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(ABSTRACT ) 

This Systems Engineering project report discusses the design 

and implementation of automatic flight controls. The general 

airplane equations of motion are developed and used to 

calculate transfer functions for a Cessna 172 airplane. 

Automatic controllers were designed for four common autopilot 

modes (pitch control, altitude hold, roll control, and heading 

hold). | Implementation of a flight control design was 

accomplished using single degree of freedom roll equations 

for a model airplane wing. The feedback compensation design 

was ground tested in a simulated wind tunnel and met 

performance requirements. All the elements of automatic 

flight control design are described in this report.
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Chapter 1: INTRODUCTION 

Airplanes and spacecraft are excellent examples of 

systems requiring feedback control for operation. In 

airplanes the feedback and compensation functions are often 

provided by the pilot; however, an autopilot control system 

is created when the plane's position or rate is sensed and 

control surfaces actuated to meet given performance 

specifications. A prerequisite for autopilot design is that 

the airplane as a plant must be inherently stable, or have a 

feedback mechanism that provides stability, in order for its 

response to disturbances and changes in control surfaces to 

result in stable steady-state flight conditions. Autopilot 

systems sometimes replace humans for safety purposes as in 

reduced visibility landings. Also as sensing elements, 

(gyroscopes, altimeters, etc.) became more sophisticated and 

military needs such as stealth and advanced fighters emerged, 

the requirement for faster response times increased and 

automatic control systems became necessary. [1, pg. 453]* 

The subject of aerodynamic stability and control deals 

with the reaction of the airplane to internally or externally 

generated disturbances. 

* Numbers in square brackets, [ ], refer to references



Examples of internal disturbances are changes in rudder, 

aileron, or elevator control surfaces; changes in center of 

gravity location; and changes in airplane configuration (i.e., 

flaps extension, landing gear up or down, etc.). External 

disturbances are atmospheric turbulence, upset gusts, and 

changes in altitude and temperature. The response of the 

airplane to the disturbances is the change with time of motion 

variables relative to some steady-state flight condition. 

Stability criteria are selected to describe the required 

airplane response to the perturbed motion. As a result, a 

transfer function is required which describes the relationship 

of airplane motion to a control surface deflection. [2, pg. 

1} 

This project was undertaken to develop an understanding 

of airplane dynamic models and transfer functions, to design 

autopilots, and to build hardware to implement a control 

system design. To meet these objectives, the project was 

divided into two parts. Part one consisted of developing 

theoretical airplane models and using these models to design 

feedback control systems. An example airplane was selected 

with a specific set of geometries and flight conditions and 

the transfer functions developed for this system. Feedback 

control systems were designed for several autopilot control 

modes. The second part of the project used the theory derived 

in part one and applied it to the design of a single degree-



of-freedom roll problem. The wing section from a radio 

control airplane was attached to a platform providing the roll 

axis motion. A feedback control system was designed to 

maintain the wing at a desired bank angle. The control system 

implemented a simple compensation circuit. 

This project report format follows the approach described 

in the above paragraph. In summary there are two primary 

objectives for this project. These are: 

1. Develop generalized formulas for determining airplane 

transfer functions, and to use these transfer functions 

to design automatic control systems for a specific 

airplane to meet a given set of performance 

specifications. 

2. Using a radio control model airplane, design, build, 

and test a compensation system to automatically control 

the airplane's roll mode.



Chapter 2: TRANSFER FUNCTIONS AND COMPENSATOR DESIGN 

2.1 Airplane Model 

The initial step in designing a control system is to 

develop an accurate mathematical model of the system. This 

section will develop the equations of motion and describe the 

variables and constants used in this equation. It will also 

specify a coordinate system most useful for analysis and will 

evaluate the aerodynamic derivatives used in the equations. 

In developing equations of motion, the most convenient 

coordinate system to use is the stability axis system. Figure 

1 defines the airplane axis system and motion variables. [3, 

pg. 4] Consider an airplane flying a symmetrical steady state 

straight line flight path. [2, pg. 113] That means p=q=r=v=0 

but u and w are not zero. The angle between the free stream 

velocity vector Vpl and Ul is called alphal, the steady state 

angle of attack. The stability axes are obtained from the 

body axes by rotating about the Y axis over an angle alpha 

until xX coincides with Vpl. Figure 2 illustrates this 

procedure. The new axis system is considered to be rigidly 

attached to the airplane and moves with the airplane. The 

stability axis system has been chosen with respect to a 

particular steady state flight condition. In the case of an 

airplane where V is not equal zero, the airplane is said to 

be sideslipping. The sideslip angle is defined as beta. The 

X axis of the stability system lies along the projection of
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Figure 1: Airplane Axis System
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the steady state velocity vector in the XZ plane. All 

equations of motion used in this project are determined in 

stability axis coordinates. The equations of motion make use 

of dimensional and nondimensional aerodynamic derivatives. 

The nondimensional derivatives describe thrust, drag, and lift 

forces as a function of the airplane geometry and the effects 

of control surface deflection. References 1 through 4 all 

discuss the determination of these derivatives. The 

definitions of the dimensional derivatives are given in 

Appendices 2 and 3. These derivatives are acceleration 

quantities per unit of the associated motion variable. For 

example, Xu is the forward acceleration in ft./sec.”2 per unit 

change in forward speed u (ft/sec.). 

Using the above developed derivatives, the airplane 

equations of motion can be written as shown in Tables 1 and 

2. There are six equations that describe the forces and 

moments about the X, Y, and Z axes respectively. [2, pgs. 414 

& 446] The equations are linearized by assuming that all 

perturbation quantities such as delta v, delta alpha, etc. are 

small and that the squares and products of these quantities 

can be neglected. Also, the equations are divided into 

longitudinal and lateral equations. The longitudinal 

equations describe forces along the X and Z axes and moments 

about the Y axis. The lateral equations describe force along 

the Y axis and moments about the X and Z axes. Using



Table 1: Longitudinal Small Perturbation Equations 
wn ene EP we om Se ew > Ow OP wm © OF OF om OF Ow OF ow 8 OP ee Oe © Oo oe we ee om oe oe ee 0 Oe oe ee oe 8 Oo oe oe Oe Ow ee en oe oe 

