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Mehanical Engineering

(ABSTRACT)
This Systems Engineering project report discusses the design
and implementation of automatic flight controls. The general
airplane equations of motion are developed and used to
calculate transfer functions for a Cessna 172 airplane.
Automatic controllers were designed for four common autopilot
modes (pitch controlf altitude hold, roll control, and heading
hold).  Implementation of a £light control design was
accomplished using single degree of freedom roll equations
for a model airplane wing. The feedback compensation design
was ground tested in a simulated wind tunnel and met
performance requirements. All the elements of automatic

flight control design are described in this report.
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Chapter 1: INTRODUCTION

Airplanes and spacecraft are excellent examples of
systems requiring feedback <control for operation. In
airplanes the feedback and compensation functions are often
provided by the pilot; however, an autopilot control system
is created when the plane's position or rate is sensed and
control surfaces actuated to meet given performance
specifications. A prerequisite for autopilot design is that
the airplane as a plant must be inherently stable, or have a
feedback mechanism that provides stability, in order for its
response to disturbances and changes in control surfaces to
result in stable steady-state flight conditions. Autopilot
systems sometimes replace humans for safety purposes as in
reduced visibility landings. Also as sensing elements,
(gyroscopes, altimeters, etc.) became more sophisticated and
military needs such as stealth and advanced fighters emerged,
the requirement for faster response times increased and
automatic control systems became necessary. [1l, pg. 453]%

The subject of aerodynamic stability and control deals
with the reaction of the airplane to internally or externally

generated disturbances.
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* Numbers in square brackets, [ ], refer to references



Examples of internal disturbances are changes in rudder,
aileron, or elevator control surfaces; changes in center of
gravity location; and changes in airplane configuration (i.e.,
flaps extension, landing gear up or down, etc.). External
disturbances are atmospheric turbulence, upset gusts, and
changes in altitude and temperature. The response of the
airplane to the disturbances is the change with time of motion
variables relative to some steady-state £flight condition.
Stability criteria are selected to describe the required
airplane response to the perturbed motion. As a result, a
transfer function is required which describes the relationship
of airplane motion to a control surface deflection. [2, pg.
1]

This project was undertaken to develop an understanding
of airplane dynamic models and transfer functions, to design
autopilots, and to build hardware to implement a control
system design. To meet these objectives, the project was
divided into two parts. Part one consisted of developing
theoretical airplane models and using these models to design
feedback control systems. BAn example airplane was selected
with a specific set of geometries and flight conditions and
the transfer functions developed for this system. Feedback
control systems were designed for several autopilot control
modes. The second part of the project used the theory derived

in part one and applied it to the design of a single degree-



of-freedom roll problem. The wing section from ay'radio
control airplane was attached to a platform providing the roll
axis motion. A feedback control system was designed to
maintain the wing at a desired bank angle. The control system
implemented a simple compensation circuit.

This project report format follows the approach described
in the above paragraph. In summary there are two primary
objectives for this project. These are:

1. Develop generalized formulas for determining airplane

transfer functions, and to use these transfer functions

to design automatic control systems for a specific
airplane to meet a given set of performance
specifications.

2. Using a radio control model airplane, design, build,

and test a compensation system to automatically control

the airplane's roll mode.



Chapter 2: TRANSFER FUNCTIONS AND COMPENSATOR DESIGN

2.1 Airplane Model

The initial step in designing a control system is to
develop an accurate mathematical model of the system. This
section will develop the equations of motion and describe the
variables and constants used in this equation. It will also
specify a coordinate system most useful for analysis and will
evaluate the aerodynamic derivatives used in the equations.

In developing equations of motion, the most convenient
coordinate system to use is the stability axis system. Figure
1 defines the airplane axis system and motion variables. [3,
Pg. 4] Consider an airplane flying a symmetrical steady state
straight line flight path. {2, pg. 113] That means p=g=r=v=0
but u and w are not zero. The angle between the free stream
velocity vector Vpl and Ul is called alphal, the steady state
angle of attack. The stability axes are obtained from the
body axes by rotating about the Y axis over an angle alpha
until X coincides with Vpl. Figure 2 illustrates this
procedure. The new axis system is considered to be rigidly
attached to the airplane and moves with the airplane. The
stability axis system has been chosen with respect to a
particular steady state flight condition. In the case of an
airplane where V is not equal zero, the airplane is said to
be sideslipping. The sideslip angle is defined as beta. The

X axis of the stability system lies along the projection of
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the steady state velocity vector in the XZ plane. all
equations of motion used in this project are determined in
stability axis coordinates. The equations of motion make use
of dimensional and nondimensional aerodynamic derivatives.
The nondimensional derivatives describe thrust, drag, and l1ift
forces as a function of the airplane geometry and the effects
of control surface deflection. References 1 through 4 all
discuss the determination of these derivatives. The
definitions of the dimensional derivatives are given in
Appendices 2 and 3. These derivatives are acceleration
quantities per unit of the associated motion variable. For
example, Xu is the forward acceleration in ft./sec.”2 per unit
change in forward speed u (ft/sec.).

Using the above developed derivatives, the airplane
equations of motion can be written as shown in Tables 1 and
2. There are six equations that describe the forces and
moments about the X, Y, and Z axes respectively. [2, pgs. 414
& 446] The equations are linearized by assuming that all
perturbation quantities such as delta v, delta alpha, etc. are
small and that the squares and products of these quantities
can be neglected. Also, the equations are divided into
longitudinal and lateral -equations. The longitudinal
equations describe forces along the X and Z axes and moments
about the Y axis. The lateral equations describe force along

the Y axis and moments about the X and Z axes. Using



Table 1: Longitudinal Small Perturbation Equations

udot := -g'B8'cos(B) + X 'u+ X ‘u+ X ‘a¢+ X 8§
u tu « dE E

wdotl = U'q + -g'8'sin(B8) + Z 'u+ Z ‘o + Z.'&
u o «

wdot := wdotl + Z '‘q + Z ‘8E
qQ SE

qdot :=M ‘U+M ‘U+M GT+M ‘G+M aQ+M-'q+M ‘&E

u tu o to o q dE
Aerodynamic Derivatives: X X X X
u tu o SE
4 z z, z z
u o Q q dE
M M M M M, M
8E u tu o o q

