

locomotion could be made to emulate those of the caterpillar.

The resulting conceptual design has both a body structure and method of
locomotion that are radically different from most previous legged vehicles. However,
in some other respects, such as sensors, terrain perception, and navigation, this
design will still rely heavily on technologies developed by previous mobile robot
researchers. This chapter explains the conceptual design of the multibody passive-
legged crawling vehicle, focusing on the morphology and motion programming
aspects of the design. In addition, it gives an overview of design issues that are

common to all legged mobile robots, including brief introductions to power supplies,

Chapter 2 — Conceptual Design 59

sensors, navigation, and controls so that the reader will have an appreciation for the

overall design of legged vehicles.

2.1 Basic Components of a Legged Robot

While the vehicle’s body structure and method of moving are the most basic parts of
its conceptual design, to complete a working design, other components are required
to support the locomotion function. The fundamental building blocks of a

functioning autonomous legged vehicle include:

1. Physical structure (including actuation system),

2. Motion program(s),

3. Power source(s),

4. Sensors,

5. Navigation and Control system(s).
Note that these subdivisions of the design are intimately related and interdependent.
Each subdivision puts design constraints on the others. Thus, in order to complete
the design of a successful robot, ALL of the design constraints will need to be
understood and taken into account simultaneously. This interdependency makes it
difficult to find a simple, logical sequence in which to describe the conceptual

design. This chapter will take a generally bottom-up approach in its discussion of the

basic components in the overall design of the crawling vehicle.

Chapter 2 — Conceptual Design 60

2.2 Physical Structure

The structure of this robotic vehicle evolved from research on Variable Geometry
Trusses (VGT’s) conducted at Virginia Polytechnic Institute and State University. In
fact, the impetus for this entire project was the suggestion made by Dr. Charles F.
Reinholtz to the author in September 1988 that a long-chain VGT manipulator could
be disconnected from its ground link and used to make a snake or worm-like
vehicle. During this same brainstorm meeting, the author proposed using the
caterpillar as the natural analogue for such a vehicle, citing its mobility and the

benefit of avoiding the friction and wear that would occur with a legless vehicle.

Looking at the caterpillar as a prototype for the physical structure of the robot, we
note that the caterpillar has a long, slender, and generally cylindrical body structure
that is divided up into several segments. These segments can contract, expand, and
tilt independently of each other. Most of the segments have a lateral pair of legs (e.g.
placed side by side relative to the longitudinal axis of the caterpillar body). As a

result, both the mass of the caterpillar and its legs are distributed along its length.

Therefore, to enable caterpillar-like mobility, the robot physical structure needs to
have places distributed along its length for mounting the lateral pairs of legs.
Furthermore, each pair of legs must be able to contract, expand, and tilt
independently of the pairs ahead of and behind it. This leads to a repetitive design
that imitates the lengthwise uniformity of the caterpillar body structure. Such an
arrangement is shown in Figure 2.1. Specifically, the conceptual design of the
crawling vehicle body structure is based on the idea of using an alternating
longitudinal sequence of “leg pair assemblies” connected to each other by
“actuation units”. The leg pair assemblies are the points of attachment for the pairs
of legs; the actuation units are flexible, actuated sections that can contract, expand,

and tilt in a controlled manner.

Chapter 2 — Conceptual Design 61

Actuation Units

o e\
N

~ 17

Leg Pair Assemblies

Figure 2.1 — The Basic Physical Structure of the Crawling Vehicle: An Alternating

Sequence of Leg Pair Assemblies and Actuation Units

Having this basic topology, what remains of the conceptual design of the physical
structure of the vehicle is to determine the characteristics of these actuation units

and leg pair assemblies.

2.2.1 Actuation Units

The selection of the actuation units is fundamental to the design of the vehicle
structure because they provide the mechanical means for producing the necessary
relative motion between the leg pair assemblies. This design decision determines the

mobility of the vehicle and its success when operating over extreme terrain.

2.2.1.1 Selection Criteria for the Actuation Unit Mechanisms

In order to have the necessary mobility to enable motion similar to that of caterpillar
segments, the actuation unit mechanism design must have a number of important
attributes (many of which are derived from caterpillar characteristics, as will be

discussed in Ch. 3).

Chapter 2 — Conceptual Design 62

First, it is desirable for the actuation units of the vehicle to all have identical
workspaces. Such an arrangement assures that if the front of the robot can travel
along a particular path, then the trailing "segments" of the robot will be able to

follow, thus simplifying path planning, trajectory planning, and controls.

Second, it is desirable for each actuation unit to have a large workspace so as to
allow large relative motions between its adjacent leg pair assemblies. This will enable
longer strides, resulting in greater mobility, higher speeds, and better energy

efficiency.

Third, it is desirable for the selected actuation unit mechanism design to have a
workspace that is symmetric about its longitudinal centerline. This is important
because it will allow the robot to travel in one direction as well as it travels in the
opposite direction. Specifically, the robot should be able to yaw to the left or yaw to
the right, roll clockwise or counterclockwise, pitch upwards or downwards, extend

left or right, and extend up or down, all with equal facility, respectively.

In addition to these workspace requirements, the actuation unit mechanism should
be simple from the kinematics analysis viewpoint. Ideally, the mechanism should
have simple, closed-form solutions for both its forward and inverse kinematics

problems. Where these basic kinematics analysis problems can be defined simply as:

* The forward kinematics problem (sometimes called the direct kinematics
problem) is the task of determining the position and orientation of the output link
of a mechanism relative to its base, when given the set of input joint values (e.g.

joint angles or offsets depending on the type of joints).

* The inverse kinematics problem entails determining the set of joint values that
will place the output link of a mechanism at a specified position and orientation

relative to the mechanism base frame of reference.

Chapter 2 — Conceptual Design 63

(It should be noted that it is often desirable to obtain higher-order derivatives for
both the forward and inverse cases and that sometimes multiple correct answer sets

exist, which indicate alternate assemblies of the mechanism.)

While simple closed-form solutions to these kinematics analysis problems are
desirable for the actuation unit mechanisms, more complicated closed-form
solutions or even iterative numerical solutions are acceptable if they can be
computed with sufficient resolution and rapidly enough to support real-time control

functions. Donner (1987) describes adequate real-time performance as follows:

Adequate real-time performance produces latency small enough for the task
at hand. Latency is the amount of time that elapses between two successive
opportunities for any specific process to receive CPU cycles and affect the
behavior of the system.

The selected actuation unit mechanism should also be both stiff and lightweight. The
stiffness is necessary to enable cantilever and bridging maneuvers for crossing large
ditch-like obstacles. Having lightweight actuation units is desirable because it
reduces the overall weight of the vehicle and thus generally improves the energy

efficiency of its locomotion.

Furthermore, the actuation unit mechanism should be designed with regard to
mechanical advantage so that excessive amounts of torque and power will not be
required to cause the vehicle to move. This will prevent the need for unnecessarily

large actuators.

Finally, while seeking to achieve all these design goals, it is important to select an

actuation unit mechanism design that is as simple as possible.

Chapter 2 — Conceptual Design 64

2.2.1.2 Variable Geometry Truss Technology

Judging from the criteria discussed in the prior sub-section, it is clear that the
mechanisms used for the actuation units will each require more than one degree of
freedom of mobility. Thus, these “mechanisms” are more properly termed
manipulators, since the term, mechanism, in its strictest sense, means a device

having only one degree of freedom.

Manipulators are comprised of two or more generally rigid links that are connected
to each other by actuated joints. By controlling the actuators, prescribed relative
motion can be produced between the manipulator base-frame of reference and
either an end-effector link or a platform. Manipulators can be categorized as serial,
parallel, or as a hybrid of the two. As their name implies, serial manipulators consist
of links that are connected in series by their joints so as to make an open-loop chain.
In contrast, parallel manipulators have links that are connected in parallel, so that
one or more closed-loop chains are formed. Hybrid manipulators possess both

open- and closed-loop chains.

Serial manipulators were eliminated from consideration as candidates for the

actuation unit mechanisms because, as Salerno (1993) explains it:

Each link of the [serial] manipulator is, in effect, a cantilever beam carrying
the full load of all the links further out in the chain. The individual members
of such a chain may be subjected to all possible types of loads: bending,
torsional, axial, and shear. Of these possible loads, the design is usually
limited by the effects of torsional and bending loads. Consequently, most
purely serial manipulators are inherently compliant and have relatively poor
load carrying capacities compared to their overall weight.

Thus, serial manipulators fail to meet the stiffness-to-weight requirements for the
actuation unit mechanisms. Therefore, the search for an appropriate mechanism
focused on parallel manipulators. The parallel links of such manipulators create

multiple load paths, resulting in a number of advantages. As Tsai (1999) states it:

Chapter 2 — Conceptual Design 65

In general, a parallel manipulator has the advantages of higher stiffness,
higher payload capacity, and lower inertia to the manipulation problem than
a comparable serial manipulator, at the price of a smaller workspace and
more complex mechanism.

Considering these facts, a class of parallel manipulator called a Variable Geometry
Truss, or VGT, was initially chosen as the prime candidate for the actuation unit
mechanisms because of its superior stiffness-to-weight ratio and its potential

mobility.

As their name implies, Variable Geometry Truss manipulators are based upon truss
structures. For many years, engineers and scientists have recognized the excellent
strength and stiffness properties of static trusses (Williams, 1979). A truss may be
defined as a device whose links carry only axial (pure tension or compression) loads.
To achieve this load-carrying property, all the links that comprise the truss must be
joined together in such a way that no bending moments can be transmitted from
one link to the next. These requirements lead to a variety of deltahedron-based
structures whose links always form a set of triangular faces (see Fig. 2.2). Although a
variety of truss configurations are possible, most common statically-determinate
trusses are formed from tetrahedrons, octahedrons, decahedrons, dodecahedrons,
or some combination of these (Arun, Reinholtz, and Watson, 1990). These unit cells

can be concatenated to make larger structures.

A VGT results when one or more links of a statically determinate truss are made
extensible. (Kinematically speaking, when a truss link is made extensible it becomes
a kinematic or prismatic pair, that is, two rigid links connected by a prismatic joint.
However, because the mechanisms described in this work are derived from trusses
and for the sake of simplicity, in this work, these extensible members will often be
referred to as simply “links”, “extensible links”, “variable length links”, or “prismatic

links”.) Controlling the length of these extensible members enables the shape of the

truss to be manipulated. For example, a tetrahedral truss composed of six links can

Chapter 2 — Conceptual Design 66

be provided with as many as six DOF’s without altering its basic truss structure.
Clearly, many combinations of basic truss units and actuation schemes are possible.
Furthermore, when two or more of these unit cells are connected along their
longitudinal axes to produce a long-chain VGT, the total number of variable-length
members is equal to the number of degrees of freedom of the VGT. Note that
making some links variable in length does not change the basic geometric structure
of the truss. Thus, the links of a properly designed VGT will still be primarily loaded
in tension or compression, and the VGT will retain the excellent stiffness-to-weight

characteristics of static trusses.

Triangle

Tetrahedron Octahedron
(Planar Truss)

Decahedron Dodecahedron

Figure 2.2 — Basic Truss Unit Cells

Much of the early work in adaptive (variable geometry) trusses was sparked by
NASA's interest in foldable, deployable space structures (Salerno, 1993). Many
schemes were devised to enable the trusses to collapse for compact storage.

Furthermore, VGT’s have also been previously used for actively damped structures,

Chapter 2 — Conceptual Design 67

robotic manipulators, and antenna controllers (Wynn, 1990; Warrington, 1991,
Reinholtz and Gokhale, 1987; Padmanabhan, 1989; Salerno, 1989 and 1993;
Tidwell, 1989).

2.2.1.3 Candidate VGT Unit Cells

As was shown in Fig. 2.1, it is required that each actuation unit mechanism be rigidly
attached at two opposite ends to its adjacent leg pair assemblies. For the sake of
stiffness, these connections should consist of three truss links composing one
triangular face of a VGT cell, rather than the structurally less stiff options of
connecting at a single joint or via a single truss link. Consequently, two planar faces

of the VGT must be allocated for use as connections to the leg pair assemblies.

When they are evaluated in the light of these connection requirements and the
workspace requirements described in sub-section 2.2.1.1, several of the basic truss

unit cells can be eliminated as the possible basis for a VGT-type actuation unit.

A VGT mechanism based upon a simple triangular truss might be adequate for some
laboratory tests and proofs of concept, but it is wholly inadequate for use on a
vehicle intended to move over 3-D undulating terrain, because such a mechanism

would only allow planar motions.

While tetrahedral VGT’s can be very stiff, they are eliminated from consideration for
two reasons. First, they have an insufficient number of links. Thus, they cannot
support enough actuators to satisfy the mobility requirements. Second, tetrahedral
cells lack the symmetry needed to make them usefully stackable. That is, they cannot
be stacked in a manner that makes it convenient to attach them to their adjacent leg

pair assemblies.

Chapter 2 — Conceptual Design 68

The decahedron and dodecahedron cells have more links than are desirable and
would not have the desired workspace symmetry. Hence, they would be awkward

and unnecessarily complicated for use with the actuation units.

An octahedral cell has twelve links that form eight triangular faces. Hence, two of
these faces can be rigidly attached to leg pair assemblies, and six links will still be left
over that could be made to be extensible. Furthermore, the octahedral cell is
symmetric so that long-chain structures can be formed by simply stacking units end-

to-end, as shown in Fig. 2.3.

Figure 2.3 — A Long-Chain Truss Structure Based Upon Six Octahedral Unit Cells

Thus, an octahedral cell is the best candidate for use as the basis for a VGT-type
actuation unit mechanism for the crawling vehicle. Other researchers have also
selected the octahedral cell for their own applications (Miura, et. al., 1985; Sincarsin

and Hughes, 1987).

2.2.1.4 Candidate Octahedral VGT’s

Having selected the basic VGT unit cell, the next step is to determine how many
octahedral cells will be used for each actuation unit and which of their rigid links will
be replaced with prismatic joints. Looking at octahedral-based VGT designs and

limiting the selection to fairly simple designs that have the required workspace

Chapter 2 — Conceptual Design 69

symmetry, two leading concepts emerge, the double octahedron VGT and the single
octahedron VGT. These concepts are illustrated in Fig. 2.4, where the thickened
sections on the links indicate the presence of linear actuators that enable those links

to extend and contract.

The first VGT concept is referred to as the double-octahedron VGT because its
overall geometry is formed by combining two octahedral unit cells. These two cells
share a common lateral triangular face. The three links that form this intermediate
triangular truss are the variable length members in this design, while the lengths of
the remaining links are all fixed (see Fig. 2.4). The double-octahedron VGT can be
used as an actuation unit mechanism by attaching a leg pair assembly to the rigid
triangular trusses on either end. This design for would enable the actuation units to

produce three DOF’s of mobility between successive leg pair assemblies.

