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(ABSTRACT) 

 

 

As embedded systems continue to evolve and the number of applications they support 

continues to increase, so does the diversity of the hardware they employ. As a result, the  

Field Programmable Gate Arrays (FPGAs), which have become fundamental elements in their 

design, have advanced in size and complexity as well. Because of this, it is now impossible to 

ignore the security implications that accompany such a progression. It is then not only important 

to prevent malicious attacks targeted at FPGAs from extracting the intellectual property 

contained in their configuration, but to now extend the research in this field by providing a 

cross-platform solution capable of securing the integrity of FPGA configurations at run-time. 

Today, there exist myriad attack strategies employed against FPGAs, the majority of which are 

seen in the form of semi-invasive attacks. These attacks manipulate the configuration of an 

FPGA and typically modify the state of the transistors that make up said configuration.  

 

 This thesis introduces a multi-platform method for checking the integrity of an FPGA’s 

configuration. The details of the system’s design and implementation are discussed in addition to 

the analysis of the design trade-offs met when employing the system across multiple FPGA 

families. The system is implemented entirely in hardware and resides on-chip, providing an 

FPGA the ability to act as private entity capable of successfully detecting when it has been 

maliciously attacked.  
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Chapter 1 

Introduction 

1.1  Motivation 

Since their introduction in the 1980s, Field Programmable Gate Arrays (FPGAs) have evolved 

from small configurable chips with limited application into run-time reconfigurable (RTR) multi-

million gate hardware devices. Consequently, a significant share of the market, which has been 

historically dominated by Application Specific Integrated Circuits (ASICs), Digital Signal 

Processors (DSPs) and microprocessor based systems, is now occupied by FPGAs [55,71,73,74]. 

Modern FPGAs are capable of housing entire System-on-Chip (SoC) designs and are now used 

in the medical, industrial, networking, digital computing, telecommunications, wireless and 

defense fields [72]. FPGAs have now shifted from being an intermediate step in the design 

process to frequently appearing in the final product, making it imperative to consider the security 

implications they present. 

 

 Historically, the majority of the research in the field of configurable computing has 

focused on areas outside of the topic of FPGA security. However, as FPGAs begin to become the 



 

 2 

backbone of many real world applications, the need for research on the topic of FPGA security 

has been recognized. A number of research efforts have begun to investigate the security of, not 

only the intellectual property contained in FPGA configurations [40,41,42,43,44], but auxiliary 

topics such as network traffic filtering [71], partial bitstreams [45] and using FPGAs to develop 

secure software platforms [39]. While these areas represent significant progress in this field, 

there have been few efforts that have succeeded in securing the integrity of FPGA 

configurations.  

A system that has succeeded in securing aspects of the integrity of FPGA configurations 

on the Xilinx Virtex-4 platform is presented in [2]. This system is comprised of three parts. The 

first subsystem actively monitors the configuration of a FPGA, checking for malicious 

alterations made by an attacker. Next, a subsystem for securing partial bitstreams, which are used 

to reconfigure portions of the device‘s configuration, is presented. Finally, an implementation of 

a classic challenge-response protocol is outlined. This subsystem can be used by an external 

entity to ensure that the system is operating correctly. 

1.2 Contributions 

While systems such as the one presented in [2] have successfully secured the integrity of FPGA 

configurations, they have only done so on one particular platform for one specific device. This 

provides a solution that lacks portability and parameterizability. 

 

Presented in this thesis is a cross platform method by which dynamic data can be actively 

masked from FPGA configuration bitstreams. In addition, an approach to extending the 

configuration readback and hash generation/comparison methodologies outlined in [2] across 

multiple platforms is presented. Also, a flow designed to automatically generate the relative 

readback bitstream locations of all dynamic flip-flop data present on any device in any Xilinx 

FPGA family is described. As a final contribution, a cross platform implementation of the 

challenge-response subsystem presented in [2] is outlined. When combined, these contributions 
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demonstrate that a FPGA configuration integrity checking solution can be developed that 

supports multiple devices spanning multiple platforms. 

 

The cross-platform configuration integrity checking method presented supports two 

configurations, each of which is optimized to consume opposing sets of resources. This serves to 

provide system designers a security solution that best fits the resources they have available. 

Platform specific configurations of the dynamic data masking subsystem are also provided. 

These configurations are provided to increase portability and relieve the system designer of the 

burden of performing complex parameterizations when porting system to a new platform. 

 

The cross-platform integrity checking solution presented was developed and tested under 

a series of simulated fault injection attacks generated though the use of partial reconfiguration. 

An analysis of the results of these experiments is described. In addition, a complete analysis of 

the systems resource consumption, timing characteristics and platform portability is presented. 

Finally, potential future work that could be used to improve the system is presented. 

1.3 Thesis Organization 

The remaining five chapters of this thesis are arranged as follows. Chapter 2 provides an 

overview of FPGAs and FPGA security. Also presented is an outline of the previous work 

performed in the area of securing the integrity of FPGA configurations.  Chapter 3 describes the 

design and implementation of the platform dependent configuration integrity checker presented 

in [2]. In Chapter 4, a flow designed to automate the process of identifying the relative locations 

of all dynamic data in an FPGA readback configuration is described. Also, the method by which 

the configuration readback, hash computation and challenge-response components presented in 

[2] were extended across multiple platforms is described. To conclude this chapter, the approach 

to combining these contributions to form a platform independent solution to securing the 

integrity of FPGA configurations is presented. Chapter 5 provides a comprehensive multi-

platform analysis of the resource requirements, timing characteristics and security strengths and 
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weaknesses of the system. Finally, in Chapter 6, a summarization of the research performed, as 

well as a discussion of potential future work is detailed. 
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Chapter 2 

Background and Previous Work 

The content of this chapter serves to provide a background of current and previous work on the 

topics covered in this thesis. These topics include FPGAs, security profiles and classifications, 

attack strategies commonly employed against FPGAs, extending tools across multiple FPGA 

devices/platforms and previous work in the field of FPGA configuration integrity checking. 

2.1 FPGAs 

Field Programmable Gate Arrays (FPGAs) are devices that contain programmable logic blocks 

and interconnect which can be configured to realize designs ranging from basic logic gates to 

complex embedded systems. As the name implies, FPGAs are ―field programmable‖, meaning 

that a system designer can re-program the device to model different sets of hardware as many 

times as needed. In general, designs instantiated on FPGAs draw more power and exhibit higher 

latencies than those implemented using application specific integrated circuits (ASICs). The 

tradeoffs for this lack in performance include shorter time to market due to rapid prototyping, 

cost efficiency, throughput and resource efficiency [47]. Another benefit FPGAs provide to 
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offset their lack in performance is dynamic partial reconfigurability [28]. Dynamic partial 

reconfiguration refers to the process of reconfiguring a portion of the design running on the 

FPGA in parallel with the execution of the rest of the design. The ability to reconfigure a portion 

of a hardware design at run-time provides limitless possibilities, and many research efforts have 

targeted this field [57,58,59,60,61]. Applications typically supported by FPGAs include digital 

signal processing (DSPs) [55,63,73,74], digital imaging and computer vision [33,69], 

cryptography [65,80], bioinformatics [64,76,77], software-defined radios [62,78,79] and 

software algorithm modeling [1,19,24,25]. 

2.2 Security Profiles and Classification 

As the methods used to secure embedded systems and the intellectual property they contain 

continue to advance in robustness and complexity, so have the attacks that have been developed 

to compromise their security. In order to classify the ability of a security system to resist these 

attacks, IBM‘s security classification strategy, detailed in [2] and defined in [66], is presented. 

 

In this classification strategy, IBM groups attackers into three classes, based on the 

attacker‘s ability successfully compromise the security of a design. These classes are outlined as 

follows: 

 

Class I – ―Clever Outsiders‖:  

Class I attackers are typically well trained, but lack knowledge specific to the system being 

attacked. These attackers are limited to moderately sophisticated equipment and typically attempt 

to take advantage of the pre-existing weaknesses the system exhibits. Class I attackers do not 

have sufficient knowledge or resources to create a weakness in the system. 

 

Class II – ―Knowledgeable Insiders‖: 
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Class II attackers have extensive technical training and experience specific to the system being 

attacked. These attackers have access to highly sophisticated equipment used to analyze the 

system. While these attackers may not fully understand the design of each of the systems 

components, they do have access to the majority of these components for analysis. 

 

Class III – ―Funded Organizations‖: 

Class III attackers are commonly seen as a diverse team of specialists, with each member of this 

team possessing related skills. When combined, these individual members form a team with the 

ability to perform in-depth analysis of each of the system's components. These attackers are 

capable of designing advanced attack strategies which produce weaknesses in the system using 

sophisticated analysis tools. Attackers in this class are also typically extremely well-funded, and 

are often times government backed. 

 

Also provided in this security classification is a metric of how resistant a design is to potential 

attacks. In this metric, security ratings are based on the level of care put into the design of the 

system being evaluated, as well as the level of resources required to compromise the security of 

the system. This rating system is outlined as follows: 

 

Level – LOW 

Security features are in place, but can be compromised with the use of easily obtainable 

equipment costing no more than $2,768.  

 

Level – MODERATE-LOW 

Most inexpensive attacks are withstood. Successful attacks typically require an attacker with 

some special knowledge and moderately expensive equipment not to exceed $8,459. 

 

Level – MODERATE 
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Only Level II and III attackers have a chance to successfully compromise the system. Special 

tools and skills are required, and the total equipment required to produce the attack costs up to, 

but not exceeding $84,590. 

 

Level – MODERATE – HIGH 

Detailed analysis of the system is needed to compromise its security. The equipment required to 

produce the attack costs up to $422,950. The attack may also require several Level II attackers 

with a wide range of skills to launch. 

 

Level – HIGH 

No known attacks that have the potential to compromise the system exist, and a new attack 

strategy must be developed. The total cost of supporting the attack may be over 2.77 million 

dollars
2
 and the success of the attack is not guaranteed. Only large heavily funded organizations 

can support such an attack and are typically associated with government. 

 

Using the security classification strategy outlined in this section it is possible to classify the level 

of security a system designed to protect an FPGAs configuration provides. Subsequently, the 

profile of attackers with the potential to succeed in an attack against the system can also be 

determined. 

2.3 FPGA Attack and Protection Strategies 

As FPGAs begin to appear as the backbone of many computing systems, the set of applications 

containing secure information that they support is growing as well. Because most FPGAs are 

SRAM-based, these attacks, which were previously designed to target embedded systems, can 

now be used to target not only the memories contained in FPGAs, but the configuration data of 

                                                           
2
 The monetary values presented were adjusted from the original values presented in [66] based on an inflation 

rate of 50.38%. This rate was based on the 16 year period starting at January 1
st

, 1991 and ending on January 1
st

, 
2007  
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the device as well. This configuration data is a physical representation of the functionality 

achieved by the design contained in the FPGA. If an alteration is made to a portion of the 

configuration data that corresponds to a portion of the design instantiated on the device, the 

functionality of this design will also be modified. Not only does this provide attackers the ability 

to modify the contents of an FPGA‘s on-chip memories, but the operation of the design running 

on the device as well. The scope of the attacks used against SRAM-based devices is extremely 

wide, and contains a number of invasive, non-invasive and semi-invasive strategies [17]. The 

objectives these attacks aim to accomplish include obtaining secure information from the design 

[70], reverse engineering the design contained in the FPGA‘s configuration [47], cloning the 

configuration of the FPGA [44] and simply rendering the executing design inoperable [17]. In 

Sections 2.3.1 and 2.3.2, attack methodologies used to maliciously extract and modify FPGA 

configuration data are presented. In addition, neutralization strategies used to prevent these 

attacks are outlined. 

 

2.3.1 Extracting Secure Information from a FPGA Configuration 

A significant number of attacks that attempt to clone or reverse engineer the design contained in 

the configuration of an FPGA, using semi-invasive and non-invasive methods, exist. The most 

significant of these attacks include side channel, data extraction and bitstream interception 

attacks. 

Side-Channel Attacks 

Side-channel attacks are typically considered non-invasive or passive attacks [17]. These attacks 

typically attempt to obtain information from a cryptosystem by taking advantage of its physical 

attributes instead of the theoretical weaknesses in the algorithm it employs. The two most 

prominent physical properties typically targeted by side-channel attacks are timing 

characteristics and power consumption [67].  
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Side-channel attacks that target a system‘s timing characteristics are referred to as timing 

analysis attacks. These attacks typically take advantage of the fact that many cryptographic 

algorithms, while secure in the algorithm they employ, do not exhibit consistency throughout 

their operation. Breaks in timing consistency can stem from conditional branches in the 

cryptographic algorithm, optimization techniques and caching systems [67]. Timing analysis 

attacks have been used against cryptographic algorithms such as RSA and DES [68]. 

A power analysis attack is a form of side-channel attack that typically targets variations 

in gate-level power consumption. Among the devices which have become a target of these 

attacks, digital integrated circuits using CMOS technology are among the most prominent [75]. 

The power analysis attacks, which are typically employed against such devices, include simple 

(SPA) and differential power analysis (DPA) attacks [67].  

 

To prevent side-channel attacks there are a number of security strategies that can be 

employed. Increasing measurement noise [81], power signal filtering [82,85] and asynchronous 

circuits [83,84] are all viable options for protecting a device. 

Data Extraction Attacks 

From [70], it can be seen that there are a number of semi-invasive attacks that have been proven 

successful at actively reading the contents of not only SRAM cells, but also Flash and even 

registers. As a result, these attacks are directly applicable to most SRAM-based FPGAs. One of 

the easier of these attacks to perform involves the use of a red laser and a relatively inexpensive 

microscope. This attack first removes the casing of the chip, and then focuses the laser on the 

chip‘s surface using the microscope. Once a map is made of the SRAM locations on the chip, the 

laser is swept across the mapped portions of the chip‘s surface and the states of the SRAM cells 

can then be observed. When observing a particular cell, if the luminosity of the top and bottom 

portions of the cell are compared, it is possible to determine the state of the cell. When the top 

portion of the cell is brighter, the state is a ‗1‘, and when the bottom portion is brighter, the state 
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is a‘0‘ [70]. Because most commercial FPGAs are SRAM-based, if an attacker can actively 

readback the state of a SRAM cell, with enough time, large portions of the chip‘s configuration 

could also be determined. This would then provide an attacker a method by which they can clone 

the design contained on the device. 

Bitstream Interception Attacks 

One of the most straightforward attacks used against FPGAs involves intercepting the bitstream 

used to program the device between the root ROM and the FPGA at power on [44]. Bitstreams 

used to configure FPGAs contain the physical description of the design being programmed on 

the device. If an attacker obtains this bitstream, then the entire design contained within the 

bitstream is compromised unless additional security measures are taken. The most common 

method of preventing such an attack involves encrypting the bitstream prior to programming the 

device. The bitstream is encrypted using a secret key which is only known by the encrypting 

device and the corresponding decryption device used on the FPGA. FPGA vendors typically 

provide some form of bitstream encryption to help combat such attacks. Xilinx FPGAs use triple 

DES for the Virtex-II and Virtex-II Pro platforms and AES for the Virtex-4 and Virtex-5 

platforms [10,11,12].  

 

2.3.2 Altering FPGA Configurations 

This thesis is primarily concerned with attacks with the potential to compromise the 

integrity of FPGA configurations. These attacks generally tend to be either invasive or semi-

invasive. Invasive attacks, or attacks that physically modify the device being attacked, typically 

render the device inoperable [17].  
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Invasive Attacks on FPGA Configurations 

Because invasive attacks suspend the execution of the design running on the device, they can be 

detected through the use of a challenge-response protocol. This protocol is implemented in the 

configuration integrity checker presented in this thesis. Preventing said attacks is much more 

difficult. Invasive attacks can prove successful against microprocessor-based systems because 

the layout of the system can been easily mapped, and the underlying hardware probed.  

 

The configuration of a modern FPGA can contain millions of bits of configuration data. 

Thus, for an attacker to successfully probe this configuration data, they must have detailed 

knowledge of the design instantiated on the device, as well as how the components of this design 

are mapped to the configuration. Due to the level of complexity involved with probing the 

configuration of a FPGA, invasive attacks are not often used against these devices. For this 

reason, the prevention of invasive attacks is outside the scope of this thesis. 

Semi-Invasive Attacks on FPGA Configurations 

Semi-invasive attacks, which have the ability to alter the contents of SRAM-based devices (such 

as FPGAs), present the greatest threat to the configuration integrity checker outlined in this 

thesis. These attacks are relatively new to the computing industry and tend to be less expensive 

than classic invasive attacks, but as easily repeatable as non-invasive attacks. These attacks 

require the packaging of the chip to be removed, but their application does not damage the chip, 

as they do not require de-passivation or creating contacts on the chip [17]. 