dE = Elevator deflection
B = Pitch rotation angle
o = attitude angle

u = forward velocity

w = vertical velocity

qdot = pitch rotation velocity



Table 2: Lateral Small Perturbation Equations

- —— - - — W . — " . — - — . " — W - W - U VD WP VLD VD Uk G VI WV G G W Vot W02

vdot = -U'r + g'p'cos(B) +Y "B+ Y ‘p+¥Y  vr+Y -FA
[ P r 5A

pdot := Al'rdot + L "B +L 'Pp+L ‘v +L -dA+L IR
B P r Ja 3

rdot := Bl'pdot + N "B + N B+ N p+ N 'r + N -JA

B TR P r aA
I I
XZ XZ
AL = Bl1 = ——
I I
X X zz
Aerodynamic Derivatives: Y Y Y Y Y
F p r JA 4R
L L L L L
< = r aA iR
N N N N N N
B TE P g FA AR
¢ = Roll angle LY = aileron deflection
B = sideslip angle dR = rudder deflection
psi = heading angle pdot = ryoll rate
rdot = rotation about vertical axis
vdot = lateral velocity
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conventional aerodynamic assumptions concerning the force and
moment terms, the equations completely decouple into two
independent sets. These assumptions are in [4, pg. 160]:
1. The derivatives of the asymmetric or lateral forces
and moments with respect to the symmetric or longitudinal
variables are zero.
2. All derivatives of the symmetric forces and moments
with respect to the asymmetric motion variables may be
neglected.
3. All derivatives with respect to rates of change of
motion variables except for L, and My may be neglected.
These equations are in a suitable form for transfer function

determination and subsequent control system analysis.
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2.2 Airplane Transfer Functions

As developed in section 2.1, the airplane equations of
motion can be written in the form of transfer functions which
will describe airplane response due to control surface
deflections. In this section, these equations will be used
to determine a set of transfer functions for a specific
airplane, and the control system design discussed in section
2.3 will be performed for this airplane.

After taking the Laplace transform of the equations in
Tables 1 and 2, the equations were arranged in matrix form as
a function of motion variable versus control surface
deflection. Tables 3 and 4 show these equations. [2, pgs. 414
& 446] Longitudinal modes can be described by the airplane
response to elevator deflections while lateral modes are a
function of aileron and rudder deflections. Solutions for the
transfer functions are obtained using Cramer's rule. These
transfer functions are written using dimensional derivatives.
The dimensional derivatives can be evaluated by using the
characteristics of a particular airplane and flight condition.

The airplane selected is representative of a small four-
place personal transportation airplane (i.e., Cessna 172).
Stability and control derivatives, £flight <conditions,
geometries and inertias, and steady state coefficients are
given for this airplane in [2, pg. 591] Appendix 1 contains

these values.
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Appendices 2 and 3 contain the equations for determining
the transfer function for the lateral and longitudinal modes.
[2, ch. 6] Flight conditions for both modes were the same.
A Mathcad program was used to implement the example airplane
data into the equations of motion and develop the transfer
functions. An equation-solving feature of Mathcad was used
to find the pole and zero values for each equation. Tables
5 and 6 contain the resulting longitudinal and lateral
transfer functions in polynomial form.

This developed model is applied to a specific airplane;
however, by using different flight conditions, geometries,
and/or nondimensional derivatives a new set of transfer
functions can be determined. For a complete control system
design, a sensitivity analysis would be required to insure
that performance was satisfactory over the desired range of
flight conditions for the respective airplane. The program

developed would be capable of handling this type of analysis.



15

Table 5: Example Airplane Longitudinal Transfer Functions

——————— W - - — - W — P W W AN W —— " —— W W i - W S W - Vo W W - — - ——_— - -

8 + 8.87's - 48.4's - 418.9
u = -6.25° "SE
4 3 2
s +8.31l's + 36.7's + 1.8's + 1.2

3 2
8 + 195.2's + 8.46's + 8.43
ooi= - ,202° CSE
4 3 2
s +8.31's + 36.7's + 1.8's + 1.2

2
s + 2.11's + .12
H = -39.5° CAE
4 3 2
s +8.31's + 36.7's + 1.8'8 + 1.2
3 2
8 - .356's - 403's - 15.1
h == ,202° =14
4 3 2

s +8.31's + 36.7'8 +1.8's8 + 1.2
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Table 6: Example Airplane Lateral Transfer Functions

- — —— — - ——— Y —— V" W - - —— - — —— — — - > —— - -— - = —— - . — — —— - -

8 + 16.3'8 + .94

4 3 2
8 + 13.8's + 28.6's + 142.3's + 1.6

2
8 + 1.04's + 6

4 3 2
s + 13.8's + 28.6's + 142.3's + 1.6

3 2
-8 =~ 15.2's - 2.3's + .0006
psi := 31.4° “AA
4 3 2
S + 13.8's + 28.6's + 142.3's + 1.6

3 2
s + 127's + 146's - 32.9
B = .089" AR
4 3 2
8 + 13.8'8 + 28.6's + 142.3's + 1.6

2
s - 5.6's -~ 52.2
P = 4.75° "R
4 3 2
s + 13.8's + 28.6's + 142.3's + 1.6

3 2
8 + 12.6's + . 6's + .004
psi = -10.2" "SR
4 3 2
8 + 13.8's + 28.6's8 + 142.3's + 1.6
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2.3 Stability Analysis and Compensator Design

The previous airplane model development and transfer
functions determination make possible the design of automatic
(autopilot) control systems. In this section, four common
autopilot modes are designed for the example airplane
described in section 2.2. For the longitudinal case, a pitch
attitude hold and an altitude hold mode were designed. In the
lateral case, a bank angle hold/wing leveler and heading hold
mode autopilot were designed. The wing leveler autopilot is
the design implemented in part two of the project. The goal
was to find autopilot designs that would meet or best
approximate a set of design specifications. The computer
program "CC" was an important tool used in the analysis. This
program plots root locus diagrams, frequency response curves,
and time response performance among other things.

The following design specifications are requirements for
the autopilot systems. [2, ch. 11] The specifications are
divided into three parts: frequency response, time response,

and error specifications.

Frequency Response; Mp < 1.7 db. closed loop

Phase Margin > 35 degrees

Gain Margin > 9.5 db

Damping (phugoid) > .04

Damping (short period) .30<Dsp<2.0
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Time Domain; - Overshoot < 10%
- Rise Time (10% to 90%) < 3 sec.
- Steady State Error < 10%
Error Specifications; - Kp > 9, Ep < .1
- Kv > .1, Ev < 10
These specifications were determined from requirements stated
in reference 2.