Double Octahedral VGT Single Octahedral VGT
(a subclass of the
Stewart-Gough Platform)

Figure 2.4 — A Comparison of the Double Octahedral and Single Octahedral VGT’s

Thus, when using this VGT to manipulate the position of one leg pair assembly
relative to another, a motion planner can specify the location (X, y, z) of the leg pair
assembly to be controlled (the position problem) or the relative angle (a, B, y) of the
leg pair assembly (the gimbal problem). The necessary lengths of the prismatic links

that will achieve a given set of desired inputs (location and/or angle) are determined

Chapter 2 — Conceptual Design 70

by means of the inverse kinematics. For the double-octahedral VGT, the solutions to
both the position problem inverse kinematics and the gimbal problem inverse
kinematics are available in closed-form, so long as the two octahedral cells of the
VGT are identical (Padmanabhan, et. al.,, 1992). These inverse kinematics problems
can have up to 8 different solutions that represent different assemblies of the VGT
manipulator. The forward kinematics solutions for the position and gimbal problems
involve iterative calculations using a quasi-Newton method (Padmanabhan, et. al.,
1992; Reinholtz and Gokhale, 1987). However, these can be computed rapidly

enough to enable real-time control.

In the VGT illustrations presented so far, the nodes of the trusses have been
rendered as simply meeting at a point. However, for an ideal truss to be formed, no
bending moments or torques can be transmitted through these nodes. Hence, the
nodes of ideal trusses allow relative rotation between their connected links so that
the links will carry only pure tension and compression loads. For a functioning VGT,
the connecting nodes require large angles of relative rotation between many of the
links. Hence, on VGT’s, some of the node connections must be replaced with
revolute joints. Figure 2.5 shows a double-octahedral VGT that was designed and
constructed by Paul Tidwell (1989). Looking closely at the figure, it can be seen that
there are revolute joints located at most of the link connection nodes. Also seen in
the figure are the DC motor-powered lead screws that actuate the three prismatic

joints of this VGT design.

As the three lateral joints of a double-octahedral VGT are extended, the truss will
become progressively wider and shorter. By doing so, a properly designed double-
octahedral VGT can fold into a nearly flat configuration. This collapsibility feature

would help make the crawling vehicle easier to store in confined spaces.

Chapter 2 — Conceptual Design 71

Figure 2.5 — A Functional Double-Octahedral VGT

The workspace of the double-octahedron also enables it to produce long strokes
along its longitudinal axis, which would allow the vehicle to make long strides.
Furthermore, its workspace also enables large yawing and pitching angles that could

help the vehicle perform sharp turns.

However, despite its excellent workspace in some respects and its collapsibility, the
double-octahedral VGT design was found to be inadequate. Specifically, having

actuation units based on this design would probably be sufficient to enable

Chapter 2 — Conceptual Design 72

earthworm-type locomotion, but a study of caterpillar locomotion (described in the
next chapter) indicated that the 3 DOF's provided by this design would be

insufficient to enable the robot to emulate the mobility of caterpillars.

Therefore, because mobility considerations are preeminent in this conceptual
design, the second VGT concept was deemed to have better potential for use in the

actuation units.

The second concept for a VGT-based actuation unit mechanism uses only one
octahedral unit cell and is therefore referred to as the single-octahedron VGT. In this
design, the triangular truss faces on both ends of the octahedral unit cell are rigidly
attached to its adjacent leg pair assemblies. All six of the longitudinal links of the
truss are made to be variable length links (see Fig. 2.4). The prismatic joints of the
variable length members are powered by linear actuators. This arrangement

produces six DOF’s contained within a single octahedral cell.

The single-octahedral VGT can also be considered as a special truss-like case of the
general Stewart-Gough platform mechanism (Stewart, 1965-66). In this actuation unit
application, the base and the moving platform of the Stewart-Gough mechanism are
the leg pair assemblies attached to both of its ends. Within a limited workspace,
each leg pair assembly of the robot can take any arbitrary position and orientation
relative to its adjacent leg pair assemblies, thus giving the crawling vehicle increased

range of motion and terrain adaptability.

Thus, when using this mechanism to manipulate the position of one leg pair
assembly relative to another, a motion planner can simultaneously specify both the
location (X, y, z) and relative orientation (a, B, }) of the leg pair assembly to be
controlled. Solving the inverse kinematics to determine the lengths of the prismatic
links required to produce a specified relative position is a remarkably simple
computation for the single octahedron VGT and all forms of the Stewart-Gough

platform. Specifically, the inverse kinematics solution is available in closed-form and

Chapter 2 — Conceptual Design 73

can be computed very rapidly for use in real-time control (Stewart, 1965-66, Tsai,

1999). (Note that the inverse kinematics solution will be presented in Ch. 4.)

In contrast, the forward kinematics problem, that is, determining the position of the
moving platform relative to the base when given the lengths of the six prismatic
links, can only be solved by iterative means (Padmanabhan, et. al, 1992). The
general case Stewart-Gough platform has 40 forward kinematics solutions
(Raghavan, 1993). Wen and Liang (1994) presented a closed-form governing
polynomial equation for the forward kinematics, but because it is a 20" degree
polynomial, it is itself not solvable in closed form. Wen and Liang (1994) have
developed a program that can solve this equation to 7 digits of accuracy within 4
seconds when run on a personal computer that uses an 80386 CPU. In view of this
computational burden, it may be preferable to solve the forward problem using a
numerical method that iterates upon inverse kinematics solution (hence, taking
advantage of the rapid, closed-form inverse). Salerno and Reinholtz (1990) described
such an iterative approach, which used a quasi-Newton method to solve the 3-3
case of the Stewart-Gough Platform. Similarly, Nguyen and his colleagues (1991)
described an iterative forward solution that used the Powell Direction Set Method to
solve the 6-6 case of the Stewart-Gough Platform. However, at this stage of the
research, it appears unlikely that the forward solution will need to be done very
often. It may only be used to recalibrate the actuators after initially powering-up the
robot, after an unusual movement (such as a fall), or if errors accumulate during the
robot's operation. Hence, rapid calculation of the forward problem is not as critical

as it is for the inverse problem.

In Fig. 2.4, pairs of longitudinal members are shown meeting at points. Mechanically,
this could be realized by having coincident spheric joints (e.g. one spheric joint
would be mounted inside another and they would have the same center of rotation).
Such an arrangement would make the single-octahedral VGT an ideal truss.

However, having coincident spheric joints limits the angles of rotation for the links,

Chapter 2 — Conceptual Design 74

which in turn limits the workspace of the VGT. Therefore, as a practical matter, it is
often best to use a separate spheric joint for connecting each of the variable length
members to the rigid end-planes of the truss. These non-coincident spheric joints
allow some non-axial loads to be transmitted through the rigid links of the single-
octahedral VGT, thus preventing it from being an ideal truss. However, by placing
the spheric joints close together, these non-ideal effects can be minimized, and the

VGT will still retain most of the high stiffness-per-unit-weight of static trusses.

Figure 2.6 explicitly shows the joint arrangement used with a single-octahedral VGT
or truss-like Stewart-Gough platform. As shown in the figure, each of the six
kinematic chains connecting the base and the moving platform is a spheric-prismatic-
spheric (SPS) limb. However, because this construction possesses a passive
rotational freedom about the limb axis, the same effective mobility can be also

obtained by using a spheric-prismatic-universal limb (SPU) arrangement.

@ Moving

.\ \ \ Platform

-

Figure 2.6 — A Stewart-Gough Platform

The actuated prismatic joints can be realized by using either hydraulically or

pneumatically driven cylinders or motor-driven lead screws or ball screws. If screws

Chapter 2 — Conceptual Design 75

are chosen, it can be helpful to use double nuts preloaded with spring washers to

eliminate backlash (Fichter, 1986).

Because universal joints (i.e. Hooke joints or gimbals) generally have greater angular
workspace than spheric (ball) joints, it may be desirable to have U-joints on both
ends of the limbs. For the case of hydraulic or pneumatic piston prismatic joints, this
could be accomplished by using a universal-prismatic-revolute-universal (UPRU)
chain, where the additional non-actuated revolute rotates about the prismatic axis.
Or, in the case of lead screw or ball screw prismatic joints, a USRU chain could be
used, where again the additional revolute joint has the same axis as the screw so as
to decouple the screw angle and extension (and thus avoid having to complicate the
kinematics by accounting for extension/rotation coupling when the platforms roll

relative to one another).

2.2.1.5 Alternate Stewart-Gough Platform Mechanisms

Having decided upon the single-octahedron VGT (a subclass of the Stewart-Gough
platform) for use as the actuation unit mechanisms, the selection of the specific
configuration of the joints still remains. As discussed in the previous section, the
joints could be placed close together to preserve truss-ike stiffness, which is
important for cantilevering and bridging across large ditch-like obstacles (these
operations were shown in Fig. 1.7 and Fig. 1.8). However, it should be recognized
that other, less truss-like Stewart-Gough platform designs can also have the
necessary mobility and that mechanical advantage is also an important factor.
Therefore, rather than limiting the design to only the truss-like subclass of Stewart-
Gough platforms, the more general cases of the Stewart-Gough platform should also

be considered.

Considerable freedom exists in the choice of the specific configuration of the spheric

joints. Even if we limit the locations of the spheric joints on each end of the Stewart-

Chapter 2 — Conceptual Design 76

Gough platform to be co-planar (which simplifies the forward kinematics (Tsai,
1999)), there still remain two infinities (one for x and one for y) of possible locations
for each spheric joint, for a total of 24 infinities of possible configurations for the
Stewart-Gough platform mechanism. However, some care must be taken in these
joint location selections to avoid designing in the architectural singularities described

by Ma and Angeles (1991).

The actuation unit design that was initially considered is a truss-like design that
separates the six spheric joints on each side of the actuation unit into three widely
separated pairs. The two joints in each pair are placed as close as possible to each
other without causing interference between the attached links so as to approximate
meeting at a single point. Thus, this design approximates an octahedral VGT cell and
consequently retains much of the high stiffness to weight ratio of an ideal truss.

Figures 2.7 and 2.8 illustrate this joint configuration.

The locations of the joint pairs were chosen so as to make the bottom and top links
parallel to the ground when the vehicle is in a neutral stance. This constant ground
clearance design requires the two diagonal links (seen in Fig. 2.7) to have longer,

more powerful actuation strokes than the other four prismatic links.

Another candidate actuation unit was developed by Paul Mele (1991) in his baseline
detail design of the physical structure of a multibody passive-legged crawling vehicle.

The resulting “Mele configuration” design is shown in Fig. 2.9 and Fig. 2.10.

In his design, priority is given to using the same components for all of the prismatic
links, while attempting to maximize the mechanical advantage and the workspace of
the mechanism. Therefore, the variable length links of the actuation units were

constrained to have the same range of motion.

Chapter 2 — Conceptual Design i

A
<

TOP LINKS

]
]
]
i
REAR LEG PAIR —= i le—FRONT LEG PAIR
]
]
]
]
i

N
/ N__| MIDDLE LINKS

I (DIAGONALS>
I
I
I
I
I
I
’ I I
I
I
I
I
I
|

<
A

Figure 2.7 — Side View of the Initial Configuration of the Stewart-Gough Platform Spheric
Joints (lllustration after Mele (1991))

eF
N FRONT JOINT
. 7= TRIANGLE

—— REAR JOINT
TRIANGLE

Figure 2.8 — Section A-A View of the Initial Configuration of the Stewart-Gough Platform
Spheric Joints (lllustration after Mele (1991))

By careful placement of the spheric joints, the Mele configuration allows the use of
interchangeable linear actuator components while having better mechanical
advantage when initiating lifting motions and sacrificing little, if any, of the

workspace or stiffness of the initial joint configuration design (Mele, 1991).

Chapter 2 — Conceptual Design 78

TOP LINKS

REAR LEG PAIR —= le—FRONT LEG PAIR

~] MIDDLE LINKS
T (DIAGONALS)

ety

<!
A

Figure 2.9 — Side View of the “Mele Configuration” of the Stewart-Gough Platform Spheric
Joints (After Mele (1991))

FRONT JOINT
TRIANGLE

REAR JOINT
TRIANGLE

Figure 2.10 — Section A-A View of the “Mele Configuration” of the Stewart-Gough Platform
Spheric Joints (After Mele (1991))

2.2.2 Leg Pair Assemblies

Recall from Section 2.2 that the leg pair assemblies are intended to provide places
for attaching lateral pairs of legs and feet and also a means of connecting successive
actuation units of the vehicle body to each other. Recognizing that the vehicle also

requires containers for carrying and protecting power components, sensors,

Chapter 2 — Conceptual Design 79

controls, and payload (which could be cargo, instruments, manipulators, etc.), and
that the vehicle mass should be distributed along its length, it seems logical to

combine all these functions into the design of the leg pair assemblies.

Therefore, each leg pair assembly consists of the following components: a payload
box, two legs, two feet, and either six or twelve spheric joints (depending upon
whether the leg pair assembly is mounted at one of the ends of the robot or

between two other leg pair assemblies). See Fig. 2.11.

As shown in the figure, the two legs are attached to the bottom of the payload box,
one near each lateral edge (for greater lateral stability). Also, six spheric joints
(represented in the Fig. 2.11 by small ellipses) are attached to both the front and the

rear sides of the payload box.

Figure 2.11 — A Leg Pair Assembly
The payload boxes are crucial to the design of the leg pair assembly because all of

the other components are either mounted onto them or carried inside of them.

Structurally, the payload boxes must be stiff and strong to provide the hard-points for

Chapter 2 — Conceptual Design 80

mounting the legs and also to support the weight of neighboring actuation units and

leg pair assemblies during cantilever and bridging maneuvers.

The payload box consists of a framework overlaid by a skin material. It may also
have an internal truss for reinforcement. However, the locations for the truss nodes,
and hence, the overall shape of such a truss, are dependent upon the final
configuration of the Stewart-Gough platform spheric joints that are mounted to the
payload box. (Note that, since the payload box will be a rigid frame in order to
protect its contents, the non-ideal truss characteristics resulting from the non-

coincident spheric joints become less important.)

The two legs are not actuated. Additional actuation for the legs is not required for
mobility because the flexible “body” of the vehicle can already position the leg pair
assembly with 6 DOF'’s. For the sake of energy efficiency, at some future date it may
be desirable to add a single DOF to each leg pair assembly for lifting the legs
independently of the payload boxes. However, this dissertation assumes a

conceptual design with non-actuated legs.

During locomotion there will be inevitable uncertainties concerning the relative
positions of the feet and the terrain. Therefore, the leg design should include a
vertically aligned, spring-loaded shock absorbing translational freedom. The goal of
this feature is to protect the vehicle in cases when, at the end of a stride, the feet
contact the ground sooner (and hence at a higher velocity) than anticipated by the
control system. Specifically, such a design should lower the force of impact to a safe
level, decelerate the falling leg pair assembly, and give the control system time to

react and adapt to any terrain irregularities.

The simplest way of accomplishing this is to add spring-loaded prismatic joints to the
legs. Specifically, this can be implemented by constructing each leg using two
hollow, telescoping sections. The protected cavity formed within these sections

would contain an appropriately sized captive cylindrical helical spring. In order to

Chapter 2 — Conceptual Design 81

avoid large leg bending moments and foot shear forces when the leg pair assembly
is lowered to the ground, the portions of the two legs that telescope must be

parallel.

As a leg pair assembly is lowered to the ground, the leg prismatic joints will be
progressively compressed and the shock-absorbing springs will convert some of the
leg pair assembly gravitational potential energy and store it as strain energy. Because
of the damperless spring-loaded prismatic leg design, virtually all of this energy will
later be released when lifting a leg pair assembly at the beginning of the next stride.
Thus, the spring forces reduce the initial lifting force required and accelerate the

stride motion.

