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(ABSTRACT)

The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-

Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described

and analyzed. The corresponding data reduction methods are developed on the basis of

multirate digital signal processing techniques. Since the model is sting-mounted to the

support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify

the frequencies of the elastic modes of sting. Then the sampling rate conversion systems

are built up in digital domain to resample the data at a lower rate without introducing

distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR)

filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics

responses to the programmed motions from the resampled measurements. These data

reduction procedures are also illustrated through examples.

The results obtained from the harmonic oscillatory tests are then illustrated and the as-

sociated flow mechanisms are discussed. Since no significant hysteresis loops are observed

for the lift and the drag coefficients for the current angle of attack range and the tested

reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the

current oscillatory tests. However, large hysteresis loops are observed for pitch moment

coefficient in the current tests. This observation suggests that at current flow conditions,

pitch moment has large pitch rate and α̇ dependencies. Then the nondimensional maxi-

mum pitch rate q̂max is introduced to characterize these harmonic oscillatory motions. It is



found that at current flow conditions, all the hysteresis loops of pitch moment coefficient

with same q̂max are tangential to one another at both top and bottom of the loops, implying

approximately same maximum offset of these loops from static values. Several cases are

also illustrated.

Based on the results obtained and those from references, a state-space model is developed

to describe the unsteady aerodynamic characteristics up to the high angle of attack regime.

A nondimensional coordinate is introduced as the state variable describing the flow separa-

tion or vortex burst. First-order differential equation is used to govern the dynamics of flow

separation or vortex bursting through this state variable. To be valid for general configura-

tions, Taylor series expansions in terms of the input variables are used in the determination

of aerodynamic characteristics, resembling the current approach of the stability derivatives.

However, these derivatives are longer constant. They are dependent on the state variable

of flow separation or vortex burst. In this way, the changes in stability derivatives with the

angle of attack are included dynamically. The performance of the model is then validated

by the wind-tunnel measurements of an NACA 0015 airfoil, a 70o delta wing and, finally

two F-18 aircraft configurations. The results obtained show that within the framework of

the proposed model, it is possible to obtain good agreement with different unsteady wind

tunnel data in high angle-of-attack regime.
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Chapter 1

Introduction

Determining and describing the aerodynamic forces and moments on an aircraft is a very

important subject in atmospheric flight mechanics. It is primarily this aerodynamic ingre-

dient that distinguishes flight mechanics from other branches of mechanics. Aerodynamic

forces and moments are, strictly speaking, functionals of the variables associated with flight

conditions. They are dependent not only on the instantaneous values of these variables but

also on their entire past histories. Practically, we can write the aerodynamic forces and

moments as functions of these variables and all their derivatives, and expand them as Tay-

lor series about some reference values. Based on this assumption, certain practical schemes

have been developed for the flight mechanics and control applications. In this chapter,

we first discuss the current approaches used in describing the aerodynamic characteristics.

Then we will review some typical wind-tunnel investigations of unsteady aerodynamics up

to the high angle of attack regime. The mechanisms associated with these results will also

be discussed. Finally, we will summarize our research work and briefly disscuss the major

results obtained in this dissertation.

1
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1.1 Stability Derivative Approach

For many years, the aerodynamic forces and moments were approximated by the linear

expressions in their Taylor series expansions, leading to the concept of stability and control

derivatives[1−3]. This approximation has been found to work extremely well for attached

flows at low angles of attack. Furthermore, the addition of nonlinear terms, expressing

the changes in stability derivatives with angle of attack, can extend the range of flight

applications. Thus, a major fraction of the total effort in the aerodynamic research in the

past has been devoted to the determination, by theoretical and experimental means[3], of

the aerodynamic derivatives needed for applications to flight mechanics and controls. The

in-phase and out-of-phase derivative approach[3], for example, is the approach using the ex-

perimental measurements of oscillatory motions in the determination of these aerodynamic

derivatives. We will describe this approach in detail in Appendix A.

In the above approach, however, using either linear or nonlinear aerodynamics, it is assumed

that the parameters appearing in the representations are time-invariant. This assumption

was many times questioned based on studies of unsteady aerodynamics. Especially in

the region of high angles of attack where separated and vortex flows are developed, this

representation becomes invalid. The values of the unsteady aerodynamic derivatives are

found to be strongly dependent on the amplitude and frequency of the aircraft oscillations.

As the high angle-of-attack region becomes more accessible for modern aircraft, properly

modeling the aerodynamic characteristics in this region is highly desirable.

1.2 Nonlinear Lifting Line Formulation

The nonlinear lifting line theory was studied in the application of modeling the aerodynam-

ics in poststall range by Levinsky[4] and Hreha[5]. In their works [4-5], a nonlinear lifting line
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procedure with unsteady wake effects has been developed for predicting wing-body aero-

dynamic characteristics up to and beyond stall. A discrete vortex lattice representation is

used for the time dependent wake. Each chordwise section is assumed to act aerodynam-

ically like a 2-D airfoil in steady flow at an effective angle of attack, which may be time

dependent. Their approach and procedure may prove useful for simulating and aleviating

such adverse wing stalling characteristics as wing rock, wing drop, loss of roll control or roll

control reversal. However, while this method models the effects of the aerodynamic time

histories of the wake, it does not model the dynamics of the flow separation and vortex

burst which is important for unsteady aerodynamics in poststall range.

1.3 Indicial Function Method

Another more accurate approach used to obtain the airloads on an aircraft undergoing an

arbitrary motion is the indicial function method[6−8] in conjunction with the superposition

principle.

~C =
∫ t

0
A(t− τ )~̇hdτ

where ~C = (Cx, Cy, Cz, Cl, Cm, Cn)T is the combined vector of total aerodynamic force

and moment coefficients, A = {aij} is a matrix of indicial response functions for stepwise

variation of kinematic parameters, such as angle of attack and sideslip, roll, pitch and yaw

rates, and control surface deflections which form a vector ~h = (α, β, p, q, r, δa, δe, δr)T .

This approach is certainly efficient, but it is difficult to combine this functional representa-

tion with the equations of an aircraft motion, which are expressed in the form of differential

equations. In such a case, the resulting equations of motion will be represented by a set of

integral-differential equations which are not convenient for the analysis. Such an approach

can also be extended to a nonlinear case corresponding to the separated and vortex flow
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conditions[8]. But in this case, the use of such a description becomes very complicated and

very difficult to handle.

1.4 State-Space Representations

The description of the unsteady aerodynamic characteristics associated with the motion

time history is certainly possible by utilizing ordinary differential equations[9−10]. In order to

describe the aerodynamic characteristics measured experimentally ~C(t) ∈ R6, the following

type of the input-output dynamic system can be assumed:

Di(~C,
d~C

dt
, ...,

dk ~C

dtk
) = Ni(~h,

d~h

dt
, ...,

dm~h

dtm
)

~C ∈ R6, ~h ∈ R8, i = 1, 2, ..., 6

where Di and Ni are some nonlinear functions, to be determined.

This approach has been found to be very interesting since it is easy to combine this func-

tional representation with the equations of motion of an aircraft for solving flight mechanics

problems. The inclusion of the unsteady aerodynamics simply leads to an increase in the

problem dimensions. In such a case, we can analyze the motion stability by means of classi-

cal methods. Another interesting aspect is that this representation results in the concept of

state which is a very important part for describing the dynamic system of the aerodynamic

characteristics. It gives the information required for the determination of the instant and

future values of the aerodynamic characteristics. This description becomes the so-called

state-space representation[11−14] of aerodynamics systems.

In Ref. [12], a method is presented to model the unsteady lift, drag, and pitch moment

acting on a two-dimensional airfoil operating under attached flow conditions. Starting

from suitable generalizations and approximations to aerodynamic indicial functions, the



Yigang Fan Chapter 1. Introduction 5

unsteady airloads due to an arbitrary forcing motion are represented in a state-space for-

mulation. This model is in a form compatible with the aeroelastic analyses of both fixed-

wing and rotary-wing systems. But this model is linear and only valid for attached flows

at low angles of attack, where there are no separated and vortex flows.

Goman and Khrabrov[13] are the first to propose a state-space representation to model

unsteady aerodynamics at high angles of attack. They start from the flowfield around an

airfoil up to high angles of attack and introduce an internal variable to describe the location

of the separation point on the upper surface of the airfoil. Since the quasi-steady and

unsteady aerodynamic effects, such as the circulation and the boundary-layer convection

lag, as well as the dynamic properties of the separated flow adjustment, influence the

conditions of the flow separation and its reattachment, the instant position of the separation

point depends on all these effects. The aerodynamic coefficients depend in turn on the

kinematic parameters of the motion and the position of flow separation. Based on these

analyses, the location of the separation point is defined as the state of the aerodynamic

system which gives the information required for the determination of the current and future

values of the aerodynamic characteristics. A first-order differential equation is developed

to govern the movement of this separation point. Using this state variable and kinematic

parameters in determination of aerodynamic coefficients, a state-space representation is

built to model the unsteady aerodynamics up to high angle of attack regime.

In this formulation, however, one problem is that there are no explicit expressions available

in determining the aerodynamic characteristics from the state and kinematic parameters

for general configurations. Furthermore, for complex configurations, there exist a lot of

separation points associated with vortex flows, and these flows can interact with each

other. In such complex hybrid flowfields, is this state-space model still valid in describing

the unsteady aerodynamic characteristics ? Extensive research efforts are expected to

investigate these aspects.
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1.5 Experimental Investigations

In order to properly model the unsteady aerodynamics, the flow physics and mechanisms

have to be well-understood on the basis of experimental investigations. The experimental

study of dynamic stall can be traced back several decades[15], and has appeared with in-

creasing abundance up to the present. The experimental conditions range from the effect

of a constant rate of change of angle of attack (constant-α̇)[18−19], to various nonconstant-α̇

pitching, the most common of which is oscillatory motion[13−22]. The models tested range

from 2-D airfoils, 3-D delta wings, to full aircraft.

1.5.1 Typical Results for Airfoils

A fundamental study of unsteady lift on an airfoil due to abrupt changes in the angle

of attack was made by Wagner in Ref. [16]. This work was extended by Theodorsen to

computing forces and moments on an oscillating airfoil, whereas Kussner and Sears studied

the lift on an airfoil as it penetrated a sharp-edge or harmonically varying gust, respectively

(see Ref. [17]). In more recent years, the wind-tunnel studies of dynamic stall for an NACA

0015 airfoil pitching up about the midchord at a constant rate were reported by Jumper,

et al[18−19]. They studied the flowfields of the airfoil from attachment to separation and

determined the lift and moment coefficients as functions of angle of attack for 100 test cases,

covering 20 dynamic airspeed and pitch rate combinations. The dynamic-stall effects of the

change in the angle of attack at which separation occurs at the quarter chord and the change

in the angle of attack at which stall occurs were found to relate to a nondimensional pitch

rate given by the chord times the pitch rate divided by two times the freestream velocity.

Their results showed that there are significant delays of the stall and the magnitude of the

maximum lift coefficient from the static values for the ramping airfoil. These delays are

found to be proportional to the variation of angle of attack for fixed freestream velocity.
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Niven and Galbraith[20] presented the experimental results for ramp-down motion of air-

foils from fully stalled conditions to full establishment of the attached flows. Significant

delays of flow reattachment to a negative flow incidence in a rapid pitch-down motion have

been observed. Based on these experimental results, an analysis has been performed by

Ericsson[21−23] to explain that the flow physics responsible for the observed delays are the

accelerated flow and “moving wall” effects. The analysis shows that the dominant role

played by the moving wall effect during pitch-down motions is in agreement with existing

experimental results for a rotating circular cylinder. However, the delays of reattachment

may not be the same as those of flow separations.

1.5.2 Typical Results for Delta Wings

For the flowfields on a swept delta wing, a central feature of the vortex formation from

a swept leading edge at finite incidence angle is the vortex core. At a sufficiently high

angle of attack, this core breaks down, causing loss of local lift. For stationary wings,

the location of vortex breakdown xb, defined as the distance from the nose of the wing at

which the vortex core diameter abruptly increases, attains its minimum value at maximum

angle of attack, and conversely. A full description of these and other features, as well as a

synopsis of theoretical development pertaining to flows past wings and analogous internal

tube flows, was given by Wedemeyer[24].

Characterization of the unsteady nature of vortex breakdown on a delta wing subjected

to periodic excitation has remained unsolved. Basic features of the vortex developemnt

and breakdown on a wing oscillating in pitch are reported by Rockwell et al[25−26] and

Brandon[30]. In general, it is expected that the location of vortex breakdown xb will exhibit

a hysteresis loop as angle of attack is varied. This hypothesis is based on the analogous

findings for a two-dimensional airfoil subjected to a pitch motion[27], as well as visualization

of the overall flow structure on an oscillating delta wing[28]. In the latter, it was revealed
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that the gross behavior of the vortical flow structure was hysteretic with respect to the

wing motion. This investigation focuses on the development and breakdown of the core of

the vortex, defined by the vorticity fed into the vortex at and near the nose of the wing.

The fluid-mechanical processes that are causing these hysteresis loops are explained as the

dynamic lags of delta wing vortex breakdown in the high-rate and large-amplitude pitch

oscillations also in Ref. [29].

1.5.3 Typical Results for Aircraft

A significant amount of experimental research has been conducted in the area of unsteady

aerodynamics at high angles of attack. However, few of the works to date have focused on

full aircraft. Current design trends for advanced aircraft configurations show a clear need

for extending the experimental research to a complete aircraft configuration.

Brandon[30] is probably the first one to investigate and publish the unsteady aerodynamic

tests for an F-18 aircraft in ramp motions up to high angles of attack regime. The test

configuration incorporated a moderately swept wing with a highly swept leading-edge ex-

tension (LEX) which generates concentrated vortical flowfields similar to those of delta

wings. In addition to the vortical flowfields, the aircraft has moderately swept wings and

tail surfaces that can create separated flows over the configuration at high angles of at-

tack. These two types of flowfields can interact with each other. In such a hybrid flowfield,

both the separation and vortex burst phenomena exist, and it is not easy to describe the

locations of flow separation and vortex bursts.

The static results show that the flowfield over the model at high angles of attack is dom-

inated by a strong vortex system generated by the LEX. This vortex system contributes

both to increased lift and reduced pitch stability. Development of the LEX vortex system

starts at very moderate angles of attack. At these conditions, the vortex system trails over
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the wing and passes just outboard of the vertical tails. With increasing angle of attack,

breakdown of the vortices progresses forward such that the burst point moves over the wing

and LEX, and is associated with a substantial decrease in lift and a substantial increase in

pitch stability.

For the aircraft pitching up at constant rate, an increase in lift coefficient due to pitch

rate over entire range of motion has been observed and the maximum increment of the

lift coefficient occurred beyond the angle of attack for maximun lift of the static test. A

number of factors must be responsible for these observations. The dominant one is the flow

lag associated first with flow separation and vortex formation at the low angles of attack,

and then with vortex breakdown at the higher angles of attack.

For the aircraft pitching down at constant rate, the flow condition on the model is char-

acterized by complete flow separation and vortex breakdown at the beginning. During the

pitch-down motion, the formation of the LEX vortex system lags in comparison to the

static case and reattachment of the wing flow is delayed. This behavior results in large

decreases in lift coefficient compared to those in the static case at the same angle of attack

due to the motion. As pitch rate is increased, the loss in lift increases due to the lags in

vortex development and wing flow reattachment.

These experimental studies of the unsteady aerodynamics at high angle of attack regime

show significant dynamic effects of the separated and vortex flows. However, the physics

and mechanisms associated with the these complex separated and vortex flows are still not

completely understood. Further studies are expected in this area.
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1.6 Current Research

The research work in this dissertation can roughly be classified in four parts, i.e., harmonic

oscillatory tests and data reduction, oscillatory aerodynamic data analysis, aerodynamic

modeling, and model performance validation. Each part and the main results can be

summarized as follows.

1.6.1 Harmonic Oscillatory Tests and Data Reduction

In current research, we first conduct experimental studies on the unsteady aerodynamic

characteristics of a fighter aircraft configuration through the harmonic oscillatory tests at

Virginia Tech. The model was sting-mounted on the Dynamic Plunge-Pitch-Roll (DyPPiR)

model mount in the Virginia Tech Stability Wind Tunnel through a six-component strain-

gage balance. In order to reduce the interference effects of the support system, a sting

mount used is relatively long. Thus, the elastic deformations of the sting in the tests are

not negligible. The associated elastic modes will enter the system as extra inputs when

the model is put into the pitch oscillations. Therefore, the measurements obtained include

the aerodynamic responses to the pre-programmed inputs and the aerodynamic responses

to the elastic deformation of the sting, plus the corresponding inertia loads due to the

actual motions of the aircraft. Since the elastic motions of the sting are not measurable

in the tests, data reduction becomes a nontrivial problem. To obtain the aerodynamic

responses to the programmed input time histories, we design a data reduction system in

the digital domain on the basis of multirate digital signal processing approach to process

the data. First we identify the frequencies of the elastic modes of sting by using Discrete

Fourier Transforms (DFT). Then we design the sampling rate conversion system in the

digital domain to reduce the bandwidth of interest since the sampling frequencies are much

higher than the signal frequencies of interest. In this resampling process, the effects of the
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noise and the sting modes with high frequencies are removed. Finally, we design Finite

Impulse Response (FIR) digital filters with linear phase characteristics to reject the effects

of the dominant mode of the sting. All these processes compose the digital system of data

reduction. After these operations in the digital domain, we reject all the effects of the

elastic modes of sting, and end up with the aerodynamic characteristics responses to the

pre-programmed motion.
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1.6.2 Oscillatory Aerodynamic Data Analysis

Numerous studies have documented the hysteresis and overshoot characteristics as the

model is undergoing pitch oscillations at high angles of attack. The flow mechanisms

responsible for these unsteady effects are the dynamic lags of the vortex bursting and flow

separations. Because of these flow lags, it is generally expected that the aerodynamic forces

and moments will exhibit similar hysteresis loops in the pitch oscillatory maneuvers. In the

current pitch oscillatory tests, however, the tested angle of attack range is below 40o and

the reduced frequencies ω̂ = ωc/2V in the tests are not large. In such testing conditions,

the flowfields may not result in significant dynamic effects of vortex bursting and flow

separations.

From results obtained, we observed no significant hysteresis loops for the lift and the drag

coefficients in the oscillations for the current angle of attack range and the frequencies. This

observation suggests that the dynamic lags of the vortex and separation flows are small

in the current oscillatory maneuvers. The flowfields around the model are pretty much at

the attached flow conditions. However, we see the significant hysteresis loops for the pitch

moment coefficients in such flow conditions. It can further be observed that these hysteresis

loops are dependent on the amplitudes, the frequencies and the mean angles of attack

of the oscillations. The unsteady aerodynamic characteristics responsible for the pitch

moment hysteresis loops are attributed to the effects of pitch rate and α̇(t). The associated

flow mechanisms are discussed in this dissertation. Then the nondimensional analyses

about the characteristics of these hysteresis loops are performed. The nondimensional

maximum pitch rate q̂max is introduced to characterize these harmonic oscillations since it

contains the information of both the amplitude and frequency of the oscillatory maneuvers.

The performance of q̂max in characterizing the unsteady aerodynamic characteristics in the

harmonic oscillations is shown through several examples.
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1.6.3 Aerodynamic Modeling

Based on the data we obtained and some other data at high angles of attack obtained from

several documents, we develop a state-space model to describe the unsteady aerodynamic

characteristics up into the high angle of attack regime. The purpose is to extract a good

aerodynamic model from selected wind tunnel data by using an identification method. We

start from the model as proposed by Goman and Khrabrov[13]. However we further develop

the model in several aspects in order to analyze more complex unsteady aerodynamics

problems at high angles of attack. The state of flow separation or vortex burst is still

described by a first order differential equation but the effects of body rate on the flow

separation and vortex burst are included. In order to be valid for general configurations,

Taylor series expansions in terms of input variables are used for the determination of

aerodynamic coefficients, resembling the current approach of stability derivatives. However

these derivatives are no longer constant. They become functions of state variables which

can strongly depend on the amplitude and frequency of aircraft oscillations. The minimum

mean-square error approach is used to identify the unknown parameters in the model from

wind tunnel data.

1.6.4 Model Performance Validation

The performances of the proposed model are first validated by using the wind tunnel data

of an airfoil and a 70o delta wing in describing the dynamics of flow separation and vortex

bursting respectively. The corresponding dynamic properties of these two flowfields are

discussed. Based on the fact that the model can be used to describe the dynamics of

flow separation and vortex bursting individually, it is further used to describe the flowfield

around a full aircraft, where both flow separation and vortex bursting exist. The unsteady

wind tunnel measurements for a configuration of an F-18 aircraft are used to validate the
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model performance in describing such a hybrid flow. All these results and analyses show

that within the framework of the proposed state-space representation, it is possible to

model more complex unsteady aerodynamics at high angles of attack for a full aircraft.

Based on these examples, we further apply this model to the harmonic oscillatory data we

obtained for the F-18 aircraft configuration even though there are no large separated and

vortex flow effects in the corresponding flowfields. The identification results show several

nice features of the proposed model. These include the aerodynamics prediction capa-

bility, characteristics time scales, and significant improvement to the traditional stability

derivative approach.

1.7 Presentations of the Current Research

The harmonic oscillatory tests and the associated digital systems of data reduction are

presented in Chapter 2. In Chapter 3, we discuss the flow mechanisms associated with

these oscillatory maneuvers and perform the nondimensional analyses in characterizing

the corresponding unsteady aerodynamics. The state-space model is then developed in

Chapter 4. The parameter identification approach is described in Chapter 5. In Chapter

6, the model performance is validated using the wind tunnel measurements of a NACA

0015 airfoil and a 70o flat delta wing in describing the dynamics of flow separation and

vortex bursting. Based on the results obtained, the model is further used to describe the

flowfields around full aircraft for the ramp motion up to high angles of attack with flow

separation and vortex bursting, and the harmonic oscillatory motions with delay effects

due to α̇. The performance of the proposed model are also shown. In Chapter 7, we

summarize the present work and make suggestions for future research. In appendix A, we

discuss the method of computing the stability derivatives using the concept of in-phase and

out-of-phase derivatives.



Chapter 2

Harmonic Oscillatory Tests and Data
Reduction

Several references have documented the hysteresis loops of aerodynamic responses versus

the angle of attack for a wing oscillating in pitch[24−26]. In general, it is thought that

the location of vortex breakdown or separation point exhibit a hysteresis loop as angle of

attack is varied. This hypothesis is based upon the findings for a two-dimensional airfoil

subjected to pitching motion[27], as well as visualization of the overall flow structure on an

oscillating delta wing[28]. Here in the present research, low-speed wind tunnel experiments

were conducted to explore the unsteady aerodynamic characteristics of a modern fighter

aircraft configuration through the harmonic oscillatory motions. The purpose is to provide

some insights into the mechanism of hysteresis loops for a full aircraft whose flowfield

includes both vortex flows and separation flows. The harmonic oscillatory motions of

interests include the oscillations in pitch, as well as the oscillations in plunge. The pitch

oscillations involve the effects of both α̇(t) and pitch rate q(t) while the plunge oscillations

only have the α̇(t) effects.