The same design approach was used for all autopilot
modes. System performance can be described by the following
equation:

y(s)= G/(1+G)*r(s) + 1/(1+G)*d(s) - G/(1+G)*n(s) 2.1
where G describes the plant, r(s) is the reference input, d(s)
is a disturbance applied to the output y(s), and n(s) is
sensor noise resident in the system feedback loop. [5, pg. 46]
Performance is good if the output y(s) approximates a command
input r(s), rejects a disturbance in the output and rejects
sensor noise. By considering the magnitude of
G(3iw)/(1+G(jw)), 1/(1+G(jw)), and -G(jw)/(1+G(jw)), high gain
provides good output command following and disturbance
rejection but does not reject sensor noise. All of these
objectives can be achieved by providing high gain at low
frequencies and low gain at high frequencies. This assumes
high frequency sensor noise. By including an integrator in
G(s), there will be zero steady state error to a step input

and also high gain at low frequencies. This approach was used
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for all autopilot designs.

The characteristic equation in the denominator of the
longitudinal transfer functions is fourth order and consists
of two oscillatory modes. These modes are referred to as the
phugoid and short period modes. The phugoid mode takes place
at constant angle of attack, and the short period modes takes
place at constant speed. To simplify control system design,
it is customary to consider these two modes leaving out the
alpha and u equations respectively. [4, pg. 456] This is done
to simplify the analysis, but will not be necessary here given
the availability of the "CC" program.

For the example airplane, the short period and phugoid

modes are characterized as follows:

Mode Polynomial Natural Frequency Darping
Phugoid S$"2+.042*%s+.032 w = .179 rad/sec. 117
short period s72+8.26%s+36.7 w = 6.03 rad/sec. .684

Pitch Attitude Hold: The transfer function defining the
change in theta as a function of elevator deflection applies
to this mode. As noted above, the short period damping of the
example airplane meets the requirement; however, pitch
attitude hold modes frequently require an inner loop rate
feedback. This has the effect of artificially increasing the

system stiffness. The pitch damper moves the closed loop
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poles into a region where the damping is improved and gives
the advantage of greater gain in the outer loop. A pitch
damper, or stability augmentation system, was added here to
illustrate this procedure. Rate was determined by
differentiating position. Using this transfer function and
a servo transfer function given in [2, pg. 1089] of 10/(s+10),
an inner loop system was designed that reduced the closed loop
peak magnitude response by a factor of 2. [2, pg. 1102]

The stability augmentation system was included in the
design of the pitch position autopilot. Pitch rate was
integrated to give pitch position as the output. A vertical
gyro was included in the feedback loop with a gain of 1. To
be consistent with the design approach, the compensator
selected required an integrator for frequency loop shaping.
Consequently, a proportional, integral, differential (PID)
compensator was used. The effect of the PID compensator was
to provide two arbitrarily placed open and closed loop zeros
while introducing an integrator in the denominator to create
a type 1 system. The initial PID settings were found using
Ziegler-Nichols methods. [6, pg. 343] The integrator causes
an increase in system oscillation and peak overshoot, but by
adding differential control and sensing the rate of change of
the actuating signal, the oscillatory behavior can be reduced.
Also, the PID controller maintains the phase at less than 180

degrees throughout the system bandwidth. This
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increased bandwidth allows a wider range of controller gain
settings to meet desired performance requirements.

Figures 3 through 6 contain the open and closed loop Bode
plots, the root locus, and time response diagrams. Figure 7
shows the entire pitch control system. The PID controller
gain is negative due to the negative gain in the transfer
function. The performance parameters for all autopilot
designs are included in Table 7 at the end of Section 2.3, pg.
37. As shown by the open loop Bode plot, the gain at low
frequency is high and there is zero error in the steady state
time response. The phugoid and short period modes can be seen
in the magnitude curve on the open loop Bode plot. The
controller design meets all requirements for the given flight
conditions. In actual practice, the performance would have
to be considered over a full range of altitudes, attitudes,
and disturbances.

Altitude Hold: The altitude hold is frequently found in
many autopilots. Altitude is given by h and the rate of climb
is:

hdot = U * sin(gamma) T U * gamma 2.2
Gamma is the angle from the horizon to the forward velocity
vector of the airplane. Alpha is the angle from the velocity
vector to the airplane attitude. Theta is the sum of these
two angles. Using this relationship, taking the Laplace

transform of equation 2.2 and using elevator control, the
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1.2 Pitch Control Unit Step Response
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altitude to elevator deflection transfer function can be
determined:

h(s)/elev.(s) = U/s *(theta(s) - alpha (s))/delta e(s) 2.3
Altitude is a long term navigational requirement and requires
that the phugoid mode be considered. Using equation 2.3, the
transfer function for altitude versus elevator deflection was
found and included in Table 5, pg. 15. [2, pg. 1141]

Given the transfer function from equation 2.3, the
altitude hold autopilot was designed. The servo equation used
was again 10/(s+10), and an altimeter with unity gain was the
feedback mechanism. Figures 8 through 11 contain the response
curves and Figure 12 shows the altitude hold autopilot design.
An integrator was introduced in the compensator to create a
type 1 system. The root locus diagram shows that the system
is close to going unstable. To obtain the root locus shown,
one arbitrary zero was selected and the gain set to place the
closed loop poles. This design caused a peak overshoot of 20%
in the time response but the rise time requirement was
satisfied. The closed loop magnitude peak was .5 db. greater
than specified. A design tradeoff can be made by reducing the
gain to improve the overshoot and peak magnitude and accepting
a slower rise time. Again the phase is less than 180 degrees
for the entire system bandwidth and will allow variations in
gain settings. As shown in Table 7, pg. 37, all other

parameters were achieved with this design.
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As in the longitudinal case, the lateral
characteristic equation in the transfer function denominator
is fourth order. This equation is made up of one oscillatory
pair of roots and two real roots. The two real roots describe
the spiral mode and the rolling mode of motion. The slowly
damped low frequency oscillation is called the dutch roll
mode. The spiral mode is dominated by the bank angle and
heading angle. The roll mode can be approximated by a single
degree of freedom roll equation. The dutch roll consists
primarily of sideslipping and yawing and the roll term can be
eliminated. The analysis done here used the full
characteristic equation. [4, ch. 7]

For the example airplane, the lateral modes are described

as follows:

Mode Polynomial Natural Frequency Damping
Dutch roll s"2+1.4*%s+11.4 3.37 rad/sec. .203
Spiral s+.011 Ts = 90.9 sec. NA
Roll s+12.5 Tr = .08 sec. NA

Bank Angle hold/wing leveler: This autopilot mode is
used to <control the airplane roll angle, phi. The

calculations included all modes of the transfer function, not
just the first order approximation. As in the longitudinal

cases, the 10/(s+10) servo was used. For some airplanes and
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flight conditions, it may be necessary to include an inner
loop stability augmentation system; however, this was not
required for the example airplane.