 

Fault injection attacks are a form of semi-invasive attacks. Fault injection attacks can be 

defined as a method to systematically produce changes in the state of the transistors of which 

typically make up a larger component in a system. From [17,69] it can be seen that there exist 

inexpensive and effective methods to induce changes in transistor state so precise that the state of 

individual SRAM memory cells can be altered. As a result, an attacker employing such a strategy 
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has the ability to maliciously modify the configuration of an SRAM-based FPGA on a bit-by-bit 

basis. This attack could potentially compromise the configuration integrity checker presented in 

this thesis if the right approach is taken. If the goal of an attacker was simply to induce 

unintended behavior in the system, this attack could find great success. However, if the aim of 

the attacker were to manipulate bits of the FPGAs configuration to determine information about 

the system, they would most likely not have success. In order for such an attack to prove 

successful, the attacker would need to have extensive knowledge of, not only the composition of 

FPGA bitstreams, but also of the SRAM cells used in the FPGAs design. Such an attacker would 

require a detailed layout of how the attacked design was mapped and routed for the device being 

used as well. 

2.4 Software Portability 

As the number of systems that utilize FPGAs continues to increase, so does the number of 

software platforms that must be supported by the applications used in their development. With 

modern FPGAs beginning to become third, fourth and even fifth generation devices, the range of 

FPGA devices and families that must be supported by this software is rapidly increasing as well. 

Today, software designers must then produce solutions that are not only correct in functionality, 

but that support a wide array of software platforms and FPGA devices used in today‘s modern 

designs. In Sections 2.4.1 and 2.4.2, previous work in promoting software portability across 

various software platforms and hardware devices is described. 

2.4.1 Software Platform Portability 

In today‘s configurable computing industry, system designers require new software to support 

platforms such as Microsoft Windows, Mac OS X, common flavors of Linux such as Red Hat 

and Debian, as well as other UNIX based systems. Software used in FPGA development such as 

JBits [52], the Xilinx XST [56] and Altera Quartus toolkits [90], ADB [48] and PARBIT [49] 

have all begun to provide software solutions capable of running on these platforms. While the 
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approach taken to providing this portability is not uniform across the FPGA software design 

industry, there are a few common methods used when developing said software. 

Java Based GUIs and APIs 

Applications such as JBits [52] and ADB [48] were designed as Java APIs to take advantage of 

the native portability Java provides. This approach defines a set of platform independent function 

calls that can be used by a software designer to perform specific tasks. This is the easiest 

approach to ensuring a high level of portability, as back end applications written in Java are 

compatible on almost every platform. GUI applications written in Java, such as some of the 

accessory application front ends provided in the Xilinx XST [56] and Altera Quartus [90] tool 

kits, are not as portable by nature. While still relatively portable across multiple platforms, 

applications designers face the choice of using either the 1.1 or 1.2 versions of the Java 

Development Kit. The 1.1 version is rather poorly designed but boasts great portability, while the 

1.2 version contains a superior toolkit and greater capabilities, but at the cost of some portability 

loss. 

C / C++ Based Applications 

A common software approach to ensuring portability utilizes the native C and C++ programming 

languages, as well as additional standard C/C++ libraries, to develop powerful backend 

applications. Applications such as PARBIT [49] and the back ends of the Xilinx XST [56] and 

Altera Quartus [90] tool kits utilize this approach. The core C programming language and the 

standard C libraries themselves are extremely portable. Typically, it is up to the programmer, 

however, to manage the function calls used to ensure that the application will be supported by 

compilers across multiple platforms. The portability limitations of this approach begin to become 

apparent when inter-process communication and multi-threading are done. C++ features such as 

templates, standard I/O libraries and exception handling are also typically not well supported 

across multiple platforms [91]. 
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 Scripting Languages 

Scripting languages have reasonably good portability, but are not as strong as Java or C. Perl 

offers good portability and provides programmers a set of bindings to the Tk toolkit that supports 

portable GUIs across Unix, Mac OS X and Windows [92]. As a downside, some Perl scripts 

require add-on libraries that may not be included in standard distributions of many platforms. An 

example application that uses Perl scripts can be seen in the database creation functionality of the 

ADB [48] application.  

Shell scripting, however, does not provide a high level or portability. The bash shell has 

become standard across many platforms, and native shell commands are widely supported. 

Problems arise however when shell scripts make use of other auxiliary commands which may not 

be standard on many platforms. 

 The approach used in developing the automated dynamic data mapping method presented 

in this thesis uses C applications controlled by standard shell scripts. The shell script 

implemented ensures portability through the use native bash shell commands and calls to 

auxiliary lightweight C applications. 

 2.4.2 Extending Software Tools Across Multiple FPGA Devices and Families 

Many software applications used in the FPGA design process require advanced knowledge of the 

make up of the FPGAs for which they are used. Applications such as JBits [52] and ADB [48] 

rely on determining proprietary information about the bitstream makeup used to program Xilinx 

FPGAs. Determining this information for new devices within a family is a reasonable task, 

however producing this information across multiple FPGA platforms can prove to be very 

challenging. Typically, applications such as these provide native support for the most current 

FPGAs on the market at the time of their deployment, and leave future platforms generally 

unsupported. It is for this reason that it becomes very challenging to utilize the advanced features 

of modern FPGAs in conjunction with popular third party FPGA design tools that only support 
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previous generations of the hardware. Because the interworkings of most FPGAs are kept 

proprietary, and updates to third-party FPGA related software are infrequent at best, system 

designers are commonly left to rely on software provided by FPGA vendors to support designs 

implemented on next generation devices. This not only discourages future third-party FPGA 

related software development, but allows vendors to control the power of new FPGA designs by 

selecting which subsets of configuration information they wish to make public. 

2.5 FPGA Configuration Integrity Checking 

While there has not been an enormous amount of research done in the area of FPGA 

configuration security, there has been work done in single-event upset (SEU) detection and 

recovery, as well as configuration integrity checking on the Xilinx Virtex 4 platform. 

2.5.1 SEU Discovery and Repair 

When used in space and high altitude applications, SRAM based devices, such as FPGAs, are 

susceptible to small faults that may alter their configuration. These faults are commonly referred 

to as single-event upsets, or SEUs. SEUs are typically radiation-induced and are seen in both low 

earth orbit and in the presence of solar flares [89].  

In order to detect and recover from an SEU, an approach was developed in [87] that 

actively monitors the configuration of an FPGA through the use of a cyclic redundancy check 

(CRC) computation. This computation was performed on frame-by-frame basis for the entire 

configuration of the device that was read back. If the resulting CRC value of a frame was 

different, it was known that an SEU had occurred and effected this portion of the devices 

configuration. After the detection of such an event, the system utilized RTR to correct the 

alteration. Most modern FPGAs can withstand exposure to large amounts of radiation without 

being subjected to an SEU [89]. However, for high-reliability applications, Xilinx has provided 

its own SEU discovery and repair module [88]. This module operates in a similar fashion to the 
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system described in [87], and has the capability to correct SEUs. Altera‘s SEU detection and 

repair strategy is present on all Stratix and Cyclone FPGAs. This approach provides built-in 

dedicated circuitry to check the FPGAs configuration for SEUs. While these strategies can 

successfully detect SEUs on SRAM based FPGAs, they cannot, however, detect and recover 

from malicious semi-invasive fault injection attacks [2]. This shortcoming forms the basis for 

which the configuration integrity checking solution presented in this thesis was founded upon. 

2.5.2 Configuration Integrity Checking on the Virtex 4 Platform 

In [2], a system capable of securing FPGA configurations against such semi-invasive attacks on 

the Xilinx Virtex 4 platform is presented. The core of this system is defined to include the 

readback controller, hash generator, hash comparator and challenge-response components of the 

system. For the remainder of this thesis, this core will be referred to as the Platform Dependent 

Configuration Integrity Checker, or PDCIC. A significant portion of the work presented in this 

thesis serves to extend the components of the PDCIC core across multiple platforms. These 

extended components combined with a platform independent dynamic data masking controller 

form the multi-platform configuration integrity checker presented in this thesis.  

 

Dynamic Data Identification 

When designing a system that can actively detect when a malicious alteration to an FPGA 

configuration has occurred, the configuration data of the FPGA must be continuously monitored 

for malicious changes. This is typically achieved through the use of active read back via the 

FPGA‘s internal configuration access port (ICAP). In order to effectively produce a static 

readback configuration, the dynamic data located in the FPGA‘s configuration bitstream being 

read back must be masked out. The static readback configuration is then analyzed to determine if 

a malicious attack was being performed. The process by which this dynamic data was identified 

and removed is the basis for the automated, platform independent solution presented in this 

thesis.  
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CLB Block Hash Generation and Comparator 

If readback configuration data is being accurately masked for dynamic data, it is possible to 

generate checksums which represent segments of the data. These checksums can then be used to 

determine exactly when and what specific portion of an FPGA has been maliciously attacked. 

The MD5 hashing algorithm, used by the PDCIC to generate these checksums, was also used in 

the platform independent integrity checker presented in this thesis. This hashing algorithm is 

typically used to produce a unique, fixed-length representation of a message of arbitrary length. 

The implementation of the algorithm used was obtained from [15]. The method by which the 

hashes produced by the MD5 algorithm were generated, stored and compared also form the 

foundation for the methods used in the multi-platform version. 

 

Providing Assurance of Correct Operation 

The PDCIC employs a classic challenge-response subsystem for providing an entity external to 

the FPGA, a method by which the health of the security system can be polled. There are many 

ways that this protocol can be implemented [21], however, the particular design that was used 

was obtained from [2]. This challenge-response system, which acts as the claimant, accepts an 

arbitrary length challenge from the verifier and responds by returning a hash of a secret key 

concatenated with the original message to the user. While the structure of this challenge-response 

system was significantly altered in the multi-platform version of the configuration integrity 

checker presented in this thesis, its general concept and framework were used as a foundation for 

the design of the new subsystem. 
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2.6 Applications That Can Benefit From Configuration Integrity 

Checking 

There has been a significant amount of work done to secure user and system IP contained in 

embedded systems on FPGA platforms. The majority of the system design in this area focuses on 

protecting embedded systems containing a processor core as the central point of the protected 

design. In [40], a FPGA based network processor is presented that takes advantage of RTR to 

provide both user based operation and concealment of the intellectual property (IP) contained in 

a users design. This functionality is achieved through the use of a modular approach to the 

design of the processor core. When a valid user of the system is not present, the design can 

effectively remove user IP from the device, preventing malicious reverse engineering of the 

design. A system presented in [41] implements a key management system instantiated on an 

FPGA that can provide secure user sessions. This design can effectively prevent an outsider from 

discovering the implementation details of an embedded application or CPU that is being 

protected.  

 

 These designs have successfully secured user and system IP on several FPGA platforms. 

Many non-invasive attacks that were commonly used against embedded processing systems can 

now be neutralized by the security strategies they employ. Unfortunately, the level of security 

these systems proved does not protect against invasive and semi-invasive attacks against an 

FPGAs configuration. If a configuration integrity checking strategy was utilized as an auxiliary 

method for protecting the integrity of these systems, great success in providing resistance against 

such attacks could be seen. Due to the disparity in the FPGA platforms such security systems are 

implemented on, a multi-platform integrity checking solution would be needed to realize such an 

auxiliary security solution. The cross-platform FPGA configuration integrity checking solution 

presented in this thesis provides a solution that satisfies both these requirements.  
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Chapter 3 

Method for Securing FPGA Configurations 

on the Virtex 4 Platform 

This chapter outlines the design and implementation of the platform dependent configuration 

integrity checking core (PDCIC) presented in [2]. In this chapter, the configuration readback 

controller, hash generator/comparator and challenge-response components in this core are 

outlined. These components are later extended to support the design of the cross-platform 

integrity checker presented in this thesis. This chapter is intended to provide insight into the 

origins of the multi-platform configuration integrity checker‘s design outlined in Chapter 4. 

3.1 FPGA Configuration Readback Control 

The FPGA configuration data, which must be monitored for malicious modifications, is obtained 

using active readback from the FPGAs internal configuration access port (ICAP). The ICAP 

module provided by the FPGA manufacturer (in this case Xilinx) provides an interface to the 
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FPGA‘s internal status and configuration registers [10,11,14]. To begin active readback of the 

FPGA‘s configuration, several commands needed to be written to a number of different 

configuration registers. These commands specify the parameters of the data that is to be read 

back. These readback initiation commands correspond to commands 0 though 19 in Table 3.1. 

Once written, the ICAP will begin to clock out the internal configuration data of the FPGA 

starting at the address written to the frame address register (FAR) in command 17. The ICAP 

will then proceed to read back the number of bytes specified by the write to the FDRO register in 

command 19. Once all the desired configuration data has been read back, the ICAP is shutdown 

though the use of commands 20 through 25 outlined in Table 3.1. 

 Command Index Command Description Command Value 

Startup ICAP command[0] Synchronize the ICAP 0xAA_99_55_66 

 command[1] No Operation 0x20_00_00_00 

 command[2] Write 1 word to Command Register 0x30_00_80_01 

 command[3] Write RCRC Command To Command Register 0x00_00_00_07 

 command[4] No Operation 0x20_00_00_00 

 command[5] No Operation 0x20_00_00_00 

 command[6] No Operation 0x20_00_00_00 

 command[7] No Operation 0x20_00_00_00 

 command[8] No Operation 0x20_00_00_00 

 command[9] No Operation 0x20_00_00_00 

 command[10] No Operation 0x20_00_00_00 

 command[11] No Operation 0x20_00_00_00 

 command[12] No Operation 0x20_00_00_00 

 command[13] No Operation 0x20_00_00_00 

 command[14] Write 1 word to Command Register 0x30_00_80_01 

 command[15] Write RCFT Command to Command Register 0x00_00_00_04 

 command[16] Write 1 word to the Frame Address Register 0x30_00_20_01 

 command[17] Write Type 2 Frame Start Address 0x00_00_00_00 

 command[18] Read From FDRO Register 0x28_00_60_00 

 command[19] Read N Words From FDRO Register 0x48_02_B5_7A 

Shutdown ICAP command[20] No Operation 0x20_00_00_00 

 command[21] No Operation 0x20_00_00_00 

 command[22] No Operation 0x20_00_00_00 

 command[23] Write 1 word to Command Register 0x30_00_80_01 

 command[24] Write RCRC Command To Command Register 0x00_00_00_07 

 command[25] Write 1 word to Command Register 0x30_00_80_01 

 command[26] Write Desynchronize command to Command Register 0x00_00_00_0D 

 command[27] No Operation 0x20_00_00_00 

 command[28] No Operation 0x20_00_00_00 

 

Table 3.1: Readback commands used to startup and shutdown the Virtex 4 ICAP 
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A finite state machine (FSM) was designed to write the commands shown in Table 3.1, one byte 

at a time, to the ICAPs input data port. This FSM also is used to process the readback 

configuration data output by the ICAP on its output data port. The layout of the internal registers 

written to / read from by these commands can be found in [11]. The operation of this FSM is 

outlined in Figure 3.1, which was described in [2]. 

 

 

Figure 3.1: Outline of the FSM used to read to / write from the ICAP on the Virtex 4 platform 

[2]. 
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3.2 Detection of Malicious Configuration Modifications 

The strategy employed by the PDCIC for detecting when and where a malicious attack on the 

FPGA‘s configuration has occurred involves continuously computing hash values on blocks of 

configuration data. As these hash values are computed, they are compared against ―trusted‖ hash 

values for the same blocks of configuration data which are known to represent the unaltered 

configuration of the device. Any difference between the two hash values would represent a 

maliciously altered portion of the FPGA‘s configuration data.  To compute these hashes values, 

first a hash function needed to be selected. This hash function must not only provide sufficient 

latency and resource utilization characteristics, but excellent resistance against brute force and 

design-based attacks.  

 

3.2.1  MD5 Hashing Algorithm 

The hash algorithm selected for the PDCIC is the MD5 hash computation algorithm. Typically, 

the MD5 hash algorithm takes an input message of arbitrary length (in 512 bit chunks of data) 

and produces a fixed length (128 bits in the PDCIC) unique representation of that message. The 

characteristics one would look for in selecting such an algorithm are speed of computation, low 

resource requirements and the level of security provided by the algorithm. For hashing 

algorithms, there are two main security related properties which are desirable. The first is the 

algorithm‘s ―one-wayness‖ [21]. The second, and in relation to the security of the components in 

the PDCIC being the most important, is the ability of the hash function to minimize collisions 

[20]. A collision is defined to be two distinct sets of input messages that produce the same hash 

value as a result. The MD5 algorithm exhibits both of these properties, and because it also 

demonstrates sufficient slice utilization and computation latency characteristics, it was chosen 

for this design [2]. The MD5 module used in the PDCIC was obtained from [15]. Its operation 

was controlled by a FSM, whose operation is outlined in Figure 3.2, described in [2]. 
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Figure 3.2: MD5 hash function finite state machine outline [2] 
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3.2.2  Hash Value Granularity Considerations 

When considering the granularity at which hash values should be computed, there are several 

factors that must be considered. These factors include, but are not limited to, the precision of the 

locality of the attack that can be detected, the overhead of the hash computation algorithm which 

is incurred and amount of memory consumed by the system. 