First we present the static test results for this aircraft, and briefly discuss the associated

aerodynamic characteristics. Then we describe the harmonic oscillatory tests of current

15
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interest, including the amplitudes, the frequencies, and the mean angles of attack, both

for the oscillations in pitch and the oscillations in plunge. Since these harmonic oscillatory

tests were conducted through the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount, a

new apparatus installed in the Virginia Tech Stability Wind Tunnel, we then analyze the

DyPPiR dynamic tests and develop, in detail, the data reduction techniques specifically for

the DyPPiR data acquisition system based on a multirate signal processing approach. Fi-

nally we illustrate the developed data reduction techniques by processing the experimental

data for an oscillatory maneuver in pitch, as well as an oscillatory maneuver in plunge.
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2.1 Static Tests and Results

The static tests were conducted at dynamic pressure Q of approximately 10 lbs/ft2. The

static data were obtained over an angle-of-attack range of −6o to 40o. The longitudinal

force and moment data measured in the current tests are presented as the corresponding

coefficients in Figures 2.1 (a) and (b).
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Figure 2.1: (a) Static lift and drag coefficients (b) Static pitch moment coefficient

Figure 2.1 (a) shows a linear variation in lift with angle of attack up to about 20o. At

this point, the lift-curve slope begins to decrease. This reduction in lift-curve was possibly

caused by the development of flow separation and the progression of the leading-edge

extention(LEX) vortex burst point onto the wing. However, lift continued to increase until

a maximum value was reached at about α = 35o. The drag shows a quadratic variation with

the angle of attack. Figure 2.1 (b) shows the pitching moment characteristics. The results
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indicate near neutral stability for angles of attack between 5o and 20o. This characteristic

is due in large part to the lift produced on the LEX ahead of the moment reference center.

Above α = 35o, the data show a substantial increase in pitch stability.

2.2 Harmonic Oscillatory Motions in Current Tests

The harmonic oscillatory motions in current wind-tunnel tests include sinusoidal oscillations

in pitch and sinusoidal oscillations in plunge.

The mathematical descriptions for the oscillatory motions in pitch are given as following,

α(t) = α0 + αAsin(ωt)

α̇(t) = αAωcos(ωt) (2.1)

q̂(t) =
c

2V
α̇(t) = q̂maxcos(ωt)

q̂max is the normalized maximum pitch rate which is defined as,

q̂max =
c

2V
αAω (2.2)

As one can see that the sinusoidal oscillatory pitch motions are characterized by the am-

plitude αA (degrees), the frequency f = ω/2π (Hz), and the mean angles of attack α0

(degrees). The DyPPiR was programmed to generate the oscillatory pitch motions accord-

ing to the description in Eq.(2.1) for the amplitudes, the frequencies and the mean angles of

attack of interest, and the corresponding aerodynamic forces and moments were measured

by an internal six-component strain-gage balance.

Currently, we investigated the aerodynamic characteristics of the sinusoidal pitch oscil-

lations for four amplitudes (5 degrees, 7.07 degrees, 10 degrees and 14.14 degrees), four
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frequencies (0.5 Hz, 0.707 Hz, 1.0 Hz and 1.414 Hz), and three mean angles of attack (0

degrees, 12 degrees and 24 degrees) at two tunnel speeds of 95 ft/s and 67 ft/s, respectively.

For the oscillatory motions in plunge, the mathematical descriptions can be expressed as

follows,

h(t) = hAsin(ωt)

ḣ(t) = hAωcos(ωt)

α(t) = tan−1V sin(α0)− ḣ(t)cos(α0)

V cos(α0) + ḣ(t)sin(α0)
(2.3)

α̇(t) =
V h(t)ω2cos2[α(t)]

[V cos(α0) + ḣ(t)sin(α0)]2

q̂(t) = 0

where V is the tunnel speed. h(t) is the DyPPiR plunge distance from the nominal position

and hA is the amplitude of the oscillations.

As we can see, from Eq.(2.3), that the pitch rate q̂(t) is zero in the oscillatory motions in

plunge. Only α̇(t) shows up in the motion time histories. Therefore we can investigate the

α̇(t) effects on the aerodynamic characteristics while ,on the other hand, in the oscillatory

motions in pitch, q(t) = α̇(t), and the α̇(t) effects can’t be separated from those of the

pitch rate q(t).

The oscillatory motions in plunge are characterized by the plunge amplitude hA, the fre-

quency f = ω/2π, and the mean angle of attack α0. In current wind-tunnel tests, we

investigated the maneuvers for two amplitudes (0.5 ft and 1.0 ft), two frequencies (1.0

Hz and 1.5 Hz), and two mean angles of attack (0 degrees and 24 degrees) at the tunnel

speed of 67 ft/s only. The DyPPiR is programmed to perform the sinusoidal oscillations

as formulated in Eqs.(2.1) and (2.3), and the associated data acquisition system measures

the corresponding forces and moments on the model, as well as the motion time histories.

However, the DyPPiR only measures the time histories of the angle of attack α(t) and
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the plunge position h(t) of the motion. The α̇(t) and the pitch rate q(t) time histories

have to be obtained from the measurements by numerical differentiation techniques. In the

following, we are going to analyze these oscillatory tests and develop the data reduction

methods based on the multirate signal processing techniques.

2.3 Dynamic Test Analyses and Sting Modeling

The DyPPiR is installed in Virginia Tech’s Stability Wind Tunnel as shown in Figure 2.2.

It combines three hydraulic actuators to plunge a model through a 4.92 ft (1.5m) range

vertically, pitch the model through ±45o range, and roll the model through a ±140o range.

The three actuators provide the power required to force 3.08 slug (45 kg) model and over

17.13 slug (250 kg) DyPPiR hardware at rates approaching 29.53 ft/s (9 m/s) in plunge

and over 90 deg/s in pitch. The DyPPiR is digitally controlled by a personal computer, so

it is capable of performing general pre-programmed maneuvers, however only the harmonic

sinusoidal oscillations are of current interest.

As one can see, from Figure 2.2, the model is mounted on an internal six-component

strain-gage balance, which in turn is mounted on one end of a sting. The other end of

the sting is mounted on the DyPPiR support system. In order to avoid the interference

effects of the support system, the sting is relatively long. The current sting is of a length of

approximately 4 feet, and is not very stiff in structure. In this case, the sting will be subject

to elastic deformation during the tests. Similarly, since the balance has the sting part and

model part, a part mounted to the sting and a part mounted to the model separated by

beam flexible elements, there exists elastic deformation between these two parts when the

DyPPiR is performing a maneuver. Therefore the elastic deformations of the sting and the

balance will change the actual angle of attack of the model when the model is put into a

sinusoidal oscillation. These structural effects of the balance and the sting, however, have
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to be identified and considered in the data reduction.

Figure 2.2: DyPPiR Model Mount installed in the wind tunnel

Currently, we assume that the balance is rigid because its elastic deformation is very small

compared with that of the sting. With this assumption, we further model the sting as

a cantilever beam with the model mounted on the free end as shown in Figure 2.3 (a).

Since the deflection of the model on the free end changes the angle of attack of the model,

the actual angle of attack time histories will be different from the corresponding DyPPiR

feedback measurements. This variation of angle of attack must be considered in analyzing

the experimental data.

To simplify the analysis without losing the major characteristics of the problem, in the

present study, we neglect the effects of the axial compression and extension of the sting,

and only the structural dynamics normal to sting axis are considered in modeling the

associated angle-of-attack variations. Specifically, the deflection of the model on the free

end of the sting is modeled approximately by an one-dimensional spring-mass system as

illustrated in Figure 2.3 (a) and (b).
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In Figure 2.3 (a), m1 and m2 are, respectively, the mass of the model plus the aircraft side

of the balance, and the mass of the sting plus the sting side of the balance. Fn(t) is the

normal force acting on the model and z is the deflection of the model with respect to its

nominal position. The spring-mass model of the system is shown in Figure 2.3 (b) where

m is the equivalent mass of the system consisting of m1 and part of m2. k and c0 are the

equivalent spring constant and damping coefficient, respectively.

m
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DyPPiR
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z

Fn(t)
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Figure 2.3: (a) Sting-model system (b) Model as a spring-mass system

Based on the model shown in Figure 2.3, the dynamic properties of the system were inves-

tigated through experimental means. We generated the free oscillations of the system by

plunging the system to a new position instantly. Then we took the measurements of the

balance normal force responses. The measured force in this case corresponds to the inertia

force of the system due to the free oscillations, and the system equivalent weight. Figure

2.4 plots the measurements of the balance normal force responses at a sampling frequency

of fs = 1000 Hz.
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The inertia normal force is actually the product of the normal acceleration and the equiva-

lent mass of the system, that is, −mz̈(t), where m is the equivalent mass of the system and

z(t) is the deflection of the center of gravity of the model at time t. Therefore the normal

force time history shown in Figure 2.4 is actually the scaled time history of the acceleration

of the system. We can use it to estimate the elastic modes included in the motion.

As one can see, from Figure 2.4, that the motion shows the characteristics of a second-

order system except at the beginning where there are some high frequency modes showing

up. But these modes damp out very rapidly, and after that the motion of the system is

dominated by one second-order mode.
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Figure 2.4: Response of inertia normal force (lb)

To confirm the above observations, we resort to the Fast Fourier Transform (FFT) algorithm

to compute the Discrete Fourier Transform (DFT) of this sampled signal. We use the first

1500 samples to do DFT analysis. These 1500 samples of data represent the motion time

history from t = 0 to t = 1.5 seconds since the sampling frequency for this signal is

fs = 1000 Hz. We divide these data into three blocks with 500 samples in each block. The

first block represents the time history from t=0 to t=0.5 second, the second from t=0.501

second to t=1.0 second, and the last from t=1.001 seconds to t=1.5 seconds.

By zero-padding, we take 2048-point FFT of each block of data to investigate the frequency
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components contained in corresponding block of data. Figure 2.5 shows the magnitudes of

the DFT values of these three blocks of data.

From Figure 2.5, one can see that two spectrum peaks show up for 1st block of data. The

dominant one is located at f1 = 9.28 Hz and the other is at f2 = 23.44 Hz. For the

2nd and 3rd blocks of data, only one frequency component shows up at f1 = 9.28 Hz and

the frequency peak showing up in 1st block of data at f2 = 23.44 Hz has damped out.

This result is consistent to what we have observed from Figure 2.4. So the motion of this

equivalent system is dominated by an elastic mode at frequency f1 = 9.28 Hz.
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Figure 2.5: Spectra of three blocks of data

The natural frequency and damping ratio of this dominant mode can then be estimated as

follows,

ωn1 = 2πf1

ζ1 =
1

2π
ln(

Np

Nq

) (2.4)

where Np and Nq are two successive peak values of the balance normal force response as

shown in Figure 2.4. We found from the measurements shown in Figure 2.4 that this
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damping ratio is not a constant. Based on the data as shown in Figures 2.4 and 2.5, we

obtained an estimate in average sense as: ωn ≈ 58.31 (rad/s) and ζ1 ≈ 0.032.

Thus the equivalent system as shown in Figure 2.3 (b) can then be described approximately

by the following second-order linear differential equation,

z̈(t) + 2ζ1ωn1ż(t) + ωn
2
1z(t) =

1

m
[Fn,iner(t) + Fn,aero(t)−Wcos(α)] (2.5)

where Fn,iner(t) is the normal inertia force at the center of gravity (CG) of the model due

to the pre-programmed maneuvers of the DyPPiR, Fn,aero(t) is the normal aerodynamic

force and W is the equivalent weight of the system.

The general solution of this second-order system is of the following form,

z(t) = A0e
−ζ1ωn1tsin(ωn1

√
1− ζ2

1 t+ ϕ0) + z∗(t) (2.6)

where A0 and ϕ0 are constants determined by the initial conditions and z∗(t) is the steady-

state solution of Eq.(2.5) which depends on Fn,iner(t), Fn,aero(t) and W .

The transient term in Eq.(2.6) is of the frequency of the system, i.e., 58.31 radians/s (or

9.28 Hz) while the steady state solution z∗(t) is of the same frequencies as the inputs. The

properties of z∗(t), however, are characterized by the frequency responses of the system.

Let Gz(s) be the transfer function of the system. Then its magnitude and phase responses

are given by,

|Gz(jω)| =
1/ωn2

1√
[1− (ω/ωn1)2]2 + 4ζ2

1 (ω/ωn1)2

6 Gz(jω) = −tan−1 2ζ1(ω/ωn1)

1− (ω/ωn1)2
(2.7)

The frequency responses given in Eq.(2.7) are plotted in Figure 2.6 for the damping ratio

ζ1 = 0.01, 0.032 and 0.1, respectively. From the plots, one can see that this system is a
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resonator at the natural frequency ωn1 = 58.31 radians/s (or 9.28 Hz). One can also see

the dependence of the resonance on the damping ratio ζ1. Any inputs with frequencies far

from 9.28 Hz will be attenuated to some extent at the steady state output.
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Figure 2.6: (a) Magnitude response (b) Phase response

For the oscillatory motions of current interests, the driven terms in Eq.(2.5): Fn,iner(t),

Fn,aero(t) and Wcos(α), generally have the frequency components at the maneuver fre-

quency and the frequency components at the natural frequencies of the system (9.28 Hz

and 23.44 Hz). Accordingly, the steady state solution will have the same frequency com-

ponents. Therefore, the solution given in Eq.(2.6) can be written as,

z(t) = zs(t) + zh(t) (2.8)

where zs(t) is the steady state solution associated with the maneuver frequency while zh(t)

includes the steady state solution associated with the system natural frequencies and the

transient part, which is also of the system natural frequencies.
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The variations of angle of attack ∆α(t) associated with the deflection z(t) can then be

estimated by the relation between the slope and the deflection of a cantilever beam at the

free end as,

∆α(t) =
3

2l
z(t)

=
3

2l
zs(t) +

3

2l
zh(t) (2.9)

= ∆αs(t) + ∆αh(t)

where l is the length of the sting, and ∆αs(t) is the variation of angle of attack associated

with the maneuver frequency while ∆αh(t) is the one associated with the system natural

frequency.

Thus the actual angle of attack time history in the tests can be written as,

α(t) = αfdbk(t) + ∆α(t)

= αfdbk(t) + ∆αs(t) + ∆αh(t) (2.10)

where αfdbk(t) is the angle-of-attack time histories of the pre-programmed maneuvers. For

the sinusoidal oscillations in pitch, αfdbk(t) are directly the angle of attack measurements

of the DyPPiR while for the sinusoidal oscillations in plunge, αfdbk(t) have to be obtained

from the DyPPiR plunge measurements by numerical differentiation techniques according

to the motion descriptions given in Eq.(2.3).

However, obtaining a good estimate of ∆α(t) is a nontrivial problem because Eq.(2.5) is

just an approximation to the system. The high frequency modes and the nonlinearities

of the system have been neglected. However, even if we obtain an estimate of the actual

angle of attack time history, we don’t know the associated aerodynamic load time histories.
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What we have are the balance measurements which include the aerodynamic loads and all

the inertia loads due to the actual motion of the aircraft in the tests.

Although these forces and moments are not separable in time domain, they can be sep-

arable in frequency domain under certain conditions. Furthermore, as one can see, from

Eq.(2.10), that if ∆αs(t) is negligibly small, the variation of the angle of attack due to elastic

deformation of the sting is also separable from the angle of attack of the pre-programmed

maneuvers in frequency domain. In such a case, we don’t need to estimate the variations

of the angle of attack due to the elastic deformation of the sting. These analyses result in

the signal processing approach used in the current aerodynamic data reduction.

2.4 Digital Filter and Signal Processing Approach

For the aerodynamic system tested, the input is given by Eq.(2.10), where αfdbk(t) can

be obtained either by the direct measurements of the DyPPiR (for pitch oscillations) or

by the numerical differentiation of the DyPPiR measurements (for plunge oscillations).

∆α(t) = ∆αs(t) + ∆αh(t) are considered as input noise, caused by the elastic deformation

of the sting and, presently, are not measurable. However, if ∆αs(t) is negligibly small, from

the above discussions, we know that the noise term ∆α(t) contains the natural frequencies of

the sting while the signal αfdbk(t) contains the frequency of the pre-programmed maneuver.

In such a case, the signal αfdbk(t) is resolvable from the noise ∆α(t) in frequency domain.

The corresponding aerodynamic responses to the input are then composed of the responses

to the signal αfdbk(t) and the responses to the noise ∆α(t) if a linear aerodynamics system is

assumed. These responses are summed up in time domain but are resolvable in frequency

domain. The question is that, currently, we don’t have the pure aerodynamic response

measurements. What we have are the balance readings which include the aerodynamic

loads and all the inertia loads due to the actual motion of the aircraft in the tests. However,
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we will show, in this section, that the inertia loads due to the pre-programmed maneuver

can be eliminated by subtracting the measurements in the wind-off tests from those in

the corresponding wind-on tests. What are left are the aerodynamic responses and the

residual inertia loads which are dominated by the components of the natural frequencies of

the sting. In such a case, we can extract the aerodynamic responses to the signal αfdbk(t)

by a digital filtering operation.

2.4.1 Analysis of Input Time Histories

First let’s show that ∆αs(t) is negligibly small. The order of ∆αs(t) can be obtained by

estimating the order of zs(t) according to Eq.(2.9). As we know, the zs(t) is the steady

state solution of Eq.(2.5) at the maneuver frequency which is generally low. Based on the

flat characteristics of the magnitude response at low frequencies as shown in Figure 2.6 (a),

the upper bound of |zs(t)| can be estimated by its maximum direct current (DC) value,

i.e.,

|zs(t)| ≤
1

mωn2
1

|F s
n,iner(t) + F s

n,aero(t)−Wcos(α)|max (2.11)

where F s
n,iner(t) and F s

n,aero(t) are the normal inertia and aerodynamic forces at the maneu-

ver frequency, respectively.

The equivalent spring constant in Figure 2.3 was obtained from the off-line test as k = 2858

lbs/ft, and then the equivalent mass can be estimated by,

m =
k

ωn2
1

= 0.84 (slugs) (2.12)

Since the balance readings for the normal force in the current wind-tunnel tests are less

than 60 lbs, the corresponding upper bound of |zs(t)| is then,

|zs(t)| ≤
60

k
= 0.252 (inches) (2.13)
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and the corresponding upper bound of ∆αl(t) can be obtained by

|∆αs(t)| ≤ (
3

2l
)(0.252) = 0.656 (degrees) (2.14)

Actually, the |∆αs(t)| in tests is much less than the bound given in Eq.(2.14) because the

maximum magnitude of the inputs at the maneuver frequency as shown in Eq.(2.11) is

much less than the maximum balance readings.

After neglecting ∆αs(t), the actual angle of attack time history given in Eq.(2.10) reduces

to

α(t) = αfdbk(t) + ∆αh(t) (2.15)

From Eq.(2.15), one can see that αfdbk(t) is of the maneuver frequency while ∆αh(t) is of

the natural frequency of the system. They are summed up in time domain but they are

separable in frequency domain.

2.4.2 Analysis of Output Time Histories

Next, let’s look at the balance measurements. Currently, the dynamic tests were conducted

for both wind-on and wind-off cases for each maneuver. For wind-off tests, the aerodynamic

force is assumed zero and Eq.(2.5) reduces to

z̈0(t) + 2ζ1ωn1ż0(t) + ωn1z0(t) =
1

m
[Fn,iner(t)−Wcos(α)] (2.16)

We assume that the normal inertia forces due to the pre-programmed maneuvers are exactly

the same for both wind-on and wind-off tests. Thus subtracting Eq.(2.16) from Eq.(2.5),

we obtain,

∆z̈(t) + 2ζ1ωn1∆ż(t) + ωn
2
1∆z(t) =

1

m
Fn,aero(t) (2.17)
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where ∆z(t) = z(t)− z0(t).

Accordingly, we subtract the balance measurements in wind-off tests from the balance

measurements in the corresponding wind-on tests. Let Fn,w(t) and Fn,o(t) be the balance

measurements of the normal force in wind-on and wind-off tests, respectively, we have

∆Fn,bal(t) = Fn,w(t)− Fn,o(t) (2.18)

We claim that this difference contains the normal aerodynamic force and the normal inertia

force due to the elastic oscillation of the system driven by the aerodynamic normal force

only, i.e.,

∆Fn,bal(t) = Fn,aero(t) + [−m∆z̈(t)] (2.19)

Under the assumption of the linear aerodynamic system, the normal aerodynamic force

responses Fn,aero(t) in Eq.(2.19) consist of the response to the signal and the response to

the noise, i.e.,

Fn,aero(t) = F s
n,aero(t) + F h

n,aero(t) (2.20)

where F s
n,aero(t) is the response of the normal aerodynamic force to the signal αfdbk(t) at

the maneuver frequency while F h
n,aero(t) is the response of the normal aerodynamic force to

the noise ∆α(t) due to elastic deformation of sting at the frequencies of f1 = 9.28 Hz and

f2 = 23.44 Hz.

Substitute Eq.(2.20) into Eq.(2.19), we obtain,

∆Fn,bal(t) = F s
n,aero(t) + F h

n,aero(t) + [−m∆z̈(t)] (2.21)

Since −m∆z̈(t) is the normal inertia force of the system when the system is driven by

the normal aerodynamic force only, it consists of the transient terms and the steady state
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terms associated with F s
n,aero(t) and F h

n,aero(t), respectively. We can show that the steady

state term associated with F s
n,aero(t) can be approximated as,

[−m∆z̈(t)]s =
1

(f1/f)2 − 1
F s
n,aero(t) (2.22)

where f1 = 9.28 Hz is the sting frequency and f is the frequency of F s
n,aero(t), that is, the

maneuver frequency.

In the current wind-tunnel tests, the maximum maneuver frequency of interest is f = 1.5

Hz. Substituting it into Eq.(2.22), we obtain [−m∆z̈(t)]s = 0.0268 F s
n,aero(t), which is less

than 3 percent of the driven force. Based on this analysis, this term can be neglected.

Therefore we can combine the last two terms in Eq.(2.21) as one,

∆Fn,bal(t) = F s
n,aero(t) + ∆Fn,h(t) (2.23)

where ∆Fn,h(t) consists of the aerodynamic component F h
n,aero(t) and the component of the

inertia force−m∆z̈(t) at the system natural frequencies ( f1 = 9.28 Hz and f2 = 23.44 Hz).

Similarly, we can write the expressions for the axial force and pitch moment as,

∆Fx,bal(t) = F s
x,aero(t) + ∆Fx,h(t)

∆Mbal(t) = Ms
aero(t) + ∆Mh(t) (2.24)

where F s
x,aero(t) and Ms

aero(t) are associated with αfdbk(t) while ∆Fx,h(t) and ∆Mh(t) are

those components associated with the system natural frequencies.

Thus the balance data are classified into two parts in Eqs.(2.23) and (2.24). One contains

the frequency of the pre-programmed maneuver which is the aerodynamic response to the

signal αfdbk(t), and the other contains the natural frequencies of the sting which is the

aerodynamic response to the noise ∆α(t) and some residual inertia loads. These two parts

are added up in time domain but they are separable in frequency domain because the
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frequency f of the pre-programmed maneuver is significantly less than the system natural

frequency f1 = 9.28 Hz. In such a case, we can apply a low-pass filter to balance data

∆Fn,bal(t), ∆Fx,bal(t), and ∆Mbal(t) to extract the corresponding aerodynamic components

F s
n,aero(t), F

s
x,aero(t) and Ms

aero(t), respectively, which are exactly the responses to the angle

of attack time histories αfdbk(t) measured by the DyPPiR.

2.4.3 Digital Filter and Signal Processing

The above discussions were conducted in continuous time domain for convenience of the

statement of the arguments. However, all the wind-tunnel measurements are available in

discrete time domain with a certain sampling frequency fs. For current wind-tunnel tests,

the total number of samples taken in the experiment for each maneuver is fixed at N=4096

while the sampling frequency fs is chosen to be different from maneuver to maneuver. The

discrete time versions of Eqs.(2.23) and (2.24) are,

∆Fn,bal(n) = F s
n,aero(n) + ∆Fn,h(n)

∆Fx,bal(n) = F s
x,aero(n) + ∆Fx,h(n) (2.25)

∆Mbal(n) = Ms
aero(n) + ∆Mh(n)

corresponding to the following angle of attack sequence,

α(n) = αfdbk(n) + ∆αh(n) (2.26)

which are associated with the following time instants,

tn = nTs, n = 0, 1, 2, ..., N − 1 (2.27)

where Ts = 1/fs is the sampling period of the data.
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With the expressions as shown in Eq.(2.25), we can design a digital low-pass filter which

has the following ideal frequency response as,

H(ejω) =

{
1, |ω| ≤ ωc
0, ωc < |ω| ≤ π

(2.28)

where ω = 2πf/fs is the frequency normalized by the sampling rate fs and ωc = 2πfc/fs

is normalized cut-off frequency.