-g GB'cos(8) +X ‘ut xX ‘ut X'at xX 'S 

ul tu ct SE CE 

Cc Qa o c
t
 i" 

wdoti := U'q + -g'@'sin(8) + Z'ut+t Zsart- Z a 
@ 

u or « 

wdot := wdoti + Z‘q+2Z ‘sE 

q SE 

qadot *-=MiutM ‘utM ‘a+ M ‘AO + M a +Msq+M ‘&& 

u tu a to ce q SE 

Aerodynamic Derivatives: x x x x 

u tu cK SE 

Z Z Z. Z Z 
u ce a q dE 

M M M M M, M 
é&€ u tu a or q 

&E = Elevator deflection 

8 = Pitch rotation angle 

o = attitude angle 

u_ = forward velocity 

w = vertical velocity 

qdot = pitch rotation velocity



Table 2: Lateral Small Perturbation Equations 

vdot := -U'r + git'cos(8) + Y “B+ Ysip+YiertyY ‘aA 

B p Yr aA 

pdot := Al‘rdot +L ‘B+rtL pth oir +l ‘SA +L “GR 

B p Yr aA AR 

rdot := Bl'pdot +N ‘B +N ‘B+NoptNir +N ‘dA 
B TE Pp Yr aA 

I I 

XZ XZ 

AL := —— Bl := —— 
I I 

xx ZZ 

Aerodynamic Derivatives: Y Y Y Y Y 

p p r SA &R 

L L L L L 

B P Yr aa ar 

N N N N N N 

B TE Pp Yr aA aR 

¢ = Roll angle aA = aileron deflection 

6B = sgideslip angle aR = yudder deflection 

psi = heading angle pdot = roll rate 

rdot = rotation about vertical axis 

vdot = lateral velocity
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conventional aerodynamic assumptions concerning the force and 

moment terms, the equations completely decouple into two 

independent sets. These assumptions are in [4, pg. 160]: 

1. The derivatives of the asymmetric or lateral forces 

and moments with respect to the symmetric or longitudinal 

variables are zero. 

2. All derivatives of the symmetric forces and moments 

with respect to the asymmetric motion variables may be 

neglected. 

3. All derivatives with respect to rates of change of 

motion variables except for Ly and My, may be neglected. 

These equations are in a suitable form for transfer function 

determination and subsequent control system analysis.



li 

2.2 Airplane Transfer Functions 

As developed in section 2.1, the airplane equations of 

motion can be written in the form of transfer functions which 

will describe airplane response due to control surface 

deflections. In this section, these equations will be used 

to determine a set of transfer functions for a specific 

airplane, and the control system design discussed in section 

2.3 will be performed for this airplane. 

After taking the Laplace transform of the equations in 

Tables 1 and 2, the equations were arranged in matrix form as 

a function of motion variable versus control surface 

deflection. Tables 3 and 4 show these equations. [2, pgs. 414 

& 446] Longitudinal modes can be described by the airplane 

response to elevator deflections while lateral modes are a 

function of aileron and rudder deflections. Solutions for the 

transfer functions are obtained using Cramer's rule. These 

transfer functions are written using dimensional derivatives. 

The dimensional derivatives can be evaluated by using the 

characteristics of a particular airplane and flight condition. 

The airplane selected is representative of a small four- 

place personal transportation airplane (i.e., Cessna 172). 

Stability and control derivatives, flight conditions, 

geometries and inertias, and steady state coefficients are 

given for this airplane in [2, pg. 591] Appendix 1 contains 

these values.
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Appendices 2 and 3 contain the equations for determining 

the transfer function for the lateral and longitudinal modes. 

[2, ch. 6] Flight conditions for both modes were the same. 

A Mathcad program was used to implement the example airplane 

data into the equations of motion and develop the transfer 

functions. An equation-solving feature of Mathcad was used 

to find the pole and zero values for each equation. Tables 

5 and 6 contain the resulting longitudinal and lateral 

transfer functions in polynomial form. 

This developed model is applied to a specific airplane; 

however, by using different flight conditions, geometries, 

and/or nondimensional derivatives a new set of transfer 

functions can be determined. For a complete control system 

design, a sensitivity analysis would be required to insure 

that performance was satisfactory over the desired range of 

flight conditions for the respective airplane. The program 

developed would be capable of handling this type of analysis.
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Table 5: Example Airplane Longitudinal Transfer Functions 
SR SAE RAD CRED ND ORD AD AEE ENE AP LE RA CREP ETD ERD ORE ETD “ODED ORD URED REP OADD ERED GD WHEE ETD OEE NEE ORES OD CE GUE UE WON ARE UP NE UE GRE ORD SRE OD NUNS ERD MEE TO HED THU OEY SY WED ine EP eee Sh wane WR “We 

S + 8.87's - 48.4°'s ~- 418.9 

U r= -6&.25' ‘SE 

4 3 2 

Ss + 8.31's + 36.7's +1.8'S + 1.2 

  

3 2 

S + 195.2's + 8.46'Ss + 8.43 

m 2 -—,202° ‘a€ 

4 3 2 

S$ + 8.31's + 36.7'S +1.8°'S + 1.2 

  

  

  

2 

$s + 2.11's + .12 

Ho ois -39.5° ‘SE 

4 3 2 

s + 8.31's + 36.7's +1.8°83 + 1.2 

3 2 

s ~ .35's ~ 4003's - 158.1 

h == .202° ‘SE 

4 3 2 

S$ + 8.31'3 + 36.7's +1.8'8 + 1.2



16 

Table 6: Example Airplane Lateral Transfer Functions 
AAP aA CE EP ED ET WEP OE NP VE ARNE TR RR SUED IEP REN GARY WORD TEND Wane SRD CE NED ERD CAEP NE SEP GND CEUD WORD SEY RD TO AD CE OE ARE ERD WRT ES RE ED EAD HD Tenet SRD CED Nene ee EP We We ee 

S$ + 16.3'3 + .94 
  

4 3 2 

S$ +13.8's + 28.6'83 + 142.3'S3 + 1.6 

2 

Ss + 1.04's + 6 

qo s= 57.5° “a0 

4 3 2 

S$ + 13.8's + 28.6's + 142.3'8 + 1.6 

  

3 2 

-3$ - 15.2's ~ 2.3'8s + .0006 

psi := 31.4: "SA 

4 3 2 

s + 13.8's + 28.6'S + 142.3'8 + 1.6 

  

3 2 

$s + 1127's + 146's ~- 32.9 

Foes .089° ‘dR 

4 3 2 

$s + 13.8's + 28.6's + 142.3'5 + 1.6 

  

2 

s ~ 5.6's ~ 52.2 

ps2 4.75° "aR 

4 3 2 

Ss + 13.8'S + 28.6'S + 142.3°'°83 + 1.6 

  

3 2 

S$ +12.6's3 + .6'8 + .004 

psi := ~10.2° ‘SR 

4 3 2 

S$ + 13.8's + 28.6'S + 142.3'Ss + 1.6 
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2.3 Stability Analysis and Compensator Design 

The previous airplane model development and transfer 

functions determination make possible the design of automatic 

(autopilot) control systems. In this section, four common 

autopilot modes are designed for the example airplane 

described in section 2.2. For the longitudinal case, a pitch 

attitude hold and an altitude hold mode were designed. In the 

lateral case, a bank angle hold/wing leveler and heading hold 

mode autopilot were designed. The wing leveler autopilot is 

the design implemented in part two of the project. The goal 

was to find autopilot designs that would meet or best 

approximate a set of design specifications. The computer 

program "CC" was an important tool used in the analysis. This 

program plots root locus diagrams, frequency response curves, 

and time response performance among other things. 