 

The smallest granularity that could be selected on the Virtex 4 platform would be an n-

length partition of the readback bitstream, where n is the minimum size of an input message to 

the MD5 hashing algorithm (512 bits in this case) [15]. Choosing such a small granularity would 

allow one to precisely determine the area(s) of the FPGA‘s configuration that were modified, as 

well as provide fast configuration restoration times. The price a system designer would pay for 

choosing such small granularity size would be the huge overhead from hash computations that 

would be incurred. If this granularity were set at one hash per readback configuration frame, this 

would also result in a very large memory requirement. On the LX25 device, the readback 

configuration bitstream contains 6256 frames. As a result, all 6256 of the corresponding 128-bit 

trusted hash values for these frames would have to be stored in memory. Conversely, choosing 

the largest possible granularity size would result in one hash value that would represent the entire 

CLB section of the readback bitstream. Such a granularity would minimize the overhead of hash 

computations and reduce the amount of memory needed to store the resulting hash values. 

Unfortunately, it would also make run-time repair of the malicious alterations difficult to 

perform. This is because the entire FPGA would have to be reconfigured to correct malicious 

alterations, even if they are as small as a few bits. A granularity this large would also make it 

difficult to determine exactly which portion of the FPGA is being attacked. This would prevent 

the systems designer from making design alterations to combat attacks that are being employed. 

To achieve a middle ground, the the PDCIC set the granularity at a block of 20 frames for the 

Virtex 4 platform. This corresponds to 1 block of 16 CLBs per hash, resulting in 168 hashes 

being used to represent the entire CLB configuration. 
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3.2.3  Attack Locality Determination 

When a malicious alteration of the FPGA‘s configuration is detected by the hash comparator of 

the PDCIC, the number of the hash containing altered configuration data is output. In order to 

identify the location relative to layout of the FPGA which was attacked, it is necessary to 

understand how the hash values produced correspond to physical portions of the FPGA. From 

Figure B.4, it can be seen that frame addresses increase from left to right and bottom to top on 

the FPGA. As a result, frames are readback starting at the lower left corner of the FPGA and 

ending in the upper right corner. It would then follow that the index of resulting hash values 

would increase in the same manner. The layout of the physical dimensions of the chip, in 

proportion to hash value indices, is outlined in Figure B.5. 

3.3 Ensuring Reliable Operation 

An attacker with the ability to maliciously alter the configuration data of an FPGA can 

potentially disrupt the operation of the PDCICs components, and thereby leave the configuration 

of the FPGA and any design it contains exposed. Thus, a method was put in place that allows an 

entity external to the FPGA to poll the health of the configuration integrity checker. The method 

selected was a classic challenge response subsystem. In the challenge-response component of the 

PDCIC, a challenge is issued from an external entity containing an input message of arbitrary 

length prepended with the length of the message. This message is then concatenated with a secret 

key to which only the entity issuing the challenge and the challenge-response subsystem have 

access. The message formed by this concatenation is then processed by the MD5 hash function, 

and its result returned in the form of a response to the challenger. In the PDCIC, the secret key 

used by the challenge-response subsystem was selected to be a hash of all 168 current hash 

values. This requires the PDCIC to store 168 128-bit words in the form of the current hash 

values. In addition, the 168 trusted hash values are also stored. Storing both the current and 

trusted hash values not only provides the challenger the ability to poll the systems health, but 

also allows this external entity to determine if the current FPGA configuration has been altered. 
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This is possible because the secret key used in forming the response is a hash of the 168 current 

hash values. Any divergence between these values and the trusted hash values would result in a 

different secret key being produced. This would then result in a different response, which is 

received by the challenger. An outline of this system can be seen in Figure 3.3, which was taken 

from [2]. 

 

Figure 3.3: Challenge response subsystem architecture 

 

3.4 Coverage of Future Work  

In [2], several areas of potential future work to improve the design of the PDCIC were outlined. 

These areas include improving upon the initial conditions the system is dependent upon, 

increasing the frequency at which the system operates, and increasing the 

portability/parameterizability of the system. The work presented in this thesis focuses primarily 

on increasing the portability and parameterizability of the components that were inherited from 

the PDCIC. However, adjustments to conditional stipulations put on portions of the design, such 

as the challenge-response subsystem, were addressed as well.  
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Chapter 4 

Multi-Platform Configuration Integrity 

Checker Design and Implementation  

This chapter describes the design methodologies used in developing the components of the cross-

platform configuration integrity checker presented in this thesis. First, the dynamic data 

identification and masking strategy is outlined. The methodology for automating this process and 

extending it across multiple FPGA platforms is then presented. Next, the approach used to 

extending the configuration readback, hash generation/comparison and challenge-response 

components of the design, outlined in [2], across multiple platforms is described. The chapter is 

concluded with a discussion of the design and implementation of the serial I/O subsystem 

employed by the cross-platform integrity checker. 

4.1 Dynamic Data Identification and Masking  

As with any hardware design, a design running on an FPGA contains two parts, a static portion 

and a dynamic portion. The dynamic portion of a design contains values that are constantly 

changing according to the operation of the static portion of the design. As a result, this dynamic 
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portion of the design must not be considered when checking the design‘s readback configuration 

for malicious alterations. If these dynamic portions of the configuration are considered, upon 

detection of a change in the design‘s configuration, it would be extremely difficult to determine 

the source of the alteration. Moreover, it would then be impossible to tell if the configuration of 

the design changed due to these dynamic components or due to a malicious attack. Once these 

dynamic portions of a design are masked from the configuration data being monitored for 

malicious attacks, one can reliably determine when a design‘s configuration data has been 

maliciously altered. 

 

4.1.1 Dynamic Data Identification Strategy 

To determine where dynamic data is located in the configuration bitstream of a Xilinx FPGA, an 

approach was developed which takes advantage of Xilinx logic allocation (.ll) files. These logic 

allocation files can be generated using the Xilinx Bitgen software (with the ―-l‖ option specified) 

[56]. This software is typically used to take a user‘s design that has been synthesized, mapped, 

and routed, and generate a bitfile (.bit), which can be used to configure the target FPGA with the 

user‘s design [56]. Logic allocation files provide the frame address and bitstream offsets of all 

data that is considered to be dynamic in FPGA bitstreams. As a result, they are a critical 

component in the dynamic data identification strategy outlined. 

 

In the method developed, a design was created which occupies one column of 

combinational logic blocks (CLBs) on the FPGA being mapped for dynamic data. This design 

was developed in such a way as to occupy all flip-flop resources in this CLB column. Because 

these resources are utilized, their relative locations, and therefore the locations of all dynamic 

data in this column, will be displayed in the resulting logic allocation file. This provides the 

information necessary to appropriately mask out all possible dynamic data locations in this 

column of CLBs. It should be noted that not all flip-flops in every column are utilized as 

dynamic data in every design, resulting in small static portions of the configuration that are not 

included in hash computations. When these flip-flop locations are left unutilized, it typically 
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means that they are not a part of the design being implemented, and therefore it is a valid 

assumption that leaving them unprotected by the configuration integrity checker does not present 

a security threat to the system.  

 

In this strategy it is assumed that LUTs in the column be analyzed are not configured to 

act as RAM modules. If this assumption were not present, the bitstream locations of the dynamic 

data in these modules would need to be determined as well. This would be advantageous if a 

dynamic data masking strategy custom to a particular design was being developed.  However, it 

is not advantageous to mask every possible location of this data in the design-independent 

version of the dynamic data masking strategy. Even if LUTs contained in each CLB column had 

not been configured as portions of a RAM module, they would still be masked using this 

approach. This would result in large static portions of the FPGAs configuration that are not 

included in the hash value computation for each block of hash data. Because this data is not 

considered in these computations, these static portions of the design contained in the 

configuration would be left unprotected from malicious attacks.  

 

After the location of all dynamic data in this particular column was determined, the 

design was iteratively constrained to occupy each CLB column on the FPGA being mapped. The 

resulting absolute frame addresses, as well as relative (to the frame being addressed) bitstream 

offsets were copied from the generated logic allocation file for each column. The frame 

addresses, which correspond to locations of the dynamic data in each CLB column, are by 

default in the Xilinx specific format used to read and write to/from the FPGA‘s frame address 

register. An example of this format for the Xilinx Virtex 4 family is shown in Figure 4.1. 

Address 

Type 

Top / Bottom 

Bit 
Block Type Row Address Column Address Minor Address 

Bit Index 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

Figure 4.1: Virtex 4 frame address description 
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The frame address and bitstream offsets obtained from the method outlined in Section 

4.1.1 were then be converted to frame addresses relative to configuration bitstream that is read 

back from the FPGA‘s ICAP. The conversion method performed is outlined in Equation 4.1. 

This conversion process was automated using lightweight software. A detailed description of this 

automation process is contained in Section 4.2.2. An example of both the Xilinx formatted frame 

addresses and resulting relative frame addresses for the LX25 device on the Virtex 4 platform 

can be seen in Figures B.1 and B.2, respectively. 

 (4.1) 

 

Once all the relative frame addresses that contain dynamic data were obtained, all that 

was needed to be done was to find the bit locations inside these frames that corresponded to bits 

of dynamic data that must be masked out. These bits are provided in the logic allocation file, and 

form regular patterns inside frames that contain dynamic data. These patterns are uniform inside 

each platform, and only differ in length for platforms such as the Virtex II and II Pro platforms 

that do not have uniform frame lengths. To demonstrate the difference in bit patterns across 

multiple platforms, examples of these bits that must be masked for both the Virtex II XC2VP30 

and Virtex 4 LX25 devices can be seen in Figures A.2 and B.3, respectively. 

 

After all frame addresses relative to the FPGAs readback configuration bitstream were 

determined, a FSM was created to mask the corresponding data. This FSM systematically 

determined when data that was being read back belongs to a frame that must be masked. If 

needed, this dynamic data was then selectively masked from the configuration data that was 

being read back before being used in hash value computation. 

 

4.1.2 Memory Considerations 

From a configuration standpoint, the FPGA is divided into three major sections: (1) clock 

/ IO / CLB data, (2) BRAM data, and (3) BRAM interconnect. From the Xilinx frame address 
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description in Figure 4.1, it can be seen that a frame is the smallest addressable segment in the 

device. This is true for all devices in all Xilinx FPGA families. Frames are arranged into block 

types, row addresses, column addresses and minor addresses. Block types correspond to type of 

data that is stored in the corresponding frames they address. As one would expect, block types 

are arranged into the three major categories previously mentioned, with the assigned addresses 

shown in Figure 4.2. 

Block Type Assigned Address 

Clock / IO / CLB data 000 

BRAM data 001 

BRAM interconnect 010 

 

Figure 4.2: Xilinx block type layout 

On most FPGAs, dynamic data comes in two basic forms: flip-flop state information and RAM 

data. Flip-flop state information is typically stored in the CLB section of the FPGA 

corresponding to block type 000. RAM data, however, can potentially be stored in either block 

type 000 or block type 001. This is a result of the fact that FPGA manufacturers provide the 

system designer the capability of configuring the lookup tables (LUTs) contained in CLBs into 

RAM modules. Depending on the parameters of a design, the synthesis tools used to synthesize 

the design will analyze the design and determine if the RAM data structures present would be 

best served to be instantiated in the dedicated block RAM (BRAM) provided on the device, or in 

LUT RAMs contained in user space. This is of major concern when developing a dynamic data 

idnetification strategy. This is primarily because only flip-flop data located in the CLB section of 

block type 000 is masked from readback configuration data when using the dynamic data 

identification strategy outlined in Section 4.1.1. If LUT RAMs are instantiated in the CLB data 

space, the CLB portion of the configuration data that is read back (which describes this space) 

will be continuously changing due to its contents containing RAM data that is not static. This 

makes it impossible to tell if changes in the configuration data are the result of a malicious attack 

or simply a result of the components of the design manipulating RAM contents. It is for this 
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reason that an assumption of the system‘s design requires all RAM modules to be instantiated 

either outside of the protected region of the CLB section or in the dedicated BRAMs of the 

FPGA. As a result, the only dynamic data located in the protected CLB data space is flop-flop 

data whose locations can be masked out using the technique described in Section 4.3.2. This 

allows the system to effectively detect when malicious changes have been made to the FPGA‘s 

configuration.  

 

4.1.3 FPGA Configuration Bitstream Layout 

In designing a FSM capable of masking out the dynamic data contained in the CLB portion of 

the readback data stream, it is necessary to identify where the CLB section actually begins and 

ends in this data stream. For the Virtex II/II Pro and Virtex 4 Xilinx FPGA families, this portion 

of the configuration readback bitstream begins at the 30
th

 frame which is read back (Starting 

from frame 0). To determine where the CLB section ends, the length of this section must be 

determined. On the Virtex II and Virtex II Pro platforms, the length of the CLB section is device-

dependent and can be found in the Virtex II and Virtex II Pro user guides [9,10]. On the Virtex 4 

platform, however, this value must be computed. The first step in determining this value is to 

find the number of logical frames contained in each Xilinx formatted frame address. From 

analyzing the logic allocation files produced by the flow outlined in Section 4.1.1, the number of 

logical frames located in between each frame containing dynamic flip-flop data can be found. On 

the Virtex 4 platform, this value is 22 frames. It can then be taken that each Xilinx formatted 

frame address corresponds to 22 frames in the readback configuration bitstream. Next, the index 

of the frame inside each block of 22 frames that contain dynamic data must be found. This index 

can be computed by subtracting the index of the first frame in the CLB section of the readback 

configuration (30) from the index of first frame containing flip-flop data (50). Therefore, inside 

each block of 22 frames, the 20
th

 frame contains dynamic data that must be masked out. This 

value can then be used to compute the last frame in the CLB section. This is done by determining 

the last frame to contain dynamic flip-flop data in the CLB section from the logic allocation files 

produced and adding 2 to it. The last frame containing dynamic data represents frame 20 in a 22-
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frame block, so the last frame in the block, and therefore the CLB section of the configuration 

readback bitstream, would be the index of the last frame containing dynamic data plus 2. An 

outline of the configuration readback bitstream is shown in Figure 4.3. 

Block 

Type 

 
000  000  000  000  000  000  000  001  010 

                   

  GCLK  IOB  IOI  CLB0  CLBN-1  IOI  IOB  BRAM  BRAM INT 

  0  4  8  30    M  X  ….  …. 

  1  5  9  31    ….  ….  ….  …. 

  2  6  10  32  ….  ….  ….  ….  …. 

  3  7  11  33  ….  ….  X+3  ….  …. 

      …  …  ….  ….    ….  …. 

      28  50    ….    ….  …. 

      29  51    M+21    ….  6256 

 

*The frame highlighted grey represents the frame at offset 20 inside the blocks of 22 frames, and contains dynamic 

flip-flop data 

Figure 4.3: Outline of the Virtex 4 readback configuration data stream 

The frames located after the CLB section (after frame 4350) in the readback bitstream 

correspond to I/O and BRAM data. The data contained in these frames represents either: (a) 

dynamic data corresponding to an I/O or memory component of a design, or (b) static data that 

represents an unused portion of the device. It is for these reasons that the configuration integrity 

checker does not protect the configuration data present in these regions. 

 

Now that the entire layout of the readback bistream configuration is known for both the 

Virtex II / II Pro and Virtex 4 platforms, it is possible to create a FSM to mask this data out of 

the readback bitstream. 
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4.2  Platform Independent Dynamic Data Masking 

The manual dynamic data identification process can prove to be extremely tedious (especially as 

devices grow in size and complexity), as it can require several days to map a single FPGA. As a 

result, it would be desirable to develop method to automate this process. Such automation would 

reduce the time required to map the dynamic data contained in the CLB section of an entire 

FPGA from hours or even days down to only a few minutes. It would also be advantageous to 

remove the complex parameterization needed in the mapping process and replace it with a single 

and straightforward input file. Such a method would serve to remove the device and family 

restrictions of the system presented in Chapters 3, and provide the opportunity for such a system 

to easily be ported across devices and even platforms. An approach that embodies all of these 

characteristics was developed, and its design is outlined in Sections 4.2.1 and 4.2.2. 

 

4.2.1 Approach 

The approach that was developed to automate the dynamic data mapping process is outlined in 

Figure 4.4 and includes the following steps: 

1. Production of a map file used to represent the layout of the target device 

2. Generating both a custom top module used for instantiation and a user constraints file  

3. Producing logic allocation files for each column of the target device 

4. Compiling all the produced logic allocation files into a tabular representation of the 

dynamic data locations relative to the FPGA‘s configuration.  

 

In order to accomplish these tasks, several pieces of lightweight software were developed. 