Thus, the filter can eliminate all the frequency components beyond the cut-off frequency

ωc = 2πfc/fs. Therefore, by properly choosing the cut-off frequency fc, we can use the

filter to extract the aerodynamic components F s
n,aero(n), F s

x,aero(n) and Ms
aero(n) from the

corresponding balance data ∆Fn,bal(n), ∆Fx,bal(n) and ∆Mbal(n), respectively. In frequency

domain, this filtering operation can be expressed as,

F s
n,aero(e

jω) = H(ejω)∆Fn,bal(e
jω)

F s
x,aero(e

jω) = H(ejω)∆Fx,bal(e
jω) (2.29)

Ms
aero(e

jω) = H(ejω)∆Mbal(e
jω)

where argument ejω in parenthesis implies the Discrete-Time Fourier Transforms (DTFT)

of the corresponding data.

In the time domain, the responses of the aerodynamic forces and moment to the angle

of attack time histories αfdbk(n) can be obtained by taking inverse DTFT of Eq.(2.29),

resulting the following convolutions,
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F s
n,aero(n) = h(n)⊗∆Fn,bal(n)

=
M∑
k=0

h(k)∆Fn,bal(n− k)

F s
x,aero(n) = h(n)⊗∆Fx,bal(n)

=
M∑
k=0

h(k)∆Fx,bal(n− k) (2.30)

Ms
aero(n) = h(n)⊗∆Mbal(n)

=
M∑
k=0

h(k)∆Mbal(n− k)

where h(n) is the impulse response of the filter and M is the order of h(n).

Next we need to design the digital lowpass filter whose frequency response approximates

the ideal one as given in Eq.(2.28). We are going to design general linear-phase Finite

Impulse Response (FIR) filters to process the data since the linear-phase characteristics

guarantee no phase distortion on any signals passing through.

There are several techniques available to design linear-phase FIR filters, such as window

based techniques, frequency sampling techniques and optimal designs. However, whatever

techniques we use, the digital filters have to be designed in the normalized frequency domain

ω = 2πf/fs. As we mentioned previously, for the current wind-tunnel tests, the total

number of samples taken in the experiments is fixed at N=4096 while the sampling rate

fs is different from maneuver to maneuver. We need to convert the sampling rate to the

same level without losing the information of interest in the data. On the other hand, the

sampling rates used in the data acquisition are generally much higher than the frequency

band of interest. According to the Nyquist sampling theorem, we could reduce the sampling

rate by a fair amount since the minimum rate needed is the Nyquist rate, that is, two times

the bandwidth of the frequency band of interest. In such a case, the efficient design of

the digital filters can generally be obtained at a lower rate. Therefore we need to develop
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techniques to convert the sampling rate in digital domain before we can start to design the

digital filters to process the wind-tunnel measurements.

2.5 Sampling Rate Conversion

The process of sampling rate conversion in the digital domain can be viewed as a linear

filtering operation, as illustrated in Figure 2.7. We are given the input signal x(n), sampled

at the rate Fx = 1/Tx, and wish to compute the output signal y(m) with a new sampling

rate Fy = 1/Ty , where Tx and Ty are the corresponding sampling periods. We will assume

in present treatment that the ratio of sampling periods of y(m) and x(n) can be expressed

as rational fraction, i.e.,

Ty
Tx

=
Fx
Fy

=
D

L
(2.31)

where D and L are integers. We will show that the linear filter is characterized by a time-

variant impulse response, denoted as h(n,m). Hence the input x(n) and output y(m) are

related by the convolution summation for time-variant systems.

x(n) y(m)

Fx= Fy=
1 1

TyTx

Linear Filter
h(n,m)

Figure 2.7: Basic process of digital sampling rate conversion

The sampling rate conversion process can also be understood from the point of view of

digital resampling of the same analog signal. Let x(t) be the analog signal that is sampled
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at the first rate Fx to generate x(n). The goal of rate conversion is to obtain another

sequence y(m) directly from x(n), which is equal to the sampled values of x(t) at a second

rate Fy.

Before considering the general case of sampling rate conversion, we shall study the structure

and properties of systems that perform two special cases of sampling rate conversion. One

is the case of sampling rate reduction by an integer D, namely decimation by factor D.

The other is the case of sampling rate increase by an integer L, namely interpolation by

factor L.

2.5.1 Decimation by an Integer Factor D

Let us assume that the signal x(n) with spectrum X(ejω) is to be downsampled by an

integer factor D, i.e., the new sampling rate is,

Fy =
Fx
D

(2.32)

The spectrum X(ejω) is assumed to be nonzero in the frequency interval |ω| ≤ π, or

equivalently, |f | ≤ Fx/2, where ω = 2πf/Fx.

We know that if we reduce the sampling rate simply by selecting every Dth value of x(n),

the resulting signal will be an aliased version of x(n), with folding frequency of Fx/2D. To

avoid aliasing, we must first reduce the bandwidth of x(n) to ωmax = π/D, or equivalently,

Fmax = Fx/2D. Then we may downsample by D and thus avoid aliasing.

The decimation process is illustrated in Figure 2.8. The input sequence x(n) is passed

through a lowpass filter, characterized by the unit pulse response h(n) which has frequency

response HD(ejω), ideally satisfying the condition,

HD(ejω) =

{
1, |ω| ≤ π/D
0, otherwise.

(2.33)
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Thus the filter eliminates the spectrum of X(ejω) in the range π/D < ω < π. Of course,

the implication is that only the frequency components of x(n) in the range |ω| ≤ π/D are

of interest in the further processing of the signal.

h(n) D
x(n) v(n) y(m)

Fx Fy=
Fx

D
Fx

Figure 2.8: Decimation by a factor D

The output of the filter is a sequence v(n) which is given by the convolution of input

sequence x(n) with unit pulse response of the filter h(n),

v(n) =
∞∑
k=0

h(k)x(n− k) (2.34)

Then v(n) is downsampled by the factor D to produce y(m),

y(m) = v(mD)

=
∞∑
k=0

h(k)x(mD− k) (2.35)

The frequency-domain characteristics of the output sequence y(m) can be obtained by

relating the spectrum of y(m) to the spectrum of the input sequence x(n) through the

frequency response of the filter HD(ejω) as,

Y (ejω
′
) =

1

D

D−1∑
k=0

HD(
ω′ − 2πk

D
)X(

ω′ − 2πk

D
) (2.36)

where ω′ is normalized frequency relative to new sampling rate Fy = Fx/D, i.e.,

ω′ = 2π
f

Fy
= 2π

f

Fx
D = ωD (2.37)
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The purpose of the low-pass filterHD(ejω) is to sufficiently filter x(n) so that its components

above the frequency ω = π/D are negligible. This result implies that all terms for k 6= 0 in

Eq.(2.36) are removed and, consequently, all but the first term in Eq.(2.36) vanish. Hence,

Y (ejω
′
) =

1

D
X(

ω′

D
), for |ω′| ≤ π (2.38)

The spectra for the sequences x(n), v(n), and y(m) are illustrated in Figure 2.9.

-π π0

0

0

0 -π π

π π

π π

D D

D D

ω ω

ω ω’

|X(ejω)| |HD(ejω)|

|V(ejω)| |Y(ejω’)|

(a) (b)

(c) (d)

Figure 2.9: (a) spectrum of x(n). (b) ideal response of filter. (c) spectrum of v(n). (d)
spectrum of y(m).
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2.5.2 Interpolation by an Integer Factor L

Assume that the signal x(n) is to be upsampled by an integer factor L to produce signal

y(m) at sampling rate Fy,

Fy = LFx (2.39)

This process of increasing the sampling rate by L implies that we must interpolate L − 1

new sample values between each pair of sample values of x(n).

Let w(m) denote a sequence at rate Fy, which is obtained from x(n) by adding L− 1 zeros

between successive values of x(n),

w(m) =

{
x(m/L), m = 0, ±L, ±2L, ...,
0, otherwise.

(2.40)

and its sampling rate is identical to the rate of y(m). This sequence has a z-transform,

W (z) =
∞∑
m=0

w(m)z−m

=
∞∑
m=0

x(m)z−mL (2.41)

= X(zL)

Evaluating W (z) on the unit circle, gives the spectrum of w(m) expressed in terms of the

spectrum of input signal x(n),

W (ejω
′
) = X(ejω

′L) (2.42)

where ω′ is normalized frequency relative to new sampling rate Fy = FxL, i.e.,

ω′ = 2π
f

Fy
= 2π

f

FxL
=
ω

L
(2.43)
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Based on Eq.(2.42), the spectra X(ejω) and W (ejω
′
) are illustrated in Figure 2.10. We

observe that the sampling rate increase, obtained by the addition of L − 1 zero samples

between successive values of x(n), results in a signal whose spectrum W (ejω
′
) is an L-fold

periodic repetition of the input signal spectrum X(ejω).

-π π0 0 π 3π 5π
L L L

|X(ejω)| |W(ejω’)|

ω

(a) (b)

L h(m)
x(n) w(m) y(m)

Fy=LFx Fy
Fx

(c)

ω
Lω’=

Figure 2.10: (a) spectrum of x(n). (b) spectrum of w(m). (c) Interpolation by a factor L

Since only the frequency components of x(n) in the range 0 ≤ ω′ ≤ π/L are of interest,

the unwanted images of X(ejω) above ω′ = π/L should be rejected by passing the sequence

w(m) through a low-pass filter with frequency response HL(ejω
′
) that approximates the

ideal characteristic,

HL(ejω
′
) =

{
G, |ω′| ≤ π/L;
0, otherwise.

(2.44)

where G is a scale factor required to normalize the output sequence y(m). Consequently,

the output spectrum is
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Y (ejω
′
) = HL(ejω

′L)X(ejω
′L)

=

{
GX(ejω

′L), |ω′| ≤ π/L;
0, otherwise.

(2.45)

The scale factor G is selected to ensure that the amplitude of y(m) is correct, i.e., we need

y(m) = x(m/L), for m = 0, ±L, ±2L, ... (2.46)

For mathematical convenience, we examine the zeroth sample of the sequences.

y(0) =
1

2π

∫ π

−π
Y (ejω

′
)dω′

=
1

2π

∫ π

−π
HL(ejω

′
)X(ejω

′L)dω′

=
G

2π

∫ π/L

−π/L
X(ejω

′L)dω′ (2.47)

=
G

L

1

2π

∫ π

−π
X(ejω)dω

=
G

L
x(0)

Therefore, a gain G = L is required to match the amplitude of the envelopes of the signals

y(m) and x(n).

Therefore, a gain G = L is required to match the amplitude of the envelopes of the signals

y(m) and x(n).

Finally, we indicate that the output sequence y(m) can be expressed as a convolution of

the sequence w(m) with the unit pulse response h(n) of the low-pass filter.

y(m) =
∞∑
k=0

h(m− k)w(k) (2.48)

Since w(k) = 0 except at multiples of L, where w(kL) = x(k), Eq.(2.48) becomes

y(m) =
∞∑
k=0

h(m− kL)x(k) (2.49)



Yigang Fan Chapter 2. Tests and Data Reduction 43

2.5.3 Sampling Rate Conversion by a Rational Factor L/D

Having discussed the special cases of decimation and interpolation, we now consider the

general case of sampling rate conversion by a rational factor L/D. Basically, this conversion

can be achieved by first performing interpolation by factor L and then decimating the

output of the interpolator by factor D. In other words, a sampling rate conversion by

the rational factor L/D is accomplished by cascading an interpolator with a decimator, as

illustrated in Figure 2.11 (a).

L DhL(k) hD(k)

Interpolator Decimator

x(n) y(m)

F’’=LFx
Fx Fy=

L
D

Fx

(a)

L Dh(k)
x(n) y(m)w(k) v(k)

Fx F’’=LFx F’’ Fy=    Fx
L
D

(b)

Figure 2.11: (a) Cascade of an interpolator and a decimator (b) Sampling rate conversion
by a factor L/D

We emphasize that the importance of performing the interpolation first and the decimation

second, is to preserve the desired special characteristics of x(n). Furthermore, with the

cascade configuration illustrated in Figure 2.11 (a), the two filters hL(k) and hD(k) are

operating in cascade at the same sampling rate LFx and hence can be combined into one

single lowpass filter with unit pulse response h(k) as shown in Figure 2.11 (b). Since this
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digital filter must serve the purpose of both the interpolation and decimation operations

described in the previous sections, its frequency response must ideally possess the frequency

response characteristic,

H(ejω
′′
) =

{
L, |ω′′| ≤ min(π/L, π/D);
0, otherwise.

(2.50)

where

ω′′ = 2π
f

F ′′
= 2π

f

LFx
(2.51)

In the time domain, the output of the upsampler is the sequence

w(k) =

{
x(k/L), k = 0, ±L, ±2L, ...
0, otherwise.

(2.52)

and the output of the linear time-invariant filter is

v(k) =
∞∑
r=0

h(k − r)w(r)

=
∞∑
r=0

h(k − rL)x(r) (2.53)

Finally, the output of the sampling rate converter is the sequence y(m), which is obtained

by downsampling the sequence v(k) by a factor of D.

y(m) = v(mD)

=
∞∑
r=0

h(mD− rL)x(r) (2.54)

Similarly, the frequency-domain relationships can be obtained by combining the results

of the interpolation and decimation processes. Thus the spectrum at the output of the

lowpass filter with unit pulse response h(k) is

V (ejω
′′
) = H(ejω

′′
)X(ejω

′′L)

=

{
LX(ejω

′′L), |ω′′| ≤ min(π/L, π/D);
0, otherwise.

(2.55)
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The spectrum of the output sequence y(m), obtained by decimating the sequence v(k) by

a factor D, is

Y (ejω
′
) =

1

D

D−1∑
l=0

V (
ω′ − 2πl

D
) (2.56)

where ω′ = Dω′′ = 2π(fD)/(FxL) is normalized frequency relative to new sampling rate

Fy = Fx(L/D).

Since the lowpass filter prevents aliasing as implied by Eq.(2.56), the spectrum of the output

sequence y(m) reduces to

Y (ejω
′
) =

{
L
D
X(ejω

′L/D), |ω′| ≤ min(π, πD
L

)
0, otherwise.

(2.57)

Thus far, we have developed the general system for sampling rate conversion of signals

by arbitrary rational factors L/D. We will implement the above sampling rate conversion

system to resample the unsteady wind-tunnel data at the appropriate rates for further

processing. Further information about the theory of multirate signal processing, one can

refer to Ref.[36].



Yigang Fan Chapter 2. Tests and Data Reduction 46

2.6 Linear-phase FIR Lowpass Filter Designs

As indicated in the discussion above, sampling rate conversion by a factor L/D can be

achieved by first upsampling the input signal by factor L, followed by linear filtering of

the resulting sequence to eliminate the unwanted images, and finally, by downsampling

the filtered signal by factor D. Thus we need to design the linear filter for this sampling

conversion system.

Furthermore, after resampling the wind-tunnel measurements using the above system, we

need to design lowpass filters with different specifications for further processing of the

resampled data to extract the aerodynamic forces and moment responses to the angle of

attack time histories αfdbk(n), as discussed in Section 2.4. In this section, we consider

the design of general linear-phase FIR lowpass filters.

The frequency range of a practical lowpass filter is generally classified as three bands of

interest as follows,

0 ≤ ω ≤ ωp, Passband

ωp < ω < ωs, T ransition band (2.58)

ωs ≤ ω ≤ π, Stopband

where ωp and ωs are edge frequencies for passband and stopband, respectively.

Let H(ejω) be the frequency response of the lowpass filter to be designed. The specifications

of the design are generally of the form,

1− δp ≤ |H(ejω)| ≤ 1 + δp, |ω| ≤ ωp

|H(ejω)| ≤ δs, ωs < |ω| ≤ π (2.59)

where δp is the passband ripple while δs is the stopband attenuation. The transition band
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is defined as a “don’t-care” region.

The specifications given in Eq.(2.59) are illustrated in Figure 2.12.

ω
πωp ωs0

δs

1+δp

1- δp

|H(ejω)|

1

Figure 2.12: Specifications for a practical lowpass filter

We are required to design general linear-phase FIR filter to meet the specifications as

shown in Figure 2.12 and the linear-phase characteristics guarantee no phase distortion on

the signals passing through the filter, except for a pure delay.

There are a number of filter design procedures which apply to the design of the lowpass

filters, such as window designs, frequency sampling designs and optimal designs. We will

not discuss all of these methods since they are well documented in several references[36−38].

Here we are going to use the equiripple design based on Chebyshev approximation meth-

ods. The filters designed by this technique are optimal in the sense that the weighted

peak approximation error in the frequency domain over the frequency range of interest is

minimized. Although a closed-form design technique is not available for these filters, an

elegant and powerful iterative algorithm: the Remez exchange algorithm, does provide the
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basis for efficient design methods. Since CAD software for Remez exchange algorithm is

readily available in MATLAB and elsewhere to do the equiripple design[38], we will not be

concerned with the design details.

Here we show a design example. Suppose that we want to design a linear-phase FIR filter

meeting the following specifications,

δp ≤ 0.005, δs ≤ 0.001

ωp = 0.1π, ωs = 0.1667π (2.60)

The specifications in Eq.(2.60) can be stated alternatively in terms of dB, that is, the

passband ripple is less than 0.044 dB while stopband attenuation is larger than 60 dB.
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Figure 2.13: Equiripple design for a practical lowpass filter
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Using Remez exchange algorithm in MATLAB, we obtain the filter of the lowest order that

meets the above specifications. The order of this filter is M = 84. Its magnitude and phase

responses are plotted in Figure 2.13 (a) and (b), respectively.

From Figure 2.13, one can see that in passband: 0 ≤ ω ≤ 0.1π, the ripple is less than 0.044

dB and phase is indeed linear, while in stopband: 0.1667π ≤ ω ≤ π, the attenuation is at

least 60 dB. The specifications are satisfied and the design is indeed equiripple. The phase

response of the filter in passband can be proved to be,

6 H(ejω) = −M
2
ω

= −42ω (2.61)

The linear-phase characteristic implies that all the frequency components of an input se-

quence are similarly delayed in the output sequence. The filter has no phase distortion on

the input sequence. We can see this characteristic by considering a single sinusoidal input

sequence with frequency ω0 in passband,

x(n) = sin(nω0), n = 0, 1, 2, ... (2.62)

The corresponding steady-state output sequence of the filter can be written as,

y(n) = |H(ejω0)|sin[nω0 + 6 H(ejω0)] (2.63)

Noting that |H(ejω0)| ≈ 1 in passband and substituting the linear-phase characteristic in

Eq.(2.61) into Eq.(2.63), we have,

y(n) = sin(nω0 −
M

2
ω0)

= sin(n− 42)ω0 (2.64)

From Eqs.(2.62) and (2.64), one can see that the output sequence is exactly same as the

input sequence, except for a pure delay by M/2 = 42 samples.
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The impulse response h(n) of the filter is plotted in Figure 2.14 from which one can see

the even symmetry in the h(n) about its midpoint M/2 = 42. It is this even symmetric

characteristic that ensures linear phase. The response y(n) of the filter to any input se-

quence x(n) can be obtained by computing the convolution of the h(n) with the input x(n)

as follows,

y(n) = h(n)⊗ x(n)

=
M∑
k=0

h(k)x(n− k) (2.65)
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Figure 2.14: Impulse response of the lowpass filter



Yigang Fan Chapter 2. Tests and Data Reduction 51

2.7 Aerodynamic Data Processing

After the development of multirate system for sampling rate conversion and discussion of

the linear-phase FIR filter design, we are ready to process the wind-tunnel data based on

the analysis in Section 2.3.

First, we need to obtain the aerodynamic data: ∆Fn,bal(n), ∆Fx,bal(n), and ∆Mbal(n) by

subtracting the balance measurements in wind-off test from those in corresponding wind-

on test. Based on the analyses indicated in Eq.(2.30), these data contain the aerodynamic

forces and moment responses to the angle of attack time histories αfdbk(n), at the maneuver

frequency, and aerodynamic responses to the noise ∆α(t) and some residual inertia loads

at the natural frequencies of the sting. Digital lowpass filters are needed to eliminate these

extra responses at the natural frequencies of the sting. Before designing such filters, we

need to convert the sampling rate to the desired level for all the maneuvers without losing

the information of interest. In this case, we can do more efficient designs of the digital

filters at low sampling rates. In the following, we are going to illustrate the procedures

of the data reduction techniques developed above for a oscillatory pitch maneuver and

also a oscillatory plunge maneuver. The processings for the balance readings are similar

except that for the plunge maneuvers, we have to obtain the input signal αfdbk(n) from the

DyPPiR plunge measurements by numerical differentiation while for the pitch maneuvers,

the αfdbk(n) are directly measured by the DyPPiR.

2.7.1 Data Processing for an Oscillatory Pitch Maneuver

As an illustration, let’s look at the experimental data of sinusoidal pitch oscillation about

zero mean angle of attack with amplitude of 5 degrees and frequency of 0.5 Hz. The tunnel

speed is 95 feet/s for this maneuver.
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2.7.1.1 Resampling of the Data

The sampling rate used in the data acquisition for this maneuver is fs = 200 Hz, which

implies a 100 Hz frequency bandwidth of interest. Figure 2.15 (a), (c), and (e) plot the time

histories of the normal force ∆Fn,bal(n), the axial force ∆Fx,bal(n), and the pitch moment

∆Mbal(n), respectively. They were obtained by subtracting the balance measurements in

wind-off test from those in wind-on test for this sinusoidal pitch oscillation maneuver. As

one can see that these signals are very noisy in time domain. In order to identify the

frequency components contained in the data, we compute the DFT values of these signals

by the FFT algorithm. Figure 2.15 (b), (d), and (f) plot the DFT values of ∆Fn,bal(n),

∆Fx,bal(n), and ∆Mbal(n), respectively.

From Figure 2.15 (a) and (b), one can see that the normal force ∆Fn,bal(n) contains a

frequency peak at the maneuver frequency of 0.5 Hz, and two frequency peaks at around

the sting frequencies of 9.28 Hz and 23.44 Hz, respectively. This result is consistent with

the previous analyses of the dynamic oscillatory tests.

From Figure 2.15 (c) and (d), one can see that the axial force contains some components

with frequencies around 0.5 Hz and several components with frequencies from 50 Hz to 70

Hz. The low frequency components are the responses to the maneuver of the model and

the high frequency components are associated with the structural dynamics of the sting in

the axial direction.

From Figure 2.15 (e) and (f), one can see that the pitch moment contains frequency peaks

at the maneuver frequency, and at the sting frequencies of 9.28 Hz and 23.44 Hz. Besides

these frequency components, one can also see several frequency peaks with frequencies from

30 Hz to 50 Hz. These high frequency components are possibly associated with the balance

frequencies or some other sources that we would not like to investigate in current research

efforts. These high frequency components are considered as noise that is to be rejected by

digital filter operations.
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Figure 2.15: (a) Normal force time history (b) DFT values of normal force (c) Axial force
time history (d) DFT values of axial force (e) Pitch moment time history (f) DFT values
of pitch moment

First we convert the sampling rate of the above measured data from the fs = 200 Hz

used in the data acquisition for this maneuver to f ′s = 30 Hz. The new sampling rate

means that we want to reduce the frequency bandwidth of interest from fs/2 = 100 Hz to

f ′s/2 = 15 Hz. The reason why 15 Hz is chosen as new bandwidth of interest is that we want

to keep all the information contained in the balance data at the maneuver frequency and

at the natural frequency of dominant mode of the sting. Any information with frequencies

higher than 15 Hz is treated as noise and is to be rejected in the resampling process.