The following design specifications are requirements for 

the autopilot systems. [2, ch. 11] The specifications are 

divided into three parts: frequency response, time response, 

and error specifications. 

Frequency Response; Mp < 1.7 db. closed loop 

Phase Margin > 35 degrees 

Gain Margin > 9.5 db 

Damping (phugoid) > .04 

Damping (short period) .30<Dsp<2.0
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Time Domain; - Overshoot < 10% 

- Rise Time (10% to 90%) < 3 sec. 

- Steady State Error < 10% 

Error Specifications; - Kp > 9, Ep < .1 

- Kv > .1, Ev < 10 

These specifications were determined from requirements stated 

in reference 2. 

The same design approach was used for all autopilot 

modes. System performance can be described by the following 

equation: 

y(s)= G/(1+G)¥*r(s) + 1/(1+G)*d(s) - G/(1+G)*n(s) 2.1 

where G describes the plant, r(s) is the reference input, d(s) 

is a disturbance applied to the output y(s), and n(s) is 

sensor noise resident in the system feedback loop. [5, pg. 46] 

Performance is good if the output y(s) approximates a command 

input r(s), rejects a disturbance in the output and rejects 

sensor noise. By considering the magnitude of 

G( jw)/(1+G(jw)), 1/(1+G(iw)), and -G(jw)/(1+G(ijiw)), high gain 

provides good output command following and disturbance 

rejection but does not reject sensor noise. All of these 

objectives can be achieved by providing high gain at low 

frequencies and low gain at high frequencies. This assumes 

high frequency sensor noise. By including an integrator in 

G(s), there will be zero steady state error to a step input 

and also high gain at low frequencies. This approach was used
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for all autopilot designs. 

The characteristic equation in the denominator of the 

longitudinal transfer functions is fourth order and consists 

of two oscillatory modes. These modes are referred to as the 

phugoid and short period modes. The phugoid mode takes place 

at constant angle of attack, and the short period modes takes 

place at constant speed. To simplify control system design, 

it is customary to consider these two modes leaving out the 

alpha and u equations respectively. [4, pg. 456] This is done 

to simplify the analysis, but will not be necessary here given 

the availability of the "CC" program. 

For the example airplane, the short period and phugoid 

modes are characterized as follows: 

    Mode Polynomial Natural Frequency Darping 

Phugoid $°~2+.042*st.032 w = .179 rad/sec. .117 

short period s*2+8.26*s+36.7 w= 6.03 rad/sec. .684 

Pitch Attitude Hold: The transfer function defining the 

change in theta as a function of elevator deflection applies 

to this mode. As noted above, the short period damping of the 

example airplane meets the requirement; however, pitch 

attitude hold modes frequently require an inner loop rate 

feedback. This has the effect of artificially increasing the 

system stiffness. The pitch damper moves the closed loop
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poles into a region where the damping is improved and gives 

the advantage of greater gain in the outer loop. A pitch 

damper, or stability augmentation system, was added here to 

illustrate this procedure. Rate was determined by 

differentiating position. Using this transfer function and 

a servo transfer function given in [2, pg. 1089] of 10/(s+10), 

an inner loop system was designed that reduced the closed loop 

peak magnitude response by a factor of 2. [2, pg. 1102] 

The stability augmentation system was included in the 

design of the pitch position autopilot. Pitch rate was 

integrated to give pitch position as the output. A vertical 

gyro was included in the feedback loop with a gain of 1. To 

be consistent with the design approach, the compensator 

selected required an integrator for frequency loop shaping. 

Consequently, a proportional, integral, differential (PID) 

compensator was used. The effect of the PID compensator was 

to provide two arbitrarily placed open and closed loop zeros 

while introducing an integrator in the denominator to create 

a type l system. The initial PID settings were found using 

Ziegler-Nichols methods. [6, pg. 343] The integrator causes 

an increase in system oscillation and peak overshoot, but by 

adding differential control and sensing the rate of change of 

the actuating signal, the oscillatory behavior can be reduced. 

Also, the PID controller maintains the phase at less than 180 

degrees throughout the system bandwidth. This



21 

increased bandwidth allows a wider range of controller gain 

settings to meet desired performance requirements. 

Figures 3 through 6 contain the open and closed loop Bode 

plots, the root locus, and time response diagrams. Figure 7 

shows the entire pitch control system. The PID controller 

gain is negative due to the negative gain in the transfer 

function. The performance parameters for all autopilot 

designs are included in Table 7 at the end of Section 2.3, pg. 

37. As shown by the open loop Bode plot, the gain at low 

frequency is high and there is zero error in the steady state 

time response. The phugoid and short period modes can be seen 

in the magnitude curve on the open loop Bode plot. The 

controller design meets all requirements for the given flight 

conditions. In actual practice, the performance would have 

to be considered over a full range of altitudes, attitudes, 

and disturbances. 

Altitude Hold: The altitude hold is frequently found in 

many autopilots. Altitude is given by h and the rate of climb 

is: 

hdot = U * sin(gamma) = U * gamma 2.2 

Gamma is the angle from the horizon to the forward velocity 

vector of the airplane. Alpha is the angle from the velocity 

vector to the airplane attitude. Theta is the sum of these 

two angles. Using this relationship, taking the Laplace 

transform of equation 2.2 and using elevator control, the
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altitude to elevator deflection transfer function can be 

determined: 

h(s)/elev.(s) = U/s *(theta(s) - alpha (s))/delta e(s) 2.3 

Altitude is a long term navigational requirement and requires 

that the phugoid mode be considered. Using equation 2.3, the 

transfer function for altitude versus elevator deflection was 

found and included in Table 5, pg. 15. [2, pg. 1141] 

Given the transfer function from equation 2.3, the 

altitude hold autopilot was designed. The servo equation used 

was again 10/(s+10), and an altimeter with unity gain was the 

feedback mechanism. Figures 8 through 11 contain the response 

curves and Figure 12 shows the altitude hold autopilot design. 