The generate_ll bash script was used to control the automation process and provide the 

appropriate parameters to the called executables. This script uses only native bash function calls 

to promote portability. The gen_config application was developed in C / C++, and serves to 

produce a custom verilog top module and device specific user constraint file. These custom 
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generated files were then used to instantiate a module that fills all flip-flops contained in a 

specific column of CLBs. Instantiating such a module allowed the generate_ll script to run the 

appropriate Xilinx software to generate a logic allocation file corresponding to the FPGA 

configuration containing only the targeted column being filled. Once logic allocation files were 

generated for each column on the device, the compile_results executable, which was also written 

in C, was used to compile these results into tabular format. This table contains Xilinx formatted 

frame address, absolute bit offsets, relative bit offsets (to the current frame) and relative frame 

numbers (to the readback bitstream) corresponding to all dynamic data in the configuration. This 

compilation was then be used to configure a dynamic data masking FSM.  

 

  

Figure 4.4: Diagram of Automated Dynamic Data Identification Process 
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Examples of the logic allocation file generation process, as well as a sample section from the 

tabular data produced from the compile_results executable, are provided in Figures 4.5 and Table 

A.2, respectively. 

FPGA 

Column 0 Filled 

 FPGA 

Column 1 Filled 

 FPGA 

……. 

 FPGA 

Column N Filled 

0 1 .. N 

    

 

 0 1 .. N 

    

 

 0 1 .. N 

    

 

 
0 1 .. N 

    

 

 

 

 

 

 

 

 

Figure 4.5: Diagram of Logic Allocation File to Tabular Results Process 

4.2.2 Automating the Dynamic Data Mapping Process 

Map File Generation 

To promote simplicity and portability, the only significant input to the automated dynamic data 

mapping process is a map file that describes the layout of the chip for which the dynamic data is 

ll file0 ll file1 ……
….. 

ll fileN 

Results.tab 

Compile Results 

Executable 
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being mapped. Almost every FPGA differs in the size of their respective CLB arrays. Certain 

devices also contain auxiliary components, such as ―hard core‖ processors that reside inside the 

CLB data portion of the chip. For these reasons, it is necessary to know the layout of the chip so 

that the CLB columns in the device can be filled with the appropriate data to generate correct and 

complete logic allocation files. To provide this layout to the mapping tools, a map file is 

generated that contains an outline of the device being mapped. With the use of this map file, the 

protected areas of the device can be mapped around, and a complete dynamic data map can be 

generated. 

 

 This map file is created by first determining the dimensions of the CLB array for the 

target device. Next, any CLB regions which are considered ―protected‖ must also be determined. 

This information can be easily be found using the Xilinx FPGA Editor software [6]. Once this 

information has been determined, a map file can be generated by describing this information on a 

column-by-column basis. An example map file for the Xilinx XC2VP30 device is provided in 

Table A.1. 

Generate_Config Executable  

The ―generate_config‖ executable is a C application designed to accept design-specific 

parameters as command line arguments, and generate custom HDL and Xilinx user constraint 

files. These custom output files are used to instantiate a design capable of filling all flip-flops in 

a particular CLB column. The design specific input parameters include a device specific 

topmodule, Xilinx user constraint file and user generated map file. Also, CLB coordinates of the 

column to be filled by the generated design is input as a command line argument. The usage 

guide for this software is included in Appendix C. 

Logic Allocation File Generation Script 

In order to provide portability and increase parameterization, a platform independent bash script 

was created that utilizes only native bash functionality. This script requires the user to fill in only 

three parameters: the name of their topmodule / UCF header files (which will be passed to the 
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gen_config executable), the name of their input MAP file, and the number of CLB columns on 

the device whose dynamic data they are attempting to map. The only remaining requirement of 

the script is that a build capable of generating Xilinx bitfiles is present. This build can be easily 

obtained from [56] and only requires that the Xilinx ISE toolkit (which is free) is installed. Once 

set up, the script can be used to map the locations of the dynamic data on any Xilinx device 

(provided a MAP file has been generated for the device) with changes only needing to be made 

to a few parameters. A sample version of the generate_ll script is shown in Table D.1. 

Compile_Results Executable 

Prior to the development of the ―compile_results‖ executable, the results of the logic allocation 

file generation (which contain hundreds of frame addresses and bit stream offsets) had to be 

manually compiled into a tabular format that could be easily understood. The results of this 

compilation typically produce a table such as the one outlined in Table B.1. The Xilinx formatted 

frame address‘ and bitstream offsets contained in this table then had to be converted into frame 

addresses relative to the configuration readback bitstream. As a result, a table such as the one 

shown in Table B.2, was produced. For a particular device, this process, coupled with the manual 

generation of logic allocation files for each CLB column, proved to be very time intensive and 

require days to compile. This process also left room for human error. Because the functionality 

of the configuration integrity checker presented depends on every bit of dynamic data being 

masked or removed, the occurrence of false positives due to human error is unacceptable. For 

these reasons, the compile_results executable was developed. This executable iteratively reads 

though a directory filled with the generated logic allocation files and produces a tabular 

representation of the data. This table includes Xilinx formatted frame addresses, absolute 

bitstream offsets, relative bit offsets (to the current frame), as well as the corresponding 

calculated frame addresses relative to the readback bitstream. This information is needed to 

develop the data masking FSM used to produce a static readback configuration. An example 

portion of a table generated for the Xilinx Virtex II Pro XC2VP7 device is shown in Table A.2 
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4.2.3 Identifying Auxiliary Dynamic Data  

Theoretically, the removal of all LUT RAMs, in conjunction with the masking of all flip-flop 

data from the CLB portion of the readback configuration bitstream, should result in a completely 

static readback configuration. However, as in most real-world applications, this is not always the 

case. In practice, it was determined that there are small sections of auxiliary dynamic data that 

exist outside of the dynamic regions of the configuration outlined in Section 4.1.2. To produce a 

completely static configuration, which could be used to identify malicious alterations to the 

configuration, this auxiliary data needed to be identified and masked. 

 This was achieved by analyzing the Xilinx produced ―.msd‖ file that contains the 

readback bit locations of all dynamic data Xilinx suggests be masked from the configuration. 

The locality of the dynamic data in the readback configuration, as outlined in this file, does 

support the masking procedure outlined in Section 4.2.2, further validating the flip-flop masking 

procedure previously described. However, the dynamic data map displayed in this file shows that 

there is dynamic data present in the configuration that is not masked by this procedure.  

It has, however, been determined through iterative testing that this Xilinx produced file 

tends to, ―overmask‖ the readback configuration for dynamic data, identifying portions of the 

readback configuration as dynamic when this may not be the case 100% of the time. If the 

dynamic data outlined by Xilinx in this file were taken literally, almost 10% of the CLB section 

of a given device would be masked from configuration as dynamic data. For this reason, the 

entire dynamic data map presented in this file cannot be masked, and its contents must be 

carefully analyzed to determine which portions should be considered valid. If too much of the 

extraneous dynamic data outlined in the ―.msd‖ file is considered, portions of the configuration 

that should be monitored for malicious alteration will be left unchecked. If too little of this data 

is considered, it is possible that dynamic data produced by the system itself could produce false-

positives when checking for malicious alterations to the configuration. For these reasons, a 

middle ground must be established. This middle ground must provide insurance that no dynamic 
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data will be present in the configuration being checked for alterations, while refraining from 

masking out potentially static CLB data. 

 Carefully analysis of the ―.msd‖ file produced for designs on the Xilinx Virtex II / II Pro 

and Virtex 4 platforms, coupled with extensive testing, produced a layout of this auxiliary 

dynamic data that must be masked for each platform.  

Virtex II and Virtex II Pro Platforms 

On the Virtex II and Virtex II Pro platforms, it was determined that masking only the flip-flop bit 

positions specified inside frames marked to contain dynamic data was not sufficient. While these 

frames do in fact house all flip-flop data that must be removed from the configuration, they also 

contain auxiliary dynamic data scattered throughout their configuration data. For this reason,  all 

frames marked to contain dynamic data by the method outlined in Section 4.1.1 were masked. 

Virtex 4 Platform 

From [2], it can be seen that on the Virtex 4 platform this auxiliary dynamic data is contained in 

frames outside those marked to contain flip-flip data. Through testing of the readback 

configuration, this auxiliary dynamic data was determined to be located in the first and last frame 

of each block of 16 CLBs in the readback configuration. 

Hard Core Processor Instantiation 

Careful analysis of the ―.msd‖ file also yielded interesting results for devices that contain ―hard 

core‖ processors built into their configuration. Through this analysis, it was determined that the 

135 frame region surrounding the protected CLB space occupied by such a processor contains a 

significant amount of auxiliary dynamic data. Frames in this region, which do not border frames 

marked to contain flip flop data, were found to contain approximately 35 consecutive words of 

dynamic data. Frames adjacent to those containing flip-flop data, however, were found to contain 
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39 consecutive words of dynamic data. The location of this dynamic data inside these frames 

varies from device-to-device and platform-to-platform. To promote portability, the device 

independent version of the configuration integrity checker presented in this thesis was designed 

to mask out the entire contents of these frames. This can potentially over-mask the configuration 

data contained in the CLB section. If desired, once the system designer has chosen a device, the 

configuration integrity checker can be configured to mask the auxiliary dynamic data locations 

specific to that particular device, alleviating this over-masking. 

4.3 Platform Independent Configuration Integrity Checking 

To provide a configuration integrity checking solution that provides a system designer the ability 

to quickly and easily move the system to their desired device and platform, significant changes 

were made to the design of the PDCIC‘s components. These modified components, in 

conjunction with the design of a serial I/O debugging interface, are outlined in Sections 4.3.1 

through 4.3.5. When combined, these contributions form a cross-platform configuration integrity 

checking solution capable of supporting multiple devices spanning multiple platforms. 

4.3.1 Active Configuration Readback  

Devices in and across FPGA families differ in the size of the configuration data that must be 

actively monitored to determine when a FPGA‘s configuration has been maliciously modified. 

From a system portability perspective, the result of this variation is the need for parameterization 

of the internal FSM controlling the configuration of the FPGA‘s ICAP. This is done to allow a 

system designer the ability to easily configure the system to readback configuration data streams 

of varying sizes. To achieve such parameterization, components, such as the commands issued to 

the FPGA‘s ICAP for readback and the control parameters of the internal readback state 

machine, must be redesigned.   
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ICAP Readback Commands 

Several of the commands needed to setup and perform active readback of an FPGA‘s internal 

configuration are device and platform dependent. These platform dependent commands instruct 

the ICAP of the location in the devices configuration to begin readback (FAR_START_ADR), 

the number of configuration frames to read (FDRO_LENGTH) and the identification code 

(IDCODE) of the FPGA being used. In order to provide the system designer the ability to easily 

reconfigure the state machine issuing these commands, this FSM was designed to allow these 

commands to be iteratively read from memory. Because this approach was taken, the memory‘s 

contents (and therefore the readback commands) can easily be specified in tabular format in the 

systems HDL. This allows the system designer the ability to easily update these statically defined 

values to reflect the changes in device id, readback starting position, and readback length that 

need to be made when moving the system from one device to another. Values such as the number 

of configuration frames to be readback (which corresponds to the number of device frames 

contained the FPGA being used) needed to fill these parameters can be obtained from the Xilinx 

user guide [9,10,12,14] for the family of the device to which the system is being used. 

 

It should also be noted that the ICAP module, provided by the device manufacturer (in 

this case Xilinx) to interface the FPGA‘s internal configuration registers, is not device-

dependent. It is, however, platform-dependent, and the module corresponding to the platform 

being used must be instantiated in the configuration integrity checker to provide correct 

operation of the system. These modules are provided by Xilinx, and their interface needed for 

instantiation is outlined in the user guide for each available platform [9,10,12,14]. 

Internal Readback FSM Control Parameters 

The only internal readback FSM parameter that needs to be considered when moving the system 

from one device to another is the number of bytes that will be read back in one scan of the 

FPGA‘s configuration. This parameter is denoted as TOTAL_NUM_BYTES in the system‘s 
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HDL, and should be equivalent to the value used to represent the FDRO_LENGTH command 

issued to the FPGA‘s ICAP to setup active readback of the devices configuration.  

 

4.3.2 Checksum Computation Design and Considerations 

To enable portability across multiple devices on multiple platforms, several portions of the 

design‘s functionality, including hash value generation and the device specific dynamic data 

parameters, must be modified. 

Hash Value Generation 

Moving the system from one device to another results in a change in the number of bytes of CLB 

configuration data that must be monitored by the configuration integrity checker. As a result, the 

amount of data that must be processed by the MD5 hash function varies as well. For this reason, 

when the system is implemented on a new device, the granularity at which CLB data should be 

processed by the MD5 hash function must be reevaluated.  

 

From Section 4.1.2, it can be seen that a configuration frame is the smallest addressable 

entity in an FPGA configuration. Because using a granularity smaller then the size of a 

configuration frame would result in an asymmetry in the structure of the dynamic data masking 

FSM, it is then assumed that the smallest possible granularity at which data can be processed by 

the MD5 hash function for a given platform is a single configuration frame. Due to the 

divergence in the size of configuration frames across different devices and platforms, the amount 

of data contained in each configuration frame is not constant. While the size of a configuration 

frame is constant across all devices in the Virtex 4 family (164 bytes), it is device dependent on 

the Virtex II and Virtex II Pro platforms. For this reason, the number of configuration frames 

contained in a block of MD5 input data cannot be held constant across FPGA families. This 

value must then be evaluated on a device-by-device basis. The trade-offs of this design decision 

are outlined in Section 5.6.1. 
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 For the LX 25 device on the Virtex 4 platform, the suggested number of configuration 

frames per MD5 input block is 20 frames, resulting in 168 MD5 hashes. On the Virtex II and 

Virtex II Pro platform, the suggested MD5 input block size is 22 configuration frames. This 

corresponds to the number of configuration frames contained in one CLB column (which is 

variable depending on the device chosen), and the number of hashes needed to represent the 

entire configuration data stream is then equal to the number of CLB columns on the device. 

These suggested values provide a reasonable trade-off between the amount of resources 

consumed by the system and the precision at which the locality of malicious attacks can be 

detected. The results of implementing the system using the granularities suggested in this section 

are outlined in Section 5.4.2 . 

Platform and Device Specific Dynamic Data Masking 

Due to the fundamental differences in the locality of dynamic data across different FPGA 

families, the task of reconfiguring the dynamic data-masking controller to accommodate 

different FPGA families can be somewhat involved. This dynamic data masking FSM handles 

the task of monitoring the current frame and byte of configuration data that is being read back. 

Depending on these values, this FSM is also responsible for adjusting the dynamic data masking 

parameters accordingly. In order to alleviate the system designer from concerning themselves 

with making such complex modifications to the dynamic data masking FSM when moving the 

system across platforms, several platform specific configurations of the dynamic data masking 

component are provided. The details of how these platform specific implementations of the 

dynamic data masking FSM select bits to be masked in each platforms readback configuration 

are outlined in Appendix E. The system now requires the designer only to specify the number of 

configuration frames on the device being used and number of bytes contained in each frame of 

configuration data.  
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4.3.3 Resource Allocation 

The cross-platform configuration integrity checker supports two separate configurations that 

consume two opposing sets of resources. These configurations are provided to give the system 

designer flexibility in the set of resources required to successfully instantiate the system. The 

implementation details of these configurations are outlined in Appendix E. 

4.3.4 Challenge Response Subsystem 

The challenge-response subsystem, included in the PDCIC‘s design, is integrated into the 

design‘s configuration integrity checker component. As previously configured, it was only 

possible to turn the challenge response system ―on‖ or ―off‖. This prohibits an entity external 

from having the ability to issue a challenge and receive a response without running a full scan of 

the device‘s configuration data as well. This limitation, not only increases the execution time 

required to scan a FPGA‘s configuration, but also restricts the functionality of the challenge-

response subsystem to being dependent on the status of the integrity checker. In the platform 

independent version of the integrity checker presented in this thesis, the challenge-response 

subsystem was moved outside of the configuration integrity checker and is now an independent 

subsystem of the design. Challenges can be issued to the challenge-response subsystem though 

the serial I/O subsystem at any point during the system‘s execution. The response to an issued 

challenge can be computed regardless of the state of the configuration integrity checker.  

Shared Memory Considerations 

The system contains a shared hash memory that is read from and written to by the challenge-

response subsystem and configuration integrity checker, respectively. The challenge-response 

subsystem utilizes this memory to read the current hash values of the system‘s configuration 

during computation of the secret key needed to compute a response for a given challenge. The 

configuration integrity checker writes to this shared memory when a new current hash value has 
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been computed and needs to be stored. To support potentially simultaneous reading and writing, 

a dual port RAM with support for asynchronous reads was instantiated. This modified 

architecture of the system is shown in Figure 4.6.  

4.3.5 Serial I/O Subsystem 

Added in the platform independent version of the configuration integrity checker is a serial I/O 

subsystem. This subsystem allows a PC connected to the system via a NULL model serial cable 

the ability to issue challenges and view the subsequent responses visually on the PC‘s monitor. 