The sampling rate conversion can be achieved by first performing interpolation by factor

L = 3 and then decimating the output of the interpolator by factor D = 20, so we can

obtain f ′s = (L/D)fs = 30 Hz. The design details are discussed in Sections 2.4 and

2.5. Through this sampling rate reduction, all the frequency components above 15 Hz are
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already eliminated in the sampling rate conversion operations. The resampled data and

the corresponding DFT values of the normal force, the axial force and the pitch moment

are plotted in Figure 2.16 (a-f), respectively.

From Figure 2.16 (a) and (b), one can see that the frequency components of the normal force

at around f2 = 23.44 Hz contained in the original data are attenuated in the resampling

process. What is left in the resampled data are frequency components associated with the

maneuver frequency and the dominant mode frequency f1 = 9.28 Hz of the sting.

For the axial force, the resampled data contain the DC values and the frequency component

associated with maneuver frequency. Through the sampling rate reduction, one can see that

the frequency resolution is also increased since we can not resolve the DC component with

the component associated with the maneuver frequency in the original data by using the

same point-DFT as shown in Figure 2.15 (d). Besides these components, one can also

identify some small contributions to the axial force due to the dominant mode of the sting

at f1 = 9.28 Hz, from Figure 2.16 (c) and (d).

From Figure 2.16 (e) and (f), one can see that the resampled data of the pitch moment

contain the DC values, the component associated with the maneuver frequency and the

component associated with the dominant frequency of the sting at f1 = 9.28 Hz. Those

high frequency components are already removed from the data in the resampling process.
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Figure 2.16: (a) Resampled normal force (b) DFT’s of resampled ∆Nbal (c) Resampled
axial force (d) DFT’s of resampled axial force (e) Resampled pitch moment (f) DFT’s of
the resampled pitch moment

2.7.1.2 Digital Filtering of the Data

As we discussed before, the DC values and the components of the balance data at the

frequency of pre-programmed maneuver are the aerodynamic responses to the angle of

attack time history αfdbk(n) measured by the DyPPiR for the pitch oscillatory maneuver

while the components at the natural frequencies of the sting are the aerodynamic responses

to the angle of attack variation time history ∆α(n) due to the elastic deformation of the

sting and some residual inertia loads. With the resampled data as given in Figure 2.16, we

need to design a digital lowpass filter at the new sampling rate f ′s = 30 Hz to eliminate

the frequency components at the natural frequency of the sting (f1 = 9.28 Hz).
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The specifications for the digital lowpass filter are given as follows. Since the frequency

for the current maneuver is 0.5 Hz, we define the passband edge frequency as fp = 1.5 Hz

and the stopband edge frequency as fq = 2.5 Hz. The width of the transition band is thus

∆f = 1 Hz. The digital versions of these edge frequencies can be obtained by normalizing

them using new sampling rate f ′s = 30 Hz, that is,

ωp = 2πfp/f
′
s = 0.1π

ωs = 2πfq/f
′
s = 0.1667π (2.66)

and furthermore we define the passband ripple and stopband attenuation requirements as,

δp ≤ 0.005

δs ≤ 0.001 (2.67)

As one can see that the specifications as given above are exactly same as those given in

Eq.(2.60) and thus the digital filter satisfying these specifications obtained there by using

Remez algorithm can be used to process the current aerodynamic data. The frequency

responses of this filter were shown in Figure 2.13 and the impulse response in time domain

shown in Figure 2.14.

Using this digital filter, we further processed the data of the normal force, the axial force and

the pitch moment as shown in Figure 2.16 (a), (c) and (e). As we pointed out in Eq.(2.64),

when these data pass through the filter, all the frequency components in passband are

purely delayed by M/2 = 42 samples on the output. These delay effects can easily be

eliminated by getting rid of the first 42 samples in the output sequences. That is the

reason why we need a filter of the even order in order to make M/2 an integer. After these

operations, the filtered time histories of the normal force, the axial force and the pitch

moment are plotted in Figure 2.17 (a), (c) and (e), respectively while their DFT values are

plotted in Figure 2.17 (b), (d) and (f), accordingly.
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Figure 2.17: (a) Time history of Naero (b) DFT’s of Naero (c) Time history of Xaero (d)
DFT’s of Xaero (e) Time history of Maero (f) DFT’s of Maero

From Figure 2.17 (a) and (b), one can see that the normal force response has the dominant

component at f = 0.5 Hz which is the frequency of the maneuver. Besides this component,

this normal force response also has DC values which mean nonzero normal force at zero

angle of attack for this aircraft.

From Figure 2.17 (c) and (d), one can see that the dominant component of the axial

force response is the DC value. This result occurs because the axial force is the major

contribution to the drag. One can also see a small frequency component of the axial force

at the maneuver frequency.

From Figure 2.17 (e) and (f), one can see that the pitch moment also has relatively large

DC value, as well as the frequency component at f = 0.5 Hz.
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2.7.1.3 Computation of Input Time Histories

The time histories as shown in Figure 2.17 (a), (c) and (e) are the aerodynamic forces and

moment responses to the angle of attack time history αfdbk(n). This angle of attack time

history was measured by the DyPPiR and plotted in Figure 2.18 (a) as a dashed line.

From the aerodynamics modeling point of view, the inputs also include α̇(t) and pitch rate

q(t), and these two time histories were not measured in the experimental data acquisition.

However, since α̇(t) = q(t) in the wind-tunnel tests, we can obtain these time histories from

the angle of attack measurements by numerical differentiation.

As we mentioned previously, we have 4096 samples obtained at the sampling rate of fs =

200 Hz for all the measured variables in the experimental data acquisiton. Therefore we

also want to compute 4096 samples of the derivatives α̇fdbk(n) from the 4096 samples of the

angle of attack measurements. Here we use the 2nd forward finite difference equation to

compute the 1st sample of the derivative and 2nd backward finite difference to compute the

last sample. For the samples in between, we use 2nd order central difference approximation.

The mathematical equations used are given as follows,

α̇fdbk(1) =
−3αfdbk(1) + 4αfdbk(2)− αfdbk(3)

2Ts

α̇fdbk(i) =
αfdbk(i+ 1)− αfdbk(i− 1)

2Ts
, i = 2, 3, 4, ..., 4095 (2.68)

α̇fdbk(4096) =
3αfdbk(4096) − 4αfdbk(4095) + αfdbk(4094)

2Ts

where Ts = 1/fs is the sampling period.

The results obtained from the above numerical differentiation schemes are plotted in Figure

2.18 (a) as solid line. For the convenience of comparison, we actually plot this derivative

scaled by the frequency so that it is supposed to have the same amplitude as the angle of
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attack. From the plot, one can see that this numerical differentiation result contains noise

besides the frequency component of the pitch rate. This noise is caused by the numerical

differentiation, so we should eliminate it by a filtering operation.
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Figure 2.18: (a) Raw data of α and α̇ (b) Resampled data of α and α̇

Consistent to the processing of the forces and moment, we resample the angle of attack

measurements and the computed derivatives using new sampling rate f ′s = 30 Hz. Then we

apply a digital filter to the resampled pitch rate only since we assume that the pitch rate in

this case should have the same frequency component as the angle of attack. The resampled

angle of attack and the filtered pitch rate are plotted in Figure 2.18 (b) as dashed line and

solid line, respectively. These are considered as the input time histories of the maneuver.

The responses of the unsteady aerodynamics to these input time histories are the time

histories of the normal force , the axial force and the pitch moment as shown in Figure 2.17

(a), (c) and (e), respectively.
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2.7.1.4 Computation of Aerodynamic Coefficients

Using the obtained time histories of the normal force and the axial force, we can compute

the corresponding time histories of the lift and drag by,

Laero = Fn,aerocos(αfdbk)− Fx,aerosin(αfdbk)

Daero = Fn,aerosin(αfdbk) + Fx,aerocos(αfdbk) (2.69)

and the aerodynamic coefficient time histories can then be obtained by,

CL =
Laero
QS

CD =
Daero

QS
(2.70)

Cm =
Maero

QSc

where Q is the measured dynamic pressure.

The time histories of the lift, drag and pitch moment coefficients for this maneuver are

plotted as solid lines in Figure 2.19 (a), (b) and (c), respectively.
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Figure 2.19: Aerodynamic coefficient time histories for the maneuvers of αA = 5o, f=0.5
Hz and α0 = 0o at the tunnel speed of V=95 ft/s
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2.7.2 Data Processing for an Oscillatory Plunge Maneuver

For the oscillatory maneuvers in plunge, the resampling and filtering operations of the

balance data are completely similar to the procedures as illustrated above for the oscillatory

maneuvers in pitch. However, unlike the oscillatory maneuvers in pitch, the input signal

αfdbk(n) are not directly measured by the DyPPiR. We have to obtain this input time

history from the DyPPiR plunge measurements by numerical differentiation according to

kinematic relations given in Eq.(2.3).

First we have to compute the actual tunnel speed time histories V from the DyPPiR mea-

surements. Currently, the data acquisition system measures the tunnel dynamic pressure

Q (lbs/ft2), the ambient pressure P (lbs/ft2), and the tunnel temperature Tm (K) at the

same sampling frequency as the other measurements. From the ambient pressure and the

temperature measurements, we can compute the actual density time history ρ (slug/ft3) in

the test by the ideal-gas equation of state,

ρ(n) =
P (n)

RTm(n)
(2.71)

where R = 3089.2 (lbs.ft/slug.K) is the gas constant, and n is the index of samples.

Then from the measurement of the tunnel dynamic pressure Q and the density ρ obtained

above, we can further compute the actual tunnel speed by

V (n) =

√√√√2Q(n)

ρ(n)
(2.72)

After obtaining the tunnel speed time history, we then differentiate the plunge position

measurements h(n) of the DyPPiR numerically to obtain the first derivative ḣ(n) by using

the same schemes given in Eq.(2.68). The angle-of-attack time history as input are then

obtained by the kinematic relation given in Eq.(2.3), i.e.,

αfdbk(n) = tan−1{V (n)sin(α0)− ḣ(n)cos(α0)

V (n)cos(α0) + ḣ(n)sin(α0)
} (2.73)
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The pitch rate q̂ = 0 in the plunge oscillations while the derivative of the angle of attack

α̇fdbk(n) can further be obtained by the h(n) and ḣ(n) using the kinematic relation given

in Eq.(2.3) as follows,

α̇(n) =
V (n)h(n)ω2cos2[αfdbk(n)]

[V (n)cos(α0) + ḣ(n)sin(α0)]2
(2.74)

Thus, the input time histories for the oscillatory maneuvers in plunge are finally obtained

through the Eqs.(2.73) and (2.74).

Here, we illustrate the data reduction procedure for an oscillatory plunge maneuver with

α0 = 0, hA = 0.5 ft, and f = 1.5 Hz. The sampling frequency for this maneuver is fs = 600

Hz, which implies a 300 Hz bandwidth of interest. Therefore, we only need to perform a

decimation by factor D = 20 to achieve the new sampling rate of f ′s = 30 Hz of interest.

By following the procedures discussed above, the input time histories of the αfdbk(n) and

the α̇fdbk(n) are obtained and plotted in Figure 2.20 (a) (α̇fdbk(n) is scaled by the frequency

2πf in the plot). As one can see, the αfdbk(n) is noisy while the α̇fdbk(n) is smooth. This

result occurs because the αfdbk(n) is computed from the ḣ(n) which is obtained from the

numerical differentiation of the h(n) while the α̇fdbk(n) are dominated by the h(n) and are

computed directly from the DyPPiR plunge measurements.

Figure 2.20 (b) shows the resampled and filtered time histories for the αfdbk(n) and the

scaled α̇fdbk(n), which are the input time histories for this maneuver.
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Figure 2.20: (a) Raw data of α and α̇ (b) Filtered data of α and α̇

Figure 2.21 (a), (c), and (e) plot the time histories of the normal force ∆Fn,bal(n), the axial

force ∆Fx,bal(n), and the pitch moment ∆Mbal(n), which are obtained by subtracting the

balance readings in wind-off test of this maneuver from those in the corresponding wind-on

test. Figure 2.21 (b), (d), and (f) plot the DFT values of the normal force, the axial force

and the pitch moment, respectively, to show the corresponding frequency contents. From

these plots, one can see that these measurements are very noisy.
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Figure 2.21: (a) Normal force time history (b) DFT values of normal force (c) Axial force
time history (d) DFT values of axial force (e) Pitch moment time history (f) DFT values
of pitch moment force

After performing the resampled and filtered operations on these balance measurements,

the aerodynamic load responses to the input time histories shown in Figure 2.20 (b) are

plotted in Figure 2.22 (a), (c), and (e) for the normal force, the axial force, and the pitch

moment, respectively. Figure 2.22 (b), (d), and (f) plot the associated DFT values of these

responses to show the corresponding frequency contents.
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Figure 2.22: (a) Normal force time history (b) DFT values of normal force (c) Axial force
time history (d) DFT values of axial force (e) Pitch moment time history (f) DFT values
of pitch moment force

From Figure 2.22 (a) and (b), one can see that the normal force is dominated by the

frequency component at the maneuver frequency of 1.5 Hz while the axial force is dominated

by the DC values from Figure 2.22 (c) and (d). This result occurs because the axial force is

the major contribution to the drag. From Figure 2.22 (e) and (f), one can see that the pitch

moment is also dominated by the DC values even if there is a small component showing

up at the maneuver frequency of 1.5 Hz.

From the normal force and the axial force given above, we can compute the lift and drag

by using Eq.(2.69). Then the aerodyamic coefficient time histories for this maneuver can

be further computed by Eq.(2.70). The obtained lift, drag, and pitch moment coefficients

are plotted in in Figure 2.23 (a), (b), and (c), respectively.
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Figure 2.23: Aerodynamic coefficient time histories for plunge oscillatory maneuver of
hA = 0.5 ft, f = 1.5 Hz and α0 = 0o at the tunnel speed of V=67 ft/s
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2.8 Summary

In this chapter, the data reduction techniques for the harmonic oscillatory tests of the

DyPPiR have been developed based on the multirate signal processing method. First

the sting is modeled as a cantilever beam with the model mounted on the free end, and

the associated elastic modes of the sting were identified by using the Discrete Fourier

Transform. Based on these results, it was found that the aerodynamic responses to the

preprogrammed inputs can be resolved from other frequency components of the balance

readings in the frequency domain. Thus digital systems based on multirate signal processing

approach were developed to extract the aerodynamic responses to the preprogrammed input

time histories. The performances of the developed digital systems were then illustrated by

reducing the data for an oscillatory pitch maneuver and an oscillatory plunge maneuver.

Using these techniques, all the experimental data in the current harmonic oscillatory tests

have been reduced.



Chapter 3

Unsteady Aerodynamic Data and
Analyses

In Chapter 2, we performed the harmonic oscillatory tests for an F-18 configuration, and

obtained the corresponding aerodynamic responses to the preprogrammed inputs. In this

chapter, we are going to present some of these results, look at them in detail and analyze

the associated unsteady aerodynamic characteristics.

Besides the harmonic oscillatory data obtained above, we also investigate some other un-

steady aerodynamic measurements from the documented references. These data include

the lift-curve characteristics for an airfoil pitching-up at constant rate in Ref. [18], the

normal force responses for the harmonic oscillations in pitch for a highly swept delta wing

in Ref. [30], and the longitudinal aerodynamics for an F-18 configuration pitching-up and

pitching-down at various constant rates, also in Ref. [30]. All these experimental results

provide the insights into the unsteady aerodynamic characteristics from various aspects.

We will briefly discuss these results in this chapter and provide some basis for modeling

the unsteady aerodynamic characteristics in following chapters.

74
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3.1 Harmonic Oscillatory Maneuvers in Pitch

Numerous studies have documented the hysteresis and overshoot characteristics as the

model is undergoing pitch oscillations at high angles of attack. The flow mechanisms

responsible for these unsteady effects are the dynamic lags of the vortex bursting and flow

separations. Because of these flow lags, it is generally expected that the aerodynamic forces

and moment will exhibit similar hysteresis loops in the pitch oscillatory maneuvers.

In the current pitch oscillatory tests, however, the tested angle of attack range is below

40o and the reduced frequencies ω̂ = ωc/2V in the tests are not large. In such testing

conditions, the flowfields may not result in significant dynamic effects of vortex bursting

and flow separations.

In this section, we first illustrate some typical pitch oscillatory results, then analyze the

aerodynamic characteristics associated with them, and finally provide some more results

for unsteady aerodynamics modeling.

3.1.1 Data Illustrations

Figures 3.1, 3.2 and 3.3, respectively, plot the lift, the drag and the pitch moment coeffi-

cients for the pitch oscillations of amplitude of 5o, about three mean angles of attack (0o,

12o and 24o) with two extreme frequencies (0.5 Hz and 1.414 Hz) at the tunnel speed of 67

ft/s. The static data are also shown in the plots.

From Figures 3.1 and 3.2, one observed no significant hysteresis loops for the lift and the

drag coefficients in the oscillations for the current angle of attack range and the frequencies.

This observation suggests that the dynamic lags of the vortex and separation flows are small

in the current oscillatory maneuvers. The flowfields around the model are pretty much at
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the attached flow conditions. However, one can see the significant hysteresis loops for

the pitch moment coefficients at such flow conditions from Figure 3.3. It can further be

observed that these hysteresis loops are dependent on the amplitudes, the frequencies and

the mean angles of attack of the oscillations. One can also see, from these plots, that as the

model is oscillated at high angles of attack, the hysteresis loops become large and as the

oscillatory frequencies are increased, the sizes of these hysteresis loops are also increased.

The unsteady aerodynamic characteristics responsible for the above observations can be

attributed to the effects of the pitch rate q(t) and the α̇(t). The associated flow mechanism

can be analyzed as follows.
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Figure 3.1: Lift coefficient for pitch oscillation with amplitude of 5 degrees
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Figure 3.2: Drag coefficient for pitch oscillation with amplitude of 5 degrees
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Figure 3.3: Pitch moment coefficient for pitch oscillation with amplitude of 5 degrees

3.1.2 Pitch Rate Effects

Suppose that the unsteady aerodynamics in the current oscillatory maneuvers can be mod-

eled by the following static systems,

CL = CL(α, q)

CD = CD(α, q) (3.1)

Cm = Cm(α, q)

For the current oscillatory maneuvers in pitch, the motion time histories are given by

Eq.(2.1). Substituting those motion time histories into Eq.(3.1), we can obtain the corre-

sponding time histories of the aerodynamic coefficients.
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By looking at the motion time histories given in Eq.(2.1), one can see that the angle of

attack α(t) and the pitch rate q(t) have a phase difference of 90 degrees. Thus if we plot

the pitch rate versus the angle of attack, we will get a loop in the q − α plane. Therefore,

the dependencies of aerodynamic coefficients on the pitch rate can produce hysteresis loops

in the pitch oscillatory maneuvers.

The pitch rate effects represent the aerodynamic characteristics that accompany rotation

of the aircraft about a spanwise axis through the C.G. while α remains fixed. Both the

wing and the tail are affected by the rotation, although, when the aircraft has a tail, the

wing contribution to CL and Cm due to pitch rate is negligible in comparison with that of

the tail for most cases.

V

V

V’
qltθ

q

lt cos(αw)≈lt

mean aerodynamic

center of tail

C.G.

Figure 3.4: Effect of rotation on tail angle of attack

As is illustrated in Figure 3.4, the main effect of q(t) on the tail is to increase its angle

of attack by q(t)lt/V , where lt is the length from the C.G. of the aircraft to the tail

mean aerodynamic center, and V is the flight speed. It is this change in the tail angle

of attack that accounts for the changes of the forces on the tail. It is generally assumed
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that the instantaneous forces on the tail correspond to its instantaneous angle of attack,

i.e., no account is taken of the fact that it takes a finite time for the tail lift to build

up to its steady-state value following a sudden change in q(t). Therefore, the results are

obtained under quasistatic assumptions. Thus, the change in tail lift coefficient caused by

the rotation of the aircraft is,

∆CLt = at∆αt = at
qlt
V

(3.2)

where at is the tail lift slope.

The corresponding increments in aircraft lift and pitch moment coefficients that corresponds

to ∆CLt are,

∆CL =
St
S

∆CLt =
St
S
at
qlt
V

∆Cm = −VH∆CLt = −atVH
qlt
V

(3.3)

where S and St are the reference areas of the wing-body and tail, respectively. VH is the

tail volume ratio which is defined as,

VH =
ltSt
Sc

(3.4)

Based on the changes in lift and pitch moment as given in Eq.(3.3), the pitch rate derivatives

are defined as,

∂CL
∂q

= at
St
S

lt
V

∂Cm
∂q

= atVH
lt
V

(3.5)

With the modeling of the pitch rate effects as the above derivatives, the aerodynamic

coefficients given in Eq.(3.1) can be written as,
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CL = CL(α) + CLq̂qt̂

CD = CD(α) + CDq̂qt̂ (3.6)

Cm = Cm(α) + Cmq̂qt̂

where the Caq̂, a = L,D, or m, are the corresponding aerodynamic derivatives with respect

to the nondimensional pitch rate q̂ = qt̂. The t̂ is the characteristic time of the flow which

is defined as,

t̂ =
c

2V
(3.7)

From Eq.(3.6), one can see, more clearly, that if the aerodynamic coefficients have large

pitch rate dependencies, they will have large hysteresis loops in the pitch oscillations. If

the aerodynamic coefficients have weak pitch rate dependencies, the resulting hysteresis

loops will be small. As was discussed above, the pitch moment generally has large pitch

rate dependency since the forces on the tail are major forces to generate the pitch moment.

The lift generally has small pitch rate dependency because the forces on the tail are just a

small portion of the total lift on the aircraft. The pitch rate dependency of drag coefficient

is neglected in this analysis. One can see these results very clearly from Figures 3.1, 3.2

and 3.3.
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We can illustrate one more example for the pitch rate effects. From Ref. [39], the expres-

sions of the aerodynamic coefficients for an F-18 aircraft configuration were obtained by

the interpolation of the table lookups as follows,

CL =

{
0.732 + 0.0751α, −5 ≤ α ≤ 10
0.569 + 0.106α − 0.00148α2 , 10 ≤ α ≤ 40

CD =

{
0.1423 − 0.00438α + 0.0013α2 , −5 ≤ α ≤ 20
−0.3580 + 0.0473α − 0.0000348α2 , 20 ≤ α ≤ 40

(3.8)

Cm = −0.1885− 0.00437α − 0.123q

where α is in degrees and q in radians per second.

We then simulate this aerodynamic system given in Eq.(3.8) for the pitch oscillatory ma-

neuvers. Since the dependencies of the lift and the drag coefficients on the pitch rate are

neglected in this system, there are no hysteresis loops existing in the oscillations. However,

there are hysteresis loops for the pitch moment coefficient in the oscillations because of the

relatively large pitch rate dependency. Figure 3.5 shows the simulation results of Eq. (3.8)

by using the motion time history measurements associated with the experimental results

as shown in Figure 3.3.

From Figure 3.5, one can see the responsibility of the pitch rate for the hysteresis loops

in the pitch oscillatory motions. From the plots, one can also see that these hysteresis

loops are dependent on the amplitudes and the frequencies of the oscillatory motions, but

independent of the mean angles of attack since the static pitch moment coefficient is linear

in α and q, and the other unsteady aerodynamic effects are not included in this system.

Looking at the experimental results as shown in Figure 3.3, however, one can see that the

shapes of the hysteresis loops depend not only on the amplitudes and the frequencies, but

also on the mean angles of attack of the oscillations. These results imply the nonlinearities

in α and q, i.e., the derivatives of Cm with respect to α(t) and q(t) are no longer constant.