An integrator was introduced in the compensator to create a 

type 1 system. The root locus diagram shows that the system 

is close to going unstable. To obtain the root locus shown, 

one arbitrary zero was selected and the gain set to place the 

closed loop poles. This design caused a peak overshoot of 20% 

in the time response but the rise time requirement was 

Satisfied. The closed loop magnitude peak was .5 db. greater 

than specified. A design tradeoff can be made by reducing the 

gain to improve the overshoot and peak magnitude and accepting 

a slower rise time. Again the phase is less than 180 degrees 

for the entire system bandwidth and will allow variations in 

gain settings. As shown in Table 7, pg. 37, all other 

parameters were achieved with this design.
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As in the longitudinal case, the lateral 

characteristic equation in the transfer function denominator 

is fourth order. This equation is made up of one oscillatory 

pair of roots and two real roots. The two real roots describe 

the spiral mode and the rolling mode of motion. The slowly 

damped low frequency oscillation is called the dutch roll 

mode. The spiral mode is dominated by the bank angle and 

heading angle. The roll mode can be approximated by a single 

degree of freedom roll equation. The dutch roll consists 

primarily of sideslipping and yawing and the roll term can be 

eliminated. The analysis done here used the full 

characteristic equation. [4, ch. 7] 

For the example airplane, the lateral modes are described 

as follows: 

  

Mode Polynomial Natural Frequency Darping 

Dutch roll s°2+1.4*s+11.4 3.37 rad/sec. 203 

Spiral s+.011 Ts = 90.9 sec. NA 

Roll s+12.5 Tr = .08 sec. NA 

Bank Angle hold/wing leveler: This autopilot mode is 

used to control the airplane roll angle, phi. The 

calculations included all modes of the transfer function, not 

just the first order approximation. As in the longitudinal 

cases, the 10/(s+10) servo was used. For some airplanes and
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flight conditions, it may be necessary to include an inner 

loop stability augmentation system; however, this was not 

required for the example airplane. 

The design chosen here used a proportional-differential 

(PD) controller. This controller places an open and closed 

loop zero in the system and has the effect of reducing the 

peak overshoot and settling time. The zero also provides a 

phase lead. The zero chosen for this system was at s=9. 

Figures 13 through 16 show the system response curves, and 

Figure 17 shows the autopilot design. As shown in the open 

loop Bode plot, an integrator was not required for frequency 

loop shaping. An integrator is added for the heading hold 

mode in the next section. Table 7 shows that all response 

requirements were achieved by the closed loop PD design. 

Heading hold: Using the bank angle hold design found 

above, a heading hold autopilot was designed. The 

relationship between bank angle and heading is given by: 

fe 
psidot = g * tan(phi) / (U) = g*phi/(U) 2.4 

Taking the Laplace transform gives: 

psi(s) = g * phi(s) / (U * s) 2.5 

Using equation 2.5, a heading hold autopilot was designed. 

As seen earlier in Figure 17, the heading hold design used a 

heading gyro for feedback and a proportional control 

compensator. Figures 18 through 21 show the system response 

curves. The proportional design was selected from the time
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response curve of the uncompensated system. No additional 

compensation was needed. All specifications were met by 

increasing the gain. [2, pg. 1160]
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Table 7: Compensator Performance Characteristics 

Control Mode 

Specification Pitch Altitude Roll Heading 

Mp< 1.7 db. (c.1.) .8 2.2 0 5 

PM > 35 deg. 72 50 75 95 

Gain Marg. >9.5 db 30 16 45 26 

Phugoid damping NA .33 NA NA 

Sh. period damp. 56 NA NA NA 

Overshoot < 10% 7% 20% 6% 3% 

10-90% rise <3 sec .5 2 1.8 2.2 

SS error < 10% 0 0 . 9% 0 

Kp > 9 o a 108 ad 

Ep < .l ) 0 .009 0 

Kv > .l 6.12 .5 0 -59 

Ev < 10 16 2.0 oo 1.68



Chapter 3: IMPLEMENTATION OF CONTROL SYSTEM DESIGN 

As described is section 2.3, the roll mode can be 

accurately approximated using a single degree-of-freedom roll 

equation. This case was used for part two of the project. 

The objective of this section was the actual implementation 

of a feedback control system and compensation circuit. In 

order to reduce the total moment of inertia about the X axis 

and make ground testing feasible, a wing section, versus an 

entire airplane, from a radio control Eagle 63 model airplane 

was analyzed and the parameters used in the control equations. 

A squirrel cage ventilation fan provided sufficient air flow 

to allow testing of the system. The actual hardware used will 

be described in a later section. 
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3.1 Simplified Equation of Motion for Single DOF Wing 

The equation of motion of an airplane in a single degree 

of freedom roll is as follows: 

Clda*da(s)*Q*S*B+Clp*(phi*B) /(2*U)*Q*S*B=Ixx*phi 3.1 

The phi/da transfer function can be determined from this 

equation and is given in equation 3.2: 

phi/da = Clda*Q*S*B/(s*2*Ixx-s*Cl p*Q*S*B/(2*U) ) 3.2 

Using dimensional aerodynamic coefficients as defined in 

Appendix 3, the transfer function is: 

phi/da = Lda/(s*(s+tLp)) 3.3 

By evaluating the parameters in this equation, the transfer 

function in the s domain can be determined. [2, pg. 

520]
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3.2 Test Hardware Description 

Figure 22 is a sketch of the experimental system designed 

to provide a single degree-of-freedom roll axis for the 

airplane wing. Automotive wheel bearings were pressed onto 

each end of a threaded shaft. The bearings were then mounted 

on a 1"x4"x24" board using U-bolts. The shaft was free to 

rotate parallel to the 24" axis of the board. A fuselage-like 

structure representing the area immediately below the wing was 

built for wing attachment. The fuselage-like structure was 

clamped to the threaded shaft using u-bolts. This structure 

provided a mounting surface for the wing and allowed a plus 

or minus 15 degree roll. The wing included the servo which 

was used in the original model for aileron control. 

Due to the pulse width modulation design of the 

receiver/servo system, it was necessary for servo actuation 

to send all signals into a Futaba four channel Conquest radio. 

The radio then transmitted the signals to the receiver and 

into the appropriate channel for servo actuation. 

Wing rotation was measured by attaching the body of a 10K 

ohm potentiometer to the support platform and the rotating arm 

to the axis of rotation of the threaded shaft. This served 

as a transducer for converting rotation into an electrical 

signal. 

The control circuitry used 761 operational amplifiers in 

the design of differencing circuits, lead-lag compensators,
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Figure 22: Experimental Hardware Description
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and gain adjustments. Six volt batteries were used to provide 

a plus or minus bias to the op amps. The supply voltage from 

the radio was used as the input voltage for the reference and 

feedback circuits. Figure 23 shows a functional block diagram 

of the entire system. 

Several limitations were inherent in the experimental 

set-up. Damping was introduced about the roll axis by the 

bearings and most significantly by the potentiometer. The 

effect was to slow down system response and remove overshoot 

that may be introduced by compensator design. Although all 

control signals were required to be sent through the radio, 

no model was used to represent these parts of the system. The 

servo equation used, 10/(s+10), is the same equation used in 

the theoretical part of the project.
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3.3 Experimental Parameter Determination 

3.3.1 Dynamic Pressure - Q 

The dynamic pressure of the experimental configuration 

was determined using the pendulum set-up shown in Figure 24. 

A tennis ball was hung from a 2 foot string and the amount of 

deflection resulting from the fan pressure measured. The 

force balance equations are shown in Figure 24. 