However, some constraints must be imposed on the allowable spring stiffness and
stroke length of the shock absorbers. First, if the spring forces are too high, it is
possible that, when supporting leg pair assemblies are supposed to be firmly planted
on the ground, their upper legs and payload boxes could bounce because they
would be suspended by the springs. These oscillations could cause difficulties in the
trajectory execution of the neighboring leg pair assemblies. Instead, the shock
absorbers should become rigid whenever the full weight of the leg pair assembly is

upon them.

Therefore, the prismatic joint design will use a spring with an appropriate operating
stroke length and spring constant so that its peak force (F = kx) will be less than the
minimum weight that will be exerted upon the leg when its leg pair assembly is
placed on the ground. Furthermore, the design will feature a mechanical stop that
halts the compressive strokes and locks the prismatic joint to make the leg rigid.
Rather than simply using a pin or flat plate for the stops (which could allow some
unwanted translation of the lower leg within the upper leg, thus reducing rigidity), a
mechanical stop design that includes mating conical surfaces (hence restraining 5

DOF) should be used. Finally, the mechanical stops should be designed with

Chapter 2 — Conceptual Design 82

sufficient strength to withstand the large weight forces they will be required to

support.

Second, there needs to be some means of limiting the stroke length so that the
lower leg does not extend indefinitely and possibly allow the foot to collide with the
terrain when it is supposed to be off of the ground. This is accomplished by having a
second mechanical stop that halts the extension stroke of the leg when the leg pair

assembly is lifted off of the ground.

Third, when the feet are lifted off of the ground while a leg pair assembly is being
moved, inertial forces might induce foot bouncing, resulting in unwanted vibrations.
This can be prevented by sizing the relative lengths of the captive spring and the
cavity it operates within so that the spring will exert a moderate force against the

second mechanical stop when the lower leg is fully extended.

Finally, the stroke length of prismatic joint should be limited because the longer the
joint stroke, the higher the leg pair assembly mass must be lifted in order to prevent
the feet from colliding with the ground unintentionally. While the springs store some
energy that help lift the leg pair assembly on each stride, they do not provide all of
the energy necessary for lifting. Therefore, the use of the shock absorbing springs
does cost some energy in terms of work against gravity, so they should not be made

longer than necessary to perform their shock protection function.

Note that many of the proposed applications of the crawling vehicle entail operating
within “dirty” environments involving exposure to dust, moisture, and radioactive,
toxic, and corrosive substances. Therefore, when operating in such environments, it
may be desirable to add flexible, protective rubber boots to seal the annular opening
of the prismatic joints. These cylindrical boots should be molded with a bellows-like

shape to allow the free movement of the joints.

Chapter 2 — Conceptual Design 83

The two feet are connected to the legs by ankle joints having two relative, passive
rotational DOF’s to accommodate surface irregularities. These ankle joints can be
spring-loaded so as to restore the feet to a neutral orientation whenever they are
lifted off of the ground. This will help enable the feet to adapt to terrain irregularities
at the next foothold. Once again, when operating in dirty environments, it may be

desirable to add flexible, protective rubber boots to cover the ankle joints.

For most operating environments it will be desirable to imitate animals by including
compliant soles in the design of the feet. Properly specified, this compliance will
help reduce shock and will damp out chatter whenever the feet impact the ground.
The final foot design will depend upon the terrain over which the vehicle is expected
to operate. If indoors, then the feet may have non-marking synthetic rubber treads; if
operated mostly over pavement, concrete, or smooth rocky ground, then carbon
rubber soles would probably be appropriate; on common soils and turf, rubber
cleats should work well; and on snow and very soft sand, each foot could have a
single, large, spade-like cleat for longitudinal traction with a horizontal disk mounted

just above it to prevent the foot from sinking down too deeply (see Fig. 2.12).

Leg

T

Disk

Cleat

Soft Terrain such as Sand or Snow

Figure 2.12 — A Foot Design for use on Soft Sand or Snow

Chapter 2 — Conceptual Design 84

This assembly of payload box, two legs and feet is rigid, and moves as a unit; for

convenience, it will be referred to as a "leg pair assembly", or simply, a "leg pair".

2.2.3 Summary of the Physical Structure

The primary difference between this vehicle and other legged robots is that, while
most legged robots have a single rigid body with actuated legs, this robot has an
actuated multibody structure with passive legs. This arrangement imitates the body
structure of caterpillars. Specifically, the proposed crawling vehicle is constructed of
a lengthwise chain of at least 4 “leg pair assemblies” that are connected to each
other by “actuation units” composed of Stewart-Gough platform mechanisms. These
Stewart-Gough platforms enable each leg pair to move independently of the leg
pairs ahead of and behind it with 6 degrees of freedom. This relative motion of the

leg pairs can be used to bring about locomotion.

When operating on rough terrain, this design benefits from being a legged vehicle
(as described in Section 1.4) and from having a multibody structure (as described in
Section 1.5). This concept also has a number of other advantages. Like its biological
counterpart, the caterpillar, the vehicle has an approximately even lengthwise
distribution of both its mass and its supporting legs. This reduces the peak ground
pressure and soil damage, simplifies path planning, and helps enable bridging and
cantilever maneuvers for crossing large obstacles. The lengthwise uniformity of the
design simplifies the manufacture of the hardware, allows parts to be
interchangeable, and results in the actuation units having identical workspaces,
which, in turn, simplifies the motion planning and control of the vehicle. These
actuation unit workspaces are symmetric about their longitudinal centerlines and are
similar to the “workspaces” of caterpillar segments (as will be discussed in Ch. 3).
The Stewart-Gough platform mechanisms that are used for the actuation units are

stiff, lightweight, and possess an inverse kinematics solution that can be computed

Chapter 2 — Conceptual Design 85

very rapidly. Furthermore, the design has a small frontal cross-sectional area relative
to its mass, enabling it to travel through narrow passages and closely spaced

obstacles.

Figures 2.13 and 2.14 show conceptual models of the multibody passive-legged
crawling vehicle using two different configurations of the Stewart-Gough platform
mechanism. In Fig. 2.13 the robot uses a configuration where the diagonal links of
each actuation unit are longer than the other four prismatic links. In Fig. 2.14 the
robot uses the “Mele configuration” for the spheric joints, which enables the use of
identical actuated links throughout the robot and results in greater mechanical

advantage for lifting leg pairs (Mele, 1991).

When operating in dirty environments, it may be desirable to add flexible coverings
(e.g. bellows-like coverings, or boots, perhaps made of rubber) to cover all of the
spheric, revolute, and prismatic joints individually. Alternatively, a large, flexible,
tubular boot could be attached from each leg pair to the next so as to surround and
protect the entire actuation unit between them. (Such a “skin” arrangement would

make the vehicle resemble its natural counterpart even more strongly.)

In addition to the examples shown in Fig. 2.13 and Fig. 2.14, many other Stewart-
Gough configurations are also possible. The exact specification of which particular
Stewart-Gough platform would be best for a particular application of the multibody
passive-legged crawling vehicle is within the domains of the configuration and
detailed design stages rather than the conceptual design addressed here. Making an
informed design decision on this matter requires extensive analysis. While not
selecting a particular Stewart-Gough platform configuration from the myriad of
possibilities, this work supports the configuration design function by creating tools
for synthesizing, analyzing, and simulating a virtually limitless variety of multibody
passive-legged crawling vehicle designs. These configuration design tools will be

described in detail in Chapters 4, 5, and 6.

Chapter 2 — Conceptual Design 86

Figure 2.13 — A Multibody Passive-Legged Crawling Vehicle using a VGT-like

Configuration for the Spheric Joints of the Stewart-Gough Platform Mechanisms

Figure 2.14 — A Multibody Passive-Legged Crawling Vehicle using the “Mele

Configuration” for the Spheric Joints of the Stewart-Gough Platform Mechanisms

Chapter 2 — Conceptual Design 87

2.3 Introductory Motion Programming

Beyond selecting the physical structure of the robot, the other major conceptual
design issue involves deciding how that physical structure should move to produce
effective locomotion. This section gives an overview of this topic and introduces
some nomenclature for describing the robot's motions. A specific algorithm for

motion programming will be presented in Ch. 5.

As discussed in Section 1.8.3, there are two main approaches for programming the
motions a caterpillar-like flexible robot such as the multibody passive-legged
crawling vehicle: motion programming based upon shape control methods, such as
those developed for long-chain VGT/hyper-redundant robot research, and stride-
oriented motion programming methods similar to those used by walking machines.

This research will pursue the latter approach.

2.3.1 Hierarchy of Motion

The following "hierarchy of motion" is a set of useful definitions for describing legged
robot locomotion. Note that there is an analogous hierarchical arrangement in the

control system, as will be shown in Section 2.6.

The motion hierarchy ascends from an individual movement, through a leg step,
through a locomotion cycle, and up to a gait. An individual movement is an
incremental displacement of a leg pair. A leg step is the completion of a sequence of
individual movements that moves a leg pair one step forward. A locomotion cycle,
or machine step, is when all of the machine's legs have each completed a step. A

gait is one or more locomotion cycles that use the same distinct leg step sequence.

Chapter 2 — Conceptual Design 88

2.3.2 Basic Maneuvers

The physical structure of the multibody passive-legged crawling vehicle is
geometrically capable of performing many types of gaits. Two of the classes of gaits,
wave gaits and sidestepping gaits, are introduced via several examples. For the sake
of simplicity, the example leg steps are broken down into a sequence of three
rudimentary movements: lifting a leg pair, moving it forward, and lowering it to the

ground (see Fig. 2.15).

DIRECTION OF MOTION

NEUTRAL STANCE

LIFT MOVEMENT

FORWARD MOVEMENT

7 [N [N

r1

LOWER MOVEMENT

i

Figure 2.15 — A Simplified Leg Step

Many animals, including the caterpillar, use wave gaits. Wave gaits have been shown
to have optimal longitudinal stability for hexapod vehicles (McGhee, 1985; Song and
Waldron, 1989). The following three examples demonstrate basic maneuvers using a

very simple wave-type gait.

Chapter 2 — Conceptual Design 89

Forward motion, shown in Fig. 2.16, is initiated by lifting the rearmost leg pair,
moving it forward a specified step length, and then lowering it. As the feet of the
rearmost leg pair touch the ground, the second leg pair from the rear is lifted and
goes through the movements of its leg step. Then the third leg pair moves, and so
on. To an observer, this motion looks like an actual wave traveling up the body of

the vehicle.

DIRECTION OF MOTION

Z
. l
LEG STEP OF
i T
4TH LEG PAIR % 7
Z
LEG STEP OF 1¢X l
3RD LEG PAIR 7 7 7
Z
LEG STEP OF t*“ E
[\
°PND LEG PAIR % Y
Z _
LEG STEP OF L%“ E
1 ,
IST LEG PAIR 7 7
z - -
ONE MACHINE 1%* L l
| 1 1 |
STEP COMPLETED ¥ Y.

Figure 2.16 — Forward Motion Using a Simple Wave Gait

Chapter 2 — Conceptual Design 90

Reverse motion can be implemented in a similar manner, only the leg steps start
with the front leg pair and progress towards the rear of the vehicle. To achieve
higher speeds, the controller could initiate new locomotion cycles before the first
locomotion cycle is completed, causing several "waves' to progress along the

vehicle simultaneously.

Turning motion, shown in Fig. 2.17, can be used to navigate curved paths. When a

leg pair reaches a curve in the vehicle path, its leg step is modified.

o | o |
MOTION STARTS X
® ®
. el L~
MACHINE STEP 1 X
®
. il
®
MACHINE STEP 2 X
e
j il
MACHINE STEP 3 f,x I
Y
MACHINE STEP 4 f?x I
Y

DIRECTION
oF

MOTION

Figure 2.17 — A Simple Turning Maneuver

Specifically, turning motion is produced by lifting the leg pair, rotating it through an

angle, translating it along a chordal direction, and then lowering it.

Chapter 2 — Conceptual Design 91

Climbing up and down over smooth slopes is accomplished in an identical fashion
to forward motion. However, when small step-obstacles must be crossed, a simple

climbing motion can be used, as shown in Fig. 2.18.

DIRECTION OF MOTIDON

—
z

L.

MOTION STARTS £ 1 I l
v

MACHINE STEP 1 E 1 I

T V.

MACHINE STEP 2

v
=17
MACHINE STEP 3 7
MACHINE STEP 4 L]
v

Figure 2.18 — Climbing Over a Small Obstacle

Chapter 2 — Conceptual Design 92

This simple climbing motion is produced by bringing the rear leg pairs forward, lifting
the front leg pair and extending it over the obstacle, and then repeating this pattern
until all the leg pairs have cleared the obstacle. These steps are fundamentally the
same as the forward motion sequence except when the lift movement must be

increased to clear the obstacle.

The vehicle should also be capable of traversing larger obstacles by extending two
or more consecutive leg pairs off of the ground at the same time. These bridging and
cantilever maneuvers were illustrated in Fig. 1.7 and Fig. 1.8. However, such
advanced maneuvers may require the use of shape control methods in addition to

the stride-oriented motion programming methods presented in this work.

Although the author has not observed the caterpillars doing so, the proposed
crawling vehicle would also be capable of performing sidestepping gaits.
Sidestepping locomotion, shown in Fig. 2.19, can be produced by simultaneously
lifting the two inner leg pairs, swinging them to the side, lowering them, then lifting
the two outer leg pairs, swinging them to the side, lowering them, and then
repeating the sequence. Note that other types of sidestepping gaits are also

possible.

One application where this design has a disadvantage relative to wheeled vehicles
and other walking machine designs is in passenger transport. For example, with most
single-body walking robots, one of the motion programming objectives is to smooth
fluctuations in the velocity of its rigid body so as to reduce power requirements and
make a more comfortable ride. Hence, the velocity of their rigid body can be more
or less continuous. In contrast, the individual bodies of a multibody legged vehicle
have, by definition, an intermittent forward motion. In addition, if the legs of the
multibody vehicle are passive, each of the bodies must also be lifted from the

ground with every step.

Chapter 2 — Conceptual Design 93

]

i

10 7T
Hy

DIRECTION OF MOTION

]

]

Figure 2.19 — The Sidestepping Gait

Thus, a passenger occupying one of the individual bodies would be exposed to a
possibly disconcerting intermittent motion as the body rises from the ground, swings
forward, and then returns to the ground with each step. Hence, while the crawling
vehicle might be appropriate for an amusement park ride, it is an unlikely candidate
for serious passenger transport. Note, however, that this intermittent motion also has
some compensating advantages for sensing when the robot operates autonomously

(these will be discussed in Section 2.5).

Chapter 2 — Conceptual Design 94

2.4 Power Source

In order for the crawling vehicle to operate, power in electrical form must be
provided for the on-board sensors and control processors. Furthermore, power, in
some form, must also be provided for the vehicle actuators. As explained in Section
2.2.1.4, either electric motors, hydraulic pistons, or pneumatic pistons could be used
to actuate the prismatic joints of the vehicle’s Stewart-Gough platform mechanisms.
In a laboratory environment, a test vehicle could be "tethered" to a power supply by
an electrical cable or perhaps hydraulic or pneumatic hoses. Such an arrangement
may also be sufficient for some practical applications, such as fire, mine, or
earthquake disaster rescue, where the crawler could operate while tethered by an

umbilical cable reeled out from a “mother” transport vehicle.