This provides the capability to receive visual confirmation of the system‘s health via challenge-

response. When using the debugging configuration of the configuration integrity checker, the 

system designer can also iteratively control the scanning of the FPGA‘s configuration, as well 

the start and stop of simulated attacks against the system. Due to the security implications of 

providing external control of a system‘s design, this subsystem is intended for debugging use 

only, and should be disabled before the system is used for regular operation. 
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Figure 4.6: Block Diagram of Platform Independent Configuration Integrity Checker 
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Chapter 5 

Validation and Multi-platform Analysis 

This chapter first presents the results of previous work upon which the contributions presented in 

this thesis are based. Next, the results of the validation of the multi-platform configuration 

integrity checker outlined in Chapter 4 are presented. This system was validated under a series of 

experiments designed to emulate the semi-invasive attacks for which the system was designed to 

detect. A detailed resource utilization, latency analysis and security analysis are then presented. 

The chapter is then concluded with an in-depth multi-platform analysis of the system under the 

Xilinx Virtex II, Virtex II Pro, and Virtex 4 platforms. When combined, these results 

demonstrate that a configuration integrity checking solution can be developed, which provides 

support for significant number of devices, which span multiple FPGA platforms. The results in 

this chapter are outlined in a similar fashion to those in Chapter 5 of [2] to provide context for 

comparison. 
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5.1 Results of Previous Work 

Presented in this section is a brief overview of the results of the previous work as described in 

Chapter 3. The results described in this overview are specific to the LX25 device running on the 

Virtex 4 platform. A detailed description of the validation of the PDCIC, as well as a complete 

analysis of the results of this previous work, can be found in [2]. These results are presented to 

provide a context for comparison between the results of work presented in [2] and those of the 

cross-platform configuration integrity checker presented in Sections 5.2 - 5.6 of this thesis.  

 

5.1.1  Resource and Timing Analysis 

Resource Analysis 

The PDCIC described in Chapter 3 consumed 7509 slices on the Virtex 4 platform, which was 

69% of the total slice resources available on the LX25 device. In the configuration presented, the 

system also consumed 4 of the available 72 BRAMs on the device, which was roughly 6% of the 

total available BRAM resources. Having consumed 69% of the devices available slice resources, 

only 31% of the devices slices are available to house the design being protected, which is clearly 

unacceptable. It would then be advantageous to move the design to a larger chip with more 

resources, however, because the design is platform-and-device dependent, this cannot be easily 

accomplished. This lack of portability is one of the motivating factors for the design of the 

device-and platform-independent configuration integrity checker presented in this thesis. 

 The design of the PDCIC can be broken down subsystem by subsystem to demonstrate 

the percentage of available resources each consumes. This break down is described in Table 5.1. 

Timing Analysis and Critical Path Considerations 

The most significant timing constraint in the design of the PDCIC stems from the critical path 

contained in the MD5 core used for hash computations. 
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Subsystem Percent Resources Consumed 

Configuration Integrity Checker 70% 

Challenge-Response 6% 

Partial Authenticator 8% 

MD5 16% 

 

Table 5.1: Resource consumption breakdown for the PDCIC 

This critical path restricts the configuration integrity checker to a maximum clock frequency of 

50 MHz. In the MD5 module used in this design, the critical path appears in the portion of logic 

that computes the output of a round in a single clock cycle. In order to reduce this critical path 

and therefore increase the maximum frequency the system can sustain, it was suggested in [2] 

that the computation that needs to take place in a single clock cycle in the MD5 core be separated 

into several pipelined stages. Depending on the number and placement of pipelined stages added, 

the critical path may be significantly shortened. As a result, the system‘s minimum clock period 

would be shortened, and thus the maximum clock frequency the system can sustain would be 

increased.  

 When operating at 50 MHz, the PDCIC took 80.12µs to scan each of the 168 blocks of 

CLB data, making the total time to scan all 168 blocks 13.46ms. Including the time required to 

skip frames that are not included in the CLB hash values, the PDCIC required 16.77ms to scan 

the entire CLB section.  

 

In order to provide perspective on the effect of the critical path in the MD5 module, the 

PDCIC‘s performance was calculated after replacing the MD5 module with a simple XOR / shift 

checksum computation. If the MD5 module was replaced with this simple checksum calculation, 

the entire system could instead run at 122MHz. This increase in frequency would allow the 

PDCIC to scan an entire configuration in 6.8ms. 
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Because the challenge response subsystem on the PDCIC uses a variable input message 

size, the time required to compute a response for a given challenge is found in Equation 5.1. 

 

     (5.1) 

Security Level Classification 

The majority of the attacks for which the PDCIC is susceptible require precise, transistor level 

modifications to the FPGA‘s configuration. Also, in depth knowledge of how the system‘s 

design is mapped onto the FPGA‘s configuration is required. As a result, Class 1 and 2 attackers 

as defined in [8], are not a substantial threat to the system. If Class 3 attackers are properly 

funded and given sufficient resources, they do, however, have the potential to succeed in design-

based attacks as such as those outlined in Section 2.3.2. In the present configuration, the 

system‘s defense level would fall into the category of ―MOD‖ as outlined by IBM in [8]. A Class 

3 attacker capable of succeeding at such a design-based attack would be referred to as a 

―knowledgeable insider‖ [2]. 

5.2 Platform Independent Dynamic Data Identification Process 

The process of mapping dynamic data on an FPGA manually is very time intensive. Because of 

this, it was very challenging to move the configuration integrity checker presented in Chapter 3 

from platform to platform. Mapping this dynamic data for a device on a new platform would 

require the entire readback configuration layout of this platform to be outlined. This process can 

take days or even weeks to accurately complete. When combined with the time it takes to 

manually map and tabulate the dynamic data in the configuration layout of a device, the manual 

dynamic data mapping process may be an unworthy endeavor for a system designer who intends 

to move the system to only one particular device.  
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When the generate_ll script is combined with the compile results executable, the 

security system presented in Chapter 4 of this thesis can be easily moved from device to device 

and platform to platform. The result is a multi-platform solution capable of easily and efficiently 

mapping the dynamic data of any Xilinx FPGA. The time required to produce a map of all flip-

flop data located in a single CLB column, and entire CLB section on several common devices is 

shown in Table 5.2. 

FPGA Family (Device) 
Execution Time 

(Single CLB Column) 

Execution Time 

(Entire CLB Configuration) 

Virtex II (XC2V250) 15.012 sec 8 min, 16.907 sec 

Virtex II Pro (XC2VP7) 35.661 sec 35 min, 25.952 sec 

Virtex II Pro (XC2VP30) 31.893 sec 47 min, 33.201 sec 

Virtex 4 (LX25) 32.124 sec 39 min, 14.748 sec 

 

Table 5.2: Execution time for generate_ll script across multiple platforms 

The benchmark results shown in Table 5.2 were obtained from the generate_ll script 

running on a Gateway NX860X laptop. This laptop employed a 1.83 GHz Intel Core 2 Duo™ 

Processor. The system also contained 2 GB of external RAM.  

 

From these results it can be seen that time required to produce a dynamic data map of a 

devices CLB configuration is dependent on the size of the chip being mapped. The time required 

to produce a map of the Virtex II XC2V250 chip is roughly 6 times less then that of the Virtex II 

Pro XC2VP30 chip. This is because the XC2V250 chip contains only 1,588,224 configuration 

bits that must be mapped, while the XC2VP30 chip contains 11,575,552. At a first glance, a map 

time of upwards of 30 minutes may seem large. However, when compared to the days or even 

weeks it takes to produce this map by hand this is relatively small. Because this process was 

automated, the potential chance for an error in calculation is also greatly reduced. This further 

supports the motivation for the design of this dynamic data mapping process. 
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5.3  Validation 

5.3.1  Testbed 

To validate the operation of the multi-platform configuration integrity checker presented in this 

thesis, a series of experiments were conducted to simulate the attacks for which the system was 

expected to withstand. These attacks were modeled using a difference based partial 

reconfiguration strategy. Over several iterations of testing, this method partially reconfigured 

small portions of the design being protected in several different areas of the protected region in 

an attempt to demonstrate the systems resistance to simulated fault injection attacks.  

 

To demonstrate that every possible alteration to the FPGA‘s configuration could be 

detected, it would be necessary to generate test benches that simulate modifications to every 

subset of configuration bits on the FPGA. This would be unreasonable, as the portion of the 

configuration bitstream being monitored is on the order of thousands of bytes. As a result, for all 

possible combinations of alterations to this set of data to be checked, it would require on the 

order of millions of iterations of testing to be performed to exhaustively test the system for all 

possible combinations of modifications. As a compromise, the experiments conducted to validate 

the operation of the system demonstrate that even the smallest attacks can be detected, regardless 

of their locality. Using these experiments, it is shown that the configuration integrity checker can 

detect alterations in the configuration as small as a single bit, in any area on the chip. If 

modifications of this precision can be detected, by induction it follows that larger modifications 

can be detected as well. 

 

5.3.2  Radix-4 FFT 

 When choosing a design to be protected in the testbed, several design properties and 

performance characteristics were targeted. To demonstrate that the configuration integrity 

checker was accurately masking out dynamic data, a design needed to be selected that contains a 

sufficiently large amount of dynamic data that exhibits poor locality. Ideally, the dynamic data 
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would be spread across the design, making the chances of the configuration integrity checker 

―accidentally‖ masking out all of the correct dynamic data very small. The design to be used in 

the testbed must also be large enough to prohibit there from being hash values computed on 

NULL data sets. Also, the design used must not constrain the frequency of the system clock used 

in the configuration integrity checker, or instatiate LUT RAM components in the CLB data 

space. Finally, the design selected should produce a reasonably large output data set that is being 

computed at a fairly high frequency. This should be done to provide the opportunity for a 

malicious attack on the design to be represented as a deviation from the correct output of the 

design. 

 

The design chosen to be protected in the conducted experiments was a radix-4 Fast 

Fourier transform (FFT) core obtained from opencores.org. This design was chosen for the 

testbed because it meets all requirements outlined above. The FFT is, by nature, a block-oriented 

algorithm. As a result, the FFT operates most efficiently when input and output data samples are 

processed in parallel. Because FPGAs can provide proprietary data structures which support the 

concurrency and regularity needed to optimize the FFT algorithm, they have become a popular 

platform for housing such a design [19]. Because of this, the FFT‘s design demonstrates resource 

consumption and performance characteristics common to many FPGA designs, making it an 

ideal choice for the testbed. When implemented on-chip, the Xilinx optimization tools removed 

small portions of both the FFT design and the module used to simulate its input. This was 

deemed acceptable as correct and consistent output values were still being produced by the FFT. 

 

 The radix-4 FFT core that was used as the protected design was configured to use a 1024 

point, 12-bit FFT input and a 14-bit 4-based (2-bit) reversed ordered output as shown in Figure 

5.1. This was done to provide a large enough output data set to reflect malicious alterations to the 

designs configuration in its output waveform. 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9  a8 a9 a6 a7 a4 a5 a2 a3 a0 a1 

 

Figure 5.1: Radix- 4 FFT output ordering 
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 The input to the FFT was generated on-chip, and was chosen to be a dual sinusoid with 

constant amplitudes, and a DC offset. The generated input followed the following form: 

 

 

 

 

To ensure that the FFT HDL was producing correct output, the Mathematica software 

application was used to compute the theoretical FFT values corresponding to the dual sinusoid 

input function that was used. Because the output generated by the Radix-4 FFT core is in 2-bit 

reverse order, output values obtained through simulation of this core using the Xilinx Model Sim 

simulation environment had to be converted to the proper format. To provide reasonable 

assurance that correct output was being seen, 1/10, or 102 of the 1024 generated output values 

per period of the input waveform obtained through simulation were converted to the correct 

format. These values were then compared with the theoretical output values. Because these 

converted values are only being used to ensure that HDL provided for the FFT core is 

performing correct mathematical computations, this subset of output values is large enough to 

form an output waveform that can be analyzed. As expected, the values obtained through 

simulation mimicked the theoretical output waveform of the FFT, and the operation of the 

designs HDL was verified.  

 

To verify that the output generated on chip was correct, the output of the FFT core was 

obtained using Xilinx ChipScope software. All 1024 output values produced per period were 

then compared to the output that was generated though the simulation in ModelSim. While some 

of the output values were slightly off due to the difficulty of modeling the exact input waveform 

in hardware, the values obtained followed the theoretical output waveform, providing assurance 

that the FFT core was functioning correctly.  
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5.3.3  Testbed Standardization 

To provide a basis for determining when the integrity of the protected design has been 

compromised, a standard for analyzing the results of the experiments performed was established. 

Unsuccessful detection of a malicious attack was defined as the lack of a divergence between a 

newly generated hash value and the trusted hash value for the block of CLB data that has been 

maliciously modified. An occurrence of such a scenario would either mean that the static portion 

of the designs configuration that was maliciously modified is not being included in the hash 

value computation for a particular block of CLB data, or hash values are being incorrectly 

computed. As a result, the functionality of the configuration integrity checker would be 

compromised, and modifications to its design would be required.  

A successful experiment was deemed to be one which exhibits the following behavior. 

Upon the continuous operation of the protected design and configuration integrity checker, 

consistently correct output is produced by the protected design. The configuration integrity 

checker also repeatedly computes stable, uniform hash values and its operation can be verified 

through the challenge-response subsystem. Upon launching a simulated fault injection attack, the 

configuration integrity checker reliably detects that an attack has occurred and identifies which 

portion(s) of the design has been maliciously altered. If the attack in question was aimed at 

disrupting or disabling the configuration integrity checker, this should be detected by the 

instantiated challenge-response protocol. 

 

The protected design was constrained to the left most 11 CLB columns on the FPGAs 

used to test the system. This mapping of the system‘s design to the Xilinx XC2VP30 FPGA‘s 

CLB resources can be seen in Figure 5.2. This was done was to segregate the FPGA design space 

into protected and unprotected regions that allow the system to clearly identify which portions of 

the chip are considered ―secure‖. This was also done to provide the system designer the option to 

increase in the configuration integrity checkers performance by only securing the configuration 

of this 11 CLB wide section. The chosen size of the secured space is variable. Depending on the 
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device and family of the FPGA for which the system is being implemented, this ―secured‖ area 

can be modified to meet the custom requirements of a specific FPGA. As previously described in 

Section 4.3.2, the size of a FPGA column varies from chip to chip. As one would suspect, as the 

size of the FPGA increases, so does the length of each column of CLBs, making the number of 

columns needed to house the secured design decrease. Conversely, the opposite holds true as the 

size of the FPGA is reduced. Because the FPGAs used to perform the experiments outlined were 

not drastically different in size, and did not lack sufficient space to fit the system on-chip, the 

constrained area was left uniform across these devices. 

 

Figure 5.2: Design layout on the Xilinx XC2VP30 FPGA with protected design in secured region 
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The protected design used approximately 715 slices and 2 BRAMs. The resulting 

resource percentages across the three different FPGA families can be seen in Table 5.3. 

Part 

     

Percentage 

XC2V250 Slices 715 of 1536 

 

47% 

XC2VP7 Slices 715 of 4928 

 

15% 

XC2VP30 Slices 715 of 13696 

 

5% 

V4LX25 Slices 715 of 10752 

 

7% 

 

Table 5.3: FFT resource utilization 

5.3.4  Results 

A series of experiments were performed to demonstrate that the cross-platform configuration 

integrity checker presented in this thesis is capable of detecting even the smallest alterations to 

an FPGA‘s configuration. These experiments simulate semi-invasive, fault injection attacks that 

could be used by an attacker to alter the configuration of the FPGA. To simulate these attacks, a 

partial reconfiguration strategy was employed.  

 

In this strategy, a small module used to partially reconfigure an FPGA is instantiated 

inside the configuration integrity checker. This module consists of two on-chip memories used to 

store partial bitstreams, and an FSM that issues commands to the ICAP instructing it on how to 

reconfigure the device. An altered version of the trusted FPGA configuration can be made by 

making small modifications to the trusted configuration of the system using Xilinx FPGA Editor 

software. Once these modifications are made, two partial bitstreams can be generated using a 

difference-based flow provided by Xilinx [5]. These partial bitstreams represent the difference in 

configuration data between the trusted system, and the configuration of the trusted system that 

contains the alterations that were made. Using these two bitstreams, a FPGA can be reconfigured 

to represent the configuration containing the alterations, and then reconfigured back to its 

original, ―trusted‖ configuration. Once both bitstreams are generated, they can be inserted into 
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the on-chip memory instantiated in the system‘s configuration. After the device has been 

configured with the new design containing these partial bitstreams, it can then be reconfigured to 

represent the design changes present in the partial bitstreams. This reconfiguration process is 

controlled through the serial I/O interface contained in the system‘s design. This interface can be 

used to dynamically simulate a fault injection attack on the system‘s configuration. 