The deflection of the tennis ball was measured across the 

leading edge of the wing. The average deflection was 5 

inches. Given the weight and diameter of the tennis ball (2 

oz. and 2.5 in.) and length of string (2 ft.), the pressure 

was determined to be .76 lb/ft.*2. 

3.3.2 Forward Velocity - U 

The forward velocity is related to dynamic pressure by 

equation: 

q = Cd * 1/2 rho * Velocity” 2 3.4 

where Cd is the drag coefficient and rho is the air density 

which is equal to .002378 lb sec”2/ft°4 at sea level. Cd for 

a sphere is given as .5. (7, pg. 430] From the previous value 

of q, the velocity is found to be 36.1 ft/sec. or 24.6 

miles/hr. 

3.3.3 Wing Area - §S 

From the manufacturer's specifications, the wing area is
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given as 4.96 ft°2. 

3.3.4 Wing Span - B 

The manufacturer specifies the wing span as 62.7 inches 

which equals 5.2 ft. 

3.3.5 Wing Moment of Inertia - Ixx 

The total wing weight is 1l oz. The equation for moment 

of inertia is given by: 

Ixx = 1/12*(m*1°2) 3.5 

Ixx is found to be 1.52 lb £t7%2. In the experimental 

configuration, additional moment of inertia is added by the 

platform to support the wing. This weight was very close to 

the x axis so no attempt was made to add this additional 

inertia. 

3.3.6 Aerodynamic Coefficients - (Clda, Cp, Lda, Lp) 

The nondimensional aerodynamic coefficients, Clda and Cp, 

are given for this particular class of flight in reference 2, 

chapter 4, as follows: cClda = .15 and Clp = -.40. 

From these values and the above determined parameters, the 

dimensional coefficients can be found and the transfer 

function for the wing experiment determined. Lda and Lp are 

given by equations 3.6 and 3.7:
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Lda = qxs*b*Clda/(Ixx) 3.6 

Lp = q*skt*b*2¥*Clp/(2*Ixx*vU) 3.7 

Substituting into these equations, Lda = 1.92 and Lp = -.52. 

The transfer function given earlier in equation 3.3 is then: 

phi/da = 1.92/(s*(s+.37)) 3.8
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3.4 Project Performance Specifications 

Performance specifications for the project are equivalent 

to those in section 2.3. 

Frequency Response; Mp < 1.7 db. for dominant mode 

Phase Margin > 35 degrees 

- Gain Margin > 9.5 db 

Damping (phugoid) > .04 

Damping (short period) .30<Dsp<2.0 

Time Domain; - Overshoot < 10% 

- Rise Time (10% to 90%) < 3 sec. 

- Steady State Error < 10% 

Error Specifications; - Kp > 9, Ep < .1l 

- Kv > .1, Ev < 10
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3.5 Compensator Design 

The desired performance of the system is to have a 

natural frequency of 2.5 rad/sec. and damping of .7. This 

means the dominant closed loop poles in the denominator will 

have the equation: 

(s°2 + 2%2.5*%.7%*s + 2.5°2) 3.9 

The servo equation used was 10/(s+10) and the open loop 

transfer function of the system is: 

10/(s+10)*.0722/(s*(s+.09)) 3.10 

A Bode plot of the transfer function indicates that a phase 

lead circuit is desired to improve phase margin and gain 

margin. The compensation design options were limited to a 

simple lead or lag circuit since the compensator would be 

implemented in electronic hardware; however, the roll equation 

is already in the form of a type 1 system. Figures 25 through 

29 include the system response diagrams. From the root locus 

diagram of the system, a phase lead compensator of 

(s+.5)/(s+5) was chosen to allow a root locus which would 

provide options for closed loop poles close to the desired 

values stated in equation 9.1. With the gain at k=4, the 

closed loop poles are shown in the diagram. These poles 

result in a natural frequency of 2.48 rad/sec. and a damping 

value of .69. Figure 30 shows a block diagram of the system 

design. From the Bode diagrams, the closed loop peak 

magnitude response is 0 db.; the gain margin is 20 db., and



50 

the phase margin is 65 degrees. The 10% to 90% rise time is 

l sec., and the steady state error is zero. The velocity 

error coefficient is Kv=2.07, and the steady state velocity 

error is .48. The control system meets all specified 

requirements. 

Implementation of the compensation circuit can be 

achieved using op amp circuit designs shown in Figure 31. [8, 

chp. 8] and [9, chp. 4] Prior to compensation, a feedback 

circuit must be established and compared to a reference input. 

This error signal is then sent into the compensation circuit. 

The gain of the circuit is determined by the pole and zero 

locations and the scaling of the resistor and capacitor 

values. [9, App. 1] Another op amp circuit is used to adjust 

the gain to the desired value. The resistor and capacitor 

values used to build the circuit are shown below: 

  

Difference Circuit Lead Circuit Gain Circuit 

Rl = 10k pot. R5 = 105k ohms R7 = 58.3k ohms 

R2 = 10k pot. R6 = 1.01m ohms R8 = 85.1k ohms 

R3 = 5.9k ohms Cl = .1 micro farads 

R4 6.1k ohms
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3.6 System Test Results 

Testing of the system was accomplished using a video 

camera. The tests consisted of applying step inputs to the 

system by adjusting the value of the reference potentiometer, 

and creating a disturbance by rapping one end of the wing and 

watching the response. Figures 28 and 29 include the response 

of the system. The test results are not fully representative 

of the an actual system due to increased damping in the set- 

up, some uncertainty in the experimental parameters, the pulse 

width modulation design of the radio and receiver, and limited 

resolution of the measuring system. However, the results do 

indicate that the airplane wing response meets the time 

response specifications.



Chapter 4: SUMMARY AND CONCLUSIONS 

4.1 Project Conclusions 

The results of part 1 demonstrated the determination of 

airplane transfer functions and applied these to a specific 

airplane geometry and flight condition. Given the transfer 

functions, several autopilot control systems were designed to 

meet performance specifications. The design method of using 

a PID controller provided the desired frequency loop shaping 

and the steady state response to a step input. 

Part two used a simplified single degree-of-freedom roll 

model and implemented a control system design. The system 

performed close to theoretical calculations. A more accurate 

measurement system would be iveyuired to obtain actual 

performance. There was some uncertainty in the aerodynamic 

coefficients used for the flight condition, and the 

experimental set-up introduced additional damping = and 

inertias. However, the performance achieved was 

representative of actual flight conditions. 

The objectives of this project were successfully 

accomplished. As a result, the project demonstrated the 

feasibility of designing, implementing, and testing in a 

simulated environment an automatic flight control system. 

These control system designs can be applied to flight 

autopilot hardware. 
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4.2 Suqgestions for Further Study 

During completion of the project, several additional 

study topics surfaced. One is to consider simultaneously 

controlling several airplane modes. This might require 

multiple inputs to a single control surface. An optimum 

performance measure would have to be determined and a control 

system algorithm developed for control surface deflection. 