To travel long distances, however, an on-board power source is required. For
terrestrial applications, an air-breathing engine can be used as the prime mover to
drive either an electric generator (for electric motors), a pump (for hydraulic pistons),
or a compressor (for pneumatic pistons). For non-terrestrial applications, such as a
planetary exploration rover, air-breathing engines may not be a possibility (at least
not in our solar system). Radioisotope Thermoelectric Generators (RTG's) have been
successfully used on numerous interplanetary missions, including the Apollo Moon
landers and Viking Mars landers, among others (Cassini Public Information [Internet],
1998). However, according to a study by the Space Exploration Initiative Synthesis
Group (1991), plutonium has become so scarce that using fuel cells may be
preferable. With such a system, the rover vehicle will need to periodically go to a
base camp to return its exhaust product (water) so that it can be regenerated into

oxygen and hydrogen fuel.

For most power systems, some means of temporarily storing energy will also be

needed. This could take the form of one of the various types of electrochemical

Chapter 2 — Conceptual Design 95

batteries, flywheels, hydraulic accumulators, or pneumatic accumulators, depending

upon the actuation system chosen.

The performance of the crawling vehicle will depend significantly upon the power
capacity per unit of weight, available peak power output, energy efficiency, energy
storage capacity per unit of volume, physical size, weight, and reliability of the
power system. However, specification of the power source depends upon, among
other things, the specific vehicle application, the vehicle mass and volume, and the

type of actuators chosen, and is therefore beyond the scope of this dissertation.

2.5 Sensors

As discussed in Section 1.2, terrain sensing has been one of the primary
impediments to autonomous locomotion over extreme terrain. This work does not
propose new sensing technologies; instead, it proposes a new conceptual design in
which mobility performance is more tolerant of sensing errors. (Indeed, one of the
main reasons for using the caterpillar as a natural analogue for an all-terrain vehicle

was its superb all-terrain mobility despite its limited sensory ability.)

Sensors enable a mobile robot to measure its own operating parameters and the
attributes of its environment. Thus, sensors are a necessity if a robot is to use closed-
loop controls or react to its environment. The sensors of a robot can be classified as

|/l

either “internal” or “external”, depending upon their role (McKerrow, 1991). Internal
sensors measure the operating parameters of the robot itself, such as the positions
of all of its body members, thus approximating the proprioceptive sensing and sense
of balance of living organisms. External sensors measure the attributes of things
outside of the robot, that is, the operating environment of the robot, such as the
geometry of the surrounding terrain, thus mimicking the touch, echolocation (used

by bats and porpoises), and vision sensing of organisms.

Chapter 2 — Conceptual Design 96

2.5.1 Internal Sensors

At the most basic level of the crawling vehicle control system, all of the prismatic
joint actuators must be accurately controlled. Therefore, in order to execute
programmed motions correctly, each actuator needs some sort of feedback sensing.
The type of sensors used depends upon the form of control selected. Sensors for
position, velocity, and force, or some hybrid or combination of these methods are
likely candidates. This type of actuator feedback control, entailing the use of
encoders, resolvers, tachometers, and strain gages, is well understood and has been
successfully implemented in many industrial robots and motion control systems.
Some difficulties arise for this vehicle because, even for the simplest locomotion, it is
necessary to control twelve actuators simultaneously. Thus, there needs to be a large

number of input channels for the servomechanism feedback sensors.

Just as animals and humans are aware of the magnitude of their physical exertions, it
may be desirable to add such a sense to the crawling vehicle. For example, electric
current sensing could be used to determine when an actuator or amplifier was near

saturation.

Leg force sensors can be used to measure the weight supported by each leg, the
lateral forces on the legs, and the forces of foot impact, as well as to determine
whether a leg is in contact with the ground. For example, in the cases of the OSU
Hexapod (Klein, et. al., 1983) and the Dante Il robot (Bares and Wettergreen, 1999),
lateral leg forces were sensed using two strain gages on each leg, while axial leg
forces were measured by piezoelectric load cells. Strain gages are compact and
have no moving parts (although they strain along with the underlying part).
Piezoelectric load cells are also compact and can handle high impact loads.
However, the load cell used with the OSU Hexapod needed to be recalibrated
often. Leg force information gathered with these sensors is useful for balancing the

vehicle’s weight between the supporting feet, estimating the shear forces acting on

Chapter 2 — Conceptual Design 97

the foot/ground interface, detecting leg collisions, and implementing reactive control

to limit the contact forces.

Attitude sensors endow the vehicle with the ability to sense the direction of gravity
relative to the robot. This information helps the controller predict whether a certain
move would cause the vehicle to tip over. For example, Klein, Olson, and Pugh
(1983) used both oil-damped pendulums and a vertical gyroscope for attitude

sensing of the OSU Hexapod.

Additional internal sensors could be used to determine the heading direction
(compass), remaining fuel or battery charge level, and to test and verify the

operation of various system components.

2.5.2 External Sensors

In addition to using internal sensors to monitor the operating parameters of the
robot itself, it is also useful to perceive the attributes of the surrounding environment
and the relative position of the robot within it. The robot could measure the

surrounding terrain relative to itself via contact or non-contact sensors.

Contact sensing can be used to determine which parts of the robot are touching the
ground or brushing up against some obstacle. Foot contact sensors allow the robot
to confirm when a foot leaves the ground or touches back down. A contact sensor
can be as simple as a spring-loaded switch on the sole of each foot. (Note that this
can also be accomplished using the leg force sensors discussed in the previous
section.) Hirose and Umetani (1980) put contact switches on the sides of their PV Il
robot’s feet for detecting when the robot “stubbed” its foot. Just as some caterpillars
have whiskers protruding from their bodies to enable them to detect nearby objects,
it may be desirable to attach “whiskers” to the crawling vehicle in the form of limit

switches with flexible actuation levers that protrude from the robot.

Chapter 2 — Conceptual Design 98

It may also be beneficial to be able to detect objects that are in close proximity to
the robot without actually having to come into contact with them. However, the
various optical proximity sensing methods are probably not appropriate for the
crawling vehicle because of the unstructured, dirty outdoor environment in which
the robot is expected to operate. Specifically, the proximity sensors would need to
be mounted near the ground to detect most obstacles, but dust or mud would
probably occlude their lenses. Likewise, the various proximity sensors based upon
electromagnetic induction and magnetism would be unlikely candidates because of
their inability to detect non-metallic obstacles and objects that do not have magnetic

fields, respectively.

To avoid the necessity of traveling slowly and “feeling” its way along, it would be
best to pre-plan the vehicle locomotion based upon an accurate model of the
terrain. For simple, well-known operating environments, a precise map of the terrain
could be preprogrammed. However, because most applications will involve
exploring new terrain or operating within environments that can change over time, it
will be desirable to give the robot the equivalent of a sense of sight so that it can

make its own measurements of the surrounding terrain.

There are several alternate technologies for producing rough approximations of
human “vision” for robots. These rely on triangulation of terrain features from two or
more points of view, time of flight measurements of reflected signals, or phase shift
measurements of reflected signals. More specifically, these technologies include
ultrasonic echolocation, mono and stereo video, omnidirectional video, radar, and

scanning laser range finders.

Most researchers using ultrasonic echolocation have used a transducer made by
Polaroid. This technique has enjoyed its greatest success when banks of these

transducers are used within indoor environments.

Chapter 2 — Conceptual Design 99

Mono and stereo video cameras have become commonplace peripherals on mobile
robot prototypes since low-cost CCD (Charge Coupled Device) cameras became
commercially available. Omnidirectional video has been implemented using rotating
cameras, fish-eye lenses, spherical mirrors, and conic mirrors (Yagi, et. al., 1994).
However, while video devices mimic vision most closely, the automated
interpretation of the images produced is another major area of research (as will be

briefly discussed in Section 2.5.3).

Scanning laser rangefinders have been used by a number of researchers in several
major projects (Waldron and McGhee, 1986; Simmons and Krotkov, 1991; Horn
and Russ, 1994; Krotkov and Hoffman, 1994; Bares and Wettergreen, 1999). This
sensor consists of a laser rangefinder and a motorized mirror system that causes the
laser beam to scan across the terrain ahead of the robot. As the laser scans, discrete
range measurements are taken. These can then be transformed into a 2-D grid of
terrain elevations to form a map (Krotkov and Hoffman, 1994). The most capable of
these systems (Horn and Russ, 1994) is said to detect range and surface reflectance

out to a range of 15 m, with a range resolution of 0.45 mm.

2.5.3 Sensor Fusion

Terrain perception and modeling involves more than just taking measurements of
the terrain. The sensor data must be “digested” so as to produce a terrain model that
is useful for motion planning. Specifically, different terrain measurements must be
combined, or fused, together to form a terrain map that embodies the best estimates

of the terrain geometry.
This process of sensor fusion can involve one or more of the following challenges:
1. combining the terrain measurements from different sensors

2. combining terrain measurements that were taken at different times

Chapter 2 — Conceptual Design 100

3. combining terrain measurements that were taken from different vantage

points.

Combining these different measurements into a common frame of reference can
entail converting between different systems of coordinates (e.g. radial versus
Cartesian), magnitudes of uncertainty, resolutions, sampling rates, fields of view,
perspectives, and depths of field (McKerrow, 1991). Due to the difficulties of sensor
fusion, the top locomotion speed of many mobile robot designs has been limited,
not by dynamic mechanical considerations, but by the speed of “vision” processing

(Bares and Whittaker, 1989; Roman and Reinholtz, 1998).

However, in the case of the crawling vehicle, the “head” leg pair is expected to
move intermittently. Thus, during part of each locomotion cycle, the vision system
and/or other 3-D mapping sensor(s) will have a stationary frame of reference for
their measurements of the terrain ahead of the robot. This will simplify sensor fusion
because there will be fewer temporal and spatial differences in the frames of
reference of the various measurements, and because the controller will have more
time to analyze the sensor data before moving across it, in contrast to continuously

moving vehicles.

2.5.4 Mapping

When newly acquired terrain data is fused with prior knowledge of the terrain, it
must be incorporated into a terrain model, or map, for later reference. This map is in
actuality a computer software data structure. According to McKerrow (1991), the
data structure chosen is crucial to operation of the vehicle because, to a great
degree, it determines which sensor fusion and path planning algorithms can be used
efficiently, as well as the amount of storage and processing power required for these
tasks. McKerrow (1991) classifies these algorithms into four broad types: path maps,

free-space maps, object-oriented maps, and composite space maps. He lists 12

Chapter 2 — Conceptual Design 101

characteristics of an ideal map data structure, but concludes that, “no data structure
has yet been found that meets all these criteria. Hence, data structure design is an
exercise in trading off task requirements against implementation efficiency.” A more

recent review of these issues is presented by David Conner (2000).

For immediate path planning, the robot only needs high-resolution information
about the terrain underfoot and directly ahead along the path of travel. Because the
data structures for such information consume a large amount of computer memory,
the robot must "forget" the details of what it has already walked over so it can have
enough available memory to store the new information about the terrain it is
approaching. Thus, researchers such as Bares and Whittaker (1989) have separated
the mapping task into the creation and use of two maps of different scale and
structure: a global map and a local map. Points of interest and landmarks used for
large-scale navigation are stored in the global map. Terrain data used for immediate

path planning (as discussed above) are stored in the “Local Terrain Map”.

Composite space maps appear to be the logical choice for modeling the
unstructured, natural terrain of the local maps. However, a variety of data structures
can be used for storing them. According to McKerrow (1991), data structures for
storing composite space maps include point grids, area grids, quad-trees, and rule-
based maps. If modeling volumetric space is desired (e.g. including data for ceiling
heights), then a cell decomposition method, such as the oct-tree representation or
one of its derivatives, may be the preferred method (Zhu and Latombe, 1991, Rao
and Arkin, 1990). Several researchers have advocated storing the Local Terrain Map
as 2-dimensional arrays of elevation values (Wu, 1993; Krotkov and Hoffman, 1994),
citing the simplicity of the method, its relative ease of sensor fusion, and the ability

to derive terrain slopes and curvatures from this representation.

Chapter 2 — Conceptual Design 102

2.6 Navigation and Controls

An autonomous robot must simultaneously control a number of different operations.
Humans and animals plan routes of travel, use vision and force sensing to perceive
the terrain, control their muscles to produce locomotion, and regulate their
digestion, respiration, and heart rate in order to supply the necessary power for their
nervous system and muscles. Similarly, mobile robotic systems must not only control
their actuators, but also need to make navigation choices, sense and evaluate the
immediate terrain ahead, and provide themselves with the power necessary to
accomplish their actions. Thus, the control of a locomotion system is inherently

hierarchical, or layered.

Recent research concerning the control of autonomous robots is divided into two
schools of thought, with a spectrum of hybrids between them. Section 2.6.1 takes
the more traditional approach of describing the navigation and controls systems of
the crawling vehicle as a hierarchy of functional modules. Section 2.6.2 discusses the
alternate approach of defining the navigation and controls systems for the vehicle as
layers of behaviors. Finally, Section 2.6.3 presents a conceptual discussion of the

controls hardware.

2.6.1 A Functional Decomposition of the Crawling Vehicle Controls

Various other researchers, including Todd (1985) and McKerrow (1991) have
described the architectures of mobile robot control systems as hierarchies of
functions. Applying this method to the multibody passive-legged crawling vehicle

yields the functional decomposition diagram shown in Fig. 2.20.

Chapter 2 — Conceptual Design 103

ubisa@ femdasuo) — z Ja1deyd

70T

On-Board

Terrain Sensing

Y

Local Terrain
Map

Leg Pair 1‘Footho|d Leg Pair 2 Foothold
Selection Selection

Y

(Destination Selection)

¥

C Global Path Selection)

+

C Local Path Selection)
Y

C Gait Selection)
Y

Gait Generation

Leg Pair 3 Foothold
Selection

Y

Leg Pair 1 Trajectory
Specmcanon

Leg Pair 2 Tra|ectory
SpeC|f|cat|on

Leg Pair 3 Trajectory
Spemflcanon

Generation

[Leg Pair 1 Trajectory] [

Leg Pair 2 Tra]ectory
Generation

Generation

] [Leg Pair 3 Trajectory]

e

A

Actuatlon Uni
Inverse Kinematic

t1 Actuatlon Unlt 2 To Actuation
S Inverse Kinematics Unit 3 Inv. Kin.

Control 6

Actuators o
Actuation
Unit 1

f

Actuators of
Actuation
Unit 2

Control 6

Pre-Programmed
Over-All Map

To Leg Pairs Leg Pair n Foothold
4ton-1 Selection
A
Leg Pair n Trajectory
- Specification

. To Actuation

v

Leg Pair n Trajectory
Generation

P

To Actuation
Unitn-1

Figure 2.20 - Functional Decomposition of the Crawling Vehicle Controls Hierarchy

uonebirenN

6 urwwesb oid uoljow

S]0JJU0D [8A8T-MOT

2.6.1.1 Destination Selection

The topmost functional module shown in Fig. 2.20 concerns the task of destination
selection. The artificial intelligence technology for fully autonomous destination goal
selection is in its infancy. A basic means of achieving this is via pre-programmed

motives and rules. For example:

* To maintain its operational status, the crawling vehicle could be programmed to

return to its refueling station whenever it gets low on fuel.

