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Supplementary Methods & Results   

Implementation of Gibbs sampling for BADGE 

We use Gibbs sampling to draw samples of the model parameters from their posterior 

distributions. For parameters β, ν, τ, and λ, we use conjugate priors to sample from 

their conditional distributions with standard probability distributions (Gamma 

distribution). For parameters U, α0, and α, where no conjugate priors can be used, 

Metropolis-Hastings (MH) sampling with random walk proposal function is used to 

draw samples from their conditionals. However, selection of proposal function is 

critical to the efficiency of MH sampling. We start from Normal N(0,1) distribution 

for all parameters in MH sampling and ‘adaptively’ learn proper proposal standard 

deviation by tuning for optimal acceptance rate. According to Roberts and Rosenthal 

[1], an acceptance rate of 0.15 to 0.5 may yield a sampling efficiency of 80%. The 

MH sampling process consists of two stages: an ‘adaptive stage’ to learn proposal 

scale and a ‘stable stage’ to estimate posterior distributions. For Bernoulli parameter 

d, state ‘0’ and ‘1’ are selected based on their conditional distributions. 

 

Figure S1. Implementation of Gibbs sampler for BADGE. σU, σα, and σα0 are the standard deviation 
of proposal functions for sampling U, α, and α0, respectively. 



 - 3 - 

 
We have made practical adjustments for the implementation of BADGE model so that 

the method can enjoy improved efficiency without compromise of performance.  The 

computational burden of the BADGE method mainly comes from Poisson-Lognormal 

regression model, where each exon is associated with one parameter , ,g i jU to model 

within-sample variability. In this case, for 10,000 genes each with 10 exons in 10 

samples, we will need to sample 1000,000 , ,g i jU in one iteration of Gibbs sampling. 

Upon further investigation of the joint computational model, we see that , ,g i jU  has 

relatively small range along the positive axis near 0 due to the exponential term in 

Equation (1). This makes the sampling process of , ,g i jU theoretically easier. It has 

been confirmed by both simulation and real data analysis that , ,g i jU typically 

converges well in hundreds of iterations. On the other hand, parameters in Gamma-

Gamma model do not necessarily have this nice property so that we usually need 

more Gibbs samples to guarantee the convergence (especially for differential state d). 

To accommodate the convergence property of different parameters, we ‘split’ the 

BADGE model into two sub-models, where within-sample over-dispersion 

parameters are estimated first (through hundreds of iterations) and then fixed for 

differential analysis (10,000 iterations). Simulation result shows that the 

implementation of the two sub-models will not affect the performance of the 

algorithm in general (in Figure 4 of the main text, performance of BADGE remains 

robust for different levels of within-sample variability), while it can reduce overall 

running time. Therefore, we can practically reduce computational cost of BADGE on 

larger real datasets by sacrificing some integrity of the original Bayesian model. 

Figure S1 gives a simple block diagram of how Gibbs sampling is implemented.  
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Figure S1 shows that we first implement the Poisson-Lognormal regression sub-

model to estimate , ,g i jU , which is later passed to the Poisson-Gamma-Gamma model 

for differential gene analysis. In each sub-model, a two-stage (adaptive stage and 

stable stage) MH sampling is implemented for parameters with no conjugate priors. In 

the adaptive stage, we start from  21,N   with 1  , and fine-tune  for every 100 

iterations based on the acceptance rate. The target acceptance rate is set as 0.4 [1, 2] 

and we use the following scheme to update the proposal scale   [1]: 
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where  cur and new  is the current and new proposal scale. optp is the target 

acceptance rate, which is 0.4 in our case. curp is the current acceptance rate. 1 is the 

normal inverse cumulative distribution. After several (e.g., 5 stages, each with 100 

iterations) iterations of adjustment, we fix the proposal scale σ and use it to re-sample 

the sub-model until convergence (hundreds iterations for Poisson-Lognormal 

regression model and thousands of iterations for Poisson-Gamma-Gamma model). 

Design of simulation study 

As we have discussed in the main text, we used the model parameters estimated from 

real datasets to generate read counts in our simulation. For abundance estimation, we 

varied model parameter ν to generate simulation data with different levels of between-

sample over-dispersion.  Within-sample over-dispersion parameter τ (or  ) was also 

adjusted across a wide dynamic range to cover a complete spectrum of RNA-Seq 

variability. Human RefSeq annotation file was used in the simulation and we 

generated a simulation dataset including more than 200 genes and 20 samples for each 



 - 5 - 

parameter set (α and τ). Finally, we calculated the mean of correlation of estimated 

gene abundance with ground truth value to report in Figure 4.  

For the simulation comparing differentially expressed gene (DEG) identification, we 

simulated count datasets with different levels of differentially expressed genes. This 

detailed ‘breakdown’ of simulation data was very helpful for us to investigate the 

impact of count variation in RNA-Seq data on DEG identification. The degree of 

differential expression of one gene between condition 1 and 2 was controlled by 

model parameter  1λ and  2λ . We simulated  1λ and  2λ with different correlation 

levels, where low (high) correlation of  1λ and  2λ  corresponds to strong (weak) 

differential expression. In order to control correlation of  1λ and  2λ at an exact level, 

we first sorted both vectors  1λ and  2λ generated from original BADGE model in 

descending order. In this case, the rank correlation of  1
sortλ and  2

sortλ became 1 and the 

expression difference of any gene among two groups was minimized. Next, we fixed 

 1
sortλ and circularly shifted values in  2

sortλ by K genes to get  2
shiftKλ , where the 

correlation between  1
sortλ and  2

shiftKλ  decreased accordingly. Through the above 

procedure, we could flexibly control the degree of differential expression by either 

increase or decrease the correlation between  1
sortλ and  2

shiftKλ without changing the 

distributions of model parameters (  1
sortλ and  2

shiftKλ are i.i.d. distributions of   1λ and 

 2λ ). In our simulation study, the correlation levels of  1λ and  2λ  were: -0.025 

(strongly differentially expressed), 0.364 (moderately differentially expressed), and 

0.556 (weakly differentially expressed). 
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Supplementary Figures  
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Figure S2. Autocorrelation plots for learned model parameters in real datasets. The 
autocorrelation of model parameters estimated from the Gibbs sampler typically drops to zero in shift 
of 10 samples. Particularly, for parameters that are sampled from conjugate prior distributions (e.g., λ 
and β), the dependency between consecutive samples is very low (autocorrelation drops to 0 after 1 
sample shift), showing a high efficiency of the sampling process. 
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Supplementary Tables  
 

Table S1 Model parameters and hyper-parameter selection 

model parameter hyper-parameter prior distribution  Description 
dg πg P(dg=1)= πg=0.5 

P(dg=0)= 1-πg=0.5 
p(dg) follows Bernoulli 
distribution with equal 
probability of taking  0 

and 1. 
ν a0, b0 ν~Gamma(a0, b0) 

a0=1, b0=0 
p(ν) has ‘flat’ Gamma 

prior on the positive real 
axis* 

α0 N/A α0~I(0,∞)** Non-informative flat 
prior 

α N/A α~I(0,∞) Non-informative flat 
prior 

τ a, b τ~Gamma(a, b) 
a=1, b=0 

p(τ) has ‘flat’ Gamma 
prior on the positive real 

axis* 
*: we assume Gamma ‘flat’ prior for parameter ν and τ for computational convenience so that  their 
posterior distributions will also follow Gamma distribution, which is a known distribution that can be 
easily sampled in practice. 
**: I(0,∞) denotes the non-informative prior defined over  entire positive real axis [3]. 
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