The unsteady aerodynamics of the pitch rate q(t) and of α̇ must be considered and properly
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modeled for the current harmonic oscillatory tests.
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Figure 3.5: Pitch moment coefficient of the static aerodynamic system
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3.1.3 The α̇(t) Effects

The α̇(t) effects owe their existence to the fact that the pressure distribution on a wing

or tail does not adjust itself instantaneously to its equilibrium value when the angle of

attack is suddenly changed. The calculation of this effect, or its measurement involves the

unsteady flows.

Systematic discussions of the α̇(t) effects are beyond the scope of present work. One can

refer to Refs. [1,2] for details. Currently, we are mainly concerned with the large hysteresis

loops of pitch moment coefficients in the pitch oscillatory motions. Since the lift on the tail

surface makes significant contribution to the pitch moment, the α̇(t) effects on the tail lift

is the major interest. There is a traditional method[1,2] for evaluating the contributions of

the tail surface, based on the lag of the downwash. It neglects entirely the nonstationary

character of the lift response of the tail to changes in tail angle of attack, and attributes the

result entirely to the fact that the downwash at the tail does not respond instantaneously

to changes in wing angle of attack. The downwash is assumed to be dependent primarily

on the strength of the wing’s trailing vortices in the neighborhood of the tail. Since the

vorticity is convected with the stream, then a change in the circulation at the wing will not

be felt as a change in downwash at the tail until a time ∆t = lt/V has elapsed, where lt is

the length from the C.G. of the aircraft to the tail mean aerodynamic center, as shown in

Figure 3.6. This delay is then modeled such that the instantaneous downwash at the tail,

ε(t), corresponds to the wing angle of attack α(t) at time (t−∆t). The corrections to the

quasistatic downwash and tail angle of attack are therefore,

∆ε =
∂ε

∂α
α̇∆t

= − ∂ε
∂α

α̇
lt
V

(3.9)

= −∆αt
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The correction to the tail lift coefficient for the downwash lag is then,

∆CLt = at∆αt = atα̇
lt
V

∂ε

∂α
(3.10)

The corresponding corrections to the aircraft lift and pitch moment coefficients are then

obtained from ∆CLt as,

∆CL = ∆CLt
St
S

= atα̇
lt
V

St
S

∂ε

∂α
(3.11)

∆Cm = −VH∆CLt

= −atα̇VH
lt
V

∂ε

∂α

C.G.
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chord
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aerodynamic
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α αt
ε

lt
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Figure 3.6: Wing downwash of the flow at the tail

From Eq.(3.11), one can see that the contributions of the α̇ effects to the lift and the pitch

moment coefficients are proportional to α̇. These α̇ corrections will produce hysteresis loops

for the corresponding aerodynamic coefficients in the pitch oscillatory motions because of

the 90o phase difference of the α̇ from α.



Yigang Fan Chapter 3. Aerodynamic Data and Analyses 86

In principle, one can see, from these analyses, that the pitch moment generally has large

α̇(t) dependencies because the tail lift is the major force to generate the pitch moment

while the lift has small α̇(t) dependencies because the tail lift is just a small portion in the

total lift of the aircraft. The α̇(t) dependencies of drag are neglected in this analysis.

In the above, the α̇(t) effects are modeled based on the corrections of the lift on the tail

due to the lag of the downwash. The corresponding corrections are proportional to the

values of the α̇(t) and the delay of the downwash response, i.e., the time ∆t it takes the

flow from the C.G. of the aircraft to the tail mean aerodynamic center. In Refs. [1,2], the

α̇(t) derivatives are defined accordingly as,

∂CL
∂α̇

= at
lt
V

St
S

∂ε

∂α
∂Cm
∂α̇

= −atVH
lt
V

∂ε

∂α
(3.12)

These α̇(t) derivatives are then included in the conventional stability derivative representa-

tion of aerodynamic characteristics to model the α̇(t) effects. With the α̇(t) effects added

to Eq.(3.6), we have,

CL = CL(α) + CLq̂qt̂+ CL ˆ̇αα̇t̂

CD = CD(α) + CDq̂qt̂+ CD ˆ̇αα̇t̂ (3.13)

Cm = Cm(α) + Cmq̂qt̂+ Cm ˆ̇αα̇t̂

where the Ca ˆ̇α, a = L,D, or m, are the corresponding aerodynamic derivatives with respect

to the ˆ̇α = α̇t̂. t̂ is the characteristic time of the flow which is defined in Eq.(3.7).

Based on the representation as given in Eq.(3.13), one can see that both the pitch rate q(t)

and the α̇(t) will produce hysteresis loops of aerodynamic coefficients in the oscillatory pitch

maneuvers since q(t) = α̇(t) in the maneuvers and they both have a 90o phase difference

from the angle of attack α(t). Therefore, the hysteresis loops as shown in Figures 3.1, 3.2,
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and 3.3 are the combinations of both the pitch rate q(t) and the α̇(t) effects. One can also

see, from these figures, that the hysteresis loops of the pitch moment coefficients in the

pitch oscillations are large because of its relatively large pitch rate and α̇(t) dependencies.

The hysteresis loops of the lift coefficients are small because of the small pitch rate and

α̇(t) dependencies. One can not see a obvious hysteresis loop of the drag coefficient in the

pitch oscillations. That is because the corresponding pitch rate and α̇(t) dependencies are

negligibly small.

The above discussions are based on the assumption of the steady-state aerodynamics. As

we pointed out, however, the α̇(t) effects owe their existence to the fact that the pressure

distribution on the aircraft does not adjust itself instantaneously to its equilibrium value

when the angle of attack is suddenly changed. This effect totally involves unsteady aero-

dynamic characteristics. In this respect, the α̇(t) effects are very different from those of

the pitch rate which can be well determined on the basis of the steady-state aerodynamics.

The analysis of the α̇(t) derivatives discussed above neglects entirely the nonstationary

character of the lift responses to the changes in angle of attack. It only gives out an esti-

mate of this effect qualitatively. In unsteady flight conditions, the aerodynamic forces and

moment are strictly speaking functionals of some state variables. Their dependencies on

these state variables are not only on the instantaneous flight conditions but on their entire

past histories. They contain the information required for the determination of the instant

and future values of the aerodynamic characteristics. Therefore, it is advisable to develop

a state-space model to describe the unsteady aerodynamics for general flight conditions as

follows,

dx(t)

dt
= f(x, α, q)

Ca(t) = g(x, α, q) (3.14)

where a = L, D, or m.

In Eq.(3.14), x(t) is the state variable which contains all the information about the entire
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past histories of the flows, α(t) and q(t) are input variables which describe the flight con-

ditions, and Ca(t) are aerodynamic coefficients which are the outputs of this aerodynamic

system.

For the oscillatory maneuvers in pitch, the information of the adjustment of the pressure

distribution on the aircraft, or the lag of the downwash at the tail, due to the changes of

the angle of attack, is contained in the state variable x(t). The aerodynamic coefficients

are then determined by this state variable and the the instant values of the input variables

α(t) and q(t).

Furthermore, this state-space representation can be extended to the high angle of attack

regime where the separated and vortex flows are developed. In such flow conditions, the

traditional stability derivative approach can not be used if valid results are to be obtained.

For the state-space representation, however, the information of the flow separation and vor-

tex bursting is contained in the state variables. The corresponding aerodynamic coefficients

can then be determined by the state variables and the input variables. We will develop a

state-space model to describe the unsteady aerodynamics in the following chapters.
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3.1.4 Nondimensional Analysis of Hysteresis Loops

In the above, we provided some insights into the mechanisms of the hysteresis loops of the

aerodynamic coefficients in the pitch oscillatory maneuvers. It was seen that the pitch rate

q(t) and the α̇(t) effects are responsible for these loops. In this section, we are going to

study some nondimensional quantities which can characterize these hysteresis loops. Since

the hysteresis loops of the lift and drag coefficients are small, we will focus on those of the

pitch moment coefficients in the analysis.

The descriptions of the pitch oscillatory motions are given by Eq.(2.1) in Chapter 2. As

one can see that the motions are characterized by the amplitudes αA and the frequencies

ω for fixed mean angles of attack α0. The testing conditions include the tunnel speed V .

In general, people use the reduced frequency ω̂ to characterize these harmonic oscillatory

motions, i.e.,

ω̂ =
ωc

2V
(3.15)

As one can see, however, the reduced frequency ω̂ defined above does not contain any

information about the amplitude of the oscillation. Since the pitch rate in the oscillation

depends not only on the frequency but also on the amplitude, the amplitude information

should be taken into account in characterizing the unsteady aerodynamic effects in the

pitch oscillations. In the current research, we use the normalized maximum pitch rate q̂max

or normalized maximum derivative of angle of attack ˆ̇αmax as nondimensional quantity

characterizing the pitch oscillations. Thus, in pitch oscillatory maneuvers, we have

q̂max = ˆ̇αmax

= ω̂αA (3.16)

=
c

2V
ωαA
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Therefore, for the maneuvers with the same nondimensional quantity q̂max, the correspond-

ing aerodynamic coefficients will show the same aerodynamic characteristics through the

hysteresis loops. Before we can show the performance of this nondimensional quantity, we

need to properly define and express the characteristics of hysteresis loops in the oscillations.

From the previous analysis about the mechanism of hysteresis loops, we know that the hys-

teresis loops are the results of the dynamic delays of aerodynamic characteristics from the

static values at the corresponding angle of attack, due to the unsteady motions. Therefore,

the maximum offsets of the hysteresis loops from the static curves of the corresponding

aerodynamic coeffcients can be used to characterize these unsteady flow effects in the os-

cillations. Thus, for the oscillatory maneuvers in pitch with the same q̂max, the maximum

offsets of the corresponding hysteresis loops from the static curves of aerodynamic coef-

ficients are expected to be the same, and the shapes of these hysteresis loops are also

expected to be similar. These discussions can further be elaborated through the plots of

the experimental results.

Tables 3.1 through 3.3 list some typical pitch oscillatory maneuvers in current wind-tunnel

tests, associated with the corresponding values of q̂max. The maneuvers with amplitude

5 degrees are listed as group A in table 3.1 while the maneuvers with amplitudes 7.07

degrees and 10 degrees are listed as group B and group C in Table 3.2 and 3.3, respectively.

Thus the amplitudes of the oscillations are the same in each group of maneuvers listed in

the tables. Then each table includes several maneuver sets, each of which contains two

maneuvers with same amplitude, frequency and tunnel speed but different mean angles of

attack. One is about the mean angle of attack of zero degrees, and the other about the

mean angle of attack of 24 degrees. We will first look at the maneuvers with same q̂max

in each individual group where the amplitudes are constant. Then we will investigate the

maneuvers with same q̂max in all these groups where the amplitudes can be different from

maneuver to maneuver.
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Table 3.1: Pitch Oscillatory Maneuvers: Group A (αA = 5o)

Maneuvers Mean AOA Frequency Amplitude Speed q̂max × 103

A1 0o, 24o 0.707 Hz 5o 95 ft/s 1.6031
A2 0o, 24o 0.707 Hz 5o 67 ft/s 2.2730
A3 0o, 24o 1.0 Hz 5o 95 ft/s 2.2730
A4 0o, 24o 1.0 Hz 5o 67 ft/s 3.2064
A5 0o, 24o 1.414 Hz 5o 95 ft/s 3.2064
A6 0o, 24o 1.414 Hz 5o 67 ft/s 4.5338

Table 3.2: Pitch Oscillatory Maneuvers: Group B (αA = 7.07o)

Maneuvers Mean AOA Frequency Amplitude Speed q̂max × 103

B1 0o, 24o 0.5 Hz 7.07o 95 ft/s 1.6030
B2 0o, 24o 0.5 Hz 7.07o 67 ft/s 2.2730
B3 0o, 24o 0.707 Hz 7.07o 95 ft/s 2.2730
B4 0o, 24o 0.707 Hz 7.07o 67 ft/s 3.2064
B5 0o, 24o 1.0 Hz 7.07o 95 ft/s 3.2064
B6 0o, 24o 1.0 Hz 7.07o 67 ft/s 4.5338
B7 0o, 24o 1.414 Hz 7.07o 95 ft/s 4.5338
B8 0o, 24o 1.414 Hz 7.07o 67 ft/s 6.4108

In group A, one can see, from Table 3.1, that the maneuver set A2 has same value of the

nondimensional quantity q̂max as the maneuver set A3, and also the A4 has same q̂max as

the A5. If the {Ai, Aj, ..., } ∈ q̂max is used to denote the sets Ai, Aj, ..., having a value of

the nondimensional quantity q̂max, then in group A, we have

{A2, A3} ∈ 0.00227, {A4, A5} ∈ 0.00321 (3.17)

As we discussed above, each maneuver in {...}will have same unsteady aerodynamic charac-

teristics in the pitch oscillations since they have same nondimensional characteristic quan-

tity q̂max. In other words, the hysteresis loops of these maneuvers in the pitch oscillations

will have same maximum offsets from the static curves of the corresponding aerodynamic

coefficients. As an illustration, Figure 3.7 plots the hysteresis loops of the pitch moment

coefficients for the maneuvers in sets A4 and A5, respectively. As one can see, from these
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Table 3.3: Pitch Oscillatory Maneuvers: Group C (αA = 10o)

Maneuvers Mean AOA Frequency Amplitude Speed q̂max × 103

C1 0o, 24o 0.5 Hz 10o 95 ft/s 2.2730
C2 0o, 24o 0.5 Hz 10o 67 ft/s 3.2064
C3 0o, 24o 0.707 Hz 10o 95 ft/s 3.2064
C4 0o, 24o 0.707 Hz 10o 67 ft/s 4.5338
C5 0o, 24o 1.0 Hz 10o 95 ft/s 4.5338
C6 0o, 24o 1.0 Hz 10o 67 ft/s 6.4127

plots, the hysteresis loops for the maneuvers in sets A4 and A5 not only have the same

maximum offsets from the static curve, but also have almost the same shapes since the

hysteresis loops of the corresponding maneuvers in these two sets nearly coincide with one

another. These results show that the corresponding oscillatory maneuvers in sets A4 and

A5 have the same unsteady aerodynamic characteristics because they have same nondi-

mensional quantity q̂max. Similar plots can be obtained for the maneuvers in sets A2 and

A3.

Similarly, by looking at the oscillatory maneuvers in groups B and C from Tables 3.2 and

3.3, respectively, we have,

{B2, B3} ∈ 0.00227, {B4, B5} ∈ 0.00321, {B6, B7} ∈ 0.00453

{C2, C3} ∈ 0.00321, {C4, C5} ∈ 0.00453 (3.18)

Figures 3.8 and 3.9 plot the hysteresis loops of the pitch moment coefficients for the oscil-

latory maneuvers in sets B4 and B5, and for the oscillatory maneuvers in sets C2 and C3,

respectively. From Figure 3.8, one can see that the hysteresis loops of the oscillatory ma-

neuvers in set B4 almost coincide with those of the corresponding maneuvers in set B5. It

can also be observed from Figure 3.9 that the hysteresis loops of the oscillatory maneuvers

in set C2 nearly coincide with those of the corresponding maneuvers in set C3. The similar

plots can also be obtained for maneuver sets {B2, B3}, {B6, B7} and {C4, C5}.
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In summary, the hysteresis loops of the pitch oscillatory maneuvers in each group given

in Tables 3.1 through 3.3 are going to be same if the corresponding maneuvers have same

values of the nondimensional quantity q̂max. In such a case, these maneuvers have not only

the same aerodynamic characteristics, but also the same time histories of the aerodynamic

coefficients. These results are obtained from the oscillatory maneuvers in each individual

group whose maneuvers have same amplitude in the oscillations. However, if the ampli-

tudes of the oscillations are different, the associated hysteresis loops can’t coincide with

one another because the motion time histories are different. Since the unsteady aerody-

namics in the pitch oscillations are characterized by the dynamic delays of the aerodynamic

coefficients from the corresponding static values, these delay effects could still be the same

even if the individual time histories of the aerodynamic coefficients are different. As we

discussed before, the maximum offsets of the hysteresis loops from the corresponding static

curves characterize these dynamic delay effects. Therefore, we expect the maximum offsets

of the hysteresis loops to be the same for the maneuvers which have different amplitudes

but same nondimensional quantity q̂max in the oscillations.



Yigang Fan Chapter 3. Aerodynamic Data and Analyses 94

static

set A4

set A5

−10 0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

angle of attack (degree)

pi
tc

h 
m

om
en

t c
oe

ffi
ci

en
ts

a_0=0 deg a_0=24 deg

Figure 3.7: Hysteresis loops for maneuvers in sets A4 and A5
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Figure 3.8: Hysteresis loops for maneuvers in sets B4 and B5
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Figure 3.9: Hysteresis loops for maneuvers in sets C2 and C3

From Tables 3.1 through 3.3, the oscillatory maneuvers with same values of q̂max in groups

A, B, and C can be put as follows,

{A1, B1} ∈ 0.00160

{A2, A3, B2, B3, C1} ∈ 0.00227

{A4, A5, B4, B5, C2, C3} ∈ 0.00321 (3.19)

{A6, B6, B7, C4, C5} ∈ 0.00453

{B8, C6} ∈ 0.00641

The hysteresis loops of the oscillatory maneuvers in {A4, A5}, {B4, B5}, and {C2, C3}
have been shown in Figure 3.7, Figure 3.8, and Figure 3.9, respectively. From Eq.(3.19),

one can see that all the maneuvers in these three sets have the value of nondimensional

quantity q̂max as 0.00321 but the amplitudes are different in each of these three sets. To

show the unsteady aerodynamic effects for maneuvers of different amplitudes, we plot the

hysteresis loops of the oscillatory maneuvers in set {A4, B4, C2} in Figure 3.10.
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From Figure 3.10, one can see that the hysteresis loops of the maneuvers in sets A4, B4,

and C2 are correspondingly tangential to one another at both the top and bottom points

where the maximum offsets of the hysteresis loops from static curve occur. In such a

case, the maximum offsets of the hysteresis loops from static curve are all the same, even

though the hysteresis loops with small amplitude are totally contained in those with large

amplitude. We say that the hysteresis loops of the maneuvers in sets A4, B4, and C2

satisfy the tangential conditions. As we discussed above, the actual time histories of the

aerodynamic coefficients are different in these maneuvers, but the unsteady aerodynamic

characteristics are the same since the associated hysteresis loops have the same maximum

offsets from static curve. These maximum offsets of the hysteresis loops define the size of

the dynamic delays and adjustment of the flows due to the unsteady oscillatory motions.

We are going to show one more example for the tangential conditions. The hysteresis loops

of the oscillatory maneuvers for another set {A6, B6, C4}, corresponding to a larger value of

q̂max (0.00453), are plotted in Figure 3.11. From the plots, one can see that the tangential

conditions discussed above are still true, i.e., the hysteresis loops of the maneuvers are

correspondingly tangential to one another at both the top and bottom points where the

maximum offsets of the hysteresis loops from static curve occur. However, one can observe

a small displacement from the tangential conditions for the hysteresis loops corresponding

to the mean angle of attack of 24o. Based on this observation, our conclusion is that the

tangential conditions discussed above hold for the unsteady flows at low angles of attack.

For the unsteady flows at high angles of attack, especially with large value of q̂max, this

condition is expected to be verified by further experimental results.
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Figure 3.10: Hysteresis loops for maneuvers in sets A4, B4 and C2
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Figure 3.11: Hysteresis loops for maneuvers in sets A6, B6 and C4
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The tangential conditions discussed above imply a result that might be worth further

discussion. From the pattern of the hysteresis loops satisfying this condition, we know that

all these loops are tangential to one another at both the top and bottom points where the

maximum offsets of the hysteresis loops from static curve occur. Based on this fact, if the

reduced frequency ω̂ of the oscillation is decreased, the corresponding amplitude αA has to

be increased so that q̂max = ω̂αA is still a constant. In this case, the resulting hysteresis

loops will be stretched along the static curve in both directions as illustrated in Figure 3.12.

If the reduced frequency is increased, however, the αA has to be decreased accordingly. In

such a case, the resulting hysteresis loops will be compressed along the static curve also in

both directions. In the limit of this case, if the aircraft is oscillated at a small amplitude

but very high frequency, the resulting pitch moment coefficient will jump up and down

between the two tangential points at the top and bottom as shown in Figure 3.12.
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Figure 3.12: Hysteresis loop pattern
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The next topic we are going to discuss is the reduced frequncy ω̂. As we mentioned before,

the reduced frequency ω̂ does not contain any information about the amplitudes of the

oscillations, so that it is not sufficient to characterize the unsteady aerodynamics for these

oscillatory maneuvers.

From Tables 3.1 through 3.3, one can see that the oscillatory maneuvers in sets A4, B6,

and C6 have same value of the reduced frequency ω̂ = 0.0367 but their q̂max are different

because their amplitudes are not the same. Figure 3.13 plots the hysteresis loops associated

with these oscillatory maneuvers. From the plots, one can see that for the hysteresis loops

corresponding to large amplitudes, the associated maximum offsets from the static curves

are large, while for the hysteresis loops corresponding to small amplitudes, the maximum

offsets are small. These results suggest that the dynamic delays and adjustment of the

flows due to the unsteady oscillatory motions are different in these flowfields. Therefore,

the associated unsteady aerodynamic characteristics are also different.
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Figure 3.13: Hysteresis loops for maneuvers in sets A4, B6, and C6
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The last issue we are going to address is the direction of the loops. From their time histories,

we identify that all these hysteresis loops are going in the counterclockwise direction as

shown in Figure 3.13. The algebraic signs of the aerodynamic derivatives: Cmq̂ + Cm ˆ̇α are

responsible for the loop direction. The reasons can be explained are as follows.

Assume that the aerodynamic coefficients can be represented by the stability derivative

formulation given in Eq.(3.13). Thus the pitch moment coefficient can be written as,

Cm = Cm(α) + Cmq̂qt̂+ Cm ˆ̇αα̇t̂ (3.20)

As we know, for sinusoidal oscillations, if we plot the rate α̇(t) versus the angle of attack

α(t), we will get a clockwise loop because this plot is equivalent to the that of cos(ωt) vs

sin(ωt), or −sin(ωt) vs cos(ωt). If we plot negative rate −α̇(t) versus the angle of attack

α(t), however, the loop direction will be reversed to the counterclockwise direction. As

a result of this fact, if the aerodynamic derivative Cmq̂ + Cm ˆ̇α in Eq.(3.20) is negative,

the resulting hysteresis loops in the pitch oscillations (q = α̇) are in the counterclockwise

directions. The experimental results as shown in Figure 3.13 suggest that the aerodynamic

derivative Cmq̂ + Cm ˆ̇α be negative.
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3.2 Harmonic Oscillatory Maneuvers in Plunge

In the last section, we discussed, in detail, the experimental results for harmonic oscillatory

maneuvers in pitch where both the pitch rate q(t) and the α̇(t) effects are applied. In this

section, we are going to illustrate some typical experimental results for harmonic oscillatory

maneuvers in plunge where only the α̇(t) effects are applied. Then we compare the results

with those of harmonic oscillatory maneuvers in pitch and briefly discuss the differences.

Figure 3.14 plots the aerodynamic coefficients for the plunge oscillatory maneuvers with

the amplitude of 0.5 ft, the frequency of 1.5 Hz for two mean angles of attack of 0o and 24o

at the tunnel speed of 67 ft/s.
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Figure 3.14: Aerodynamic coefficients for plunge oscillatory maneuvers with hA =
0.5 ft, f = 1.5 Hz at the tunnel speed of V=67 ft/s
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From Figure 3.14 (a), one observed no significant hysteresis loops for the lift and drag

coefficients except for the small loop of lift coefficient at mean angle of attack of 24 degrees.