The design chosen here used a proportional-differential
(PD) controller. This controller places an open and closed
loop zero in the system and has the effect of reducing the
peak overshoot and settling time. The zero also provides a
phase lead. The zero chosen for this system was at s=9.
Figures 13 through 16 show the system response curves, and
Figure 17 shows the autopilot design. As shown in the open
loop Bode plot, an integrator was not required for frequency
loop shaping. An integrator is added for the heading hold
mode in the next section. Table 7 shows that all response
requirements were achieved by the closed loop PD design.

Heading hold: Using the bank angle hold design found
above, a heading hold autopilot was designed. The
relationship between bank angle and heading is given by:

psidot = g * tan(phi) / (U) T g*phi/(U) 2.4
Taking the Laplace transform gives:
psi(s) = g * phi(s) / (U * s) 2.5

Using equation 2.5, a heading hold autopilot was designed.
As seen earlier in Figure 17, the heading hold design used a
heading gyro for feedback and a proportional control
compensator. Figures 18 through 21 show the system response

curves. The proportional design was selected from the time
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Roll Control Unit Step Response
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Heading Control Root Locus Diagran
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response curve of the uncompensated system. No additional
compensation was needed. All specifications were met by

increasing the gain. [2, pg. 1160]
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Table 7: Compensator Performance Characteristics

Specification

Mp< 1.7 db. (c.l.)
PM > 35 deg.

Gain Marg. >9.5 db
Phugoid damping
Sh. period damp.
Overshoot < 10%
10-90% rise <3 sec
SS error < 10%

Kp > 9

Ep < .1

Kv > .1

Ev < 10

Bitch
.8

72

30
NA

.56
7%

05
0
®

0

Control Mode

Altitude

2.2
50
16
.33
NA

20%

N

8 o

2.0

Roll

0
75
45
NA
NA
6%
1.8
. 9%
108

.009

Heading
.5

95
26
NA

NA



Chapter 3: IMPLEMENTATION OF CONTROL SYSTEM DESIGN

As described is section 2.3, the roll mode can be
accurately approximated using a single degree-of-freedom roll
equation. This case was used for part two of the project.
The objective of this section was the actual implementation
of a feedback control system and compensation circuit. In
order to reduce the total moment of inertia about the X axis
and make ground testing feasible, a wing section, versus an
entire airplane, from a radio control Eagle 63 model airplane
was analyzed and the parameters used in the control equations.
A squirrel cage ventilation fan provided sufficient air flow
to allow testing of the system. The actual hardware used will

be described in a later section.

38



39

3.1 Simplified Equation of Motion for Single DOF Wing

The equation of motion of an airplane in a single degree
of freedom roll is as follows:

Clda*da(s)*Q*S*B+Clp* (phi*B)/(2%U)*Q*S*B=Ixx*phi 3.1
The phi/da transfer function can be determined from this
equation and is given in equation 3.2:

phi/da = Clda*Q*S*B/(s"2*Ixx-s*Clp*Q*S*B/(2*U)) 3.2
Using dimensional aerodynamic coefficients as defined in
Appendix 3, the transfer function is:

phi/da = Lda/(s*(s+Lp)) 3.3

By evaluating the parameters in this equation, the transfer
function in the s domain can be determined. [2, pg.

520]
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3.2 Test Hardware Description

Figure 22 is a sketch of the experimental system designed
to provide a single degree-of-freedom roll axis for the
airplane wing. Automotive wheel bearings were pressed onto
each end of a threaded shaft. The bearings were then mounted
on a 1"x4"x24" board using U-bolts. The shaft was free to
rotate parallel to the 24" axis of the board. A fuselage-like
structure representing the area immediately below the wing was
built for wing attachment. The fuselage-like structure was
clamped to the threaded shaft using u-bolts. This structure
provided a mounting surface for the wing and allowed a plus
or minus 15 degree roll. The wing included the servo which
was used in the original model for aileron control.

Due to the pulse width modulation design of the
receiver/servo system, it was necessary for servo actuation
to send all signals into a Futaba four channel Conquest radio.
The radio then transmitted the signals to the receiver and
into the appropriate channel for servo actuation.

Wing rotation was measured by attaching the body of a 10K
ohm potentiometer to the support platform and the rotating arm
to the axis of rotation of the threaded shaft. This served
as a transducer for converting rotation into an electrical
signal.

The control circuitry used 761 operational amplifiers in

the design of differencing circuits, lead-lag compensators,
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automotive bearing

10K potentiometer

g
/

Single DOF Roll Platform

62.7 in.

1

1.8 in.

T—— ee—— evm— e——

Leading Edge of Wing

s T

1
| € 11.6 in. —

Squirrel Cage Fan Airfoil Section
- constant chord

Figure 22: Experimental Hardware Description
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and gain adjustments. Six volt batteries were used to provide
a plus or minus bias to the op amps. The supply voltage from
the radio was used as the input voltage for the reference and
feedback circuits. Figure 23 shows a functional block diagram
of the entire system.

Several limitations were inherent in the experimental
set-up. Damping was introduced about the roll axis by the
bearings and most significantly by the potentiometer. The
effect was to slow down system response and remove overshoot
that may be introduced by compensator design. Although all
control signals were required to be sent through the radio,
no model was used to represent these parts of the system. The
servo equation used, 10/(s+10), is the same equation used in

the theoretical part of the project.
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3.3 Experimental Parameter Determination

3.3.1 Dynamic Pressure - Q

The dynamic pressure of the experimental configuration
was determined using the pendulum set-up shown in Figure 24.
A tennis ball was hung from a 2 foot string and the amount of
deflection resulting from the fan pressure measured. The
force balance equations are shown in Figure 24.

The deflection of the tennis ball was measured across the
leading edge of the wing. The average deflection was 5
inches. Given the weight and diameter of the tennis ball (2
oz. and 2.5 in.) and length of string (2 ft.), the pressure

was determined to be .76 lb/ft."2.