 

The first experiment performed simulated a fault injection attack on the protected design 

located in the secure area of the FPGA. This experiment served to demonstrate that the 

configuration integrity checker could detect alterations to the configuration of the system, 

regardless of their size or location. This experiment was composed of several steps. First, the 

FPGA was initially configured with the correct configuration of the system. After several scans 

of the FPGA‘s configuration had been completed (as to model an attack that occurred during a 

typical computation by the protected design), the FPGA was partially reconfigured to simulate an 

attack. The portion of the protected design that was altered by the partial reconfiguration did not 

target any specific component of the design and was changed over several iterations of the 

experiment. This was done by producing an array of partial bitstreams, each set to reconfigure 

different areas of the original design with a ―maliciously modified‖ version. Over successive 

iterations of testing, different partial bitstreams were chosen from this array and inserted into the 

systems design to be used during the simulated attack. The size of the alterations which were 

made was held constant and kept as small as possible. Depending on the related logic that was 

affected by the alterations to the ―trusted‖ designs configuration, between 18-24 frames, in 2-4 

blocks of CLBs were altered. It should be noted that the number of blocks of CLBs affected for 

the same partially reconfigured portion of the design can vary from FPGA to FPGA due to the 

divergence in the size and quantity of the CLB blocks across FPGA families and devices.  

 

In this experiment, once the partial reconfiguration was complete, the integrity checker 

successfully detected a change in all altered CLB blocks for each FPGA tested. This experiment 

was concluded by restoring the previously altered portions of the FPGA back to their original 

configuration again though the use of partial reconfiguration. Upon successfully reconfiguring 



 

 61 

the FPGA back to the correct design, the configuration integrity checker determined that all hash 

values of the newly reconfigured design match those of the correct design. This marked the 

successful completion of the first experiment.  

 

Because the FPGA configuration is scanned in iteratively, beginning at the bottom left 

corner and ending in the top right corner of the device, the time required to detect an alteration 

depends on the locality of the region effected by the change and the granularity at which the 

configuration is being scanned. The minimum, average, and maximum latencies for detecting an 

alteration to the configuration on each platform tested are shown below in Table 5.4. 

Platform (Device) Minimum Average Maximum 

Virtex 4 (LX 25) .099 ms 8.32 ms 16.77 ms 

Virtex II Pro (XC2VP7) 2.18 ms 30.52 ms 74.12 ms 

Virtex II Pro 

(XC2VP30_Constrained) 
2.18 ms 10.9 ms 23.9 ms 

Virtex II Pro (XC2VP30) 2.18 ms 50.14 ms 100.0 ms 

 

 Table 5.4: Minimum, average, and maximum scan times required to detect a malicious 

alteration to the FPGAs configuration 

 

 From Table 5.4, it can be seen that the ratio of the minimum to maximum scan times  

required to detect a change on the Virtex 4 platform is approximately 0.005, while on the Virtex 

II Pro platform this ratio is 0.025. This is due to the increase in checking granularity used on the 

Virtex 4 platform. From Table 5.4, it should also be noted that by constraining the protected 

design to a smaller protected area on the XC2VP30 device, the average and maximum times 

required to detect a change are almost 5 times less then when the entire configuration is scanned. 

 

The next experiment conducted was used to validate the operation of the challenge-

response subsystem. In this experiment, malicious alterations were made to the protected design 

in the same fashion as the first experiment, however, this time, prior to launching these simulated 



 

 62 

attacks, several challenges were sent to the challenge response subsystem though the use of the 

serial I/O control interface. Challenges sent each included a fixed-length private message that 

was sent to the challenge-response subsystem as described in Section 4.3.4.  All challenges sent 

were met with a successful response that included a correct hash value of both the private 

message sent and a hash of each individual block of CLBs corresponding hash value. After 

simulating an attack (again though the use of partial reconfiguration), another challenge was 

sent. This time, the response contained a incorrect hash value, indicating that the hash value of at 

least one block of CLBs had been changed (because the response hash value is a hash of the 

private key and a hash of all CLB block hash values). This successfully completed the second 

experiment.  

 

Because the length of the challenge sent to the verifier in the system is held constant, the 

time required to produce a response (and therefore determine if the system has been 

compromised) is solely dependent upon the granularity at which the system‘s configuration is 

being checked. As the granularity at which the system is scanned is increased, so is the number 

of hash values that must be included in the computation of the secret key needed to produce a 

response for a given challenge. On the Virtex 4 platform, the granularity at which the system is 

scanned is roughly 4 times that of the Virtex II and Virtex II Pro platforms. As a result, the time 

require to produce a response for a given challenge on the Virtex 4 platform is 85.5 µs, while the 

time required to produce a response on the Virtex II / II platform is only 23.42 µs. 

 

A final experiment was used to validate the system‘s capability to alert an external entity 

that the functionality of the system has been compromised. In this experiment, a portion of the 

system that would potentially cause the integrity checker to stop functioning, was targeted. More 

specifically, the attack was targeted at the heart of the MD5 module used to compute the hash 

values. These hash values are needed to validate the integrity of each block of CLBs in the 

protected design. Typically, attacks that target such a critical area of the system successfully 

compromise the system‘s functionality at no less than a 50% success rate. Upon simulating this 

attack (again though the use of partial reconfiguration), the configuration integrity checker 
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immediately ceased to function. When a challenge was sent to the system, no response was 

received and it was clear that the system had been compromised. This successfully validated the 

operation of the challenge-response subsystem and completed the array of experiments verifying 

the operation of the configuration integrity checker. 

5.4  Performance Analysis 

5.4.1  Resource Utilization 

Detailed outlines of the resources consumed by the system for each of the two provided 

configurations are included in Tables 5.5 and 5.6. These configurations were provided to give the 

system designer flexibility as to which set of available resources would be most beneficial in 

instantiating the configuration integrity checker. In the first configuration, all memories 

instantiated in the integrity checker are comprised of LUT RAMs. As can be seen in Table 5.5, 

this configuration only consumes 4 BRAMs, however, total number of slices consumed is over 

1.5 times greater than that of the second configuration, resulting in 7477 slices being consumed. 

The second configuration consumes only 4960 slices, shifting the majority of the resource 

utilization to the FPGA‘s BRAMs, with 43 BRAMs being consumed.  

Resource Amount Used 

Slices 7477 

Slice Flip Flops 7001 

4 input Look Up Tables (LUTs) 9044 

I/Os 12 

BRAMs 4 

GCLKs 2 

    

Table 5.5: System resource utilization under reduced BRAM consumption configuration 
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Resource Amount Used 

Slices 4960 

Slice Flip Flops 4345 

4 input Look Up Tables (LUTs) 8036 

I/Os 12 

BRAMs 43 

GCLKs 2 

    

Table 5.6: System resource utilization under reduced slice consumption configuration 

 The system was implemented on three FPGAs that span two families. These include the 

LX25 part on the Xilinx Virtex 4 platform, and the XC2VP7 and XC2VP30 parts on the Xilinx 

Virtex II Pro platform. From Figures 5.3, 5.4 and 5.5, the percentage of slice resources consumed 

by both configurations of the system for each part in the Xilinx Virtex II, II Pro and 4 families 

can been seen. On the Virtex 4 platform using the LX25 chip, the system consumed 69% of the 

available slices for the BRAM minimization configuration, and 46% of the available slices in the 

slice minimization configuration. On this platform, neither configuration would be acceptable for 

the LX25 part. Over 46% of the available system resources were used for the configuration 

integrity checker, leaving approximately 54% of the chips available slices for the system 

designer to implement their design. An acceptable slice utilization for the integrity checker 

would be under roughly 25%. This would make the LX40 the smallest acceptable chip for the 

slice minimization configuration, and the LX60 the smallest acceptable chip for the BRAM 

minimization configuration. When implemented on the Virtex II Pro platform, the system was 

instantiated on the XC2VP7 and XC2VP30 FPGAs. When implemented using the BRAM 

minimization configuration, the integrity checker required 152% and 54% of the FPGA‘s 

available slices, respectively. When set to the slice minimization configuration, the checker used 

101% and 36% of the available slices, respectively. Again, these resource utilizations are 

unacceptable, as the checker is better suited for a mid-to-large size FPGA when implemented on 

the Virtex II Pro platform. From Figure 5.6, it can be seen that the smallest FPGA that would 
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satisfy the space utilization requirement would be the XC2VP40 used in the slice minimization 

configuration. Because the dynamic data mapping and configuration readback procedure of the 

Virtex II platform is virtually identical to that of the Virtex II Pro (as the Virtex II Pro was 

derived from the Virtex II), the integrity checker was not tested on the Virtex II platform. If it 

was desired to utilize the checker on such a platform, it can be seen from Figure 5.5 that the 

smallest part that would appropriately house the design would be the XC2V4000 used with the 

slice minimization configuration.  

 

Figure 5.3: Virtex 4 system slice utilization 
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Figure 5.4: Virtex II Pro system slice utilization 

 

Figure 5.5: Virtex II system slice utilization 
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 A breakdown of the resources consumed by each subsystem in the configuration integrity 

checker is outlined in Figure 5.6. This breakdown can be obtained by analyzing the synthesis 

report generated by the Xilinx XST synthesis tools. By combining the slice and BRAM resources 

consumed, an estimate of the total resources consumed was obtained. 

 

Figure 5.6: Design utilization percentage breakdown by subsystem 

In the utilization breakdown in Figure 5.6, the system is broken down into three 

subsystems. The largest subsystem is the configuration integrity checker, which consumes 54% 

of the total design‘s resources. This subsystem contains several large FSMs which control 

configuration readback, as well as the data masking, and MD5 controllers. The second largest 

subsystem in the design was the MD5 module, requiring 32% of the design‘s total resources. The 

smallest subsystem in the design is the challenge-response module. This module contains only 

one FSM, which controls the MD5 module used to generate the hash value presented as the 

response to a challenge.   

 

54.36%

13.32%

32.32%

Configuration Integrity Checker Challenge-Response MD5
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5.4.2  Multi-platform Latency Analysis 

Subsystem Execution Time Analysis 

In this section, both the configuration integrity checker and the challenge-response subsystem‘s 

timing performance are analyzed. For each subsystem, the number of clock cycles needed to 

fully complete their respective functions were computed for both the Xilinx Virtex 4 and Virtex 

II Pro platforms. The Virtex II platform was not included in this analysis, as its fundamental 

design concepts are nearly identical to those of the Virtex II Pro platform. 

Configuration Integrity Checker Subsystem 

In order to accurately measure the latency of the integrity checker on both the Virtex 4 and 

Virtex II / II Pro platforms, the operation of the configuration integrity checker must be 

analyzed. First, the smallest repeatable function(s) on each platform was identified. Once the 

operation time of this function was determined, it was then replicated accordingly to produce a 

total timing estimate for the system. Finally, the total configuration scan times for each platform 

were determined, and an analysis of the resulting latency was performed. 

 

On the Virtex 4 platform, it was determined that the smallest repeatable functions needed 

to compute a total timing estimation were the latency of computing a hash value of an entire 

block of CLBs as well as the latency incurred in skipping a single frame of readback data. On the 

Virtex 4 platform, each block of CLBs took 4,006 clock cycles to compute and each skipped 

frame required 492 cycles. With the Virtex 4 LX25 FPGA under analysis containing 168 blocks 

of CLBs, the total time required to scan an entire configuration derived below in Equations 5.2 

through 5.5. 

           (5.2) 

              (5.3) 
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                    (5.4) 

 

              (5.5) 

 

 

With there being 336 skipped frames, and the number of cycles required to skip one frame being 

492 cycles, the total time to process all skipped frames is shown in Equation 5.6. 

 

           (5.6) 

 

 

The total time required to scan the entire configuration would then be the sum of the time 

required to process all CLB blocks and the time required to skip all 336 frames. The resulting 

time is: 

 

 @ 50 Mhz. 

On the Virtex II platform it was determined that the only repeatable function needed to 

compute a total timing estimation was the latency of computing a hash value of an entire block 
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of CLBs. Each block of CLBs took 109,051 clock cycles to compute when running under the 

Virtex II Pro platform. With the Virtex II Pro XC2VP30 FPGA under analysis containing 46 

blocks of CLBs, the total time required to scan an entire configuration is shown in Equation 5.7. 

               (5.7) 

 

 

 

 

 

 

 If the configuration integrity checker‘s configuration was set to only scan the protected 

area of the chip (which as mentioned in Section 5.3.2 is located in the first 11 CLB columns), the 

resulting time to scan an entire configuration is: 

 

 

. 
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To provide reference to the analysis, which was done on the performance of the PDCIC 

in Section 5.1, the system‘s performance was calculated using a simple XOR / shift checksum 

computation. The increase in frequency provided by this substitution would allow the 

configuration integrity checker on the Virtex 4 platform to reduce its time to scan an entire 

configuration by 244%, yielding a computation time of 6.8ms. On the Virtex II Pro platform, the 

entire configuration could be scanned at 40.98 ms using the default configuration, and at 9.78 ms 

under the high performance configuration.  

 

 To provide a context for comparison across the Virtex 4 and Virtex II Pro families, the 

times required to scan an entire configuration were calculated for several parts in each family 

that could potentially house the system. The results of these computations are shown in Figure 

5.7. 

 

Figure 5.7: Time required to scan a entire FPGA configuration for the Virtex 4 and Virtex II Pro 

Platforms 



 

 72 

Challenge-Response Subsystem 

Due to the serial interface used to accept the challenge from the user, the challenge length is 

fixed at 128 bits. The execution time of the challenge-response protocol is then only dependent 

upon the number of CLB blocks in a FPGA‘s configuration. In Equation 5.8, the number of 

clock cycles required to compute a response is shown. 

            (5.8) 

The constants in the equation represent the number of cycles required for the challenge-response 

FSM to operate. Once the number of clock cycles has been obtained, the number of seconds 

required to perform the computation can be obtained by multiplying this value by 20 ns. 

 

Using the LX25 part on the Virtex 4 platform, there are 168 CLB blocks, making the execution 

time: 

 

. 

 

 

Using the XC2VP30 part on the Virtex II Pro platform, there are 46 CLB blocks, making the 

execution time: 

 

. 
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Again, when using the the simple XOR / Shift algorithm instead of the MD5 core, the system can 

run at 122 MHz, resulting in execution times for the LX25 and XC2VP30 of 35.1 µs and 9.6 µs, 

respectively. 

5.5  System Security Analysis and Classification 

While the system presented in this thesis has made substantial changes to the components it was 

founded upon to promote portability, the overall structure and organization of these components 

remains intact. As a result, the level of security the system provides is congruent to that of the 

system presented in [2]. At this security level, the system is resistant to Class 1 and 2 attackers 

due to their inability to launch precise, bit-level, fault injection attacks. A Class 3 attacker has the 

potential of succeeding at such a design-based attack if proper knowledge of the device being 

attacked is obtained. The tools necessary to make these precise, bit-level modifications to the 

FPGA‘s configuration would also be necessary. Once obtained, such an attacker could use their 

ability to make these strategic modifications to the devices configuration to compromise the 

systems security. This can be done by either (a) determining information about the system by 

monitoring the response to said changes in between configuration scans, or (b) attempting to 

render portions of the system inoperable to gain an advantage against its design. An attacker at 

compromising the system is this manner is known to be a, ―knowledgeable insider‖ [2]. 

 

The only change in the system that could potentially cause a deviation from this security 

rating is a result of the change to orientation of the challenge-response subsystem relative to the 

overall structure of the design.  Because the challenge response subsystem was made to operate 

as a stand-alone component in the newly designed system, it now responds to challenges 

asynchronously relative to the configuration integrity checker. As a result, an attacker can no 

longer be assured that a response to a given challenge will only come at the end of configuration 

block scan. This leaves the attacker only 85.5µs and 23.42µs on the Virtex 4 and Virtex II / II 

Pro platforms, respectively, to attempt to compromise the system without taking the risk of 

potentially being detected by the challenge-response subsystem. Even with this augmentation to 
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the challenge-response subsystem, the system‘s defense level would still fall into the category of 

―MOD‖ as outlined by IBM in [8].  

5.6  Platform Analysis and Considerations 

In evaluating the system‘s performance on both the Virtex 4 and Virtex II Pro platforms there 

were several significant factors that separated the two. The two most prominent factors that 

caused a discrepancy in performance between platforms were the granularity of the configuration 

integrity checker and the supporting memory system.  

 

5.6.1 Granularity Considerations 

Due to the difference in configuration layout between the Virtex 4 and Virtex II / II Pro 

platforms, both the size of input blocks to the MD5 algorithm and the number of hashes that 

were generated varied. On Virtex 4 platform, the hash computation granularity was set to be 

block of 16 CLBs for the LX25 device, with each block containing 20 frames at 164 bytes per 

frame, or 3328 bytes of configuration data per block on the V4LX25. The Virtex II / II Pro 

platform‘s hash computation granularity was set at a CLB column that contains 22 frames. At 

824 bytes per frame, each block contains 18176 bytes of configuration data on the XC2VP30. 

This variation between block size results in the configuration of the LX25 chip on the Virtex 4 

platform being represented by 168 hashes, while only 46 hashes are needed to represent the 

XC2VP30 chip on the Virtex II Pro platform. Therefore, it is clear to see that even though these 

two chips are roughly the same size, with the LX25 containing 10752 slices and the XC2VP30 

containing 13696 slices, the number of hashes that must be computed is almost 4 times greater 

on the LX25. It would be possible to adjust the granularity used in either case, however, as 

mentioned in Section 4.3.2 the granularity chosen for each platform provides equilibrium 

between the amount of storage space required to store the resulting hash values, and the precision 

at which the configuration integrity checker can report areas which have been maliciously 

altered. 
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The effects of such a skew in the number of hash values that must be computed are seen 

in both the device utilization and execution times of each platform. As a result, there is an 

increase the configuration scan time on the Virtex 4 platform due to overhead from MD5 hash 

function computation. In addition, a reduction in device utilization is seen on the Virtex II / II 

Pro platform due to the decrease in hash memory size and supporting logic that is needed. 