* To map a region, the crawling vehicle could be programmed to synthesize a
locomotion path (i.e. select a series of destinations), which when followed,
would cause it to carry its sensors to within, say, 5 meters of every point within

the area of interest.

* To locate a source of radiation, the robot could be programmed to seek higher
levels of radiation by taking a series of measurements over an area, computing a
gradient field of the radiation, and then steering to move toward the higher levels

of radiation (similar to some optimization algorithms).

For reasons of task flexibility and safety, however, it is debatable whether

autonomous goal selection is truly desirable.

On the other hand, using an on-board human driver with the crawling vehicle would
be both disconcerting for the driver (because of the intermittent motion) and would
defeat the purpose of having a vehicle that could go places too dangerous for

people. Thus, this vehicle would most likely be teleoperated, at least initially.

Still, because of its numerous actuators, it would be both tedious and difficult to
manually control. Thus, the best method of operating the vehicle would probably be

as a “telerobot”. As described in Sheridan (1989):

Chapter 2 — Conceptual Design 105

Add some autonomy to the remote teleoperator and the result is the
telerobot. Instead of controlling a telerobot’s every move, a human
supervisor can simply state an objective. The telerobot then makes decisions
and acts based on an on-board computer and signals from its own sensors...

2.6.1.2 Global Path Selection

Given the current location of the robot and its selected destination, the global path
selection task of the controls hierarchy determines the basic route to be taken to get

there. Hence, this stage embodies the traditional notion of navigation.

|//

Synthesizing a “global” path generally involves planning a path that is beyond the
range of the robot’s own terrain sensors. Therefore, it must rely upon some form of

map (e.g. the global map mentioned in Section 2.5.4) to make its selection.

Assuming there are no obstacles between the current position of the vehicle and its
destination, and also that the intervening slope is not excessive, then a “bird’s eye”
view of the optimal path would be a straight line between them. However, in many
cases there will be obstacles and varying slopes, so the shortest path will not be the
safest. Hence, path synthesis is usually a challenging design problem. As with other

design problems, there are usually numerous, even infinite, feasible solutions.

By a feasible route, it is meant a path from the current position to the selected
destination position along which the vehicle will not collide with anything and along
which the vehicle can continuously support itself using a sufficient number of safe
footholds that are within its reach. To achieve this, the global path plan must take
into account the anticipated terrain geometry, the vehicle mobility (actuation unit
workspaces) and vehicle stability. In addition, depending upon the vehicle mission,

there may also be a transit time constraint.

As in other design problems, while there may be many feasible solutions, in general,

some of them will be much better than others. Therefore, it is desirable to choose

Chapter 2 — Conceptual Design 106

wisely from among the feasible paths in order to optimize certain criteria.
Depending upon the mission requirements, these criteria can include some
combination of the following: minimizing energy consumption, minimizing peak
power requirements, minimizing transit time, and/or minimizing the risk of instability.
Note that, individually, these criteria often conflict with one another. For example,
minimizing the transit time will often entail choosing paths that do not minimize
instability risk and moving at speeds that do not minimize the peak power
requirements. Also, note that this optimization process may itself have a maximum

allowable time constraint.

2.6.1.3 Local Path Selection

Based upon the overall route decided in the navigation planner, the local path
selection stage of the controls hierarchy selects and then specifies the precise path
over which the crawling vehicle is to travel. In many ways, this task is similar to the
global path selection discussed previously. However, at this level, the path is
selected using detailed terrain geometry information gathered from the vehicle's

own on-board sensors and stored in the Local Terrain Map.

Whenever possible, the path should be chosen to avoid terrain features that would
increase the probability of having the vehicle undergo any of the locomotion failures
discussed in Sections 1.5 and 1.6. For example, to maximize stability, an ideal path

would pass a safe distance from wall-like obstacles, fissures, and steep lateral slopes.

Path optimization at the local path level is similar to that of the global path level. The
best path to satisfy the mission requirements is selected based upon a trade-off
between desired speed, efficiency, and margin of safety (e.g. for efficiency, the path
is chosen to minimize unnecessary climbing, etc.). But if no feasible path can be
found, the local path planner can request that a new global path be selected at the

prior stage of the hierarchy (see Fig. 2.20).

Chapter 2 — Conceptual Design 107

The path plan can be specified by a set of curves that mark the desired path of the
vehicle's centerline. These curves could be either 2-D planar curves that are
superimposed onto the 3-D terrain, or 3-D space curves that trace the path along the
terrain surface. The initial elevation measurements of a patch of terrain along the
path of travel will generally not be as accurate as measurements taken later, after the
robot has gotten closer. That is, as the robot travels, it can progressively measure the
terrain elevations along the path more accurately, enabling the progressive re-
evaluation of the projected local path plan. As a result, 3-D curve path plans would
need to be recomputed and updated in light of the new elevation information. Thus,

the use of 2-D path plans may be preferable.

Mobile robot navigation and path planning is a vast area of research. Both Larkin
(1996) and McKerrow (1991) (in Chapter 8 of his book) provide interesting
overviews of the subject. However, the specifics of path selection are beyond the

scope of this work.

2.6.1.4 Gait Selection

Having determined the local path, the next task is to select which gait to use to

travel across the next segment of that path.

Animals use a variety of gaits. For example, horses can walk, trot, canter or gallop.
Similarly, most legged vehicles can perform a huge number of possible gaits
(McGhee, 1985). Likewise, the multibody passive-legged crawler is capable of
traveling using a variety of gaits. Different gaits have different performance
attributes. Some gaits enable faster locomotion than others, some are more stable
than others, and some are more efficient. Often these performance goals conflict,
and a trade-off decision must be made to select the gait. For example, gaits with the
best stability generally maximize the number of legs on the ground in support phase.

Gaits with the best speed generally maximize the number of legs moving forward in

Chapter 2 — Conceptual Design 108

swing phase. Thus, higher speed gaits are typically less stable because they require

more of the feet to be simultaneously moving, and hence, off of the ground.

In order to select a particular gait from the available choices, the risk associated with
traveling over the path segment must be balanced with the needs of the mission. For
example, if the mission is to explore an area and there is plenty of time available,
then only small risks are tolerable. If, however, the mission is to rescue people who
are suffocating due to a mining accident, then much higher risks are tolerable in the

interest of locomotion speed.

By “risk” it is meant the probability of locomotion failure. As discussed in Section
1.6, the primary form of locomotion failure “risk” for the multibody passive-legged
crawling vehicle is instability. A tip-over event will definitely slow the vehicle down.
And depending upon the size of the robot and its design, a tip-over may well cause
mechanical failure of the vehicle and thus failure to perform its mission, since it will
never reach its destination. Clearly, terrain ruggedness is a key factor in determining
risk. However, determining risk involves uncertainty, such as the terrain perception

uncertainty and the unforeseen events discussed in Section 1.8.1.2.

How rough can the terrain be for a particular gait? Two methods seem possible for

estimating the risk: run-time simulation and rule-based estimation.

With run-time simulation, the controller would test a gait by simulating the next
subsequent locomotion cycle based upon the vehicle’s perception of the terrain
immediately ahead and underfoot, and then determine whether the robot would be
in too much danger of getting stuck or tipping over. (A method of determining a
“stability margin” will be described in detail in Ch. 4 and other methods will be
discussed in Ch. 8.) If the gait tested with the simulation proved to be too risky, then,
the planner could choose a more stable gait or request a new path from the local
path planner. (Note that the simulation tools discussed later in this work would form

the foundation of this technique.)

Chapter 2 — Conceptual Design 109

With rule-based estimation, the controller would analyze the Local Terrain Map and
then apply a set of rules to determine the risk/reward of using each possible gait.
Such rules might be based upon the ratio of the area without feasible footholds to
the total area along the path. The simulation tools discussed later in this work may

be helpful in determining the appropriate criteria for such rules.

2.6.1.5 Gait Generation

Gait generation involves timing. While the sequence of leg pair states (i.e.
supporting or striding) is defined by the gait selection, the rate at which the gait
sequence is performed can be varied. Gait generation timing variations can be
useful for “pacing” the robot in a number of situations. For example, the robot may
need to reduce the gait execution speed in order to limit power consumption. Or
alternatively, it may need to delay when unusually long sensor processing
computations occur, when difficulties achieving secure footholds cause an extended
period of guarded motions, or when one or more actuators experience torque or

speed saturation, which might occur when the robot is climbing a steep slope.

2.6.1.6 Foothold Selection

As seen in Fig. 2.20, the foothold selection task of the controls hierarchy is a task
that must be performed for each leg pair. In order to travel along the selected path
using the selected gait, specific foothold locations for each leg pair must be defined.
While these are distinct tasks, they are not fully parallel because, due to workspace
considerations, the foothold selections of most leg pairs are dependent upon the

foothold locations selected for the adjacent leg pair that strides before they do.

An acceptable foothold is a safe location on the ground to place a foot so as to
provide firm, secure support and good traction; therefore, holes, loose rocks, and

slippery slopes must be avoided. In order to select the two footholds for a particular

Chapter 2 — Conceptual Design 110

leg pair, the robot controller searches the Local Terrain Map of the ground surface
immediately ahead of the leg pair’s current position. Specifically, it searches for two,
safe, acceptable footholds that are within the workspaces of the two Stewart-Gough
platform mechanisms that are connected to the front and back of the leg pair.
Typically, the expected area is located at approximately 90% of the maximum stride
length along the local path. If footholds there are unacceptable, then the controller
can search ahead up to the maximum stride length. If acceptable footholds are still
not found, the search then proceeds backwards from the 90% area toward the

minimum stride length.

Some gaits may allow more leeway in choosing the locations of footholds than
others. One advantage of having a long vehicle with many feet is that footholds are
not absolutely required for all the feet. In fact, during some locomotion cycles, entire
leg pairs can be left “hanging” without supporting footholds, so long as other
appropriately placed leg pairs are keeping the robot stable. Stability calculations will
probably need to be done here to confirm that there is enough support. Foothold
selections may need to be altered if the footholds of adjacent leg pairs must be

shifted from their expected areas.

2.6.1.7 Leg Pair Trajectory Specification

Robot motions are defined by trajectories. A complete trajectory specifies all 6
degrees of freedom of a rigid body as functions of time. That is, it defines both the 3-
dimensional path (X, y, z) and the spatial orientation (roll, pitch, yaw) of a rigid body
as functions of time. In the case of the multibody passive-legged crawling vehicle,
the rigid bodies requiring trajectories are the individual leg pairs. Given the current
position of a leg pair at its present footholds and the selected destination foothold
locations, the task of the leg pair trajectory specification stage of the controls
hierarchy is to the synthesize a trajectory that will move each leg pair from its

current foothold position to its selected destination foothold position.

Chapter 2 — Conceptual Design 111

The trajectory plan for a leg pair of the multibody passive-legged crawling vehicle
will, in some ways, be considerably simpler than the trajectory plan for a leg of a
single-body active-legged walking vehicle. Specifically, the leg of a walking vehicle
must lift its foot and recover forward rapidly, then stop the foot in mid-air and
accelerate it backwards until it has matched the velocity of the ground relative to the
moving vehicle chassis. Once it has matched velocity (so as to prevent excess shear
forces on the foot at the moment of contact), it can then lower its foot. After its foot
is on the ground, the leg continues to move as it sweeps backward to propel the
robot body forward. In contrast, a leg pair of the multibody passive-legged crawling
vehicle starts from a stationary position, lifts off of the ground, moves forward,
decelerates to zero velocity relative to the ground, and then lowers to the ground
until its feet touch. Once back on the ground, the leg pair is not required to move
(although in some cases it might be desirable to tilt some). That said, the actuators
attached to the leg pair will need to move whenever an adjacent leg pair is in

motion.

The specified leg pair trajectory plan is subject to the following functional

constraints:

* It must produce motions that avoid collisions with terrain, such as running into

an obstacle, stubbing a foot, or scraping the side of a leg pair against a wall.

* The leg pair path must be continuously within the workspaces of the adjacent

actuation units.

Furthermore, an ideal synthesized trajectory would also have the following

characteristics:

e It should produce smooth, continuous curve paths in Cartesian space.

Chapter 2 — Conceptual Design 112

* The path curve should be monotonic so as to minimize vertical motions. That is,
it may go up once and then down once, but should not oscillate vertically during

a single leg step trajectory.

e It should be smooth in the temporal sense, avoiding unnecessary accelerations

and decelerations.

* For a given vehicle speed, the trajectory should minimize the required peak

actuator accelerations and peak actuator speeds.

Trajectories can be planned and specified using two basic approaches: joint space
and Cartesian space (sometimes called task space). Each has its own basic

advantages and disadvantages.

2.6.1.7.1 Joint Space Trajectory Specification

Using the joint space representation, trajectories are specified in terms of the
positions of each of the joints as functions of time. As a practical matter, with joint
space planning, the beginning and ending positions of the trajectory are initially
defined in Cartesian space, and are then converted into their joint space equivalents
using inverse kinematics. Then, all the intermediate positions along the trajectory are
specified without reference to the robot’s environment and without the use of
inverse kinematics. Instead, the intermediate joint positions are determined by an
algorithm, such as splining cubic polynomials or linear interpolation of each axis of
motion, so that the initial joint space solution is smoothly transitioned to the ending
joint space solution. Thus, a joint space trajectory is specified as coefficients for the
spline curves that define the positions and velocities of the joints as functions of
time. For the case of the multibody passive-legged crawling vehicle, these joint
positions are the translations of each of the prismatic links of the Stewart-Gough

platform mechanisms. During execution, the spline curves for all the joints are

Chapter 2 — Conceptual Design 113

progressively evaluated at the update rate of the actuator controllers. Each new set
of the resulting prismatic joint parameters is fed to the corresponding actuator
controllers as reference inputs. Finally, the motions of the actuators produce the 6

DOF (x, Y, z roll, pitch, and yaw) trajectory through Cartesian space.

Joint space specification is advantageous in that inverse kinematics is not needed for
intermediate positions, it may lend itself to a less centralized control system, and any
continuous joint space path within the workspace of the robot can be successfully
executed (i.e. singularities are not a problem). Furthermore, joint space trajectories
can be rapidly executed because they involve computing relatively simple curve
functions, with results that are directly fed as reference inputs to the actuator

controllers of each corresponding joint.

The major problem with joint space planning and specification is that there is NO
guarantee that the resulting leg pair trajectories will be accurate or reasonable in the
real world. The resulting trajectories may not stay on the intended path (possibly
causing collisions with the terrain), and may produce excessive wasted motion, etc.
Thus, they may violate the desired characteristics and even the functional constraints

for trajectories described at the beginning of Section 2.6.1.7.

2.6.1.7.2 Cartesian Space Trajectory Specification

Cartesian space trajectories are defined directly in terms of 3-D paths through the
working environment of the robot (i.e. Cartesian or task space) as functions of time.
Thus, a Cartesian space trajectory is specified as coefficients of the curves that
define the 3-D paths. However, in practice, most actuators are controlled using joint
space parameters for their reference inputs, feedback signals, and error signals. Thus,
during runtime execution, the path curves for each independently moving rigid body
are progressively evaluated, and then each new Cartesian coordinate frame is

transformed via the inverse kinematics computation into its equivalent joint space

Chapter 2 — Conceptual Design 114

representation. These joint space results are then fed to the actuator controllers,
which, in turn, cause the robot to move through Cartesian space according to the

proscribed trajectory.