3.3.2 Forward Velocity - U
The forward velocity is related to dynamic pressure by
equation:

g =Cd * 1/2 rho * Velocity™2 3.4
where Cd is the drag coefficient and rho is the air density
which is equal to .002378 1b sec”2/ft"4 at sea level. Cd for
a sphere is given as .5. [7, pg. 430] From the previous value
of q, the velocity is found to be 36.1 ft/sec. or 24.6

miles/hr.

3.3.3 Wing Area - S

From the manufacturer’'s specifications, the wing area is



= o fp —>
¥ £ -—"-5"‘-
Fan Pendulum Wing
2
Tennis ball mass: mg - lbs force
16
2.5
Tennis ball diameter: = —  ft
12
2
d
Projected area: R a = 0.034
4
Force in x direct. Fx mg sin(H) Fx = 0.026
Fx
Dynamic Pressure: o q = 0.764
a

Alr Density: o
Drag Coefficient: cd

Alr Velocity:

Figure 24:

.002378 lbs.xsec.”2/ft.74

vV = 35.847 ft./sec.

Dynamic Pressure Calculation
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given as 4.96 ft~2,

3.3.4 Wing Span - B
The manufacturer specifies the wing span as 62.7 inches

which equals 5.2 ft.

3.3.5 Wing Moment of Inertia - Ixx

The total wing weight is 11 oz. The equation for moment
of inertia is given by:

Ixx = 1/12*%(m*1"2) 3.5

Ixx is found to be 1.52 1b £ft"2, In the experimental
configuration, additional moment of inertia is added by the
platform to support the wing. This weight was very close to
the x axis so no attempt was made to add this additional

inertia.

3.3.6 Aerodynamic Coefficients - (Clda, Cp, Lda, Lp)
The nondimensional aerodynamic coefficients, Clda and Cp,
are given for this particular class of flight in reference 2,

chapter 4, as follows: Clda = .15 and Clp = -.40.

From these values and the above determined parameters, the
dimensional coefficients can be found and the transfer
function for the wing experiment determined. Lda and Lp are

given by equations 3.6 and 3.7:
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Lda = qg*s*b*Clda/(Ixx) 3.6
Lp = g¥s*b"2*%Clp/(2*Ixx*U) 3.7
Substituting into these equations, Lda = 1.92 and Lp = -.52.

The transfer function given earlier in equation 3.3 is then:

phi/da = 1.92/(s*(s+.37)) 3.8
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3.4 Project Performance Specifications

Performance specifications for the project are equivalent

to those in section 2.3.

Frequency Response; Mp < 1.7 db. for dominant mode

Phase Margin > 35 degrees

- Gain Margin > 9.5 db

Damping (phugoid) > .04

Damping (short period) .30<Dsp<2.0
Time Domain; - Overshoot < 10%
- Rise Time (10% to 90%) < 3 sec.
- Steady State Error < 10%
Error Specifications; - Kp > 9, Ep < .1

- Kv > .1, Ev < 10
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3.5 Compensator Design

The desired performance of the system is to have a
natural frequency of 2.5 rad/sec. and damping of .7. This
means the dominant closed loop poles in the denominator will
have the equation:

(s™2 + 2%2,5% 7*s + 2.5%2) 3.9
The servo equation used was 10/(s+10) and the open loop
transfer function of the system is:

10/(s+10)*.0722/(s*(s+.09)) 3.10
A Bode plot of the transfer function indicates that a phase
lead circuit is desired to improve phase margin and gain
margin. The compensation design options were limited to a
simple lead or lag circuit since the compensator would be
implemented in electronic hardware; however, the roll equation
is already in the form of a type 1 system. Figures 25 through
29 include the system response diagrams. From the root locus
diagram of the system, a phase lead compensator of
(s+.5)/(s+5) was chosen to allow a root locus which would
provide options for closed loop poles close to the desired
values stated in equation 9.1. With the gain at k=4, the
closed loop poles are shown in the diagram. These poles
result in a natural frequency of 2.48 rad/sec. and a damping
value of .69. Figure 30 shows a block diagram of the system
design. From the Bode diagrams, the closed 1loop peak

magnitude response is 0 db.; the gain margin is 20 db., and
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the phase margin is 65 degrees. The 10% to 90% rise time is
1l sec., and the steady state error is =zero. The velocity
error coefficient is Kv=2.07, and the steady state velocity
error is .48, The control system meets all specified
requirements.

Implementation of the compensation circuit can be
achieved using op amp circuit designs shown in Figure 31. [8,
chp. 8] and [9, chp. 4] Prior to compensation, a feedback
circuit must be established and compared to a reference input.
This error signal is then sent into the compensation circuit.
The gain of the circuit is determined by the pole and zero
locations and the scaling of the resistor and capacitor
values. [9, App. 1] BAnother op amp circuit is used to adjust
the gain to the desired value. The resistor and capacitor

values used to build the circuit are shown below:

Difference Circuit Lead Circuit Gain Circuit

R1 = 10k pot. R5 = 105k ohms R7 = 58.3k ohms
R2 = 10k pot. R6 = 1.01lm ohms R8 = 85.1k ohms
R3 = 5.9k ohms Cl = .1 micro farads

R4 6.1k ohms
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3.6 System Test Results

Testing of the system was accomplished using a video
camera. The tests consisted of applying step inputs to the
system by adjusting the value of the reference potentiometer,
and creating a disturbance by rapping one end of the wing and
watching the response. Figures 28 and 29 include the response
of the system. The test results are not fully representative
of the an actual system due to increased damping in the set-
up, some uncertainty in the experimental parameters, the pulse
width modulation design of the radio and receiver, and limited
resolution of the measuring system. However, the results do
indicate that the airplane wing response meets the time

response specifications.



Chapter 4: SUMMARY AND CONCLUSIONS
4.1 Project Conclusions

The results of part 1 demonstrated the determination of
airplane transfer functions and applied these to a specific
airplane geometry and flight condition. Given the transfer
functions, several autopilot control systems were designed to
meet performance specifications. The design method of using
a PID controller provided the desired frequency loop shaping
and the steady state response to a step input.

Part two used a simplified single degree-of-freedom roll
model and implemented a control system design. The system
performed close to theoretical calculations. A more accurate
measurement system would be i1eyuired to obtain actual
performance. There was some uncertainty in the aerodynamic
coefficients wused for the flight <condition, and the
experimental set-up introduced additional damping and
inertias. However, the performance achieved was
representative of actual flight conditions.