 

5.6.2 Memory Architecture 

The majority of the increase in execution time suffered on the VII / VII Pro platform is due to the 

change in memory structure. In order to provide designers with a system configuration more 

suitable for chips with smaller slice counts (on older platforms with smaller chips) the slice 

utilization on the VII / VII Pro platform was reduced by moving the instantiated memories into 

the on-chip BRAMs. This resulted in a slice reduction of approximately 25% from that of the 

design used on the Virtex 4 platform. The penalty for such slice reduction was both an increase 

in BRAM utilization and increase in the amount time required to read and write to and from 

memory. The extra clock cycles required to successfully read from and write to such a shared 

memory (the hash memory is shared between the integrity checker and challenge-response 

subsystem) account for the remaining difference in execution time.  

 

The resulting increase in execution time does not significantly affect the level of security 

the system can provide in relation to brute force attacks, as the time that is required to compute a 

second preimage on the Virtex II / II Pro platform would still be well beyond the life cycle of 

this design. This increase in execution time would, however, affect protection against design-

based attacks (which the system was previously susceptible to under Class 3 attackers) targeted 

at making alterations to the systems configuration in between configuration scans, and would 

provide the attacker with an extra 83 ms of time in between scans.  
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5.6  Summary of Results 

By successfully securing the radix-4 FFT design on several platforms, under an array of 

simulated fault-injection attacks, it was shown that the configuration integrity checking solution 

presented provides a viable cross-platform solution capable of successfully securing real world 

applications. During the validation of the system, it was found that the precision at which the 

configuration integrity checker is capable of successfully and reliably detecting alterations, is on 

the order of bits. This ability to consistently detect such minute and precise alterations to the 

protected configuration provides a solution that is capable of neutralizing both Class I and II 

attackers. The results of the timing and utilization analysis performed on the system show that, 

while the system does not demonstrate exceptionally low latency or device utilization, it does 

provide sufficient performance to be instantiated on 14 modern FPGAs across the Virtex II, 

Virtex II Pro, and Virtex 4 families. As a result, the system presented, while still having room for 

improvement, is a portable security solution for many applications in today‘s computing 

industry. 
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Chapter 6 

Conclusion 

6.1 Summary 

The objective of this thesis was to develop a portable and parameterizable method for checking 

the integrity of FPGA configurations across multiple platforms. This objective was accomplished 

through the combination of several components. The first component was a multi-platform 

method for masking dynamic flip-flop data from FPGA readback configurations. In addition, the 

configuration readback, hash generation and challenge-response subsystems presented in [2] 

were extended across multiple platforms to form the second component of the design. The final 

component in the system‘s design was a flow used to automatically generate the relative 

readback bitstream locations of all dynamic flip-flop data present on any device in any Xilinx 

FPGA family. To supplement these components, two configurations of the system that consumed 

opposing sets of resources were provided. These configurations were provided to give the system 

designer flexibility as to which resources needed to be kept available for the design being 

secured by the system. To promote portability, two platform-dependent configurations of the 

dynamic data masking subsystem were provided. By making such configurations available, a 
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system designer instantiating the configuration integrity checker presented is alleviated of the 

complex parameterization that is typically required when moving the system from one platform 

to another.  

 

 The components of the cross-platform configuration integrity checker presented were 

designed and tested on the Xilinx Virtex II platform using both the XC2VP7 and XC2V30 

devices and on the Virtex 4 platform using the LX25 device. The system was tested using several 

experiments that simulated several types of fault injection attacks. In each experiment, the 

system successfully detected that an attack was being made and reported the failing hash values 

corresponding to the location(s) on the chip that were targeted by the attack. 

 

 A cross-platform analysis was performed on the system to demonstrate its usefulness 

when deployed across multiple devices on multiple platforms. The results of this analysis 

showed that on each of the Virtex 4 and Virtex II / II Pro platforms there exist 7 devices in which 

the system required less than 25% of the total available resources. As a result, system designers 

are provided 14 possible devices spanning 3 platforms which can be used to implement the 

system and still provide over 75% of the FPGAs total resources to house the design being 

protected. 

 

Finally, a security analysis was performed on the system to classify its resistance against 

potential attacks. Attacks that presented the capability of compromising the system were also 

classified. The results of this analysis showed that the system maintained the same level of 

resistance to attacks as the system outlined in [2], from which several of its components were 

derived.  This analysis showed that the system was resistant to Class 1 and 2 attackers as defined 

in Section 2.2, however Class 3 attackers showed potential to compromise when using precise bit 

level fault injection attacks.  
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6.2 Future Work 

Several specific areas were identified where the system presented shows room for improvement. 

The first significant area identified involves addressing the security threat presented from 

scanning the configuration iteratively with configuration scan times on the order of tens to 

hundreds of milliseconds. The second area that could be addressed through future work is the 

design assumption that the only dynamic data present in the CLB portion of the FPGA‘s 

configuration belongs to flip-flop data. Additionally, the assumption that the system is not being 

attacked on the first iteration of execution could be addressed. A final area of future work that 

could be addressed is securing the I/O subsystem.  

 

6.2.1 Addressing Security Weaknesses Due to Extensive Scan Times 

Random Block Readback Strategy 

While a potential attack point of the system could be the time it takes in between scans of a 

configuration to produce and compare the hash value of a given block of CLBs, this weakness 

could be offset by altering the configuration integrity checker to compute hash values of each 

block of CLBs randomly, instead of iteratively across the chip. The attacker was previously 

relying on the assumption that once scanned, the same block of CLBs would not be scanned 

again until the rest of the configuration had been scanned. If blocks are scanned randomly inside 

of each scan of an entire configuration, there exists the possibility that a block could be scanned 

twice in succession. Thus, the expected time an attacker would have to make alterations and then 

restore the configuration to its previous state would be reduced to slightly above the time it takes 

to scan one CLB block (80 µs on the Virtex 4 platform and 2.18 ms on the VII / II Pro 

platforms). In Figure 6.1, a sample scenario of the same CLB block being read back 

consecutively is shown. 
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Figure 6.1: Random readback successive block readback scenario 

Potential attackers would then be limited by the size of the malicious changes they can make as 

well as the speed in which they must make them. To implement such a strategy, the readback 

control FSM of the system would have to be redesigned, incorporating random number 

generation module into the system. 

Improving the Hashing Algorithm 

The extensive configuration scan times are due in part to the critical path present in the MD5 

hash algorithm used in the design. Future work could address the issue of removing this critical 

path or finding an auxiliary hash computation method. 

 

6.2.2 Design Assumptions Regarding Dynamic CLB Data 

In its current configuration, the system assumes that all dynamic data located in the CLB section 

of the FPGA‘s configuration is produced by flip-flops contained in the user‘s design. This 

assumption is needed because the dynamic data masking strategy currently employed is only 

capable of masking dynamic data produced by flip-flops present in the system. This prohibits the 

system designer from creating designs that contain components which are synthesized into LUT-

RAMs. A LUT-RAMs is a CLB, or group of CLBs configured to function as a RAM. An 

example of a popular design that uses LUT RAMs extensively is the Xilinx Chipscope hardware-

debugging module. If such a module was to be protected by the configuration integrity checker 

presented dynamic data would appear in the CLB section of the design which was not a result of 

flip-flop data and the functionality of the configuration integrity checker would be disrupted. If 

the contents of the LUT RAMs that are instantiated in the design are not security sensitive, they 
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could be constrained to be located in a specific section of the FPGA. This area could then be 

removed from portion of the readback configuration bitstream that is being protected by system, 

thereby allowing the system to function normally. If the data contained in this LUT RAMs was 

in fact security sensitive, a new solution would have to be designed. 

 

6.2.3 Trusted Hash Value Computation 

Presently, it is assumed that the configuration integrity checker is not maliciously attacked 

during the first time it scans the configuration of the device. This assumption is in place because 

the system must compute, ―trusted‖ hash values of the readback configuration bit stream during 

this iteration. This assumption poses a security threat to the system if an attacker did make a 

malicious modification to the FPGA‘s configuration during the first scan of the configuration. In 

this scenario, one of the trusted hash values would be a representation of the design including the 

attacker‘s modifications. This would make not only the response computed for a given challenge 

incorrect, but all subsequent hash values generated for that section of the FPGA‘s configuration 

would be compared against this incorrect value. To alleviate this problem the trusted hash values 

should be computed off-chip. This can be achieved by masking the expected readback data 

(*.rbd) using the readback mask file (*.msd) and computing the resulting trusted hash values 

from this bitstream. The .rdb and .msd files can be generated by the Xilinx bitgen command 

using the‖-g readback‖ and ―-m‖ options. These trusted hash values can then be statically 

included in the system prior to it being loaded on to the FPGA. 

 

6.2.4 Securing the I/O Subsystem 

If currently used during regular operation, the I/O subsystem used to transfer/receive challenges 

to/from the system presents a potential security threat, and measures would need to be taken to 

secure its operation. These measures could include encrypting the data being transferred through 

the system, as well as providing a password requirement to use the off-chip interface. 
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Appendix A 

Xilinx Virtex-II Pro Configuration Details 
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Virtex II XC2V250 
  

 

  Mask Frame 1 Mask Frame  2 Space Between Columns 

Column 
  

 

X0/X1 32 33 22 

X2/X3 54 55 22 

X4/X5 76 77 22 

X6/X7 98 99 22 

X8/X9 120 121 22 

X10/X11 142 143 22 

X12/X13 164 165 22 

X14/X15 186 187 22 

X16/X17 208 209 22 

X18/X19 230 231 22 

X20/X21 252 253 22 

X22/X23 274 275 22 

X24/X25 296 297 22 

X26/X27 318 319 22 

X28/X29 340 341 22 

X30/X31 362 363 22 

 

Figure A.1: Configuration Frames Containing Dynamic Data on the Virtex II XC2V250 
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* Note the offset between dynamic bits is held at a constant 2-40-2 interval 

Figure A.2: Bit positions containing dynamic data in Virtex II XC2V250 

 

 

 

 

116 118  756 758  1396 1398 

156 158  796 798  1436 1438 

196 198  836 838  1476 1478 

236 238  876 878  1516 1518 

276 278  916 918  1556 1558 

316 318  956 958  1596 1598 

356 358  996 998  1636 1638 

396 398  1036 1038  1676 1678 

436 438  1076 1078  1716 1718 

476 478  1116 1118  1756 1758 

516 518  1156 1158  1796 1798 

556 558  1196 1198  1836 1838 

596 598  1236 1238  1876 1878 

636 638  1276 1278  1916 1918 

676 678  1316 1318  1956 1958 

716 718  1356 1358  1996 1998 
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Column Row Description Column Row Description 

X0 Y0:Y159. X46 Y0:Y159. 

X1 Y0:Y159. X47 Y0:Y159. 

X2 Y0:Y159. X48 Y0:Y159. 

X3 Y0:Y159. X49 Y0:Y159. 

X4 Y0:Y159. X50 Y0:Y159. 

X5 Y0:Y159. X51 Y0:Y159. 

X6 Y0:Y159. X52 Y0:Y159. 

X7 Y0:Y159. X53 Y0:Y159. 

X8 Y0:Y159. X54 Y0:Y159. 

X9 Y0:Y159. X55 Y0:Y159. 

X10 Y0:Y159. X56 Y0:Y159. 

X11 Y0:Y159. X57 Y0:Y159. 

X12 Y0:Y159. X58 Y0:Y159. 

X13 Y0:Y159. X59 Y0:Y159. 

X14 Y0:Y63, Y96:Y159. X60 Y0:Y159. 

X15 Y0:Y63, Y96:Y159. X61 Y0:Y159. 

X16 Y0:Y63, Y96:Y159. X62 Y0:Y63, Y96:Y159. 

X17 Y0:Y63, Y96:Y159. X63 Y0:Y63, Y96:Y159. 

X18 Y0:Y63, Y96:Y159. X64 Y0:Y63, Y96:Y159. 

X19 Y0:Y63, Y96:Y159. X65 Y0:Y63, Y96:Y159. 

X20 Y0:Y63, Y96:Y159. X66 Y0:Y63, Y96:Y159. 

X21 Y0:Y63, Y96:Y159. X67 Y0:Y63, Y96:Y159. 

X22 Y0:Y63, Y96:Y159. X68 Y0:Y63, Y96:Y159. 

X23 Y0:Y63, Y96:Y159. X69 Y0:Y63, Y96:Y159. 

X24 Y0:Y63, Y96:Y159. X70 Y0:Y63, Y96:Y159. 

X25 Y0:Y63, Y96:Y159. X71 Y0:Y63, Y96:Y159. 

X26 Y0:Y63, Y96:Y159. X72 Y0:Y63, Y96:Y159. 

X27 Y0:Y63, Y96:Y159. X73 Y0:Y63, Y96:Y159. 

X28 Y0:Y63, Y96:Y159. X74 Y0:Y63, Y96:Y159. 

X29 Y0:Y63, Y96:Y159. X75 Y0:Y63, Y96:Y159. 

X30 Y0:Y159. X76 Y0:Y63, Y96:Y159. 

X31 Y0:Y159. X77 Y0:Y63, Y96:Y159. 

X32 Y0:Y159. X78 Y0:Y159. 

X33 Y0:Y159. X79 Y0:Y159. 

X34 Y0:Y159. X80 Y0:Y159. 

X35 Y0:Y159. X81 Y0:Y159. 

X36 Y0:Y159. X82 Y0:Y159. 

X37 Y0:Y159. X83 Y0:Y159. 

X38 Y0:Y159. X84 Y0:Y159. 

X39 Y0:Y159. X85 Y0:Y159. 

X40 Y0:Y159. X86 Y0:Y159. 

X41 Y0:Y159. X87 Y0:Y159. 

X42 Y0:Y159. X88 Y0:Y159. 

X43 Y0:Y159. X89 Y0:Y159. 

X44 Y0:Y159. X90 Y0:Y159. 

X45 Y0:Y159. X91 Y0:Y159. 

 

Table A.1: Map File for the Xilinx Virtex II Pro XC2VP30 Device 
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Column 

X0/X1 

Frame Address 

(Xilinx Format) 

0x00060200 0x00060400 0x00080200 0x00080400 0x000a0200 0x000a0400 

 Bit Offset 

(Inside Frame) 

118 20 0 0 0 0 

 Abosolute Bit 

Offset 

108662 111956 0 0 0 0 

 Relative Frame 

Offset 

32 33 0 0 0 0 

Column 

X2/X3 

Frame Address 

(Xilinx Format) 

0x00060200 0x00060400 0x00080200 0x00080400 0x000a0200 0x000a0400 

 Bit Offset 

(Inside Frame) 

0 20 118 118 0 0 

 Abosolute Bit 

Offset 

0 111956 183286 186678 0 0 

 Relative Frame 

Offset 

0 33 54 55 0 0 

Column 

X4/X5 

Frame Address 

(Xilinx Format) 

0x00060200 0x00060400 0x00080200 0x00080400 0x000a0200 0x000a0400 

 Bit Offset 

(Inside Frame) 

0 20 0 0 118 118 

 Abosolute Bit 

Offset 

0 111956 0 0 257910 261302 

 Relative Frame 

Offset 

0 33 0 0 76 77 

 

Table A.2: Example Table Generated by Compile Results Executable for the Xilinx Virtex II 

Pro XC2VP7 
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Appendix B 

Xilinx Virtex-4 Configuration Details 
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STARTING FRAME ADDRESS 1 2 3 4 5 6 

  