From Figure 3.14 (b), one can see relatively large hysteresis loop in the pitch moment

coefficient at zero mean angle of attack. The mechanism responsible for these α̇ effects

has been discussed in previous section. At mean angle of attack of 24 degrees, however,

the associated hysteresis loop of pitch moment coefficient becomes small. This result can

not be explained at this time and we don’t have other experimental results to verify this

observation.
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3.3 Brief Summary and Aerodynamic Modeling

In last two sections, we pesented some typical experimental data of the harmonic oscillatory

tests obtained in Chapter 2, and discussed the associated unsteady aerodynamic charac-

teristics. Two types of the unsteady aerodyanmic effects are involved in these harmonic

oscillatory tests, i.e., the α̇ effects and the q(t) effects. As we pointed out, the α̇(t) effects

owe their existence to the fact that the pressure distribution on the aircraft does not adjust

itself instantaneously to its equilibrium value when the angle of attack is suddenly changed.

This effect totally involves unsteady aerodynamic characteristics. The previous analysis of

the α̇(t) derivatives neglects entirely the nonstationary character of the lift responses to

the changes in angle of attack, so that the unsteady aerodynamic characteristics are not

modeled.

The pitch rate q(t) effects can be well-determined by the associated stability derivatives

on the basis of the steady-state aerodynamics. However, at high angles of attack where

separated and vortex flows are developed, the stability derivative representation can not

be used. The values of the unsteady derivatives are found to be strongly dependent on the

amplitude and frequency of aircraft oscillations[3].

In summary, properly modeling of the unsteady aerodynamic characteristics up to high

angle of attack regime is highly desirable. In the next chapter, we are going to develop

a state-space representation to describe the unsteady aerodynamics up to high angle of

attack regime on the basis of the unsteady wind-tunnel measurements. Since the current

harmonic oscillatory tests do not cover the high angle of attack regime, we need some

other unsteady aerodynamic data including high angles of attack to generate such a model.

Therefore the following unsteady aerodynamic data up to and beyond the stall range are

selected from the references for the present aerodynamic modeling.
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3.4 Lift Coefficient Data for an Airfoil Pitching at

Constant Rate

The wind-tunnel studies of dynamic stall for an NACA 0015 airfoil pitching about the

midchord at a constant rate were reported by Jumper, et al[18−19]. They studied the

flowfields of the airfoil from attachment to separation and determined the lift and pitch

moment coefficients as functions of angle of attack for 100 test cases, covering 20 dynamic

airspeed and pitch rate combinations. Their results showed that there are significant delays

of the stall and the magnitude of the maximum lift coefficient from the static values for

the ramping airfoil. These delays are found to be proportional to the variation of the angle

of attack for fixed freestream velocity. Typical lift-curve characteristics for this ramping

airfoil at various pitch rates are shown in Figure 6.1 in Chapter 6.

3.5 Normal Force Coefficients for an Oscillating Delta

Wing

Figure 6.6 in Chapter 6 plots the normal force coefficients of a 70o delta wing oscillating in

pitch, which are reported by Brandon[30]. From the plots, it is observed that, different from

the oscillatory tests discussed above, the normal forces also show the significant hysteresis

loops. This result occurs because Brandon’s tests were conducted at high angles of attack

where there are vortex development and breakdown on this oscillating wing. The fluid-

mechanical processes that are causing these hysteresis loops are the dynamic lags of delta

wing vortex build-up and breakdown in the high-rate/large-amplitude pitch oscillations.

For the flowfields on a swept delta wing, a central feature of the vortex formation from

a swept leading edge at finite incidence angle is the vortex core. At a sufficiently high
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angle of attack, this core breaks down, causing loss of local lift. For stationary wings,

the location of vortex breakdown xb, defined as the distance from the apex of the wing at

which the vortex core diameter abruptly increases, attains its minimum value at maximum

angle of attack, and conversely. A full description of these and other features, as well as a

synopsis of theoretical development pertaining to flows past wings and analogous internal

tube flows, was given by Wedemeyer[24].

3.6 Wind-tunnel Results for an F-18 Aircraft in Ramp

Motions

Brandon[30] investigated and publishes the unsteady aerodynamic behaviors for an F-18

aircraft in ramp motions up to high angle of attack regime. The test configuration incor-

porates a moderately swept wing with a highly swept leading-edge extension (LEX) which

generate concentrated vortical flowfields similar to those of a delta wing. In addition to the

vortical flowfields, the aircraft also incorporates moderately swept wings and tail surfaces

which can create separation flows over the configuration. These two types of flowfields

can interact each other. In such a hybrid flowfield, both the separation and vortex burst

phnomena exist. His experiments were conducted at such flow conditions.

The lift, drag and pitch moment coefficients from the static test and unsteady tests of ramp

motions up to high angles of attack for this aircraft are plotted in Figures 6.10 through

6.15.

The static results show that the flowfield over the model at high angles of attack is dom-

inated by a strong vortex system generated by the LEX. This vortex system contribute

both to increased lift and reduced pitch stability. Development of the LEX vortex system

starts at very moderate angles of attack. At these conditions, the vortex system trails over
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the wing and passes just outboard of the vertical tails. With increasing angle of attack,

breakdown of the vortices progresses forward such that the burst point moves over the wing

and LEX, associated with a substantial decrease in lift and a substantial increase in pitch

stability.

For the flow structures observed in the static test, the dynamic tests using constant pitch

rate motions show the effects of the pitch rate and the persistence of the unsteady aerody-

namic effects. For the aircraft pitching up at constant rate, an increase in lift coefficient due

to pitch rate over entire range of motion has been observed and the maximum increment

of the lift coefficient occurred beyond the angle of attack for maximun lift at the static

test. A number of factors must be responsible for these observations. The dominant one is

the flow lag associated first with flow separation and vortex formation at the low angles of

attack, and then with vortex breakdown at the higher angles of attack.

For the aircraft pitching down at constant rate, the flow condition on the model was

characterized by complete flow separation and vortex breakdown at beginning. During the

pitch-down motion, the formation of the LEX vortex system lags in comparison to the

static case and reattachment of the wing flow is delayed. This result causes large decreases

in lift coefficient due to the motion. As pitch rate is increased, the loss in lift increases

due to the lags in vortex development and wing flow reattachment. All these unsteady

aerodynamic characteristics are expected to be properly modeled.



Chapter 4

Unsteady Aerodynamic Model

In previous chapters, we described various types of the unsteady aerodynamic data for

several configurations, including an NACA 0015 airfoil, a 70o delta wing, and F-18 config-

urations. The associated unsteady aerodynamic characteristics were also discussed. In this

chapter, we are going to develop an aerodynamic model in the form of Eq.(3.14) to describe

the unsteady aerodynamics on the basis of the unsteady aerodynamic data obtained.

Determining and describing the aerodynamic forces and moments on an aircraft is a very

important subject in atmospheric flight mechanics. It is primarily this aerodynamic ingre-

dient that distinguishes flight mechanics from other branches of mechanics. As we discussed

in previous chapters, the conventional stability derivative description neglects entirely the

nonstationary character of the aerodynamic responses to the changes in angle of attack, so

that it is many times questioned based on studies of the unsteady aerodynamics, especially

at high angle of attack region where separated and vortex flows are presented. In gen-

eral unsteady flight conditions, the aerodynamic forces and moments are strictly speaking

functionals of some state variables associated with flight conditions. These variables are

dependent not only on the instantaneous flight conditions but on their entire past histo-

ries. They contain the information about the flowfields required for the determination of
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the instant and future values of the aerodynamic characteristics. Based on these points, we

are going to develop a state-space representation to describe the unsteady aerodynamics

up to the high angle of attack regime.

To illustrate the possibility of generating a valid state-space model, simple examples will

be considered. The first example is the unsteady flow about an airfoil with trailing-edge

separation. The second is the unsteady flows about a slender delta wing with vortex

breakdown. On the basis of these examples, the structures of the approximate state-space

model is proposed to describe the unsteady aerodynamics for an aircraft.

4.1 State Equation for Separated Flows

Most wings of conventional aircraft have a rough airfoil with a turbulent boundary layer. On

these airfoils, flow separation mainly begins at the trailing edge, and moves to the leading

edge as angle of attack is increased. This form of flow separation is valid for relatively slow

variations of the angle of attack. In such a flow, a nondimensional coordinate x ∈ [0, 1] can

be introduced to describe the position of the separation point on the airfoil surface. The

value x = 1 corresponds to fully attached flow, while x = 0 corresponds to complete flow

separation. In Ref. [13], the x is taken as a state variable for the separated flow and the

following first order differential equation is used to describe the movement of the separation

point in unsteady flow conditions:

τ1
dx

dt
+ x = x0(αeff ) (4.1)

where x0(α) is the static state dependency of the separation point on the angle of attack,

and αeff is an effective angle of attack which gives an equivalent static state value of angle

of attack to locate the separation position. Including the time delay due to the quasi-steady
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aerodynamic effects, αeff is formulated as[13],

αeff (t) = α(t)− τ2α̇(t) (4.2)

In above equations, parameter τ2 defines the total time delay of the flow separation and reat-

tachment due to the quasi-steady aerodynamic effects such as the circulation and boundary-

layer convection lags. τ1 is the relaxation time constant which defines the transient aero-

dynamics effects, i.e., dynamic properties of the separated flow adjustment when a flow

condition is changed.

To apply Eq. (4.1), we have to know the driving function x0(α). The steady state position

of separation point is generally a nonlinear function of angle of attack. In Ref. 26], this

function x0(α) is suggested to be obtained from static wind tunnel measurements. But

in order to be applicable for identification purposes, here in present research, we use an

inverse exponential function with two parameters to approximate it, that is, we assume the

following function for x0(α):

x0(α)
∆
=

1

1 + eσ(α−αs)
(4.3)

Eq. (4.3) defines a family of continuous functions with two parameters: (αs, σ) where αs

is the angle of attack at which the flow separation is at the mid-chord point, and σ is the

slope factor. A family of the flow separation functions with variation of σ for fixed αs = 20o

is shown in Fig. 4.1, from which one can see that by changing αs, the function shown in

Figure 4.1 can be shifted horizontally to the desired place while through the variation of

σ, the slope of the function can be adjusted to the desired level.

Therefore, using this inverse exponential function, the separation characteristics of different

airfoils can be approximated. αs and σ are expected to be determined from wind tunnel

experimental data.
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Figure 4.1: Flow separation function for αs = 20o

The pitch rate effects on the flow separation are not modeled in previous work. Since

the pitch rate q can change the local angle of attack along the chord length, the effective

angle of attack defined in Eq.(4.2) needs to be adjusted. This pitch rate effect can be

approximated by modifying the effective angle of attack as

αeff(t) = α(t)− τ2α̇(t)− τ3q(t)[α(t)− αs] (4.4)

where αs is defined in Eq. (4.3). This modification approximately models the effects

that pitch up (down) rate causes the local angle of attack to decrease (increase) along the

length in front of rotation point and to increase (decrease) along the length behind this

point. Thus, the dynamics of the separation point can still be modeled by the first-order

system given in Eq.(4.1) with effective angle of attack αeff (t) given in Eq. (4.4).

In Eqs. (4.1) and (4.4) , x is the state of the system, and α and q are input variables. This

mathematical formulation can also be used to describe the unsteady flow of a 3-dimensional

delta wing with vortex flows. As we know, the flow field over highly swept delta wing is
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dominated by the presence of a strong leading-edge vortex system. When the angle of

attack is increased from zero degrees, the leading-edge vortices begin to develop on the

wing. As the angle of attack is further increased, the vortex burst point travels forward

onto the wing, and moves towards the apex. When the vortex burst point reaches the

apex of the wing, the flow field over the wing is characterized by fully separated flow. For

such a flow pattern, we can also define a nondimensional coordinate x ∈ [0, 1] to describe

the vortex burst position. The movement of the vortex burst location at unsteady flow

conditions can still be governed by the same first-order differential equation (4.1) with αeff

defined by Eq.(4.4).

4.2 Output Equations for Aerodynamic Coefficients

The drag, lift and pitch moment coefficients are the outputs of the system of interest. They

are functions of state x(t) and inputs: α(t) and q(t).

CD = CD(x, α, q)

CL = CL(x, α, q) (4.5)

Cm = Cm(x, α, q)

For general configurations, these functions are not known. Certain practical schemes have

to be developed so that using wind tunnel data, these relations can be approximated by a

system identification method.

We still use Taylor series expansions of Eq. (4.5). In order to resemble the current approach

of stability derivatives, however, we do the expansions in terms of α and q about the origin,

while holding state x fixed. Take the lift coefficient as example. We can write,
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CL(x, α, q) = CL0 + (
∂CL
∂α

)0α + (
∂CL
∂q

)0q

+
1

2
[(
∂2CL
∂α2

)0α
2 + (

∂2CL
∂q2

)0q
2 + 2(

∂2CL
∂α∂q

)0αq] + ... (4.6)

Since all the partial derivatives in Eq. (4.6) are evaluated at (α, q) = (0, 0), they only

depend on state variable x. CL0 is the lift coefficient when α and q equal zero. At such

conditions, the flow is generally attached. Therefore we can treat CL0 as a constant,

independent of state variable x.

The classical assumption of linear aerodynamic theory[1] is to accept the linear reduction

of Eq. (4.6) as a representation of the aerodynamic coefficient. This assumption works

well for attached flows at low angles of attack, but at high angles of attack the terms up to

second derivatives should generally be retained for sufficient accuracy. Here we include the

quadratic terms in the representation of the aerodynamic coefficient for general use, even

though we may use linear approximations for some special cases in present study.

CL = CL0 + CLα(x)α+ CLq̂(x)q̂ + ∆2CL (4.7)

where

∆2CL
∆
=

1

2
[CLα2(x)α2 + CLq̂2(x)q̂2 + 2CLαq̂(x)αq̂] (4.8)

Here, q̂ = qt̂ is the nondimensionalized pitch rate. t̂ is the characteristic time of the flow,

which is defined in Eq.(3.7).

In above equations, derivatives such as CLα, CLq̂ are still known as stability derivatives.

But different from the conventional case, these derivatives are no longer constant. They

depend on the state of flow separation, or vortex burst.
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We know that all the derivatives in Eq. (4.7) are functions of state variable x, but these

functions are still not explicitly known. In present study, we still resort to Taylor series

expansion to derive an approximate representation of these derivatives for identification

use.

Taking CLα(x) as example, the expansion about some constant â,∈ [0, 1] is,

CLα(x) = CLα(â) + (
∂CLα
∂x

)â(x− â) +
1

2
(
∂2CLα
∂x2

)â(x− â)2 +R2(x) (4.9)

where all the derivatives are evaluated at x = â, and the the residual term R2(x) in the

expansion is

R2(x) =
1

6
(
∂3CLα
∂x3

)â[ξ(x)− â]3 (4.10)

If the expansion is considered to be taken about â = 1
2
, then we have

|[ξ(x)− 1

2
]3| ≤ (

1

2
)3 =

1

8
(4.11)

and

|R2(x)| ≤ 1

48
|(∂

3CLα
∂x3

) 1
2
| = 0.0208C3 (4.12)

where constant C3 is the magnitude of third derivative of CLα(x) with respect to x, evalu-

ated at x = 1
2
.

Under the assumption of existence of all derivatives in the expansion (4.9), the residual

term R2(x) is bounded by Eq.(4.12). So if Eq. (4.9) is used as an approximation to CLα(x)

by neglecting the residual term R2(x), i.e.,
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CLα(x) = CLα(â) + (
∂CLα
∂x

)â(x− â) +
1

2
(
∂2CLα
∂x2

)â(x− â)2

= [CLα(â)− (
∂CLα
∂x

)ââ+
1

2
(
∂2CLα
∂x2

)ââ
2]

+[(
∂CLα
∂x

)â − (
∂2CLα
∂x2

)ââ]x+
1

2
(
∂2CLα
∂x2

)âx
2

= a+ bx+ cx2 (4.13)

the error is also bounded by Eq.(4.12). Furthermore, when this representation is used in

identification process, the overall error can be minimized by choice of the coefficients a, b

and c.

Another aspect of this representation is the interpretation of the coefficients: a, b and c.

We know that x = 1 corresponds to attached flow while x = 0 corresponds to complete

flow separation. If we write the polynominal in Eq.(4.13) in terms of y = 1− x instead of

x, that is

CLα = a1 + b1(1− x) + c1(1− x)2

= a1 + b1y + c1y
2 (4.14)

then constant a1 is exactly the lift coefficient slope of attached flow, corresponding to the

value of the conventional stability derivative while b1 and c1 correspond to the contributions

to the lift coefficient slope due to flow separation.

Variable y is actually a complementary version of variable x. Their relationship is

x+ y = 1 (4.15)

From Eq.(4.15), the complementary flow separation function y0(α) dual to x0(α) in Eq.(4.3)

can be determined as,
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y0(α) = 1− x0(α)

=
1

1 + e−σ(α−αs) (4.16)

Using this complementary flow separation variable, all the other aerodynamic derivatives

can similarly be represented in terms of the following quadratic polynominals,

CLq̂(y) = a2 + b2y + c2y
2

CLα2(y) = 2(a3 + b3y + c3y
2)

CLq̂2(y) = 2(a4 + b4y + c4y
2) (4.17)

CLαq̂(y) = a5 + b5y + c5y
2

where ai, i = 1, 2, ..., 5 correspond to the values of the conventional stability derivatives for

attached flow while bi and ci, i = 1, 2, ..., 5 are contributions to the corresponding stability

derivatives due to flow separation. All these constants are to be determined from wind

tunnel data.

Similar expressions can be derived for drag and pitch moment coefficients: CD and Cm.
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4.3 State-Space Representation

Using Eqs.(4.15) and (4.16), we can represent the dynamic equation (4.1) that governs the

state of unsteady flow separation in terms of the complementary state variable y(t). Using

this state and inputs (α, q) we can obtain the aerodynamic coefficients as outputs from the

above formulations.

Based on all these formulations, we propose the following state-space representation of

unsteady aerodynamics at high angles of attack:

τ1
dy

dt
+ y = y0(αeff )

αeff = α− τ2α̇ − τ3q(α− αs)

CD = CD0 + CDα(y)α+ CDq̂(y)q̂ + ∆2CD (4.18)

CL = CL0 + CLα(y)α+ CLq̂(y)q̂ + ∆2CL

Cm = Cm0 + Cmα(y)α+ Cmq̂(y)q̂+ ∆2Cm

where the complementary flow separation function y0(α) is given by Eq.(4.16), and all the

derivatives with respect to α and q̂ are quadratic polynominals of y.

In the above state-space model, the unknown parameters in the dynamic equation are

τ1, τ2, τ3, αs, σ. The unknown parameters in output equations are CD0, CL0, Cm0, and those

quadratic polynominal coefficients in the aerodynamic derivatives. If the assumption of

linear aerodynamic theory is used, the number of unknowns in determining each aerody-

namic coefficient is 7. This number of unknowns, however, will increase to 16 if the second

derivative terms are included. All these parameters are expected to be estimated from

selected wind tunnel data.



Chapter 5

Parameter Identification Method

The state-space model given in Eq. (4.18) is valid for both static and unsteady flow con-

ditions. The parameters in the model can be roughly divided into two groups. One group,

like αs, σ, determines the static characteristics of separation flow while the other group,

like τ1, τ2 and τ3, characterizes the dynamic properties of flow separation and reattachment.

In order to make the model a good representation of aerodynamic characteristics at high

angles of attack, we should use both static and unsteady wind tunnel data to identify these

unknown parameters.

The identification method used here is the minimum mean-square error approach. We first

define the the mean-square errors between the experimental data and model outputs as

follows.

In the static case, suppose that for a given sequence of the angle of attack: αi, i =

0, 1, 2, ..., l, the wind tunnel measurements of aerodynamic coefficients at these points are

{ĈD(αi), ĈL(αi), Ĉm(αi), i = 0, 1, 2, ..., l} (5.1)

Using model (4.18), the static aerodynamic coefficients at corresponding angle of attack
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for a set of assumed values of the unknown parameters can be obtained as:

{CD(αi), CL(αi), Cm(αi), i = 0, 1, 2, ..., l} (5.2)

In such a case, the mean-square error between static sequences (5.1) and (5.2) can be

defined as,

ε1 =
1

3
(εD1 + εL1 + εm1) (5.3)

where

εD1
∆
=

1

l + 1

l∑
i=0

[CD(αi)− ĈD(αi)]
2

εL1
∆
=

1

l + 1

l∑
i=0

[CL(αi) − ĈL(αi)]
2 (5.4)

εm1
∆
=

1

l + 1

l∑
i=0

[Cm(αi)− Ĉm(αi)]
2

Similarly, we can define the mean-square error between wind tunnel measurements and

dynamic responses of the model at unsteady flow conditions.

Suppose that for given time histories of inputs at separation flow conditions:

{α(t), q(t), 0 ≤ t ≤ T} (5.5)

the corresponding wind tunnel measurements of aerodynamic coefficient time histories at

sampling points are

{ĈD(tj), ĈL(tj), Ĉm(tj), j = 0, 1, 2, ..., n} (5.6)

where t0 = 0 < t1 < ... < tj < tj+1 < ... < tn = T .
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Using the input time histories (5.5), we can simulate the state-space model in Eq. (4.18)

for the assumed values of the unknown parameters in the model. The responses of the

outputs at the corresponding sampling points are expressed as,

{CD(tj), CL(tj), Cm(tj), j = 0, 1, 2, ..., n} (5.7)

The mean-square error between these two dynamic sequences are defined similarly as,

ε2 =
1

3
(εD2 + εL2 + εm2) (5.8)

where

εD2
∆
=

1

n + 1

n∑
j=0

[CD(tj)− ĈD(tj)]
2

εL2
∆
=

1

n + 1

n∑
j=0

[CL(tj)− ĈL(tj)]
2 (5.9)

εm2
∆
=

1

n+ 1

n∑
j=0

[Cm(tj)− Ĉm(tj)]
2

In order to make the static and dynamic responses of the model match the corresponding

wind tunnel data, we choose the unknown parameters in such a way that the sum of the

mean-square errors for steady and unsteady flow conditions is minimized:

ε = ε1 + ε2 (5.10)

where ε1 and ε2 are static and dynamic errors between experimental data and the proposed

model, defined in Eq. (5.3) and (5.8), respectively. Such parameters that produce the

minimum mean-square error are used as our identification results.



Chapter 6

Model Performance Validation

We are going to demonstrate the performance of the proposed model identified using wind

tunnel measurements. Before we start the identification procedure, we have something to

say about the identifiability of τ3 effects in the model (4.18).

In wind tunnel experiments, we generally can not separate the pitch rate from the variation

of angle of attack, that is, experiments are conducted at q(t) = α̇(t). In such a case, the

effects of τ3 may not be separable from those of τ2. We can show this result by the following.

Consider the argument αeff(t) in the driving function y0 in model (4.18). When q(t) = α̇(t),

we have,

αeff = α− τ2α̇− τ3q(α− αs)

= α− τ2α̇− τ3α̇(α − αs)

= α− [τ2 + τ3(α − αs)]α̇ (6.1)

= α− τ̂2α̇

where

τ̂2 = τ2 + τ3(α − αs) (6.2)
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In this case, the effective angle of attack in model (4.18) is actually of the form,

αeff = α− τ̂2α̇ (6.3)

This equation appears to be equivalent to Eq. (4.2) except that τ̂2 here is no longer a

constant but a linear function of angle of attack. This observation suggests that the pitch

rate effects enter the system in the same way as the variation of angle of attack. So using

such wind tunnel data, the τ3 effects may not be separable from those of τ2. We are going

to show this result in the following example.

6.1 Aerodynamic Model of an NACA 0015 Airfoil

In Chapter 3, we discussed the aerodynamic characteristics associated with the wind tunnel

data[18] for an NACA 0015 airfoil pitching up at constant rates. Here we are going to use

these data to identify the proposed model.