The objectives of this project were successfully
accomplished. As a result, the project demonstrated the
feasibility of designing, implementing, and testing in a
simulated environment an automatic flight control system.
These control system designs can be applied to flight

autopilot hardware.
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4.2 Suggestions for Further Study

During completion of the project, several additional

study topics surfaced. One is to consider simultaneously
controlling several airplane modes. This might require
multiple inputs to a single control surface. An optimum

performance measure would have to be determined and a control
system algorithm developed for control surface deflection.
Also, the designs described in this project did not take into
account the equations of the control surfaces and their
mechanisms. A complete control system design would have to
consider the forces required to actuate the surfaces.
Finally, additional complexity could be added to the
implementation part of the project by using a rate gyro.
Since the system is second order, this would provide state
variable feedback and allow arbitrary placement of zeros to

obtain desired damping and frequency characteristics.
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Appendix 1: Example Airplane Flight Condition

and Geometries

Flight Condition:

Altitude (ft)

Air Density (slugs/ft™3)
Speed (fps)

Center of Gravity

Initial Attitude (B in rad)

Dynamic Pressure (lbs/ft"2)

Geometry and Inertias:

Wing area (ft"2)

Wing Span (ft)

Wing Mean Geometric Chord (ft)
Weight (lbsm)

Ixx (slug ft~2, 1lb ft~2)

Iyy (slug ft~2, 1b ft~2)

Izz (slug ft™2, lb ft~2)

Ixz (slug ft™2, 1b ft~2)

Steady State Coefficients:

CL1 := .31 CTX1 := ,031

CD1 := _031 CMl1 ::= O

60

h := 5000
g = .00205
Ul == 219
xcg = .25
B :=0

q = 49.19
s := 174

b := 35.8
c = 4.9

w = 82.14
Ixx := 948

Iyy := 1346

Izz = 1967

Ixz := O

CMT1 := O



Appendix 2

Longitudinal Transfer Functions

from Stability and Control Derivatives

. — —— - — " —— - T ——— - — W > > — - — - — . — W ——— - — = - -

Nondimensional Longitudinal Derivatives

CMU := O CLA

CMA := -.89 cLAD
CMAD := -5.2 cLa

CMQ := -12.4 CDA

CMTU := O

CMTA := O CTXU
CLU := 0 CLDE

CoU == 0O

4.6

1.7

3.9

.13

1= =-.093

CODE := .06

CMDE := -1.28

Dimensional Longitudinal Stability Derivatives

CDU + 2°CD1

XU = -q's"
w Ul
CcbhA - CL1
XA 1= -q'g"—
w
CLU + 2'CL1
ZIU = -q's"
w Ul
c

ZAD := -q's'CLAD
2'w Ul

61

XTU

ZA

ZQ

CTXU + 2'CTX1

= q's"
w Ul
CDDE
= -qQ'S
w
CLA + CD1
:= -q'S"
w
c
= -q's'CLQ"
2'w Ul



Appendix 2 (cont.):

CLOE

ZDE := -g's’

CMTU + 2'CMT1

Longitudinal Transfer Functions

MTU = q'8'¢C"

Iyy- Ul
CMTA
MTA = q's ¢
Iyy
2 cMQ
MQ := q's'¢c
2 Iyy Ul

XU = -0.029

XTU = -0.015

XA = 18.756

XDE = -6.252

ZU = -0.295

ZA = -482.554

ZAD = -1 .982

ZQ = -4 .546

CMU + 2'CM1
MU := q's8'¢c*
Iyy Ul
CMA
MA = q's'c'—
Iyy
2 CMAD
MAD = q's'¢C
2 ' Iyy Ul
CMDE
MDE = gq's'c"
Iyy

MDE = -39.883

MQ = -4.322

MAD = -1.813

MTA = O

MA = =27 .731

MTU = O

MU = O

ZDE = -44 .806
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Appendix 2 (cont.): Longitudinal Transfer Functions

Denominator Polynomial

AD1 := Ul - ZAD

BD1 := -(U1 - ZAD) (XU + XTU + MQ) - ZA - MAD (U1 + ZQ)

CDO11 := (XU + XTU) (MQ' (Ul - ZAD) + ZA + MAD (Ul + ZQ))
CD12 := MQ'ZA - ZU'XA + MAD ' g'sin(B) - (MA + MTA) (Ul + ZQ)
CD1 := CD11 + CD12

DD11 := g sin(B8) (MA + MTA - MAD' (XU + XTU))

OD12 := g'cos(B) (ZU'MAD + (MU + MTU) (Ul - ZAD))

DD13 := (MU + MTU) (-XA (Ul + ZQ))

DD14 := ZU'XA'MQ + (XU + XTU) ((MA + MTA) (Ul + ZQ) - MQ'ZA)
DD1 := DD11 + DD12 + DD13 + DD14

ED11 := g'cos(B) ((MA + MTU)'ZU - ZA ' (MU + MTU))
ED12 := g'sin(B) ((MU + MTU) XA = (XU + XTU)'(MA + MTU))
ED1 := ED11 + ED12

AD1 = 220.982 3 DD1 = 396.583
CD1 = 8.119°10
3
BD1 = 1.836°-10 ED1 = 263.416

The denominator polynomial is given by the following:

4 3 2
f(s) := ADl1's + BDl's + CDl's + DD1's + ED1



Appendix 2 (cont.):

64

Longitudinal Transfer Functions

Roots of denominator:

guess value

s :=1 + i

8 = 1 - {

8 1= -10 - 10i

s = =10 + 101

solve command solution for s

:= voot(f(s),s) s = -0.021 + 0.18i
:= root(f(s),s) 8 = ~0.021 - 0.18i
= root(f(s),s) 8 = -4.134 - 4.39i
:= root(f(s),s) s = -4.134 + 4.39i

Numerator for U/JE Transfer Function

AU := XDE (Ul - ZAD)

BU := -XDE‘((Ul - ZAD)'MQ + ZA + MAD (Ul + ZQ)) + ZDE XA

CUL := XDE'(MQ'ZA + MAD g 'sin(B8) - (MA + MTA) (Ul + ZQ))
CU2 := ZDE'(-MAD'g-'cos(B) - XA'MQ)

CU3 := MDE'(XA'(U1l + ZQ) - (U1 - ZAD) g 'cos(8B))