Cartesian space specification is advantageous because the entire trajectory is
planned and specified from the measured terrain data, resulting in leg pair
trajectories that should be accurate in the real world. Thus, smooth, efficient, well-

coordinated, collision-free trajectories should be achievable.

One disadvantage of Cartesian space specification is that it requires that the inverse
kinematics computations be performed many times to transform the Cartesian
trajectories into the joint space trajectories usable by the low-level controls. Also, for
some mechanisms and certain inverse kinematics solutions, a continuous path
specified in Cartesian space will become discontinuous when converted into joint
space, producing erratic motions during execution. (This happens when the inverse

kinematics solution becomes imaginary due to a Jacobian singularity (Craig, 1988).)

2.6.1.7.3 Selecting the Basic Trajectory Specification Method

So far, looking at joint space and Cartesian space trajectory specification in general
terms, it is unclear which would be best for the crawling vehicle. There are potential
problems with both options. Therefore, their use must be evaluated based upon the
particulars of the conceptual design. The logic for choosing the basis for the
trajectory specification scheme will be presented as a progressive series of questions

and answers.

1. When the specified trajectories are generated at runtime, what form of output

should be sent to the actuator controls?

So far, it has been assumed that the actuator controls of the robot would follow the

more common practice of using joint space control (that is, the actuator controllers

Chapter 2 — Conceptual Design 115

would use joint space parameters (typically joint position and velocity) for the
reference inputs, feedback, and error signals to control each actuator). However, in
light of this difficult design decision, we now look at the alternative to joint space
controls, namely, Cartesian space controls. Using Cartesian-based controls would
require that the forward kinematics be evaluated inside the servo control loop (i.e. at
the update rate of the controllers) (Craig, 1988). However, as discussed in Section
2.2.1.4, the forward kinematics of the Stewart-Gough platform is an iterative
calculation. Thus, Cartesian based control would slow the update rate of the
actuator controllers, limiting their effectiveness. Hence, it is probably not appropriate
for this robot and we are back to the original assumption of using joint space

control.
2. Must trajectories be specified to avoid obstacles?

Rodney Brooks (1989) and his colleagues constructed a small walking robot that
successfully traveled over moderately rough terrain without the use of trajectory
plans that included obstacle avoidance. The inevitable collisions with uneven terrain
features were handled by using reflexive (or reactive) controls and aided by the fact
that lightweight robots (in this case, 1 kg) cannot easily damage themselves anyway.
However, it would be extremely difficult to construct the crawling vehicle on a
similarly small scale, especially if it is made to carry significant payloads. Since the
impact forces on a vehicle scale with the 4™ power of its size (Donner, 1987),
unwanted collisions with the terrain could be damaging for a larger vehicle.
Furthermore, a major design goal for this conceptual design is to make a robot that
can traverse more than just moderately rough terrain. Thus, for the crawling vehicle

design, obstacle avoidance is necessary.

3. Is there a viable alternative to using Cartesian space planning and specification to

accomplish obstacle avoidance?

Chapter 2 — Conceptual Design 116

To implement obstacle avoidance, either the trajectories must be specified in
Cartesian space, where they can use the Local Terrain Map to avoid collisions, or the
terrain obstacles must be converted into some type of joint space representation so
that collision-free path plans can be synthesized entirely in joint space. (Such joint
space mapping methods have been proposed by Tsai and his colleagues (1993) and
Selensky (2001 [ONLINE])). However, because this application (unlike manipulators)
involves the movement of a vehicle relative to the terrain, the vehicle will, in effect,
be continuously confronted by new environments as it travels. Thus, it seems
cumbersome to transform the ever-changing landscape ahead of it into a joint space
representation. Hence, the traditional approach of handling obstacle avoidance by
using Cartesian space trajectory specification seems to be the better choice here.
Also, as will be explained in Section 2.6.1.11, accurate real-world position control
will be required for coordinating the motions of consecutive Stewart-Gough

platforms.

4. Will singularities cause significant problems when using Cartesian space trajectory

specification?

The primary drawbacks of using Cartesian space trajectory specification are the
possibilities of singularities and of long computation times for the inverse kinematics
solutions. However, both of these difficulties are highly dependent upon the

mechanisms for which the trajectories are to be specified.

According to Ma and Angeles (1991), the singularities of parallel manipulators can
be classified into three categories: architectural, configuration, and formulation. In
the case of the Stewart-Gough platform mechanisms, architectural singularities can
be avoided at the design stage by proper selection of the spheric joint locations (Ma
and Angeles, 1991). The configuration singularities of the Stewart-Gough platform
described by Fichter (1986) would all involve large angular motions of one leg pair

relative to the next. Such extreme motions are not necessary for locomotion, even

Chapter 2 — Conceptual Design 117

on rough terrain, and specifications of such angles can be avoided at the trajectory
planning stage. Finally, to the best of the author’s knowledge, the inverse kinematics
algorithm to be described in Ch. 4 does not exhibit any formulation singularities.

Thus, singularities are not expected to cause significant difficulties for this robot.
5. Will the inverse kinematics be too computationally intensive?

As will be shown in Chapter 4, the inverse kinematics algorithm for the Stewart-
Gough platform mechanism is remarkably simple and efficient. Thus, using Cartesian
space trajectory specification with joint space control seems particularly well suited
for the crawling vehicle concept because it uses Stewart-Gough platforms for its
actuation units. This should provide the best of both options: trajectory specification
with effective obstacle avoidance in the real-world, and high-frequency control loops
for the actuators, which will enable the accurate tracking required for coordinating

the multiple actuators.

Having decided upon Cartesian space trajectory planning and specification, other
questions concerning the approach and the mathematics to use to specify motion
trajectories still remain. Recall from the in-depth discussion in Section 1.8.3 that a
stepwise planning and specification method will be used in this work rather than the
more serpentine shape control, or backbone, methods proposed by Salerno,
Chirkjian, Burdick, Tavakkoli, and Dowling. Note that this stepwise method of
trajectory specification must be performed for each moving leg pair, and is therefore
often a parallel task. (Section 2.6.3.4.4 discusses the use of parallel computing to

address these tasks.)

Further description of the trajectory specification method will be curtailed here,

because it is a primary topic of Ch. 5 - Motion Programming.

Chapter 2 — Conceptual Design 118

2.6.1.8 Trajectory Generation

Based upon the trajectory plans specified at the previous level of the control tasks
hierarchy, trajectory generation entails computing the desired Cartesian location and

orientation of each leg pair. These leg pair trajectories are generated at run time.

Rapid execution at this level depends upon whether the trajectory specification
allows for an efficient algorithm (such an algorithm will be presented in Ch. 5). Like
the preceding level, it is composed of parallel tasks since it is performed separately

for each leg pair.

2.6.1.9 Inverse Kinematics

The inverse kinematics computation converts the Cartesian space representation of
discrete positions along the trajectory into their corresponding joint space
representations. Specifically, given the relative positions of the leg pairs, the task of
the inverse kinematics level of the controls hierarchy is to determine the link lengths
and velocities of all the linear actuators that comprise the intervening actuation unit
mechanisms. As discussed in Section 2.2.1.4, this is a simple calculation for the
Stewart-Gough platform mechanism. (An algorithm for computing this will be
presented in Ch. 4.) The inverse kinematics level of the control tasks hierarchy is

composed of parallel tasks, because it is performed for each actuation unit.

2.6.1.10 Actuator Controls

From the discussions so far in Sections 2.6, it is clear that the control functions of the
crawling vehicle are inherently both hierarchical and concurrent. It is hierarchical in
that each functional level is dependent upon the results of its “parent” level. It

exhibits concurrency in two forms: inter-level and intra-level.

Chapter 2 — Conceptual Design 119

Inter-level concurrency occurs because the different levels of the hierarchy work
together as a pipelined process. While a “child” level in the hierarchy is using the
most recent solution produced by its parent, the parent level is busy computing its
next solution. Hence, all the levels of the hierarchy are acting simultaneously. Each
level of the hierarchy has a control update rate; generally, the further down in the

hierarchy, the faster the update rate must be.

In contrast, intra-level concurrency occurs at some stages of the hierarchy because
there are parallel tasks to be performed. The most obvious case of fully parallel
concurrency is here with the control of the actuators. Each Stewart-Gough
mechanism requires the simultaneous control of 6 actuators. Most movements
associated with locomotion would require the simultaneous action of 2 or more of
these actuation units, and hence 12 actuators. Thus, like most walking robots, the

crawling vehicle would require controlling several actuators simultaneously.

The actuator controls are at the lowest level of the controls hierarchy (shown at the
bottom of the diagram in Fig. 2.20). Given the desired link lengths and velocities of
all the robot linear actuators, the function of the actuator controls is to cause the
linear actuators to track these positions as accurately as possible. That is, the joint
space positions and velocities output by the inverse kinematics are the reference
inputs to the actuator controls. These controlled actuators then move the prismatic
joints of the Stewart-Gough platforms, and hence, collectively, cause the robot to

move.

The position control of the individual actuators can be accomplished by employing
the control laws used in industrial motion controls, such as Proportional-Derivative
(PD) or Proportional-Integral-Derivative (PID). Thus, to achieve smooth, real-time
performance, and coordinated motion, it is expected that the update frequency of
the actuator's controllers must be on the order of hundreds of updates per second,

which is typical for many industrial motion control tasks.

Chapter 2 — Conceptual Design 120

Controlling many actuators simultaneously will provide some engineering challenges
because of the multiple-input, multiple-output nature of the problem, the complexity
of wiring the controls hardware, and the existence of actuator redundancy (the

subject of the next section).

2.6.1.11 The Contention Problem

Figure 2.16 shows an example in which actuator redundancy occurs. In the figure,
looking at either the leg step of the 2" or 3" leg pairs, we see that the striding leg
pair structure is supported and moved by the actuation units on either side, and that
these actuation units are attached to the adjacent stationary leg pairs, which are on
the ground in support phase. The striding leg pair has 6 DOF because it is a rigid
body. However, its position must be controlled by the Stewart-Gough mechanisms
in front of and behind it. Thus, 6 + 6 = 12 actuators are controlling 6 DOF, and six of
the actuators can be said to be redundant. Later in this work it will be shown that it
is often desirable to have two adjacent leg pairs striding forward simultaneously. This
would result in having 12 DOF (2 leg pairs) being controlled by 18 actuators (3
actuation units). Thus, the multibody passive-legged crawling vehicle is redundantly
actuated. (Note that this actuator redundancy is not the same as the kinematic
redundancy that is often desired with manipulators (Colbaugh and Glass, 1992).
Instead of providing the flexibility of multiple kinematics assembly solutions for a
specified position, actuator redundancy demands precise cooperation between

actuators to achieve the specified position.)

The need to control redundant actuation systems is not unique to the multibody
passive-legged crawling vehicle. It is common to statically stable legged vehicles,
because their legs form closed kinematic chains with the ground (Gardner, 1992;
Kumar and Waldron, 1988; Klein and Chung, 1987). For example, a single-body
robot with 4 legs that each has 3 DOF would result in a total of 12 actuators

controlling the 6 DOF of the robot chassis. Even when one of the legs strides

Chapter 2 — Conceptual Design 121

forward and its foot is off of the ground, there will still be 9 actuators controlling the

6 DOF of the robot.

Whenever the number of actuators in a linkage exceeds the number of degrees of
freedom that they collectively control, coupling between two or more of the

actuators occurs, creating a situation called antagonism.

Antagonism can be useful because it facilitates controllable compliance. In fact,
vertebrate animals and humans have many muscles that act in antagonism to one
another. For example, in the case of human arms, antagonism enables us to move
stiffy so as to have high precision paths and high disturbance rejection, or
alternatively, we can choose to move with compliance, so as to slide around

obstacles or bounce off obstructions.

A number of researchers have recognized the potential of using antagonistic systems
to achieve improved performance by providing variable stiffness, removing backlash
and dead zones (thus enabling high precision position control), and reducing peak
torques by allocating torque between actuators (Zeng and Hemami, 1997;
Nakamura, 1991; Hogan, 1985). However, antagonism between actuators is only

useful when the control system is sophisticated enough to make use of it.

In his Master’s work at Virginia Tech, Patrick Brennan coined the term “contention”
to describe a special subclass of antagonism. By contention it is meant antagonistic
actuators where the actuators are not backdrivable (i.e. they are self-locking). In this
case, when coupled redundant actuators do not cooperate to match positions at any
point in time, high stresses and high friction will result, wasting energy and possibly

locking-up or even damaging one or more actuators.

Brennan discussed four possible solution strategies for the problem of actuator

contention:

1. Precision kinematics solutions (no force feedback)

Chapter 2 — Conceptual Design 122

2. Building passive compliance into the system
3. Passive mechanisms (backdriving)

4. Force feedback control of the actuators

By itself, obtaining precision kinematics solutions may not be sufficient to solve the
contention problem. But clearly we should try to minimize Cartesian space position
errors by every feasible means, including having both inverse kinematics and joint
space controls that are accurate and rapidly updated. This should significantly

reduce contention-induced stresses.

Some passive compliance already exists in the form of backlash in the spheric joints,
U-joints, and linear actuators, as well as in the elasticity of the prismatic links and leg
pair structures. However, it is unlikely that this would provide enough range of
compliant deflection. Therefore, more compliance could be added to absorb any
relative position errors between coupled actuators. This could take the form of
spring-dampers mounted in-line with the prismatic joints or to the bases of the
spheric joints. However, there is a limit to the application of this solution because
too much compliance would prevent accurate position control. Specifically, the
robot would sag whenever leg pairs were held off of the ground (especially during
cantilever maneuvers). Also, too much compliance might allow undesirable
vibrations. However, it may be useful to add a small amount of compliance as a

safety factor.

The next possible solution involves the utilization of backdrivable mechanisms, that
is, avoiding the use of self-locking linear actuators. For example, recall that in Section
2.2.1.4, that leadscrews and ball screws (among others) were proposed as possible
actuators for the prismatic joints. The self-locking feature of most leadscrews is
attractive because no power would be required to hold the actuators (and hence the
robot) in desired positions. However, this self-locking feature would also result in

high stresses in contention. In contrast, most ball screw drives are backdrivable, and

Chapter 2 — Conceptual Design 123

many commercially available ball screws include brakes that enable locking when
required. Furthermore, because ball screws generally have much lower starting
torque, higher peak speed, and higher efficiency than leadscrews, they are the better

choice.

The last proposed solution method was to use active force feedback control. Even if
backdrivable actuators are adopted, it may be desirable to use force feedback

control methods in order to minimize the energy losses that result from backdriving.

In response to a related redundant controls problem, Klein and Chung (1987)
proposed partitioning the controls so that some actuators operate in position control
while some operate in force control. Similarly, Brennan advocated an arrangement
where the actuators of a Stewart-Gough platform on one side of a leg pair would
operate in position control and the actuators of the Stewart-Gough platform on the
other side of the leg pair would operate in force control. With this arrangement, the
position-controlled actuators operate as the “master side” of the leg pair and simply
perform their planned trajectories, while the actuators on the “slave side” of the leg

pair use force control to stay out of their way and remove any contention stresses.