For this airfoil pitching up at constant rate, the input histories can be expressed as,

α(t) = α̇t, 0 ≤ α(t) ≤ 38o

q(t) = α̇ (6.4)

where α̇ is constant.

The wind tunnel measurements[18] of lift coefficient for the static and four dynamic cases

are shown as circle and square in Fig. 6.1, respectively. The wind tunnel data of drag and

pitch moment coefficients for one dynamic case are shown as triangle for drag and diamond

for pitch moment in Fig. 6.2.

Here we use the first derivative (linear) terms as representation of lift and pitch moment

coefficients. For drag coefficient, we include one α2 term.
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Using the parameter identification procedure mentioned above, we obtain the unknown

parameters of the proposed model in Eq. (4.18) as follows:

a. Parameters in Dynamic Equation

τ1 = 1.071t̂, τ2 = 6.781t̂

τ3 = 0.005t̂ (6.5)

αs = 18.391 deg, σ = 44.63

b. Expressions of Aerodynamic Coefficients

CL = −0.011 + CLα(y)α+ CLq̂(y)q̂

CD = 0.039 + CDα(y)α+ 2.748α2 + CDq̂(y)q̂ (6.6)

Cm = 0.073 + Cmα(y)α+ Cmq̂(y)q̂

where α is in radians while σ is in per radian. The aerodynamic derivatives are

CLα(y) = 3.443 − 3.124y + 1.377y2

CLq̂(y) = 0.749 + 99.850y − 101.728y2

CDα(y) = −0.179− 4.297y + 3.796y2

CDq̂(y) = −0.993 + 172.266y − 167.856y2 (6.7)

Cmα(y) = −0.014− 7.918y + 6.471y2

Cmq̂(y) = −3.120 + 113.937y − 78.021y2

Using the identification results given above, we can simulate the model for the flow con-

ditions of interest. The corresponding responses are ploted as solid lines in Figures 6.1

and 6.2, respectively. From these plots, one can see that the model responses match the

experimental data very well.



Yigang Fan Chapter 6. Model Performance Validation 123

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

static

α1

α2.

.

α1= 29.4 deg/s

α2= 52.2 deg/s

α3= 69.5 deg/s

α4= 87.2 deg/s

angle of attack  (degree)

lif
t c

oe
ff

ic
ie

nt
s

α3

.
α4

.

.

.

.

.

Figure 6.1: Static and dynamic lift coefficients of NACA 0015 airfoil
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Figure 6.2: Dynamic drag and pitch moment coefficients of NACA 0015 airfoil
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From the time constants given in Eq. (6.5), one can see that τ2 is nearly 7 times as big as

τ1. This result means that for unsteady flow over this airfoil, the delay in flow separation

and reattachment on the upper surface of the airfoil is a dominant phenomenon. The

aerodynamic transient process is very short compared with this delay. τ3 is very small

compared with τ1 and τ2. This result means that τ̂2 in Eq.(6.2), which defines the total

time delay of flow separation, is nearly independent of angle of attack. In this sense, the

pitch rate effects on the flow separation are not separable from those of variation of angle of

attack by using these data. We will neglect the τ3 term in the following discussions because

of the data we are using.

For the aerodynamic derivatives given in Eq.(6.7), the constant terms correspond to the

values of conventional stability derivatives for attached flow. One can see from Eq.(6.7) that

this constant is 3.443 for the lift coefficient, corresponding to the lift curve slope of an NACA

0015 airfoil for attached flow. This value matches the wind-tunnel experimental result at

low angles of attack as presented in Ref. [18]. At high angles of attack, however, where

separated flow is developed, the values of unsteady derivatives are no longer constant. It

depends on the complementary state variable y which is governed by a differential equation

driven by the time histories of the motion. This effect can result in strong dependencies

of the unsteady aerodynamic derivatives on the amplitude and frequency of the airfoil

oscillations.

The time histories of the complementary state variable y associated with the ramp motion

time histories given in Eq. (6.4) are plotted in Figure 6.3 from which one can see the

dynamic lags of the separation flows. The corresponding lift coefficient derivatives are

plotted as function of angle of attack for several pitch rates in Figure 6.4 for CLα(y) and

in Figure 6.5 for CLq̂(y). From the figures, one can view the dependencies of unsteady

aerodynamic derivatives on motion time histories.

Similar results can be shown for drag and pitch moment coefficients.
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Figure 6.3: Complementary state variables y of NACA 0015 airfoil
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6.2 Aerodynamic Model of a 70o Delta Wing

It is well known that vortical flow plays a dominant role in the high angle of attack char-

acteristics of modern aircraft. Since the flow field over a 70o delta wing is dominated by

the presence of a strong leading-edge vortex system, the study of its aerodynamic charac-

teristics can provide useful insights into those of an aircraft.

In Chapter 3, the wind tunnel data[30] and the associated aerodynamic characteristics were

discussed for a 70o flat delta wing oscillating in pitch about various mean angles of attack.

Here we will describe the unsteady aerodynamics associated with these unsteady data by

the proposed model.

The motion of the wing in this case can similarly be described by

α(t) = α0 + αAsinωt

α̇(t) = ωαAcosωt (6.8)

q(t) = α̇(t)

The experimental data include the static measurements of normal force coefficient for vari-

ous angles of attack and the dynamic measurements of steady-state normal force coefficient

when the wing is oscillated about various mean angles of attack from 22o to 37o. The am-

plitude is fixed at αA = 16o and the frequency at ω = 4.36 rad/sec. These measurements

are plotted in Fig. 6.4 as circle for static case and as square for the dynamic oscillation.

Using linear terms in the determination of aerodynamic coefficients in Eq. (4.18), we obtain

the following identification results:

a. Parameters in Dynamic Equation

τ1 = 17.32t̂ τ2 = 4.69t̂

αs = 42.91 deg σ = 15.01 (6.9)
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b. Normal Force Coefficient

CN = −0.010 + (2.422− 2.138y + 0.659y2)α

+(1.195 + 0.174y + 0.360y2)q̂ (6.10)

Because the pitch rate q(t) is equal to the variation of angle of attack α̇(t) in the oscillations,

the τ3 terms in Eq. (4.18) still comes out negligibly small. Therefore, it is not shown in

Eq.(6.9). Using these results, we can simulate the model. The responses of the model to

sinusoidal input (6.8) are plotted in Fig. 6.6 as solid lines. From the plots, we can see that

the model responses accurately match the experimental data.

Different from flow over an airfoil, one can see, from Eq. (6.9), that τ1 is approximately

4 times as big as τ2 for the flow over the delta wing. This observation suggests that the

transient properties are the dominant characteristics for vortex burst dynamics in this

flowfield.

Similarly, the constant terms of normal force coefficient derivatives in Eq.(6.10) correspond

to the values of conventional stability derivatives at low angles of attack. As angle of

attack increases, however, the complementary state variable y is no longer zero and these

aerodynamic derivatives will depend on the time histories of the motion. Figure 6.7 plots the

time histories of the complementary state variable associated with the current oscillatory

motions. One can see the hysteresis loops of this variable due to the dynamic lags of vortex

bursting. The corresponding normal force coefficient derivatives are plotted as function of

angle of attack for the current pitch oscillations in Figure 6.8 for CNα(y) and in Figure

6.9 for CN q̂(y). From the figures, one can view the dependencies of unsteady aerodynamic

derivatives on motion time histories.

From these examples, one can see that in spite of the differences in flow mechanisms over

airfoil and delta wing, the transient and time lag features of separation and vortex flows

can be well described by a first-order system.
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Figure 6.6: Normal force coefficients of 70o flat delta wing
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Figure 6.7: Complementary state variable y of 70o flat delta wing
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Figure 6.8: Normal force coefficient derivative CNα of 70o flat delta wing
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Figure 6.9: Normal force coefficient derivative CNq̂ of 70o flat delta wing
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6.3 Unsteady Aerodynamic Model for an Aircraft

Modern aircraft geometries consist of highly swept strakes, forebodies, and leading-edge

wing extensions which generate concentrated vortical flow fields similar to those of 70o

delta wing. In addition to the vortical fields, these aircraft can also incorporate moderately

swept wings and tail surfaces which create separation flows over the configuration. These

two types of flowfields can interact with each other. In such a hybrid flowfield, both the

separation and vortex burst phenomena exist. Since the dynamic properties of these two

phenomena can be described individually by state-space model (4.18), it is reasonable to

use this model as the simplest approximation for the full aircraft, that is, we can still use

the following first-order system to describe the characteristics of an aircraft:

τ1
dy

dt
+ y = y0(αeff )

αeff = α − τ2α̇ − τ3q(t)[α(t)− αs] (6.11)

Ca = Ca0 + Caα(y)α+ Caq̂(y)q̂ + ∆2Ca

where a = D,L, and m.

In order to test how well this model can do in describing the aerodynamic characteristics

of a full aircraft, we are going to identify the proposed model on the basis of the unsteady

wind tunnel measurements of the F-18 aircraft configurations discussed in Chapter 3.

We have two types of unsteady aerodynamic measurements. One is the harmonic oscillatory

data obtained for one F-18 configuration in Chapter 2, and the other is the aerodynamic

measurements in the ramp motions for another F-18 configuration. We will identify a model

based on the data for each configuration. Since the tests of the ramp maneuvers cover the

high angle of attack range, we first describe the associated aerodynamic characteristics

using proposed model. Then we will discuss the harmonic oscillatory maneuvers.
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6.3.1 Model Based on Ramp Maneuver Data

For the aircraft pitching at constant rate, the input time histories can be again written as:

α(t) = α̇t+ 5, 5o ≤ α(t) ≤ 75o

q(t) = α̇ (6.12)

where α̇ is constant.

The static and dynamic wind tunnel data associated with the constant pitch-rate ramp

motion in Ref. [30] are shown in Figures 6.10 and 6.11 for lift coefficients, in Figures 6.12

and 6.13 for drag coefficients, and in Figures 6.14 and 6.15 for pitch moment coefficients.

In these figures, the static data are plotted as circle while dynamic data are plotted as

square for positive pitch rates and triangle for negative pitch rates. All these data are to

be used in identification of the proposed model.

Including the second derivative terms in output equation, we obtain the following identifi-

cation results: a. Parameters in Dynamic Equation

τ1 = 14.755t̂, τ2 = 1.937t̂

αs = 36.644o, σ = 7.05 (6.13)

b. Expression of Aerodynamic Coefficients

CL = −0.037 + (5.075 + 1.615y − 3.839y2)α

+(−4.555 + 1.222y + 1.524y2)α2

+(−4.060 + 57.037y − 1.021y2)q̂ (6.14)

+(102.3− 2026.5y + 2388.4y2)q̂2

+(61.051 − 141.450y + 45.808y2)αq̂
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CD = 0.079 + (−0.239 + 5.880y − 3.774y2)α

+(1.710− 5.487y + 3.442y2)α2

+(−6.682 + 56.272y + 50.228y2)q̂ (6.15)

+(−177.619 + 460.195y + 880.022y2)q̂2

+(59.589 − 152.679y + 36.563y2)αq̂

Cm = −0.046 + (0.621 + 1.531y − 1.671y2)α

+(−2.188 + 2.097y − 0.547y2)α2

+(−15.358 + 82.546y − 25.891y2)q̂ (6.16)

+(9.419 + 1844.82y − 1178.75y2)q̂2

+(24.383− 155.510y + 105.108y2)αq̂

With the identification results given in Eqs. (6.13), (6.14), (6.15) and (6.16), we simulate

the system (6.11) with input time histories given in Eq.(6.12). The corresponding responses

are plotted as solid lines in Figures 6.10 through 6.15, respectively. From these plots, one

can see that the system responses match the experimental data very well.

From the above results, one can see that τ1 is approximately 7 times as big as τ2. This

result shows that in the unsteady flowfield around the aircraft with highly swept strakes,

forebodies, and leading-edge wing extensions, transient properties associated with vortex

burst dynamics are dominant effects in governing the unsteady aerodynamic characteristics

of the aircraft. τ3 still comes out negligibly small so as to be neglected.

In all the above, the identifiability of the parameters and the performance of the proposed

model have been demonstrated by using the wind tunnel measurements of an airfoil, a flat

delta wing and, finally, a realistic aircraft. The identification results show that within the
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framework of the proposed state-space model, it is possible to analyze complex unsteady

aerodynamics in high angle-of-attack regime for an aircraft.
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Figure 6.10: Lift coefficient of F-18 aircraft for positive pitch rates
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Figure 6.11: Lift coefficient of F-18 aircraft for negative pitch rates
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Figure 6.12: Drag coefficient of F-18 aircraft for positive pitch rates
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Figure 6.13: Drag coefficient of F-18 aircraft for negative pitch rates
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Figure 6.14: Pitch moment coefficient of F-18 aircraft for positive pitch rates
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Figure 6.15: Pitch moment coefficient of F-18 aircraft for negative pitch rates
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6.3.2 Model Based on Harmonic Oscillatory Maneuver Data

We obtained two types of harmonic oscillatory data in Chapters 2 and 3, one is oscillating

in pitch, and the other is oscillating in plunge. For the oscillatory maneuvers in pitch,

we have a large number of measurements in the angle of attack range of interest, and

the obtained results are consistent to those in previous tests. Therefore, these data have

relatively high fidelities. For the oscillatory maneuvers in plunge, however, we only tested

a few maneuvers. As we know from Chapter 3, some observations about the measurements

of these few maneuvers cannot be explained at this time, and also we are short of data to

further verify the aerodynamic characteristics associated with these observations. Therefore

we will focus on the pitch oscillation data in present unsteady aerodynamic modeling.

From the discussions in Chapter 3, one observed no significant hysteresis loops for the lift

and drag in these harmonic oscillations. These observations may suggest that, different

from the flowfields discussed above, the dynamic lags of the vortex and separated flows are

small in those harmonic oscillatory tests. However, one observed significant hysteresis loops

for the pitch moment in the oscillations. It was further observed that these hysteresis loops

are dependent on the amplitudes, the frequencies, and the mean angles of attack for given

tunnel speed in the oscillatory tests. The unsteady aerodynamic characteristics associated

with these loops were attributed to the effects of the α̇(t) and q(t). As we discussed

in Chapter 3, the characteristics of the tail lift responses in the oscillatory motions are

responsible for these hysteresis loops since the tail lift is the major contribution to the

pitch moment. The α̇(t) can produce the dynamic delay of the tail lift responses to the

change of the flight conditions while the pitch rate q(t) can change the tail angle of attack

instantaneously. The corresponding delay effects may be related to the time it takes the flow

to move from the C.G. of the aircraft to the tail. Therefore the associated flow mechanisms

are quite different from what we discussed in the previous examples.

In spite of the different flow mechanisms, we still use the same model structure in Eq.(6.11)
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to model the unsteady aerodynamic characteristics associated with these oscillatory ma-

neuvers. According to the above discussions, we will focus on the pitch moment only. Since

the flowfields are pretty much at quasi-steady flow conditons, we will neglect the relaxation

time constant τ1 to simplify the analysis. In this case, τ2 and τ3 may become time constants

associated with the delays of the tail lift responses to the change of the flight conditions,

and the state variable y(t) is just a shaping function for the unsteady flowfields of the

aircraft. Therefore, the model (6.11) reduces to,

y = y0[α− τ2α̇− τ3q(α− αs)]

Cm = Cm0 + Cmα(y)α+ Cmq̂(y)q̂ + ∆2Cm (6.17)

Here we use the static data and select two extreme sets of oscillatory data discussed in

Chapter 3 to identify the proposed model. One is set A4 in Table 3.1 and the other is set

C2 in Table 3.3, containing 4 maneuvers altogether. The tunnel speed for these maneuvers

is 67 ft/s, and thus the characteristics time can be computed as

t̂ =
c

2V
=

0.7857

2(67)
= 5.8634 × 10−3 (6.18)

On the basis of these data, the identification results are as following,

a. Parameters in State Equation

τ2 = 5.3382t̂, τ3 = 0.1705t̂

αs = 29.0383o, σ = 8.7204 (6.19)

b. Expression of Pitch Moment Coefficient

Cm = −0.0213 + (−0.2815 + 6.1048y + 1.7546y2)α

+(0.1153− 16.6258y + 6.8465y2)α2 (6.20)

+(−5.0994− 1.8078y + 50.1242y2)t̂q
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For the results as given in Eqs.(6.14) and (6.15), we are going to discuss some basic features

of the model in the following aspects.

1. Time Constants: τ2 and τ3

From the time constants as given in Eq.(6.19), one can see that τ2 is nearly 30 times as

big as τ3. Therefore, the delay effects due to the α̇ are large while the delay effects due to

the pitch rate q are small. This result is exactly what we expect since the α̇ produces the

delays of the tail lift responses to the angle of attack change because it takes time for the

flow to travel from the C.G. to the tail while the pitch rate can change the tail angle of

attack almost instantaneously.

2. Identification Accuracy

Using the results obtained, we can simulate the model using the the measured input time

histories. The responses of the model are plotted as solid lines in Figure 6.16 for maneuver

set A4 and in Figure 6.17 for maneuver set C2. The corresponding measurements of the

pitch moment coefficients are plotted as dashed lines in each Figure. From these plots, one

can see that the model responses match the experimental data very well.

3. An Example of Model Prediction Capability

Here we further compute the model responses to some other oscillatory maneuvers whose

experimental measurements were not included in estimating the model. Figure 6.18 plots

the model responses to maneuver set B4 picked from Table 3.2 and the corresponding

experimental data. From the plots, one can see the accuracy of the model in matching the

experimental data. Although we can not completely evaluate the aerodynamic prediction

capabilities of the model through a few simulations, this example already shows some good

features of the proposed model in predicting the aerodynamic characteristics.
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Figure 6.16: Model Responses and Measurements for Maneuver Set A4
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Figure 6.17: Model Responses and Measurements for Maneuver Set C2
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Figure 6.18: Model Responses and Measurements for Maneuver Set B4

4. Characteristics Time Scales

In Eqs.(6.19) and (6.20), we present the aerodynamic model in a form scaled by the charac-

teristics time t̂. Specifically, all the model parameters related to the motions are presented

in terms of the characteristics time t̂, including time constants: τ2 and τ3, and the aero-

dynamic derivative Cmq̂. The purpose is trying to model the tunnel speed effects on these

quantities, resembling the nondimensional analysis performed in Chapter 3. In the iden-

tification process, we estimated the model by using the experimental data with the same

characteristics time given in Eq.(6.18), and in the model performance validations as shown

in Figures 6.16, 6.17 and 6.18, all the model responses are computed for the oscillatory

maneuvers with the same characteristics time t̂. Here, we are going to investigate the

performance of this characteristics time modeling in predicting the aerodynamic character-

istics.
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We pick the maneuver set A5 in Table 3.1 and the maneuver set C3 in Table 3.3 for the

investigations. The tunnel speed for the oscillatory maneuvers in these sets is 95 ft/s, and

thus the associated characteristics time can be computed as

t̂ =
0.7857

2(95)
= 4.1353× 10−3 (6.21)

Substituting this new characteristics time into the aerodynamic model as given in Eqs.(6.19)

and (6.20), we compute the model responses to the measured input time histories for the

maneuvers in sets A5 and C3, respectively. In Figure 6.19, these obtained responses are

plotted as solid lines, and the corresponding aerodynamic measurements are plotted as

dashed lines for maneuvers in set A5 and as dashed-dotted lines for maneuvers in set C3.

From these plots, one can see that the model responses very well match the corresponding

experimental data. Therefore, the introduction of the characteristics time in the aero-

dynamic model includes the tunnel speed effects on the aerodynamic characteristics. The

ignorance of the characteristics time effects in the aerodynamic modeling can result in large

errors. This result can further be seen clearly through the following computations.

We re-compute the model responses to the maneuvers in sets A5 and C3, respectively. How-

ever, instead of using the characteristics time given in Eq.(6.21), we use the characteristics

time given in Eq.(6.18). The obtained model responses are plotted as solid lines in Figure

6.20 for maneuvers in set A5 and in Figure 6.21 for maneuvers in set C3. In the plots,

the corresponding experimental measurements are also shown as dashed lines. As one can

see, from these plots, that the errors between the model responses and the experimental

measurements are large. Therefore these characteristics time effects have to be included in

the aerodynamic model.
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Figure 6.19: Model Responses and Measurements for Maneuver Sets A5 and C3
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Figure 6.20: Unscaled Model Responses and Measurements for Maneuver for Maneuver Set
A5
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Figure 6.21: Unscaled Model Responses and Measurements for Maneuver for Maneuver Set
C3
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5. Improvement of Stability Derivative Approach

From the above discussions, one can see that the proposed aerodynamic model is very

compact in structure. It only involves a few parameters but has very good performance in

predicting the aerodynamic characteristics in the angle of attack range of current interest.

This model is certainly a significant improvement to the traditional stability derivative

modeling.

In the stability derivative approach, the aerodynamic coefficient is expressed as,

Cm = Cm0 + Cmαα + Cmq̂ t̂q (6.22)

and the aerodynamic derivatives are then determined using the in-phase and the out-of-

phase components of the experimental measurements for the oscillatory maneuvers by,

Cmα =
2

αAT

∫ T

0
Cm(t)sin(ωt)dt

Cmq̂ t̂ =
2

αAωT

∫ T

0
Cm(t)cos(ωt)dt (6.23)

where Cm(t) is the measurement of the aerodynamic coefficient time histories, and T is the

period of the oscillatory motion. The derivations and details of this approach are included

in Appendix A.

However, the values of the aerodynamic derivatives obtained are strongly dependent on the

amplitude and frequency of the aircraft oscillations. This fact makes this approach limit

its applications. As an illustration, Tables 6.1 and 6.2 show some of the computational

results of the out-of-phase derivatives Cmq̂ t̂ using different oscillatory data. As one can see,

from the tables, that the values of Cmq̂ t̂ are dependent on the amplitude, the frequency

and the mean angles of attack of the oscillations, and it is a nontrivial problem to ob-

tain a description for practical use based on these computational results. However, the

aerodynamic description proposed in this research model the aerodynamic derivatives as
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Table 6.1: Out-of-Phase Derivatives Using the Data for Amplitude αA = 5o

Frequency Mean AOA Amplitude Cmq̂ t̂
0.5 Hz 0o 5o -0.0292
0.5 Hz 12o 5o -0.0490
0.5 Hz 24o 5o -0.0557
1.0 Hz 0o 5o -0.0268
1.0 Hz 12o 5o -0.0415
1.0 Hz 24o 5o -0.0485

1.414 Hz 0o 5o -0.0255
1.414 Hz 12o 5o -0.0399
1.414 Hz 24o 5o -0.0443

functions of the state variable which is driven by the input time histories. The resulting

aerodynamic derivatives can be dependent on the the amplitude, the frequency, and the

mean angle of attack of the oscillation. From all the previous discussions, we can see that

the proposed model is doing a good job. It certainly improves the traditional stability

derivative approach.

The the model is still under investigation, however. Several aspects need to be addressed,

such as which parameters are dominant in the model, what is the minimum number of

parameters needed for a valid description, and what kind of unsteady wind tunnel data

should be used for the model identifications, and even the reform of the model structure.

These questions should be addressed in the future research.
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Table 6.2: Out-of-Phase Derivatives Using the Data for Amplitude αA = 10o

Frequency Mean AOA Amplitude Cmq̂ t̂
0.5 Hz 0o 10o -0.0309
0.5 Hz 12o 10o -0.0466
0.5 Hz 24o 10o -0.0566
1.0 Hz 0o 10o -0.0284
1.0 Hz 12o 10o -0.0404
1.0 Hz 24o 10o -0.0504

6.4 Summary

A state-space model is presented in this chapter to describe the unsteady aerodynamic

characteristics in high angle-of-attack regime. First-order differential equations are used

to govern the dynamics of separation and vortex flows. Taylor series expansion in terms

of input variables are used in determination of aerodynamic characteristics, resembling the

current approach of stability derivatives. The performance of the model has been validated

by wind tunnel data of an airfoil, a delta wing and a realistic aircraft. The results show

that within the framework of the proposed model, it is possible to obtain good agreement

with different unsteady wind tunnel data in high angle-of-attack regime.