Also, the designs described in this project did not take into 

account the equations of the control surfaces and their 

mechanisms. A complete control system design would have toa 

consider the forces required to actuate the surfaces. 

Finally, additional complexity could be added to the 

implementation part of the project by using a rate gyro. 

Since the system is second order, this would provide state 

variable feedback and allow arbitrary placement of zeros to 

obtain desired damping and frequency characteristics.
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Appendix 1: Example Airplane Flight Condition 

and Geometries 

Flight Condition: 

Altitude (ft) 

Air Density (slugs/ft73) 

Speed (fps) 

Center of Gravity 

Initial Attitude (8 in rad) 

Dynamic Pressure (lbs/ft~2) 

Geometry and Inertias: 

Wing area (ft~2) 

Wing Span (ft) 

Wing Mean Geometric Chord (ft) 

Weight (lbsm) 

Ixx (slug ft"2, lb ft72) 

Iyy (slug ft"2, lb ft~2) 

Izz (slug ft”2, lb ft*2) 

Ixz (slug ft°2, lb ft~2) 

Steady State Coefficients: 

CLi := .31 CTX1 := .031 

CO1l := .031 CM1 :2 O 

60 

h == 5000 

@ 2 .00205 

U1 == 219 

xcg == .25 

H := 0 

q := 49.19 

S$ ?:= 174 

b := 35.8 

Ww := 82.14 

Ixx :2 948 

Tyy == 1346 

Izz == 1967 

Ixz :2 O 

CMT1 == O



Appendix 2: Longitudinal Transfer Functions 

from Stability and Control Oerivatives 

Nondimensional Longitudinal Derivatives 

CMU := 0 CLA := 4.6 CDDE := .06 

CMA := -.89 CLAD :2= 1.7 CMOE := -1.28 

CMAD := -5.2 CLQ := 3.9 

CMQ := ~12.4 CDA := .13 

CMTU =: O CDU := 0 

CMTA := O CTXU := -.093 

CLU := 0 CLDE := .43 

Dimensional Longitudinal Stability Derivatives 

CDU + 2°CD1 CTXU + 2°CTX1 
  

  

XU := -q's> XTU := q's° 

w' U1 w' U1 

CDA - CL1 CODE 

XA := -Q's°> XDE := -q's 

w w 

CLU + 2°CL1 
ZU "= -q 300 

w' UL 

c 

ZAD :® -q‘s‘CLAD: 

2'w'U1 

61 

CLA + CD1 

ZA :3 -qQ's’ 

Ww 

Cc 

ZQ :=™ -q's‘'CLQ’ 

2'w'U1



Appendix 2 (cont.): Longitudinal Transfer Functions 

CLDE 
  ZDE ?= -q's° 

CMTU + 2°CMT1 
  

MTU :-=3 q's'c’ 

  

Iyy’ V1 

CMTA 

MTA =:= q's'c' 

Iyy 

2 CMQ 

MQ := q's'c °' 

2'Iyy’vU1 

XU = -0.029 

XTU # -0.015 

XA = 18.756 

XDE = -6.252 

ZU = -0.295 

ZA = -482.554 

ZAD * ~1.982 

ZQ = -4.546 

CMU + 2°CML 
MU om a'3s'o°07 

  

Iyy U1 

CMA 

MA := q's'c' "7 

lyy 

2 CMAD 

MAD := q's'c 

2° Iyy'U1 

CMDE 

MDE := q's‘c’' 

Iyy 

MODE = -39.883 

MQ = -4.322 

MAD = -1.813 

MTA = O 

MA * -27.731 

MTU = O 

MU = O 

ZDE = -44.806
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Appendix 2 (cont.): Longitudinal Transfer Functions 

Denominator Polynomial 

AD1 == U1 - ZAD 

BD1 == -(U1 - ZAD)‘'( XU + XTU + MQ) - ZA - MAD'(U1 + ZQ) 

CO11 := (XU + XTU)'(MQ'(U1 - ZAD) + ZA + MAD'(U1 + ZQ)) 

CD12 := MQ'ZA ~- ZU'XA + MAD'g'sin(8) - (MA + MTA) (UL + ZQ) 

CD1 == CD11 + CO12 

DD11 := g*sin(8)' (MA + MTA —- MAOD'C(XU + XTU)) 

0012 := g'cos(8):(ZU'MAD + (MU + MTU)'(CUL - ZAD)) 

0013 == (MU + MTU)'(-xXA'CU1 + ZQ)) 

DD14 := ZU'XA'MQ + (XU + XTU)'CCMA + MTA)’ CUL + ZQ) - MQ'ZA) 

DD1 := 0011 + DD12 + DD1I3 + DD14 

ED11 := g'cos(8)°((MA + MTU):'ZU - ZA‘'(CMU + MTU)) 
ED12 := g'sin(@):C(CMU + MTU)°XA —- (XU + XTU)'CMA + MTU)) 
ED1 := E011 + ED12 

AD1 = 220.982 3 DDO1 = 396.583 

CO1 = 8.119 -10 

3 

BD1 = 1.836:-10 ED1 = 263.416 

The denominator polynomial is given by the following: 

4 3 2 

f(s) := AD1's + BD1's + CD1‘'s + DO1L's + EDL



Appendix 2 (cont. ): 
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Longitudinal Transfer Functions 

Roots of denominator: 

guess value 

s:z=il+ti s 

S:z™1-i s 

$8 := -10 - 10i s 

S$ :2 -10 + 10i s 

solve command solution for s 

z= root( f(s),s) $s = -0.021 + 0.181 

:2 root( f(s),s) S$ = -0.021 - 0.18i 

x root( f(s),3) S = -4.134 - 4.39: 

>= root( f(s),s) S$ = -4.134 + 4.39i 

Numerator for U/4E Transfer Function 

AU := XDE'(U1 - ZAD) 

BU := -XDE‘((U1 - ZAD)'MQ + ZA + MAD’'(U1 + ZQ)) + ZDE’XA 

CU1L := XDE‘(MQ'ZA + MAD‘ g'sin( 8) - (MA + MTA)°(CU1L + ZQ)) 

CU2 := ZDE‘(-MAD'g°cos(8) - xXA'MQ) 

CU3 := MDE'(xXA‘'(CU1 + ZQ) - (U1 - ZAD)'g'cos(6)) 

CU := CU1 + CU2 + CU3 

ODU1 := XDE°(MA + MTA)‘ g'sin(8) - ZDE'MA‘'g'cos(8) 

DU2 := MDE'(ZA’'g'cos(8) - XA‘g' sin(8)) 

DU := DU1 + DU2 

3 

AU = -1.382-10 

4 

BU = -1.226:°10 

4 

CU = 6.69:°10 

5 

DU = §.797:°10
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Appendix 2 (cont.): Longitudinal Transfer Functions 