Low-level control of these redundant actuators will require some form of force
control. The possible algorithms include: active stiffness control, impedance control,
admittance control, hybrid position/force control, hybrid impedance control, implicit

force control, or explicit force control (Zeng and Hemami, 1997).

Regardless of which force control algorithm is used, it seems likely that feedback
sensors in the form of strain gages mounted to each linear actuator would be

required.

Chapter 2 — Conceptual Design 124

2.6.2 Control Behaviors

The hierarchical breakdown shown in Fig. 2.20 is a traditional decomposition of the
crawling vehicle control system into functional modules. It is a useful way of looking
at the problems of controlling this complex, layered, multiple-input multiple-output
system. Similar functional module hierarchies have been used as the bases for the
control systems of several previous mobile robot projects (Hirose, 1984; Todd,

1985; Bares and Whittaker, 1989).

A working control system for the multibody crawler can be constructed based on
the functional modules illustrated in Fig. 2.20. However, basing a control system,
particularly the operating system software of a mobile robot, upon the functional

module decomposition is not necessarily the best approach.

|//

An alternative approach, termed “behavior-based control”, was introduced in three
papers published in the 1986-87 time frame, the best known being a paper by
Rodney Brooks (1986). In this paper, he describes the "subsumption architecture" or
SSA. Briefly, instead of decomposing the problem of controlling a mobile robot on
the basis of the "internal workings of the solution", the SSA decomposes the problem

on the basis of the "desired external manifestations of the robot control system".

As an example of the SSA, Brooks (1986) lists several "layers of control', each of
which controls an increasing "level of competence", for a wheeled mobile robot.
Specifically, he lists the following (going from the most fundamental competencies

to the more sophisticated):

0) Avoid contact with objects (whether objects move or are

stationary).

1) Wander aimlessly around without hitting things.

Chapter 2 — Conceptual Design 125

2) "Explore" the world by seeing places in the distance that look

reachable and heading for them.

3) Build a map of the environment and plan routes from one place to

another.
4) Notice changes in the "static" environment.

5) Reason about the world in terms of identifiable objects and

perform tasks related to certain objects.

6) Formulate and execute plans that involve changing the state of the

world in some desirable way.

7) Reason about the behavior of objects in the world and modify

plans accordingly.

In this list, "each level of competence includes as a subset each earlier level of
competence". Each layer of control deals with an individual competency, and is
developed and tested, starting from the lowest level and proceeding to the highest.
At runtime, the higher-level control layers can "subsume" the inputs to the lower
levels when necessary. Higher-level control behaviors can thus be added without
modifying the lower level ones. The SSA approach is said to yield a more modular
control system, offering advantages of improved "robustness, buildability, and
testability" (Brooks, 1986). Thus, these advantages are, in many ways, similar to those
that structured and object-oriented software programming offered over previous

paradigms.

In their overview of behavior control, Gat and his colleagues (1994) explain that
modules for task-achieving behaviors are "connected directly to sensors and
actuators and operate in parallel". This results in "two significant advantages to

behavior control over traditional functional decomposition". First, fast behaviors do

Chapter 2 — Conceptual Design 126

not have to wait for slow ones, thus improving real time response. And second,
because behaviors are task-specific, designers can take advantage of the structures

of tasks to make behavior modules surprisingly simple (Gat et. al., 1994).

At the system level, task-achieving behaviors dealing with world perception, route
planning, and navigation can be used for essentially all mobile robots. Thus, while
the task-achieving behaviors listed above were developed for a three-wheeled
mobile robot used for exploration, they could also be used with the multibody
passive-legged vehicle. However, due to the additional kinematics complexity of the
multibody passive-legged crawler relative to the three-wheeled robot studied by

Brooks, it may be useful to add several lower levels of competency.

Therefore, with the crawling vehicle, the following lower level competencies (-7 to

-1) are suggested for use along with the higher level ones (0 to 7) previously listed:

-7) Coordinate the prismatic links that are in contention so that no lock-ups or
assembly failures occur. (A control law to accomplish this may be to have some
actuators move to minimize stress and strain in the links. One implementation
of this would involve having the actuators on one side of a moving leg pair act
as the "master side", with the actuators on the opposite side of the leg pair being
the "slave side". The master side would move the leg pair while the slave side
would move to stay "out of the way" according to the control law mentioned

above.)

-6) Coordinate redundant actuators so that they work cooperatively to bring about
leg pair motions. (The control law may be to equalize the compressive
stress/strain on the pushing side of a moving leg pair with the tensile
stress/strain on the pulling side. Thus, rather than limiting motion performance
to just that which could be produced by the actuation unit on the "master side"

of the leg pair (while having the "slave side" simply move to stay out of the way

Chapter 2 — Conceptual Design 127

without contributing forces to help move the leg pair), this method will bring

about higher performance through cooperative motion.)

-5) Maintain ground contact with as many feet as possible. That is, control the
stance of the robot to compensate for the collapse of foot supports, such as by

sinking soils, shifting rocks, or broken legs.

-4) Maintain the leg pair pitch orientation to be normal to the nominal surface of
the terrain directly underfoot without exceeding a threshold bending load on

the legs.

-3) Maintain the approximate longitudinal spacing of leg pairs (accomplished by

subsuming position control over some leg pairs when necessary).
-2) Plan and execute a locomotion cycle.
-1) Select an appropriate gait for the given terrain conditions.

The work of Brooks and other pioneers of this paradigm set in motion a great deal of
research concerning subsumption architectures, reactive controls, and other
instances of behavior-based controls. Numerous research efforts have been
completed (Maes, 1989, Mataric, 1992, Gat et. al., 1994; Crowley, 1994, Fernandez
et. al., 1994; Arkin and MacKenzie, 1994, Brooks, 1996) and others are underway
exploring the permutations of (as Brooks characterizes it) "good old fashioned
artificial intelligence (GOFAI)", "behavior-based robotics", and the range of hybrid
possibilities between them. In general, the trend of recent years has been away from

pure "GOFAI" and increasingly towards behavior-based controls (Inoue, 1996).

The control system functional modules and low-level behaviors described for the
crawling vehicle in this section should be helpful for future researchers and
designers, but the determination of the ideal control system for the multibody

passive-legged crawling vehicle is well beyond the scope of this research.

Chapter 2 — Conceptual Design 128

2.6.3 Control Hardware Architecture

Having discussed the functions to be performed and the behaviors to emerge, we
now come to the conceptual design of the basic control hardware architecture. As
the prior discussions have shown, both the motion programming and control
functions are inherently hierarchical and concurrent. Furthermore, for the vehicle to
operate continuously, these tasks must be performed in real-time. These functional
interdependencies and constraints on control latency make the design choice of

control hardware architectures difficult.

2.6.3.1 Centralized Control Versus Distributed Control

There seem to be two basic philosophies for the control of complex systems,
regardless of the system type. Whether the complex system is a nation's economy, a
government, an organism, a factory, or a mobile robot, the components of the
system can either be orchestrated by a centralized control system or a distributed

control system.

There are advantages and disadvantages for each of these methods depending upon
the system to be controlled and its complexity, task uniformity, task
interdependencies, and method of communicating sensor and control signals (which

determines the transmission time lags and error rates).

2.6.3.1.1 Advantages of Centralized Control Relative to Distributed Control

Assuming insignificant time delays in processing and communication, centralized
control systems have some advantages over distributed control systems. First, if the
system is fully understood, it is possible to control it better with a centralized control
system because its control laws can simultaneously consider all of the system inputs

and outputs. Second, because the central controller has the "big picture", it is good

Chapter 2 — Conceptual Design 129

for arbitrating between the subgoals of its subsystems. Finally, a centralized system is
conceptually simpler, because decisions will always be made by the central
computer. In contrast, a distributed system requires careful design to make sure that
the subsystems share enough information and coordinate with each other so that

they work together instead of against each other.

2.6.3.1.2 Disadvantages of Centralized Control Relative to Distributed Control

Centralized control systems also have disadvantages compared to distributed
control systems. First, for very complex systems, it is extremely difficult to
understand the problem sufficiently to design a central controller that can satisfy the
various subgoals of a multiple-input, multiple-output system. Therefore, multiple
subgoals can often be satisfied better with multiple single-input, single-output
controllers. Second, a large central computer is often more expensive than several
less powerful computers used in a distributed control system. Third, for many
problems, a central processor is slower computationally than a parallel processor
arrangement. Fourth, if the central computer fails, the system will be essentially
inoperable. However, if one of the computers of a distributed system fails, the others
will probably be able to continue, and (with proper design) may even be able to
assume the functions of the malfunctioning computer. Fifth, and perhaps most
importantly, centralized control systems usually require longer communication lines
from the sensors to the computer, and from the computer back to the actuators.

These longer 1/O lines cause a number of detrimental effects on the control system:

« Time lags, which can greatly reduce the effectiveness and output stability of the

control system, even when the problem is well understood.

« Signal attenuation caused by the longer transmission distances mean that weak

sensor signals, such as those from strain gages, must be amplified before being

Chapter 2 — Conceptual Design 130

transmitted back to the central computer. This additional signal conditioning

introduces errors in the signals and increases the cost of the control hardware.

« Longer I/O lines have a greater tendency to pick up electromagnetic interference
(EMI), especially in the radio frequency spectrum (RFI), which can produce errors
in the sensor readings. These misconceptions of the true situation cause the

central controller to output erroneous control signals.

« Longer I/O lines also mean more lines to fail. Cabling and connectors are
probably the most failure-prone parts of robotic systems. Fatigue failures of
cabling are the bane of robotics; non-ferrous cables wear-out because they are

flexed when robots move.

2.6.3.2 Control Hardware Architecture Examples

Because of the considerations explained in the previous section, factory process
control systems moved away from using Direct Digital Control (DDC) towards using
Distributed Computer Control (DCC), where a supervisory computer interacts with

numerous individual controllers (Kilian, 2001).

With vertebrate animals, while vision, memory, and planning functions are
centralized in the brain, the control of reflexes and simple locomotion can be done
using neurons and ganglia distributed throughout the body. This fact is evidenced by
experiments with headless chickens and the spinal cat experiments performed by
Grillner and Zangger (Donner, 1987). In these experiments, the animals were able to
walk despite, in one case, having completely severed heads, and, in the other case,

having the spinal cord severed at the neck.

While the hierarchical processes necessary for a mobile robot have been
successfully run on time-shared single processor computers (Todd, 1985), more

often, legged vehicle researchers have sought to make the form of the computing

Chapter 2 — Conceptual Design 131

hardware resemble the hierarchy of control functions. Todd (1985) discusses a
variety of different multiprocessor connection schemes such as tree, bus, and ring
configurations. Some functioning examples include: a hexapod controlled by two
Motorola 68000 processors, (Donner, 1987); the OSU Hexapod, which used five
processors (Todd, 1985); the Adaptive Suspension Vehicle's three-layer hierarchical
organization of seventeen single board computers, including one for each of its six
legs (Waldron and McGhee, 1986); the Ambler project, which used three CPU
boards and nine motion control boards connected together in a VME backplane and
communicating via shared memory (Simmons and Krotkov, 1991); and the Dante Il
(Bares and Wettergreen, 1999), which used a Sparc2 CPU board for perception
processing, plus three Motorola 68030 CPU cards, and several custom boards for

I/O, all connected in a VME bus backplane.

A strong case for distributed control hardware is made from observing the
experiences of the Honda R&D Company. Specifically, when they redesigned the P2
humanoid robot to create the P3 robot, they switched from using a single computer
to using a distributed control system made up of several smaller computers. These
small computers were located at the joints of the robot and were connected by a
LAN (Local Area Network). As a result of this redesign, the number of wires was
reduced from 650 down to 30, and the number of connectors and contacts were
reduced from 2000 down to 500, thus greatly improving the “practical reliability” of
the P3 robot (Hirai, 1999).

On the other hand, legged robot projects such as the Ambler (Simmons and
Krotkov, 1991) and Dante Il (Bares and Wettergreen, 1999) have found it beneficial
to have some centralization in the form of a “task controller”. The task controller
orchestrates the other concurrently executing processes by coordinating
“interprocess communications, task synchronization, and resource management”

(Simmons and Krotkov, 1991).

Chapter 2 — Conceptual Design 132

Based upon the preceding reasoning and examples, the control hardware for the
multibody passive-legged crawling vehicle should be designed to be as distributed as
possible, but centralized where necessary to ensure that sub-processes do not

conflict with one another.

2.6.3.3 Proposed Control Hardware Architecture

The capabilities of commercially available controls components and even their
underlying technologies are rapidly moving targets. Therefore, specific processors,
busses, and other components will not be selected at this stage. Component
specification is a task for the detail design stage. Here at the conceptual design
stage, we will address architectural issues concerning three important, interrelated

questions:

* Where should the major components of the control system hardware be

mounted?
* How many separate processing packages should be used to control the robot?

* How shall the tasks of the controls hierarchy (Fig. 2.20) be allocated between

these separate processing units?

2.6.3.3.1 Control System Hardware Requirements

The first step in answering these questions is to recall the requirements of the
control system hardware design. Specifically, it must support the reliable execution
of the functions described in Section 2.6.1 and illustrated in Fig. 2.20. To accomplish
this, the controls hardware must interact with all the sensors and actuators of the
robot. However, the exact components to be used with the robot have not been

specified at this stage. Therefore, we must base our conceptual design decisions

Chapter 2 — Conceptual Design 133

upon assumptions of which sensors and actuators are most likely be used in the final

design. Hence, we shall assume the following requirements:

e The controls hardware must interface with a scanning laser range finder, two
video cameras (for stereo), as well as sensors for foot force/contact, prismatic
link position, velocity, and force. With the exception of the first two types, the

sensors will be distributed evenly throughout the robot structure.

* The controls must also interface with actuators in the form of 6 motors or control
valves (depending upon the types of actuators used) for each Stewart-Gough

platform mechanism.

* Additionally, the control system will need to report its activities to and receive
instructions from its human teleoperators. Thus, it will likely require

communications via digital radio or satellite.

2.6.3.3.2 Selecting the Number of Controls Processing Packages and Their
Mounting Locations

Considering the initial question of where to mount the control system hardware
components, we must first choose between mounting them outside of the robot,
onto the robot, or inside of the robot. While it is possible to connect external
controls hardware to the robot via a tether, this is not a practical long-term solution
because the numerous wires would make the wire bundles large, unwieldy, and
unreliable. Concerning the remaining to options, it is clear that internal mounting
would provide better protection for the electronic components than mounting them

to the exterior of the vehicle.

Having chosen internal mounting, many alternatives still remain. It is important to
note that suitable enclosures for the controls hardware can be found in the payload

boxes that are a part of each leg pair assembly. Thus, all the processing power could

Chapter 2 — Conceptual Design 134

be safely mounted within one of the leg pairs’ payload boxes, distributed in equal
proportions to all of the leg pairs, or any combination between these two extremes.
The choice of processing hardware location is governed by the desire to maximize

reliability by adhering to four primary design goals:
1. Minimize the I/O line length
2. Minimize the number of data line connectors

3. Minimize the required data transmission bandwidth (don’t send data if it can

better be used in-situ)
4. Keep things simple

The method applied here was to narrow the design space by recognizing the
locations of the sensors and actuators and then applying the short 1/O line length

constraint.