CU := CUl1 + CU2 + CU3

DU1 := XDE'(MA + MTA) g'sin(8) - ZDE 'MA'g cos(8)
DU2 := MDE'(ZA'g-cos(B) - XA'g 'sin(B))

DU := DUl + DU2

3
AU = -1.382°10

4
BU = -1.226'10

4
CU = 6.69°10

s
OU = 5,797 10
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Appendix 2 (cont.): Longitudinal Transfer Functions

3 2
f(s) := AU's + BU's + CU's + DU

8 = -§ s := root(f(s),s) s = -6.628
s := 0 8 := root(f(s),s) 8 = -9.158
s := 20 s := root(f(s),s) s = 6.913

Numerator for a/SE transfer function

AA = ZDE
BA := XDE'ZU + ZDE (-MQ - (XU + XTU)) + MDE (U1l + ZQ)

CAl := XDE'((Ul + ZQ)' (MU + MTU) - MQ-ZU)

CA2 := ZDE'MQ (XU + XTU)

CA3 := MDE'(-g'sin(8) - (Ul + ZQ) (XU + XTU))
CA = CAl + CA2 + CA3

DAl := -XDE (MU + MTU) ' g'sin(B) + ZDE'(MU + MTU) g 'cos(8)
DA2 := MDE ' ((XU + XTU) ' g'sin(B8) - ZU'g'cos(B))
DA ::= DAl + DA2
AA = —44 806 CA = =-379.067
3

BA = -8.747 10 DA = -378.845

3 2
f(s) := AA's + BA's + CA's + DA



66

Appendix 2 (cont.): Longitudinal Transfer Functions

8 1= -1 - | s := root(f(s),s) 8 = -0.022 - 0.207%
8 := -1 + i s = root(f(s),s) s = -0.022 + 0.2071
s 1= =195 s := root(f(s),s) s = -195.171

Numerator for 8/3E transfer function

A8 := ZDE'MAD + MDE (Ul - ZAD)

BEH1 := XDE ' (ZU'MAD + (Ul - ZAD) (MU + MTU))
B2 := ZDE ((MA + MTA) - MAD (XU + XTU))
BE3 := MDE'(-ZA - (Ul - ZAD) (XU + XTU))
B8 := BB1 + 882 + BB3

CH1 := XDE'((MA + MTA) ZU - ZA (MU + MTU))
CH2 := ZDE ' (-(MA + MTA) (XU + XTU) + XA (MU + MTU))

CH3 = MDE ' (ZA (XU + XTU) - XA'ZU)
CB := CB1 + CA2 + CB3

3 4 3
AB = -8.732°10 B8 = -1.839°10 c8 = -1.068°10

2
f(s) := AB's + BB's + CB

g 1= -1 s := root(f(s),s) s = -0.06

s Ix -2 s := root(f(s),s) s = -2.047



Appendix 3: Lateral Transfer Functions form Stability
and Control Derivatives

- —— > = — — — . W W - T W - WD —- ——— Y N D —— . W " —— = —

Nondimensional Lateral Derivatives

CLP := =.47 CLB := -.089
CLDA ::= .178 CLR = .096
CLDR := .0147 CNB := .065
CNDA := -.053 CNP := -.03
CNDR := -.0657 CNR = —-_.099
cyg := -.31 CYP := -.037
CYDR := .187 CYR = .21
CNTB := O CYDA = O

Dimensional Lateral Stability Derivatives

cys CcYyp
YB := q's8s"— YP = q's'b
w 2'w Ul
CYR CYDA
YR := q's ' b— YDA = q's’
2'w' Ul w
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Appendix 3 (cont.):

CYDR
YOR := q's8"
w
2 CLP
LP := q's'b
2 Ixx-Ul
CLDA
LDA := q's'b"
Ixx
CNB
NB := q's'b'—
I1zz
2 CNP
NP := q's'b
2'Izz' Ul
CNDA

NDA = q's'b"
1zz

Lateral Transfer Functions

CcLB
LB T = q.s.b.—-—
Ixx
2 CLR
LR :=q's'b
2 Ixx'Ul
CLDR
LDR := q's'b"
Ixx
CNTB
NT8 := q's'b"
1zz
2 CNR
NR :=q's'b -
2°'1Izz'Ul
CNDR
NOR := gq's'b-
1zz
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Appendix 3 (cont.): Lateral Transfer Functions

YB = -32.303 YP = -0.315 YR = 1.789
YDA = O YOR = 19.486 LB = -28.768
LP = -12.417 LR = 2.536 LDA = 57.536
LDR = 4.752 NB = 10.126 NTB = O

NP = -0.382 NR = -1.261 NDA = -8.257

NDR = -10.235

Lateral-Directional Transfer Functions

Ixz Ixz
Al = — Bl := —
Ixx Izz

Denominator Polynomial

AD2 := U1'(1 - A1°'B1l)



Appe

B8D2

CcD21
CcD22
CD23
CD2

DD21
bD22
DD23
DD24
DD2

ED2

AD2

DD2

f(s)
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ndix 3 (cont.): Lateral Transfer Functions

= ~YB'(1 - A1'B1) - UL (LP + NR +#+ A1'NP + B1'LR)

:x= UL'(LP'NR = LR'NP) + YB'(NR + LP + A1'NP + B1'LR)
t= YP'(LB + NB'Al + NTB'Al1) - U1 (LB'B1L + NB + NTB)
:= YR'(LB'B1 + NB + NTB)

= CD21 - CD22 -~ CD23

= =YB'(LP'NR = LR'NP) + YP'(LB'NR = NB'LR = NTB'LR)
:x -g-cos(B) (LB + NB'Al + NTB-Al)

t= UL'(LB'NP - NB'LP - NTB'LP)

tx -YR'(LB'NP - NB'LP - NTB'LP)

= DD21 + DD22 + DD23 + DD24

= g'cos(B)'(LB'NR - NB'LR - NTB'LR)

3 3
= 219 802 = 3.028°10 CD2 = 6.272°10
4
= 3.116°10 ED2 = 340.735
4 3 2

1= AD2's + BD2's + CD2's + DD2's + ED2

-1 s := root(f(s),s) s = -0.011

-.5 + 3i s = root(f(s),s) 8 = -0.686 + 3.307i1
-.5 - 31 s := root(f(s),s) s = -0.686 - 3.3071
-10 s = root(f(s),s) s = -12.442
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Appendix 3 (cont.): Lateral Transfer Functions