3 2 

f(s) := AU's + BU'sS + CU's + DU 

S$ := -5 s := root(f(s),s) S = -6.628 

S$ := 0 s := root(f(s),s) S$ = -9.158 

$ := 20 s := root(f(s),3s) $s = 6.913 

Numerator for a/sE transfer function 

AA == ZDE 

BA :=™ XDE°ZU + ZDE'(~-MQ - (XU + XTU)) + MOE'(U1 + ZQ) 

CA1l := XDE'((U1 + ZQ)'(MU + MTU) - MQ’ ZU) 
CA2 := ZDE'MQ‘'(XU + XTU) 

CA3 := MDE'(-g'sin(8) - (UL + ZQ)°CXU + XTU)) 
CA := CA1 + CA2 + CA3 

DAL := -XDE'(MU + MTU)’ g'sin(8) + ZDE'(MU + MTU)'g‘cos(8) 
DA2 :# MOE'( (XU + XTU)'g'sin(8) ~ ZU'g:cos(8)) 

DA := DAL + DA2 

AA = -44.806 CA = -379.067 

3 
BA = -8.747:-10 DA = -378.845 

3 2 

f(s) :* AA's + BA'S + CA's + DA
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Appendix 2 (cont.): Longitudinal Transfer Functions 

S$ :=2# -1 ~ i s := root(f(s),s) S$ = -0.022 - 0.207i 

Ss := -1 + i s := root(f(s),s) S$ = -0.022 + 0.207i 

$s :2 -195 s := root( f(s),s) S$ = ~-195.171 

Numerator for 8/3E transfer function 

AY := ZDE'MAD + MDE‘'(U1 ~ ZAD) 

BE1 := XDE'(ZU'MAD + (U1 - ZAD)°' (MU + MTU)) 

BE2 == ZDE°'(CMA + MTA) - MAD’'C(CXU + XTU)) 

BE3 == MDE'(-ZA - (U1 - ZAD)'(CXU + XTU)) 

BO := B81 + 882 + B83 

CH1 := XDE'C(MA + MTA)'ZU - ZA'CMU + MTU)) 

CH2 := ZDE°'(-(MA + MTA) (XU + XTU) + XA°CMU + MTU)) 

C83 := MDE'(ZA‘'(XU + XTU) - XA‘ ZU) 

CB := Chi + CH2 + CB3 

3 4 3 

AB = -8.732:°10 BB = -1.839-:10 CB = -1.068:'10 

2 

f(s) := AB’s + BB's + CB 

3 i= -1 s := root(f(s),s) S$ = -0.06 

S$ := -2 s := root(f(s),s) S$ = -2.047



Appendix 3 >: Lateral Transfer Functions form Stability 

and Control Derivatives 
ne Cay UD SEP ae Se ED ee eee ee ee ee ee eS ee ee ee ee ee ee ee ee ee es ee ee ey oe ee ee ee ee es ee 

Nondimensional Lateral Derivatives 

CLP := -.47 

CLDA := .178 

CLDOR := .014 

CNDA := -.05 

CNDR == -.06 

CYB := -.31 

CYDR == .187 

CNTB == 0 

7 

3 

57 

CLB := -.089 

CLR := .096 

CNB -= .065 

CNP := -.03 

CNR := -—.099 

CYP := -.037 

CYR == .21 

CYDA == 0 

Dimensional Lateral Stability Derivatives 

CY 
YB ‘= q:s°-"" 

YR :2 q's°b° 

CYR 

2'w' U1 
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CYP 

YP := q's'b° 

2°'w'uil 

CYDA 

YDA := q's° 

w



Appendix 3 (cont. ): 

  

  

  

CYDR 

YOR := q's° 

Ww 

2 CLP 

LP := q's'b 

2'Ixx'U1 

CLDA 

LDA := q’s'b° 

Ixx 

CNB 

NB := q's'b° 7 

Izz 

2 CNP 

NP := q's'b 

2'Izz'vUi 

CNDA 

NDA :2 q‘s°'b° 

Izz 

Lateral Transfer Functions 

  

  

CLB 

L8 := q's'b'7-— 

Ixx 

2 CLR 

LR := q's'b 

2°'Ixx'U1 

CLOR 

LOR := q's'b° 

Ixx 

CNTB 

NT8 := q's'b° 

Izz 

2 CNR 

NR := q's'b 

2°'Izz‘'ul 

CNOR 
  NOR := q's'b° 

Izz
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Appendix 3 (cont.): Lateral Transfer Functions 

YB = -32.303 YP = -0.315 YR = 1.789 

YDA = O YOR = 19.486 L8 = -28.768 

LP = -12.417 LR = 2.536 LDA = 57.536 

LOR = 4.752 NB = 10.126 NTB = 0 

NP = -0.382 NR = -1.261 NDA = -8.257 

NOR = -10.235 

Lateral-Directional Transfer Functions 

Ixz Ixz 

Al := —7 Bl :=x —— 

Ixx Izz 

Denominator Polynomial 

AD2 :# U1'(1 - A1‘B1)
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Appendix 3 (cont.): Lateral Transfer Functions 

BDO2 := -YB'(1 - A1°B1) - U1'(LP + NR + Al‘NP + 81°LR) 

CO21 :* U1'(LP'NR - LR'NP) + YB'CNR + LP + A1‘'NP + B1°LR) 

CD22 := YP'(LB + NB’°A1 + NTB‘'A1) —- U1'(LB' B81 + NB + NTB) 

CD23 := YR'(L8°'B1 + NB + NTB) 

CD2 := CD21 - CD22 - CD23 

DD21 := -YB°’(LP'NR - LR'NP) + YP°’(LB'NR - NB’‘'LR - NTB'LR) 

DD22 := -g'cos(8)'(LB + NB‘'A1 + NTB°Ai1) 

0023 := U1L‘(LB'NP - NB'LP - NTB'LP) 

DD24 := -YR‘(LB'NP - NB’LP —- NTB'LP) 

DD2 := DD21 + DD22 + DD23 + DD24 

E02 := g'cos(8)'(LB'NR ~- NB°LR ~ NTB'LR) 

3 3 

AD2 = 219 BO2 = 3.028:10 CO2 = 6.272:10 

4 

DO2 = 3.116:°190 ED2 = 340.735 

4 3 2 

f(s) := AD2's + BD2's + CO2‘'s + DO2's + ED2 

S$ i= -1 3 := root( f(s),s) $s = -0.011 

S$ := -.5 + 3i S$ := root(f(s),s) 3S = -0.686 + 3.307i 

$ := -.5 - 3i s := root(f(s),s) Ss = -0.686 - 3.3071 

S := -10 s := root(f(s),s) $s = -12.442



71 

Appendix 3 (cont.): Lateral Transfer Functions 

Equations due to Aileron deflection 

Numerator for P/d#a transfer function 

AB := YDA'(1 - A1‘B1) 