Looking first at the scanning laser rangefinder and stereo video cameras, we note
that in order to get an unobstructed view, they must of necessity be located at the
front of the robot. Because the speed of safe locomotion is closely tied to speed of
processing terrain perception data and because of the large amount of data
involved, the terrain perception processors should be located near the “vision”

sensors within the payload box of the front leg pair.

The various sensor fusion, global and local path selection, and other locomotion
planning functions all require high speed access to the Local Terrain Map data. A
local terrain map with sufficient resolution for locomotion planning will require a
large amount of computer memory storage for its data structures. Furthermore, the
map is almost continuously being updated with new information. Thus, a large
amount of bandwidth would be required to repeatedly transmit the map data over a

network to other processors. Therefore, because of this difficulty, it seems prudent

Chapter 2 — Conceptual Design 135

to avoid transmitting the Local Terrain Map, and instead, to let it sit in the block of

memory where it was initially stored.

This leads to the conclusion that it would be best for the processors responsible for
terrain perception processing, sensor fusion, mapping, and locomotion planning
functions to all be combined into a shared memory architecture. Such a scheme
would enable all of the processors devoted to these tasks to have access to the
memory that stores the Local Terrain Map. Hence, these processors would be
packaged so that they share the same high-speed bus. Furthermore, it is
recommended that these processors be consolidated into a single card cage
mounted in a shockproof, waterproof, temperature-controlled enclosure. According
to Bares and Wettergreen (1999), such an arrangement provides effective protection
and is convenient for both development and maintenance. For simplicity, this cluster

of controls processors will be referred to as the “head” processors.
f control Il be referred t the “head”

External communications with the robot would generally concern high-level
operations such as teleoperator instructions about destination selection and video
feedback of what the robot was “seeing”. Therefore, if space permits, the logical
place for the communication processing hardware is near the planning processors
and video sensors within the “head” leg pair. This would shorten the line lengths

between the transmitters/receivers and the planning processors.

Having looked at the controls hardware pertaining to the terrain perception sensors,
planning-related functions, and communications equipment, we now focus on the
remaining sensors of the robot. First, note that the actuator feedback sensors are all
located on the Stewart-Gough platforms, and that two leg pair assemblies flank each
of these platform mechanisms. Furthermore, the foot contact and leg force sensors

are attached to the lower part of each leg pair.

In order to avoid all the noise and lag problems elucidated in Section 2.6.3.1.2, we

strongly desire to minimize the length of 1/O lines between the sensors and their

Chapter 2 — Conceptual Design 136

A/D hardware. In light of this, and by virtue of the leg pair payload boxes’ close
proximity to both the linear actuator feedback sensors and the foot contact/force
sensors, there should be, at a minimum, an 1/O processor located inside of each leg

pair payload box.

Recognizing that all the leg pairs and all the Stewart-Gough platforms have the same
basic structures and same basic functions to perform, it is therefore possible to
maintain uniformity and simplify the controls design by making all of the leg pairs’
controls hardware conform to the same design. Control functions that are not
general to all the leg pairs would be performed on additional processors that might
also be mounted inside one or more of the leg pairs, where appropriate. (For
example, the front leg pair would contain both a generic leg pair processing package

and the “head” processors.)

2.6.3.3.3 The Robot Control Processor Network

The network connection diagram in Fig. 2.21 illustrates the architecture concept that
results from the foregoing discussions. Note that some connections depicted as a
single “wire” in this illustration may, in fact, be bundles of several wires depending

on the requirements of the motors and sensors.

With this design, each leg pair processor would send control outputs and receive
feedback inputs the Stewart-Gough platform ahead of it. The rationale for this design
stems from the recognition that there are n—1 Stewart-Gough platform mechanisms
and n leg pairs. While it would also be possible for each leg pair to control the
platform mechanism behind it, because the front leg pair already contains the head
processors and sensors, it is advantageous to reduce some of its leg pair control

responsibilities by using the method chosen.

Chapter 2 — Conceptual Design 137

ubisa@ femdasuo) — z Ja1deyd

8€T

(s)lossaooid U ired ba
Tt el il M

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

99104
foya1

90104
B by

_)

L]

SN I NN NN NI NN NN NN SN NN NN NN NN NN NN AN EEEEEEEEEEEN

99104

>
l€e—
le— Actuator 1
(_
>
(_
— l«— Actuator 2
®
«Q <
T
[
= le— Actuator 3
[N —
T
o
S [
@ le«— Actuator 4
o) [€<—
Q
Cown)
S e
l«— Actuator 5
l€«—
>
(_
l«— Actuator 6
(_
- T2
® oF
=35
o *F
e o
«

Planning
Function
Processors

Terrain
Perception
Processors

Local Terrain
Map
Data Structure

l€— Laser
Rangefinder

Left Video
Camera

Right Video
Camera

<

92104

—
@D
«Q
o
D
2]
H
e
=
o
(@]
(0]
wn
wn
o
=
Poun)
wn
N—r
— T
o o2
’:bO:'
b P F
e o
«

Fiaure 2.21 — Connection Dia aram of the Robot LAN

The use of controls processors distributed throughout the robot structure requires
some sort of local area network (LAN) to convey the commands and data of
interprocess communications. In Fig. 2.21 these digital connections are denoted by

dashed lines.

Some candidate busses/protocols for the robot control processor network include
(among others): RS-422, |IEEE-488, USB, IEEE 1394, Ethernet, RS-485, and various
industrial “fieldbusses”. In addition to the numerous wired LAN alternatives, it is
possible to transmit network data without physical wires. One way to accomplish
this is via infrared light transmissions from one leg pair to the next. Infrared
transmitters and receivers mounted on the back side of a leg pair could point at their
counterparts mounted to the front side of the leg pair behind. One way to ensure
the continuing optical alignment of the transmitters and receivers would be to attach
them at opposite ends of one of the intervening prismatic links, aligned parallel to its
lengthwise axis. Thus, when one leg pair turns sharply relative to another leg pair,

the optical transmission would continue unabated.

A second wireless method of transmitting network data for the robot is via radio
waves, for example, by using standards such as Bluetooth, HiperLAN2, or one of the
IEEE 802.11 standards. Wireless data transmission could be an important enabling
technology for robots because it combines the wiring simplicity of networks with the

mechanical robustness of having no flexing wires to break.

The specific busses and protocols are not chosen here because of the extreme
progression of these designs in recent years, where a significant new communication
protocol seems to be invented every few months. Furthermore, at this conceptual

stage of the research, a definitive network bandwidth requirement is not known.

Chapter 2 — Conceptual Design 139

2.6.3.3.4 Allocating Functions to the Processors

Having determined the number of separate processing packages to be used and
their mounting locations, we come to the final architectural issue of how the

controls function responsibilities will be allocated between the processor packages.

Most of the controls function allocation decisions can be inferred from discussion of
the design logic to this point. However, looking at the controls hierarchy in Fig. 2.20,
it is unclear whether it would be best to perform leg pair trajectory specification on
the head processors or on the leg pair processors. On the one hand, it is a parallel
task that must be performed for each leg pair, with results that are then used by
each leg pair to generate its leg step trajectories. Hence, it is intriguing to consider
performing these parallel tasks on the individual leg pair processors, computing in

parallel, and then having the results immediately available for the next operation.

On the other hand, the use of parallel processing is limited by the need for the leg
step trajectory specification process to access the Local Terrain Map data. This data
is sizeable and would probably be time prohibitive to transmit to all of the leg pair
processors. Even so, it is possible to envision a scheme where the leg pair processors
each receive a subset of the Local Terrain Map that represents only the terrain
environment for their next stride. Once they have planned using it, they could pass
the terrain patch back to the next leg pair processor behind them so it could use the
data for its next stride. However, even transferring only part of the terrain map to
each leg pair processor would still likely overburden the leg pair processors. This is
because, unlike some of the planning processors that may have the luxury to “stop
and think”, the leg pair processors must function with very low latency, (i.e. in real-
time). Since the iterative nature of search algorithms makes their computation times
unpredictable, it is likely that executing them would interfere with the leg pair

processors’ more urgent real-time functions.

Chapter 2 — Conceptual Design 140

If leg step specification was done on the leg pair processors, it is certain that a large
amount of map data would need to be transmitted. In contrast, if the leg step
specification was done with a head processor, the resulting trajectory data could be
sent to the leg pairs with relative ease. Specifically, the motion programming method
developed in Ch. 5 will enable the transmission of a smooth leg step trajectory
specification using as few as 26 numbers. Thus, after evaluating the two alternatives
based upon both the computational latency and network bandwidth issues, it is
clear that leg pair trajectory specification should be performed on one of the head
processors. Figure 2.22 shows the allocation of the controls hierarchy functions

between the “head” processors and the leg pair processors.

Note that, as with a number of prior mobile robot projects discussed in Section
2.6.3.2, the “head processor” will most likely be several separate CPU’s sharing the
same backplane. For example, it will probably be desirable to have a separate CPU
devoted exclusively to vision processing and mapping functions. Likewise, it may
also be desirable to partition the planning levels of the controls hierarchy onto
separate processors to ensure real-time performance for the low latency operations

required for task control and generating the gaits.

With the partial exception of the leg pair processor in the front leg pair, each of the
generic leg pair processors is responsible for receiving data, performing operations,

and sending output as follows:

» Each leg pair processor receives the leg step trajectory specification for its next
stride and clock synchronization signals from the head processor, leg pair
position data from the leg pair ahead of it, linear actuator feedback signals for
position, velocity, and force for each of the 6 actuators that make up the Stewart-
Gough platform ahead of it, and sensor data regarding the contact status of its

two feet and the axial force in each leg.

Chapter 2 — Conceptual Design 141

ubisa@ femdasuo) — z Ja1deyd

[A4"

On-Board

Terrain Sensing

Y

Local Terrain
Map

Leg Pair 1‘Footho|d Leg Pair 2 Foothold
Selection Selection

Y

(Destination Selection)

¥

C Global Path Selection)

+

C Local Path Selection)
Y

C Gait Selection)
Y

Gait Generation

Leg Pair 3 Foothold
Selection

Y

Leg Pair 1 Trajectory
Specmcanon

Leg Pair 2 Tra|ectory
SpeC|f|cat|on

Leg Pair 3 Trajectory
Spemflcanon

Generation

[Leg Pair 1 Trajectory] [

Leg Pair 2 Trajectory
Generation

Generation

] [Leg Pair 3 Trajectory]

Actuatlon Un|t 1
Inverse Kinematics

AW

Control 6

Actuators of
Actuation
Unit 1

Inverse Kinematic

Actuatlon Unit 2] To Actuation
S

Actuators of
Actuation
Unit 2

Control 6

Unit 3

Unit 3 Inv. Kin.

Pre-Programmed
Over-All Map

To Leg Pairs Leg Pair n Foothold
4ton-1 Selection
A
Leg Pair n Trajectory
- Specification

To Actuation

v

Leg Pair n Trajectory
Generation

P

To Actuation
Unitn-1

Figure 2.22 - Allocation of Controls Functions Between the Processing Packages Located
in the "Head" and in the Leg Pairs

5105532014
peaH ayl Aq paw.iojiad suonoun

5105532014
led 6 97 Aq paw.ojiad suoijounH

* In addition, each leg processor generates the leg step trajectory for the leg pair in

which it is mounted and computes the inverse kinematics for the 6 actuators.

» Finally, each leg processor sends control signals (joint length and velocity inputs)
to the link length controllers for the 6 actuators, its own leg pair position to the
leg pair behind it, and its leg pair position, foot contact status changes (and
perhaps leg force values as well), and error flag signals to the "head" processor. In
view of these many tasks, it seems likely that sub-processors for the individual
actuator controllers will be required to achieve the desired realtime

performance.

Note that, although the leg pair processor in the front leg pair will not be required to
control a Stewart-Gough platform ahead of it, it is still needed to generate its
trajectory, share its position with the second leg pair and the gait controller/leg step

planner, and to handle all of the functions related to its foot and leg sensors.

2.6.3.3.5 Controls Hardware Architecture Summary

So to summarize, the “head” processors, mounted inside the front leg pair of the
robot, would control the functions in the controls hierarchy down to the leg step
trajectory specification; the leg pair processors would control the lower level
functions from the trajectory generation on downwards to the actuator controls.

(The shading in Fig. 2.22 indicates this division of responsibilities.)

Based upon this overall hardware architecture, each of the controls packages of the
robot should be designed in view of the thermal, vibration, shock, humidity, power,
EMI/RFI, and electrostatic discharge (ESD) characteristics of the operating
environment. For example, if the operational environment will expose the vehicle to

liquids and dust, then well sealed enclosures should be used. (Note that utilizing

Chapter 2 — Conceptual Design 143

high quality enclosures can enable the use of lower-cost, off-the-shelf controls

electronics components in a mobile robot (Bares and Wettergreen, 1999)).

2.7 Chapter Summary

Section 1.9.1 described a basic three-stage model of design. This chapter has
addressed the first of these stages, conceptual design, for the proposed crawling
vehicle. Specifically, the objective of this chapter has been to describe the major
components that would make up a multibody passive-legged crawling vehicle, to
discuss the alternative designs that are possible for each of these components, and
to explain the rationale for selecting between these alternatives. Certain fundamental
building blocks of the proposed vehicle were selected, while the final selections of
other aspects of the design were not possible at the conceptual design stage,
because either further analysis was needed or other prerequisite design features had
yet to be determined. In such cases, the field of alternatives was narrowed as much

as possible.

The chapter began by defining the physical structure of the vehicle as an alternating
sequence of leg pair assemblies and actuation units. A parallel mechanism known as
the Stewart-Gough platform was selected for the actuation units because of its
stiffness, strength, minimal singularities, simple inverse kinematics, and similar
workspace to that of caterpillar segments. After discussing the robot structural
configuration, the basic types of motions that the robot would perform were
introduced. Next, design alternatives for power sources and sensors were examined,
including a discussion of sensor fusion and terrain mapping. Finally, the chapter
presented an extensive look at navigation and controls, starting with a description of
the hierarchy of functions that must run concurrently to control the crawling vehicle.

Further discussions encompassed each level of the hierarchy, the possibility of using

Chapter 2 — Conceptual Design 144

behavioral controls to accomplish lower level functions, and a description of the
controls hardware architecture design. Among the results of this section are the
decisions to use Cartesian space trajectory planning with joint space actuator
controls and to divide the controls processing functions so that functions from
trajectory generation and below would be executed in parallel on identical
processors located within the leg pairs, while higher level planning functions and
terrain perception processing would be performed on a cluster of processors

located inside the front leg pair of the robot.

Thus, a basic conceptual design of the robot vehicle has been presented with an
emphasis on the physical structure and mobility, and most of the groundwork has
been laid for the configuration design stage. However, the conceptual design
presented in this chapter has been based upon a rudimentary knowledge of the
caterpillar. Therefore, before proceeding to develop synthesis and analysis tools for
the configuration design stage, we shall first, in the next chapter, investigate a
species of caterpillar in order to confirm and refine the conceptual design, and thus
aid in accomplishing the goal of producing a vehicle capable of emulating the

excellent mobility of caterpillars.

Chapter 2 — Conceptual Design 145