Equations due to Aileron deflection

Numerator for B/5a transfer function

AB := YDA'(1 - A1'B1)

BE1 := -YDA'(NR + LP + A1°NP + B1'LR) + YP (LDA + NDA 'Al)
B8f2 := YR'(LDA'B1 + NDA) - Ul-(LDA'B1 + NDA)
Bf := BF1 + Bp2

CHEL := YDA '(LP'NR = NP'LR) + YP (NDA'LR = LDA NR)

CE2 := g'cos(B) (LDA + NDA'Al1) + YR (LDA'NP - NDA'LP)
CE3 := ~-U1'(LDA'NP - NDA LP)

CP := CB1 + Cp2 + CP3

DP := g-cos(B) (NDA'LR - LDA'NR)

4
AB = O CB = 2.888 10
3 3
Bﬁ = 1.775-10 DB = 1.661-10
3 2
f(s) := AB's + BB's + CB's + DB
s = -1 s := root(f(s),s) s = -0.058

s := =10 s := root(f(s),s) s = -16.21
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Appendix 3 (cont.): Lateral Transfer Functions

Numerator for §/3a transfer function

Ad := Ul (LDA + NDA A1)

Bl := Ul "(NDA'LR - LDA'NR) - YB'(LDA + NDA"Al)

B$2 := YDA (LB + NB'Al + NTB'Al)

Bp := Bpl + B2

Cpl := -YB ' (NDA'LR - LDA'NR) + YDA'(LR'NB + LR'NTB - NR'LB)

Cp2 := (Ul - YR) (NB'LDA + NTB'LDA - LB'NDA)
Cp = Cpl + Co2

4 4 4
A = 1.26°10 B = 1.316°10 Ch = 7.662:10
2
f(s) := Ap's + Bg's + Co

g = =5 = | s := root(f(s),s) 8 = -0.522 - 2.411

s = -8 + | s = root(f(s),s) s = -0.522 + 2.411

Numerator for psi/¥a tranafer function

Apsi := U1'(NDA + LDA'81)

Bpsii := UL (LDA'NP - NDA'LP) - YB'(NDA + LDA'B1)
Bpsi2 := YDA'(LB'B1 + NB + NTB)
8psi := Bpsil + Bpsi2
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Appendix 3 (cont.): Lateral Transfer Functions

Cpsil := -YB'(LDA'NP - NDA'LP)

Cpsi2 := YP'(NB'LDA + NTB'LDA - LB NDA)
Cpsi3 := YDA'(LB'NP - NB'LP = NTB'LP)
Cpsi := Cpsil + Cpsi2 + Cpsi3

Dpsi := g'cos(B) (NB'LDA + NTB'LDA - LB 'NDA)

3
Apsi = -1.808-10 3
Cpsi = -4.131:10
4 4
Bpsi = -2.753°10 Dpsi = 1.111°10
3 2

f(s) := Apsi's + Bpsi's + Cpsi‘'s + Dpsi

s := -1.5 s := root(f(s),s)

s = 1 8 := root(f(s),s)

s = =25 8 := root(f(s),s)

8 = -0.735

8 = 0.556

s = -15.048
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Appendix 3 (cont.): Lateral Transfer Functions

Equations due to Rudder deflection

Numerator for E/dr transfer function

Af := YDR'(1 - A1'B1)

BE1L := -YDR'(NR + LP + A1 'NP + B1'LR) + YP'(LDR + NDR'Al)
BfF2 := YR (LDR'B1 + NDR) - U1'(LDR'B1 + NDR)
BE := BPF1 + Bf2

CEF1 := YDR'(LP'NR = NP'LR) + YP'(NDR'LR - LDR'NR)
CF2 := g'cos(B) (LDR + NDR A1)

CE3 = YR'(LDR'NP = NDR'LP) = U1'(LDR'NP - NDR'LP)
CP == CP1 + CP2 + C§3

DE := g-cos(B) (NDR'LR - LDR'NR)
4

AfF = 19.486 CE = 2.848-10

3
BE = 2.488 10 Dﬁ = -643.024

3 2
f(s) := Af's + BE's + CB's + Dp
8 1= 1 8 := root(f(s),s) s = 0.023
s = -20 s := root(f(s),s) s = ~12.738

8 := ~100 8 := root(f(s),s) 8 = -114.977
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Appendix 3 (cont.): Lateral Tranafer Functions

Numerator for $p/dr transfer function

Ad := UL (LDR + NDR'A1l)

Bdl := UL (NDR'LR - LDR'NR) - YB'(LDR + NDR'A1)

Bp2 := YDR'(LB + NB'A1l + NTB'Al)

B9 = Bl + B2

Cdl == -YB'(NDR'LR - LDR'NR) + YDR'(LR'NB + LR'NTB - NR'LB)
Cp2 := (Ul - YR) (NB'LDR + NTB'LDR - LB'NDR)

Cp = Cpl + Cd2

3 3 4
Ad = 1.041-10 By = -4.78°10 Cp = -5.436-10

2
f(s) := Aap's + Bp's + Cop
s = -1 s := root(f(s),s) s = -5.287

s := 10 8 := root(f(s),s) s = 9,881

Numerator for psi/éfr transfer function

Apsi := U1 (NOR + LDR'B1)

Bpsil := U1'(LDR'NP - NDR'LP) - YB'(NDR + LDR'81)
Bpsi2 := YDR'(LB'B1 + NB + NTB)
Bpsi := Bpsil + Bpsi2
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Appendix 3 (cont.): Lateral Transfer Functions

Cpsil := -YB'(LDR'NP = NDR'LP)

Cpsi2 := YP'(NB'LDR + NTB'LDR - LB'NDR)
Cpsi3 := YOR'(LB'NP = NB'LP -~ NTB'LP)
Cpsi := Cpsil + Cpsi2 + Cpsi3

Dpsi := g'cos(B) ' (NB'LDR + NTB'LDR - LB'NDR)

3 3

Apsi = -2.241°10 Cpsi = -1.422°10

4 3

Bpsi = -2.836°10 Dpsi = -7.932:10
3 2

f(s) := Apsi's + Bpsi's + Cpsi's + Dpsi

g = -1 + i s = root(f(s),s) s = -0.014 + 0.529i
8 = -1 - { s := root(f(s),s) s = -0.014 - 0.5291

g := -10 s := root{(f(s),s) 8 = -12.626
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