Frame 

Address 

Frame 

Address 

Frame 

Address 

Frame 

Address 

Frame 

Address 

Frame 

Address 

Column             

X0/X1 0x00000054 0x00004054 0x00008054 0x00400054 0x00404054  0x00408054 

X2/X3 0x00000094 0x00004094 0x00008094 0x00400094 0x00404094  0x00408094 

X4/X5  0x000000d4 0x000040d4 0x000080d4 0x004000d4 0x004040d4  0x004080d4 

X6/X7 0x00000114 0x00004114 0x00008114 0x00400114 0x00404114  0x00408114 

X8/X9 0x00000154 0x00004154 0x00008154 0x00400154 0x00404154  0x00408154 

X10/X11  0x00000194 0x00004194 0x00008194 0x00400194 0x00404194  0x00408194 

X12/X13 0x000001d4 0x000041d4 0x000081d4 0x004001d4 0x004041d4  0x004081d4 

X14/X15 0x00000214 0x00004214 0x00008214 0x00400214 0x00404214  0x00408214 

X16/X17 0x00000294 0x00004294 0x00008294 0x00400294 0x00404294 0x00408294 

X18/X19 0x000002d4 0x000042d4 0x000082d4 0x004002d4 0x004042d4 0x004082d4 

X20/X21 0x00000314 0x00004314 0x00008314 0x00400314 0x00404314 0x00408314 

X22/X23 0x00000354 0x00004354 0x00008354 0x00400354 0x00404354 0x00408354 

X24/X25 0x00000394 0x00004394 0x00008394 0x00400394 0x00404394 0x00408394 

X26/X27 0x000003d4 0x000043d4 0x000083d4 0x004003d4 0x004043d4 0x004083d4 

X28/X29 0x00000494 0x00004494 0x00008494 0x00400494 0x00404494 0x00408494 

X30/X31 0x000004d4 0x000044d4 0x000084d4 0x004004d4 0x004044d4 0x004084d4 

X32/X33 0x00000514 0x00004514 0x00008514 0x00400514 0x00404514 0x00408514 

X34/X35 0x00000554 0x00004554 0x00008554 0x00400554 0x00404554 0x00408554 

X36/X37 0x00000594 0x00004594 0x00008594 0x00400594 0x00404594 0x00408594 

X38/X39 0x000005d4 0x000045d4 0x000085d4 0x004005d4 0x004045d4 0x004085d4 

X40/X41 0x00000614 0x00004614 0x00008614 0x00400614 0x00404614 0x00408614 

X42/X43 0x00000654 0x00004654 0x00008654 0x00400654 0x00404654 0x00408654 

X44/X45 0x00000694 0x00004694 0x00008694 0x00400694 0x00404694 0x00408694 

X46/X47 0x000006d4 0x000046d4 0x000086d4 0x004006d4 0x004046d4 0x004086d4 

X48/X49 0x00000714 0x00004714 0x00008714 0x00400714 0x00404714 0x00408714 

X50/X51 0x00000754 0x00004754 0x00008754 0x00400754 0x00404754 0x00408754 

X52/X53 0x00000794 0x00004794 0x00008794 0x00400794 0x00404794 0x00408794 

X54/X55 0x000007d4 0x000047d4 0x000087d4 0x004007d4 0x004047d4 0x004087d4 

 

 

Figure B.1: Xilinx formatted frame addresses of flip-flop data on the Virtex 4 LX25 
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STARTING FRAME 1 2 3 4 5 6   

Space Between 

Columns       
 (in frames) 

Space Between Frames       
(in frames) 

                    

Column                   

X0/X1 50 782 1514 2246 2978 3710   22 732 

X2/X3 72 804 1536 2268 3000 3732   22 732 

X4/X5 94 826 1558 2290 3022 3754   22 732 

X6/X7 116 848 1580 2312 3044 3776   22 732 

X8/X9 138 870 1602 2334 3066 3798   22 732 

X10/X11 160 892 1624 2356 3088 3820   22 732 

X12/X13 182 914 1646 2378 3110 3842   22 732 

X14/X15 204 936 1668 2400 3132 3864   43 732 

X16/X17 247 979 1711 2443 3175 3907   22 732 

X18/X19 269 1001 1733 2465 3197 3929   22 732 

X20/X21 291 1023 1755 2487 3219 3951   22 732 

X22/X23 313 1045 1777 2509 3241 3973   22 732 

X24/X25 335 1067 1799 2531 3263 3995   22 732 

X26/X27 357 1089 1821 2553 3285 4017   55 732 

X28/X29 412 1144 1876 2608 3340 4072   22 732 

X30/X31 434 1166 1898 2630 3362 4094   22 732 

X32/X33 456 1188 1920 2652 3384 4116   22 732 

X34/X35 478 1210 1942 2674 3406 4138   22 732 

X36/X37 500 1232 1964 2696 3428 4160   22 732 

X38/X39 522 1254 1986 2718 3450 4182   22 732 

X40/X41 544 1276 2008 2740 3472 4204   22 732 

X42/X43 566 1298 2030 2762 3494 4226   22 732 

X44/X45 588 1320 2052 2784 3516 4248   22 732 

X46/X47 610 1342 2074 2806 3538 4270   22 732 

X48/X49 632 1364 2096 2828 3560 4292   22 732 

X50/X51 654 1386 2118 2850 3582 4314   22 732 

X52/X53 676 1408 2140 2872 3604 4336   22 732 

X54/X55 698 1430 2162 2894 3626 4358     732 

              

   
Jump to Next Column -83 -83 -83 -83 -83   

    

 

Figure B.2: Absolute frame address‘ of flip flop data on the Virtex 4 LX25 device 

. 
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* Note the offset between bits containing dynamic data  jumps from 22 bits to 43 bits after bit 634 

Figure B.3: Bit positions containing dynamic data in Virtex 4 LX25 device. 

 

 

 

5 6  325 326  677 678  1013 1014 

33 34  353 354  705 706  1025 1026 

45 46  365 366  717 718  1053 1054 

73 74  393 394  745 746  1065 1066 

85 86  405 406  757 758  1093 1094 

113 114  433 434  785 786  1105 1106 

125 126  445 446  797 798  1133 1134 

153 154  473 474  825 826  1145 1146 

165 166  485 486  837 838  1173 1174 

193 194  513 514  865 866  1185 1186 

205 206  525 526  893 894  1213 1214 

233 234  553 554  905 906  1225 1226 

245 246  565 566  933 934  1253 1254 

273 274  593 594  945 946  1265 1266 

285 286  605 606  973 974  1293 1294 

313 314  633 634  985 986  1305 1306 
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 Physical CLB 

Columns 0 – 13 14- 27 28-39 40-55 

Physical CLB Rows Readback Frame 

Address 

(Column Address, 

Row Address) 

 

(Column Address, 

Row Address) 

 

(Column Address, 

Row Address) 

 

(Column Address, 

Row Address) 

 

96- 191 Top / Bottom Bit = 1 (0x 0, 0x 2) (0x 1, 0x 2) (0x 2, 0x 2) (0x 3, 0x 2) 

Top / Bottom Bit = 1 (0x 0, 0x 1) (0x 1, 0x 1) (0x 2, 0x 1) (0x 3, 0x 1) 

Top / Bottom Bit = 1 (0x 0, 0x 0) (0x 1, 0x 0) (0x 2, 0x 0) (0x 3, 0x 0) 

0-95 Top / Bottom Bit = 0 (0x0,0x2) (0x1,0x2) (0x2, 0x 2) (0x 3, 0x 2) 

Top / Bottom Bit = 0 (0x 0, 0x 1) (0x 1, 0x 1) (0x 2, 0x 1) (0x 3, 0x 1) 

Top / Bottom Bit = 0 (0x 0, 0x 0) (0x 1, 0x 0) (0x 2, 0x 0) (0x 3, 0x 0) 

 

Figure B.4: Virtex 4 LX25 FPGA frame address layout 
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Column  0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 

            

Hash Number 

         

Row 

160- 191  140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 

128-159  112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 

96-127  84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 18 109 110 111 

64-95  56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 

32- 63  28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

0 -31  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

 

Figure B.5: Hash number to physical location mapping for the Virtex 4 LX25 device 
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Appendix C 

Generate_Config Usage Guide 

The generate_config executable is invoked as follows: 

―gen_config [top_module_header.v] [ucf_file_header.ucf] [fpga_map.map] <start_x> <start_y> <bits / counter>‖ 

The parameters to ―generate_config‖ executable are described in Table C.1. When the 

generate_config is invoked, the executable first determines if the appropriate input files exist and 

can be opened. If successfully opened, the top module and ucf header files are read in. The map 

file is then parsed and a custom core is generated from the values of the row and column 

parameters specified on the command line. The custom core‘s hdl is then inserted into the verilog 

top module provided, and the constraints corresponding to the columns to be filled are inserted 

into the constraints file header. In order for proper insertion to be achieved, the input top module 

header must contain the markers, ―//1‖ and ―//2‖ to specify the area of the file between which the 

core should be inserted. This custom ―counter‖ module must then be instantiated in one of two 

ways. The top_module header can include the ―counter‖ module as shown in the example 

top_module header in Table C.2, or the module can be included as a separate entity in the design 

that must be specified in the synthesis stage of the Xilinx build. In order for the user constraints 

file to be properly updated, a line containing the phrase ―END_HEADER‖ must appear in the 
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file as shown in the UCF Header section of Table C.2. Examples of topmodule and UCF files 

that could be passed to the gen_config executable are shown in Table C.2. Once the gen_config 

executable has been invoked, the updated topmodule and UCF files are ready to be used by the 

Xilinx build process invoked by the generate_ll script. 

Parameter Function Required (Yes / No) 

top_module_header.v 

This parameter specifies the name of the topmodule header you 

wish to have the custom core used to fill a CLB column inserted 

into. 

Yes 

ucf_file_header.ucf 

This parameter specifies the name of the ucf header file that you 

wish to have the location constraints of the custom core used to 

fill a CLB column inserted into 

Yes 

fpga_map.map 
This parameters specifies the input map files containing the 

layout of the target device 
Yes 

start_x 
This parameter specifies the column of the device you wish to be 

constrained 
No (Default: 0) 

start_y 
This parameter specifies the row of the device you wish to be 

constrained 
No (Default: 0) 

bits / counter 

This parameter specifies the number of bits per counter you 

would like used in the custom core which is generated. This 

value corresponds to the number of slices contained in one CLB 

for the FPGA family you are targeting. (This value is 4 for the 

Virtex 4, Virtex II, and Virtex II Pro families.) 

No (Default: 4) 

 

Table C.1: Gen_Config Executable Parameter Description 
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Top Module Header UCF Header 

module ml300_top(sys_clk, system_reset, leds_1, pb); #--------------------------------------# 

input sys_clk; # Clock Period Constraints 

input system_reset; #--------------------------------------# 

wire clk;  

wire rst; Net sys_clk LOC=B13; 

assign clk = sys_clk; Net sys_clk IOSTANDARD = PCI33_3; 

assign rst = system_reset;  

input [2:0] pb; Net system_reset LOC=P3; 

 Net system_reset IOSTANDARD = PCI33_3; 

output [3:0] leds_1; Net system_reset TIG; 

  

parameter size = 4; #Net sys_clk LOC=AJ15; 

 #Net sys_clk IOSTANDARD = LVCMOS25; 

////////INSERT CUSTOM GEN_CONFIG CORE BELOW/////// #Net system_reset LOC=AH5; 

//?1 #Net system_reset IOSTANDARD = LVTTL; 

 ## System level constraints 

//?2 #Net sys_clk TNM_NET = sys_clk; 

////////////////////////////////////////////////// #TIMESPEC TS_sys_clk = PERIOD sys_clk 10000 ps; 

 #Net system_reset TIG; 

assign leds_1[0] = count;  

assign leds_1[1] = pb[0]; ## FPGA pin constraints 

assign leds_1[2] = pb[1]; #Net leds_1<0> LOC=AC4; 

assign leds_1[3] = pb[2]; #Net leds_1<0> IOSTANDARD = LVTTL; 

 #Net leds_1<0> SLEW = SLOW; 

endmodule #Net leds_1<0> DRIVE = 12; 

 #Net leds_1<1> LOC=AC3; 

module counter (clk, rst, count); #Net leds_1<1> IOSTANDARD = LVTTL; 

input clk; #Net leds_1<1> SLEW = SLOW; 

input rst; #Net leds_1<1> DRIVE = 12; 

parameter size = 2; #Net leds_1<2> LOC=AA6; 

output reg [size-1:0] count; #Net leds_1<2> IOSTANDARD = LVTTL; 

always@(posedge clk) begin #Net leds_1<2> SLEW = SLOW; 

if(!rst) begin #Net leds_1<2> DRIVE = 12; 

count <= 0; #Net leds_1<3> LOC=AA5; 

end #Net leds_1<3> IOSTANDARD = LVTTL; 

else begin #Net leds_1<3> SLEW = SLOW; 

count <= count + 1; #Net leds_1<3> DRIVE = 12; 

end  

end  

 #----------------END HEADER--------------# 

endmodule  

 

Table C.2: Example Topmodule and UCF Header Files 
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Appendix D 

Generate_ll Script Source 
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#generate_ll script 

MODULE=ml300 

MAPFILE=v2p7.map 

 

for a in 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 

74 76 78 80 82 84 86 88 90 

#for a in 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 

73 75 77 79 81 83 85 87 89 91 

 

do 

cd constraints/gen_config/ 

./gen_config.exe ${MODULE}_top.v ${MODULE}.ucf $MAPFILE $a 0 4 

rm -f ../../hdl/${MODULE}_top_gen.v 

mv ${MODULE}_top_gen.v ../../hdl/${MODULE}_top.v 

rm -f ../${MODULE}_gen.ucf 

mv ${MODULE}_gen.ucf ../ 

cd ../../ 

make clean 

make bitfile 

mkdir results/X$a 

cp ${MODULE}.ll  results/X$a/ 

cp ${MODULE}_routed.ncd  results/X$a/ 

cp scripts/${MODULE}.srp results/X$a/ 

cp ${MODULE}_routed.par results/X$a/ 

cp netlist/${MODULE}.bld results/X$a/ 

done  

 

for a in 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 

74 76 78 80 82 84 86 88 90 

#for a in 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 

73 75 77 79 81 83 85 87 89 91 

do 

./compile_results.exe ../X$a/$MODULE.ll results.tab 

done 

 

Table D.1: Example ―generate_ll‖ Script Configured for the Xilinx XC2VP7 
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Appendix E 

Auxiliary Configuration Implementation 

Details 

Dynamic Data Masking FSM Configurations 

It can be seen from Figure B.2 that the frames containing dynamic data on the Virtex 4 platform 

increase in 22 frame intervals for the first 204 frames, and then a jump of 43 frames is 

encountered. The interval of 22 frames is then resumed until frame number 357 is encountered, 

and then a jump of 55 frames is needed. Once the pattern of 22 frame intervals is resumed, 

another random jump of 83 frames is needed after the 698
th

 frame. This general trend does 

continue on a column-by-column basis across all devices on the Virtex 4 platform, but the 

number of 22 frame increments contained in each interval is variable across different devices 

depending on the size of the particular device. This lack of uniformity across the dynamic data 

set on the Virtex 4 platform makes reconfiguring this FSM for different devices across the 

platform somewhat challenging, as both the number and length of these intervals must be 

adjusted. Because the length of configuration frames on the Virtex 4 platform is held constant, 
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the individual bits which must be masked inside each frame remain constant across all devices 

on the platform. These bits that must be masked for LX25 device on the Virtex 4 platform are 

outlined in Figure B.3 

 

Unlike the Virtex 4 platform, the Virtex II and Virtex II Pro platform‘s dynamic data 

locality does display relative uniformity across both of the platforms. On each platform, the 

interval seen between frames containing dynamic flip-flop data comes in a 1-22-1 fashion, and 

can be seen in Figure A.1 (Figure of dynamic data location on VII platform). As was shown on 

the Virtex 4 platform, the number of intervals on a particular device is again dependent on the 

size of the device. Unlike the Virtex 4 platform, the length of a configuration frame on the Virtex 

II / II Pro platform is not constant, and is dependent on the size of the device. As a result, the 

number of individual bits which must be masked in each frame varies from device to device, 

however, the interval between these bits is constant in the form of a 2-40-2 bit pattern. This 

pattern can be seen in Figure A.2 (figure of dynamic data bit pattern in VII Pro device).  

Because this divergence in dynamic data locality on the Virtex 4 and Virtex II / II Pro 

platforms is so significant, the multi-platform configuration integrity checker presented in this 

thesis provides a separate configuration of the dynamic data masking controller for each 

supported platform. 

 

Alternate Resource Consumption Configurations 

As mentioned in Section 4.3.3, the design of the cross-platform configuration integrity checker 

provides system designers with two configurations of the system that consume opposing sets of 

resources. These configurations were designed to provide flexibility in the set of resources 

needed to instantiate the system. 

 

The first configuration provided minimizes the slice resource consumption of the system, 

with the system only consuming 4760 slices. This configuration was intended to protect a 
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complex design that requires a very high slice count, but has a relatively small data set. An 

example of such a system would be cryptography core, such as AES, DES/ Triple DES, or RSA. 

The second configuration of the system minimizes the number of BRAMs consumed by the 

design, only requiring four available BRAMs to instantiate the system. This configuration was 

intended to protect a data intensive design that must instantiate large data buffers. An example of 

such a system would be a video processing application. The slice and BRAM utilization 

percentages for each device under each configuration of the system on the Virtex II, Virtex II Pro 

and Virtex 4 platforms is shown in Figures 5.3, 5.4 and 5.5 in Section 5.4.1. These 

configurations were achieved by manipulating the implementation of the design‘s memory 

subsystem. In the slice minimization configuration, the memory subsystem was configured to 

utilize the FPGA‘s block RAM resources, requiring only a few slices to provide an interface to 

the memory subsystem. The BRAM minimization configuration instantiates the memory 

subsystem using the FPGA‘s CLBs configured as LUT RAMs. 
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