BB1 := -YDA'(NR + LP + A1‘NP + B1°LR) + YP°(LDA + NDA‘A1) 

BF2 := YR'(LDA’'B1 + NDA) - U1'(LDA'B1 + NDA) 

BB := BB1 + BR2 

CB1 := YDA‘(LP'NR - NP'LR) + YP’ CNDA'LR - LDA NR) 

C2 := g'cos(8) (LDA + NDA’A1L) + YR°'CLDA’NP - NDA'LP) 

CB3 := ~U1'C(LDA‘'NP - NDA'LP) 

CPB := CB1 + CB2 + CR3 

DB := g'cos(§)°‘C(NDA'LR - LDA’NR) 

4 

AB = 0 CB = 2.888-10 

3 3 

BB = 1.775:°10 OB = 1.661:10 

3 2 

f(s) := AB's + BB's + CB's + DB 

S$ i= -1 s := root(f(s),3s) s = -0.058 

S$ := -10 s :* root(f(s),s) S$ = -16.21
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Appendix 3 (cont.): Lateral Transfer Functions 

Numerator for t/a transfer function 

Ad := UL'C(LOA + NDA'AL) 

Bol == U1‘ CNDA'LR - LDA’NR) - YB'CLDA + NDA‘A1) 

Bt2 := YDOA'(LB + NB‘A1l + NTB‘A1) 

Bp := Bh1l + BH2 

Cp. := -YB‘CNDA'LR - LDA’NR) + YDA'CLR'NB + LR'NTB —- NR'LB) 

Cy2 := (UL - YR) (NB°'LDA + NTB'LDA - LB‘ NDA) 

CH == CHl + Che 

4 4 4 

Ap = 1.26°:10 BD = 1.316:10 Ch = 7 .662:°10 

2 

f(s) := Ad's + BO'S + CO 

Ss :x -5§ - i s := root(f(s),s) S$ = -0.522 - 2.41i 

S$ := -S§ + i S$ := root(f(s),s) S$ = -0.522 + 2.41i 

Numerator for psi/ta transfer function 

Apsi := U1'(NDA + LDA‘'B1) 

Bpsii := U1‘'(LOA'NP ~ NDA‘LP) - YB'CNDA + LDA‘81) 
Bpsi2 := YDA‘'(LB'B1 + NB + NTB) 

Bpsi := Bpsil + Bpsi2
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Appendix 3 (cont.): Lateral Transfer Functions 

Cpsil :2 -Y8'(LOA'NP - NDA‘LP) 
Cpsi2 := YP:(NB'LDA + NTB'LDA - LB‘NDA) 

Cpsi3 := YDA'(LB'NP - NB'LP - NTB‘LP) 

Cpsi := Cpsil + Cpsi2 + Cpsi3 

Opsi := g'cos(8)'(NB°LOA + NTB'LDA - LB‘ NDA) 

3 

Apsi = ~1.808-10 3 

Cpsi = -4.131-10 

4 4 

Besi = -2.753:10 Dpsi = 1.111:10 

3 2 

f(s) := Apsi's + 8psi's + Cpsi's + Dpsi 

S$ := -1.5 S$ := root(f(s),s) $ = -0.735 

S$ := 1 s := root(f(s),3) s = 0.556 

S$ := -25 s := root(f(s),s) S$ = ~15.048
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Appendix 3 (cont.): Lateral Transfer Functions 

Equations due to Rudder deflection 

Numerator for fi/dr transfer function 

AB == YDR'(1 - A1°B1) 

BR1 := -YDR'(NR + LP + A1’NP + B1'LR) + YP’C(LDR + NDR'A1) 
BB2 := YR'(LOR’B1 + NDR) - U1'(LOR'B1 + NDR) 
BP := BB1 + BR2 

CR1 YOR'(CLP’NR - NP'LR) + YP’CNDR’LR - LDOR’NR) 

CR2 g cos(8):(LOR + NDR’ A1) 

CE3 := YR'CLDR‘NP - NDR'LP) ~- U1°CLDR’NP — NDR’LP) 

CB := CB1 + C2 + CRS 

DB == g'cos(A)'(NOR'LR - LDR'NR) 

4 

AB = 19.486 CR = 2.848°10 

3 
BB = 2.488-10 DB = -643.024 

3 2 
f(s) := AB's + BB's + CB's + DB 

S$ i= 1 S$ := root(f(s),s) 3s = 0.023 

S im -~20 S := root(f(s),s) S$ = -12.738 

S$ i= -100 $3 := root(f(s),s) S$ = -114.977
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Appendix 3 (cont.): tLateral Transfer Functions 

Numerator for /4r transfer function 

Ad == UL‘(LOR + NDR‘A1) 

Bdl == U1L'CNOR'LR - LDOR'NR) - YB'CLOR + NOR'A1) 

Bd2 := YOR'(LB + NB‘'A1 + NTB‘A1) 

Bd := BO1 + BH2 

Ct1 == -YB'CNDR'LR - LDR'NR) + YDR'(LR'NB + LR'NTB —- NR'LB) 

Cho2 == (UL - YR)'(CNB'LOR + NTB’LDR - LB‘NDR) 

Cp := Cpl + Ch2 

3 3 4 

Ad? = 1.041-°10 BD = ~4.78:°10 CM = -5.436-10 

2 

f(s) :* AdD's + BO'S + CH 

S$ := -1 s := root( f(s),s) 3 = -5.287 

S$ := 10 s := root(f(s),s) s = 9.881 

Numerator for psi/dér transfer function 

Apsi := U1i‘(NOR + LDR'81) 

Bepsil :# U1°(LDOR'NP - NOR'LP) - YB'(NOR + LOR'8B1) 

Bepsi2 := YDR'(LB‘'B1 + NB + NTB) 

Bpsi := Bpsil + Bpsi2
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Appendix 3 (cont.): Lateral Transfer Functions 

Cpsi1 := -YB'(LOR’'NP - NOR'LP) 
Cpsi2 := YP'(NB’‘'LDR + NT8°LDOR — LB‘ NDR) 

Cpsi3 := YOR'(LB‘NP —- NB‘LP - NT8°LP) 
Cpsi := Cpsil + Cpsi2 + Cpsi3 

Dpsi := g‘'cos(8)'(N8°LDR + NTB’LOR - LB'NOR) 

3 3 

Apsi = -2.241°10 Cpsi = -1.422:10 

4 3 

Bpsi = -2.836:°10 Dpsi = -7.932-10 

3 2 

f(s) := Apsi's + Bpsi's + Cpsi's + Dpsi 

S:2 -1 +i $s := root(f(s),s) $ = -0.014 + 0.5291 

S := -1 - i s := root(f(s),s) Ss = -0.014 - 0.5291 

3 := -10 3s := root(f(s),s) S$ = -12.626
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