The models developed in current research are still under investigation, but the results

obtained have demonstrated the potential of this method to model more complex unsteady

aerodynamic characteristics of a full aircraft at high angles of attack.



Chapter 7

Conclusions and Suggestions for
Future Work

7.1 DyPPiR Experiments and Data Reductions

Low-speed wind-tunnel experiments were conducted for a fighter aircraft configuration

through the harmonic oscillatory motions in the Virginia Tech Stability Wind Tunnel. The

model was sting-mounted on the DyPPiR through a six-component strain-gage balance.

Because the elastic deformation of the sting, however, the elastic modes of the sting enter

the system when the model is oscillating sinusoidally. To obtain the aerodynamic responses

to the pre-programmed input time histories, we use a multirate digital signal processing

approach to design a digital system for data reduction. First, we identify the frequencies

of the elastic modes of the sting by using Discrete Fourier Transform. Then we design the

sampling rate conversion system in digital domain to reduce the bandwidth of the sampled

data. In this resampling process, the effects of the noise and the sting modes with high

frequencies are removed from the data. Finally, we design Finite Impulse Response filters

with linear phase characteristics to reject the effects of the dominant mode of the sting.

After these operations in digital domain, we reject all the effects of the elastic modes of the

149



Yigang Fan Chapter 7. Conclusions and Suggestions 150

sting, and end up with the aerodynamic characteristics responses to the measured input

time histories. Following conclusions can be made for this digital system,

1. Digital signal processing is an effective approach for unsteady wind-tunnel data reduc-

tions when the maneuvers of interest are periodic motions whose frequencies lie far away

from the sting frequencies.

2. Sampling rate conversion system in digital domain is essential and important in the data

processing. It can be used to reduce the bandwidth of interest and achieve the low rate

without introducing distortion to the data, resulting in efficient filter designs.

3. Linear phase FIR filters are designed using Remez exchange algorithms in the data

reductions. Linear phase characteristics guarantee no phase distortion on the data while

the magnitude distortions are within the specified tolerances.

The following recommendations about the DyPPiR tests and the associated data reduction

for the future are,

1. A stiff sting structure is highly desirable.

2. Implementations of the sampling rate conversion system in the programmable digital

signal processing (DSP) chips are suggested and these DSP chips can be included in the

DyPPiR data acquisition systems.

3. Linear phase FIR filters can also be implemented in the DSP chips. In such a case, we

can implement the digital data reduction system in hardware, and read the aerodynamic

characteristics directly from the output of the DyPPiR data acquisition systems.
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7.2 Structures of Aerodynamic Model

A state-space model has been developed to describe the unsteady aerodynamic character-

istics up to the high angles of attack regime. A complementary flow separation variable is

introduced as the state of flow separation or vortex burst. A first-order differential equation

is used to govern the dynamics of flow separation or vortex bursting through this state vari-

able. Taylor series expansion in terms of the input variables are used in the determination

of aerodynamic characteristics, resembling the current approach of the stability derivatives.

However, these derivatives are no longer constant. They are dependent on the state vari-

able of flow separation or vortex burst. In this way, the changes in stability derivatives

with the angle of attack have been included dynamically. The performances of the model

have been validated by the wind-tunnel measurements of a NACA 0015 airfoil, a 70o delta

wing and two F-18 aircraft configurations. These results show that within the framework of

the proposed model, it is possible to obtain good agreement with different unsteady wind

tunnel data in high angle-of-attack regime. Based on these primary results on the model,

we have the following conclusions about the framework of the proposed model.

1. The introduced state equation very well characterizes the separation flows of an airfoil,

the vortex flows of a delta wing, or even the hybrid flows of separation and vortex flows

around a realistic aircraft.

2. For the dynamics of the flowfields that are governed by a first-order differential equation,

the pure time delays are the dominant characteristics for separation flows while the transient

properties are the dominant effects for vortex flows.

3. The expressions for aerodynamic coefficients using Taylor series expansions in terms

of the input variables are consistent with the current stability derivative approach. These

derivatives have further been modeled as quadratic polynominals of the state variable. The

associated errors have been proven to be bounded. The identification results show that
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these derivatives are dependent on the amplitudes and frequencies of aircraft oscillations.

4. Within the dynamic range the experimental data covers, the proposed model is iden-

tifiable in the sense that a unique optimal estimate of the model exist. But the obtained

model is not guaranteed to work outside the dynamic range mentioned.

The basic purpose in the current unsteady aerodynamic modeling up to the high angle of

attack region is to present a model with much flexibility in the analysis of the high angle

of attack unsteady aerodynamic characteristics. The results show that the proposed model

is very effective and comprehensive in the prediction of unsteady aerodynamics. They

also encourage the extension of the dynamic model to more detailed analysis of not only

the high angle of attack regime but of all flight situations which may be anticipated for

an aircraft during its preliminary design. The following suggestions are recommended for

further development of the model:

1. We have modeled the pitch rate effects on the state of the vortex and separation flows

associated with a time constant τ3. But in the current wind-tunnel tests, the pitch rate is

the same as the variations of the angle of attack. Therefore, the effects of the pitch rate

are not separable from those of the variations of the angle of attack. In the future, we need

the experimental data with the pitch rate different from the variation of angle of attack to

investigate the pitch rate effects on the state of the flowfields.

2. Currently, we are still short of the experimental data and also short of understanding

the flow physics of the unsteady aerodynamics. Also the model structure is still under

investigation. Thus, it does not seem to be sufficient to study the dominant parameters

in the model at the present time. As the model structure is further refined and the better

understanding of flow mechanisms is achieved, the dominance of the parameters in the

model should be investigated systematically.
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3. As we discussed, the dynamic properties of flow separation and vortex burst are dif-

ferent in nature. Flow separation is dominated mainly by time delay while vortex burst

is characterized mainly by transient properties. In a flowfield around an aircraft, where

both phenomena exist, lumping two different dynamic properties into one state variable

may not a good description. Some properties, such as interaction effects, may be lost. In

such a case, the state-space model with only one state variable may not be sufficient to

describe the dynamic properties of such complex flows. We recommend to define two state

variables for these hybrid flowfields, with one representing the nominal position of vortex

burst, and the other the nominal position of flow separation. Further development of the

model is expected.

4. As the research results mentioned above accumulate, the identifiability and uniqueness

of the model need to be studied systematically.
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Appendix A

In-Phase and Out-of-Phase
Derivatives

A.1 Stability Derivatives

As we discussed at the beginning, traditional stability derivative approach in formulation

of aerodynamic forces and moments acting on an aircraft in arbitrary motion is using the

linear terms in their Taylor series expansions. Let Ca be an aerodynamic coefficient where

a = L, D, or m, then it can be expressed as,

Ca(α, q̂) = Ca0 + Caαα+ Caq̂q̂ (A.1)

where Caα and Caq̂ are defined as

Caα = (
∂Ca
∂α

)ref , Caq̂ = (
∂Ca
∂q̂

)ref (A.2)

and the subscript ref indicates that the derivatives are evaluated at some reference point,

and q̂ = qt̂, where t̂ is defined in Eq.(3.7) in Chapter 3.

These derivatives are known as aerodynamic stability derivatives since the static stability

at the equilibrium can be determined by their signs and magnitudes. Based on this idea, a
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major fraction of the total effort in aerodynamic research in the past has been devoted to

the determination, by theoretical and experimental means, of the aerodynamic derivatives

needed for application to flight mechanics problems. This method for modeling aerody-

namic characteristics has been found to work extremely well for attached flows at low angles

of attack. Furthermore the addition of quadratic terms in the expansions, expressing the

changes in stability derivatives, can extend the useful range of flight conditions of practical

applications. Including the quadratic terms in the expansions, we can express Ca as,

Ca(α, q̂) = Ca0 + Caαα + Caq̂q̂ +
1

2
(Caα2α2 + 2Caαq̂αq̂ + Caq̂2 q̂2) (A.3)

where Caα and Caq̂ are still defined in Eq.(A.2) and the other derivatives are defined as

following,

Caα2 = (
∂2Ca
∂α2

)ref , Caαq̂ = (
∂2Ca
∂α∂q̂

)ref , Caq̂2 = (
∂2Ca
∂q̂2

)ref (A.4)

Differentiating representation (A.3) with respect to α and q̂, respectively, we obtain the

following

∂Ca
∂α

= Caα + Caα2α+ Caαq̂q̂

∂Ca
∂q̂

= Caq̂ + Caαq̂α+ Caq̂2 q̂ (A.5)

From Eq.(A.5), one can see that unlike the case of using the linear representation (A.1), the

derivatives of Ca with respect to α and q̂ are no longer constant. They become dependent

on the angle of attack α and pitch rate q̂.

In above formulations, using either linear or quadratic aerodynamics, it is assumed that

all the coefficients in the expansions are constants. On the basis of this assumption, the

experimental data in harmonic oscillatory tests can be used to compute these derivatives,

resulting the in-phase and the out-of-phase derivatives.
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A.2 Determination of Stability Derivatives

This approach in determining certain stability derivatives, or contributions of stability

derivatives uses the measurements of in-phase and out-of-phase components of aerodynamic

forces and moments corresponding to the harmonic sinusoidal pitch, yaw, or roll motions.

Here our purpose is to illustrate the basic principle of this approach. Therefore we will

discuss only the pitch motion. For the oscillatory motion in pitch with mean angle of attack

α0, amplitude αA and frequency ω, the time histories of angle of attack and pitch rate are

given in Eq.(2.1).

A.2.1 Linear Aerodynamics Solution

If the linear representation (A.1) is used, the lift coefficient time history corresponding to

the harmonic oscillatory motion in Eq.(2.1) is,

Ca(t) = Ca0 + Caαα0 + CaααAsin(ωt) + Caq̂q̂maxcos(ωt) (A.6)

Here Ca(t) is the output signal of an aerodynamic coefficient which can be obtained from

wind-tunnel measurements for the harmonic oscillatory motion in Eq.(2.1). In such a case,

the in-phase and out-of-phase output signals can be generated by multiplying Ca(t) by

sin(ωt) and cos(ωt), respectively.

Sin(t) = Ca(t)sin(ωt)

Sout(t) = Ca(t)cos(ωt) (A.7)

Using Eq. (A.6), the in-phase and out-of-phase output signals can be expressed in terms

of aerodynamic derivatives as,
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Sin(t) = (Ca0 + Caαα0)sin(ωt) + CaααAsin
2(ωt) + Caq̂q̂maxcos(ωt)sin(ωt)

Sout(t) = (Ca0 + Caαα0)cos(ωt) + CaααAsin(ωt)cos(ωt) + Caq̂q̂maxcos
2(ωt) (A.8)

From Eq. (A.8), one can see that the in-phase and out-of-phase output signals are peri-

odic. In order to extract the information about the aerodynamic characteristics from these

signals, we look at the average values of these signals over one period.

Define the in-phase and out-of-phase aerodynamic components as the average values of the

corresponding in-phase and out-of-phase signals, that is,

S̄in =
1

T

∫ T

0
Sin(t)dt

S̄out =
1

T

∫ T

0
Sout(t)dt (A.9)

where T = 2π/ω is the time of a period.

From this definition and by using Eq. (A.8), the in-phase and out-of-phase aerodynamic

components can be evaluated through the following integrations,

S̄in =
1

T
{
∫ T

0
(Ca0 + Caαα0)sin(ωt)dt+

∫ T

0
CaααAsin

2(ωt)dt+∫ T

0
Caq̂q̂maxcos(ωt)sin(ωt)dt}

S̄out =
1

T
{
∫ T

0
(Ca0 + Caαα0)cos(ωt)dt+

∫ T

0
CaααAsin(ωt)cos(ωt)dt+ (A.10)∫ T

0
Caq̂q̂maxcos

2(ωt)dt}

Since Caα and Caq̂ are assumed constant, the integrals on the right hand sides of Eq.(A.10)

can be evaluated as the following,
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∫ T

0
sin(ωt)dt = 0,

∫ T

0
cos(ωt)dt = 0∫ T

0
sin(ωt)cos(ωt)dt = 0 (A.11)∫ T

0
sin2(ωt)dt =

∫ T

0
cos2(ωt)dt =

T

2

Substituting these results into Eq.(A.10), we can express the aerodynamic derivatives Caα

and Caq̂ in terms of the in-phase and out-of-phase aerodynamic components, respectively,

as

Caα =
2

αA
S̄in =

2

αAT

∫ T

0
Ca(t)sin(ωt)dt

Caq̂ =
2

q̂max
S̄out =

2

q̂maxT

∫ T

0
Ca(t)cos(ωt)dt (A.12)

This expression provides a basis for determining the aerodynamic derivatives by experi-

mental means. If we oscillate the aircraft according to the motion time histories given in

Eq.(2.1) and compute the in-phase and out-of-phase aerodynamic components through the

measurements of the corresponding in-phase and out-of-phase aerodynamic signals, then

the aerodynamic derivatives can be obtained directly by Eq. (A.12). This result is obtained

under the assumptions of linear aerodynamics (A.1) and constant derivative coefficients.

A.2.2 Nonlinear Aerodynamics Solution

If nonlinear representation (A.3) is used, the aerodynamic coefficient time history can then

be obtained by substituting Eq.(2.1) into Eq.(A.3) as follows,

Ca(t) = Ca0 + Caαα0 +
1

2
Caα2α0

2 +

(Caα + Caα2α0)αAsin(ωt) + (Caq̂ + Caαq̂α0)q̂maxcos(ωt) + (A.13)

1

2
[Caα2αA

2sin2(ωt) + 2Caαq̂αAq̂maxsin(ωt)cos(ωt) + Caq̂2 q̂2
maxcos

2(ωt)]
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The in-phase and out-of-phase aerodynamic components can still be defined as,

S̄in =
1

T

∫ T

0
Ca(t)sin(ωt)dt

S̄out =
1

T

∫ T

0
Ca(t)cos(ωt)dt (A.14)

Through Eq.(A.13), noting Eq.(A.11) and the following integrals,

∫ T

0
sin3(ωt)dt =

∫ T

0
cos3(ωt)dt = 0∫ T

0
sin2(ωt)cos(ωt)dt =

∫ T

0
sin(ωt)cos2(ωt)dt = 0 (A.15)

we then obtain,

Caα + Caα2α0 =
2

αA
S̄in

=
2

αAT

∫ T

0
Ca(t)sin(ωt)dt

Caq̂ + Caαq̂α0 =
2

q̂max
S̄out (A.16)

=
2

q̂maxT

∫ T

0
Ca(t)cos(ωt)dt

Comparing Eq.(A.16) with Eq.(A.12), one can see that when the nonlinear aerodynamic

representations are used, the in-phase and out-of-phase aerodynamic components as defined

in Eq.(A.14), scaled by half the amplitudes will not be equal to Caα or Caq̂ directly if the

mean angle of attack α0 is nonzero. High order derivative terms will be included. Actually,

when the nonlinear aerodynamic representations are used, the derivatives of aerodynamic

coefficient with respect to α and q̂ are no longer constant. They are dependent on the angle

of attack and pitch rate time histories as indicated in Eq.(A.5).

Substituting the angle of attack and pitch rate time histories given in Eq.(2.1) into Eq.(A.5),

we obtain the corresponding dynamic oscillatory derivative time histories as follows,
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∂Ca
∂α

= Caα + Caα2α0 + Caα2αAsin(ωt) + Caαq̂q̂maxcos(ωt)

∂Ca
∂q̂

= Caq̂ + Caαq̂α0 + Caαq̂αAsin(ωt) + Caq̂2 q̂maxcos(ωt) (A.17)

These dynamic derivatives are also periodic. Their average values in a period are given as,

(
∂Ca
∂α

)ave =
1

T

∫ T

0

∂Ca
∂α

dt = Caα + Caα2α0

(
∂Ca
∂q̂

)ave =
1

T

∫ T

0

∂Ca
∂q̂

dt = Caq̂ + Caαq̂α0 (A.18)

As one can see from Eqs.(A.16) and (A.18), the in-phase and out-of-phase aerodynamic

components scaled by half the amplitudes are actually equal to the average values of the

dynamic oscillatory derivatives.

Using the in-phase and out-of-phase aerodynamic components discussed above, we can

determine the following stability derivatives,

Caα, Caq̂, Caα2, Caαq̂ (A.19)

through the following procedures if the aerodynamic derivative coefficients are strictly

constants.

(1) For the oscillatory motion about zero mean angle of attack: α0 = 0, we compute

the in-phase and out-of-phase aerodynamic components as defined in Eq.(A.14) from the

measurements. Then scaling these two components by half the amplitudes, we obtain Caα

and Caq̂, respectively.

(2) For the oscillatory motion about nonzero mean angle of attack: α0 6= 0, we compute the

in-phase and out-of-phase aerodynamic components from the corresponding measurements.
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Then we can solve Eq.(A.16) for Caα2 and Caαq̂ as,

Caα2 =
1

α0
[

2

αA
S̄in − Caα]

Caαq̂ =
1

α0
[

2

q̂max
S̄out − Caq̂] (A.20)

Note that the results obtained here are independent of the amplitude and the frequency

of the oscillations. However, it has been observed[13] that the results obtained from the

tests are dependent on the amplitude and the frequency of the oscillations. This obser-

vation implies that the aerodynamic derivative coefficients in Eqs.(A.1) and (A.3) are not

constants.

A.3 Analysis of In-phase and Out-of-phase Deriva-

tives

In above discussions, a major assumption is the aerodynamic derivative coefficients are

constants. This assumption implies a static aerodynamic system, i.e., the past time histories

of flight conditions have no effects on the current aerodynamic forces and moments. This

assumption, however, is not valid in general. The past time histories of motion have

significant effects on the current aerodynamic forces and moments, especially at high angles

of attack, where the separated and vortex flows are developed. In the state space model of

unsteady aerodynamics developed in Chapter 4, the Taylor series expansions are still used

to formulate the unsteady aerodynamics, but all the aerodynamic derivatives are no longer

constant. They depend on the motion time histories through the complementary state

variable. In such a case, the in-phase and out-of-phase aerodynamic components as defined

above can still be measured and computed but they may not provide as much information

of aerodynamic characteristics as we discussed above. Let’s illustrate this result through

the following example.
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It is assumed here that the aerodynamic coefficient is approximated by the linear terms in

its Taylor series expansions, but instead of being constant, the aerodynamic derivatives are

now functions of the complementary state variable y(t), that is,

Ca = Ca0 + Caα(y)α+ Caq̂(y)q̂ (A.21)

where y(t) is governed by a first order differential equation driven by the motion time

histories.

In this case, the in-phase and out-of-phase aerodynamic components can still be defined

and represented by Eqs.(A.9) and (A.10), respectively, but since the aerodynamic deriva-

tives Caα(y) and Caq̂(y) become dependent on the complementary state variable y(t), the

associated integrals in Eq.(A.10) can not be evaluated explicitly. In this case, the in-phase

and out-of-phase aerodynamic components may not provide a complete description of the

unsteady aerodynamic characteristics. This result can be shown through the following

analyses.

For the in-phase aerodynamic component S̄in, Eq.(A.10) gives

S̄in =
1

T
{
∫ T

0
[Ca0 + Caα(y)α0]sin(ωt)dt+

∫ T

0
Caα(y)αAsin

2(ωt)dt+∫ T

0
Caq̂(y)q̂maxcos(ωt)sin(ωt)dt} (A.22)

Since sin2(ωt) does not change sign on [0, T ], the Weighted Mean Value Theorem for

integrals can be used to evaluate the second integral in Eq.(A.22) as,

1

T

∫ T

0
Caα(y)αAsin

2(ωt)dt = Caα(ξ1)αA
1

T

∫ T

0
sin2(ωt)dt

=
1

2
Caα(ξ1)αA (A.23)

where ξ1 is a value of y(t) at some time instant, which depends on input amplitude αA and

frequency ω in general.
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One can see, from Eq.(A.23), that Caα(ξ1) is actually the weighted Mean Value of Caα(y)

in a period and this value is generally function of the input amplitude and frequency. We

define

Caα(αA, ω)
∆
=

∫ T
0 Caα(y)sin2(ωt)dt∫ T

0 sin2(ωt)dt
(A.24)

Thus, the in-phase aerodynamic component S̄in can be expressed as

S̄in =
1

2
Caα(αA, ω)αA + ε1(αA, α0, ω) (A.25)

where

ε1(αA, α0, ω) =
1

T
{
∫ T

0
[Ca0 + Caα(y)α0]sin(ωt)dt+

∫ T

0
Caq̂(y)q̂maxcos(ωt)sin(ωt)dt}

=
1

T

∫ T

0
[Caα(y)α0 + Caq̂(y)q̂maxcos(ωt)]sin(ωt)dt (A.26)

and ε1(αA, α0, ω) is negligible if the aerodynamic derivatives Caα(y) and Caq̂(y) are close

to constants.

Similarly, the out-of-phase aerodynamic component S̄out can be expressed as,

S̄out =
1

2
Caq̂(αA, ω)q̂max + ε2(αA, α0, ω) (A.27)

where

Caq̂(αA, ω)
∆
=

∫ T
0 Caα(y)cos2(ωt)dt∫ T

0 cos2(ωt)dt

ε2(αA, α0, ω)
∆
=

1

T

∫ T

0
Caα(y)[α0 + αAsin(ωt)]cos(ωt)dt (A.28)

From Eqs.(A.25) and (A.27), we can see that the in-phase and out-of-phase aerodynamic

components roughly give the estimations of the Weighted Mean Values of the aerodynamic
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Table A.1: Oscillatory motion around zero mean angle of attack (α0 = 0o)

Ĉaα ω̂1 ω̂2 Ĉaq̂ ω̂1 ω̂2

αA = 5o 4.6168 4.6234 2.3088 3.1351
αA = 10o 4.6330 4.6385 2.5299 3.4086

Table A.2: Oscillatory motion around 20o mean angle of attack (α0 = 20o)

Ĉaα ω̂1 ω̂2 Ĉaq̂ ω̂1 ω̂2

αA = 5o 2.4855 2.4128 14.6354 16.2924
αA = 10o 2.4521 2.4058 16.1935 19.6091
αA = 20o 2.3354 2.4229 21.3063 28.2020

derivativesCaα and Caq̂ in a period if the residual terms, ε1 and ε2, are negligible. These two

Weighted Mean Values can depend on the amplitude and the frequency of the oscillations.

In such a case, we may not be able to obtain much information of unsteady aerodynamic

characteristics just from the in-phase and out-of-phase aerodynamic components.

A.4 Simulation Results

In order to illustrate the above discussions about the in-phase and out-of-phase aerody-

namic components, we simulate the state-space model of the F-18 aircraft obtained as

Eqs.(6.13) and (6.14) in Chapter 6 for harmonic oscillatory motions and compute the in-

phase and out-of-phase aerodynamic components for lift coefficient. Then we scale these

computed in-phase and out-of-phase components as,

ĈLα =
2

αA
S̄in

ĈLq̂ =
2

q̂max
S̄out (A.29)

We compute the results discussed above for the oscillatory motion with two frequencies,

two mean angles of attack, and three amplitudes. Table A.1 lists the computed results for
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zero mean angle of attack while Table A.2 lists the results for 20o mean angle of attack. In

Tables A.1 and A.2, ω̂1 = 0.0542 and ω̂2 = 0.1084 are corresponding reduced frequencies.

From Tables A.1 and A.2, one can see that the scaled in-phase and out-of-phase aero-

dynamic components depend on the amplitudes, the frequencies, and the mean angles of

attack of the oscillations. This result occurs because the computed values as shown in the

tables are the weighted values of the time histries of the corresponding derivatives. These

weighted values are not constant for different oscillatory motions.
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