## A Modeling Framework for Evaluating Economic Impacts of APHIS Import Regulations

David Orden, Everett Peterson and Caesar Cororaton

Presented at USDA/APHIS
Policy Analysis and Development
September 27, 2012



#### Outline

- Economics in Regulatory Decision Making
- Model Framework
- Fitting the Model to An Empirical Study: Case of the U.S. Beef Market



## **Economics in Regulatory Decisions**

- Why does economics enter into USDA regulatory decisions by APHIS and other agencies?
  - Assessment of benefits and costs
  - International commitments and obligations
  - The political process



## The APHIS/PAD-VT Project

- Origins in the avocado case, mid 1990s-2007
- Key part of a multi-dimensional VT effort with USDA (APHIS, CREES, ERS, NIFA)
- Development of an economic simulation model as a tool to support regulatory decision making
- Applications for model development, training and exante impact assessment (prior to specific regulatory processes)
  - Poultry, apples, citrus, beef



#### General Model Framework

- Applicable to diverse regulatory options
  - New market access
  - Origin, destination or seasonal restrictions
  - Systems approaches and other compliance requirements
- Incorporate different market situations
  - Model demand and supply in key countries/regions
    - Single exporter, 2 importers (US, ROW)
    - Multiple exporters, 2 importers
    - Multiple exporters and importers (world market)



#### General Framework: Continued

- Incorporate cost of compliance
  - Could affect supply of exporter facing regulatory change
- Could incorporate pest risk
  - If zero pest risk, not needed
  - If risk information available, it can be incorporated
    - Peterson and Orden (American Journal of Agricultural Economics) show the importance of maintaining a systems approach for avocados after removal of seasonal and geographic restrictions



#### Illustration of General Framework

- 4 different countries/regions
- Two demand regions
  - Region 1 (US) implementing regulatory change
  - Region 2 (e.g., ROW) not changing policy
- Two net exporters
  - Region 3: Exporter deemed free of pest or pathogen
  - Region 4: Exporter facing regulatory change in 1



## Demand in Regions 1 and 2

- Derived from
  - Utility function for representative consumer
  - Allows for possible product differentiation
- General notation:

$$Q_{ij}^{D} = D_{ij}(p_{1j}, p_{2j}, p_{3j}, p_{4j}); \forall i = 1,..., 4 \text{ and } j = 1(US), 2(ROW)$$

- Own-price effects are negative
- All varieties are substitutes



## Supply in Regions 1 and 2

General notation:

$$US: Q_{1j}^S = S_{1j}(p_{11} - m_{11}, p_{12} - m_{12}) \ j = 1(US), 2(ROW)$$

$$ROW: Q_{2j}^S = S_{2j}(p_{21} - m_{21}, p_{22} - m_{22}) \ j = 1(US), 2(ROW)$$

- Own-price effects are positive
- Cross-price effects are negative substitution between markets
- Could incorporate pest risk for Region 1



### Net Export Supply Functions

Region 3:

$$Q_{3j}^{S} = ES_{3j}(p_{31} - m_{31}, p_{32} - m_{32}) j = 1(US), 2(ROW)$$

- Use excess supply functions
- Region 4:

$$Q_{4j}^{S} = ES_{4j} \left( p_{41} - m_{41}, p_{42} - m_{42}, CC_{4j} \right) j = 1(US), 2(ROW)$$

 Cost of compliance (CC) has negative effect on export supply



## Market Clearing Conditions

Because of assumption of differentiated products:

$$Q_{ij}^D = Q_{ij}^S \ \forall i,j$$

Endogenous variables:

$$Q_{ij}^{D}, Q_{ij}^{S}, p_1, p_2, p_3, p_4$$

Exogenous variables:

$$CC_{4j}, m_1, m_2, m_3, \text{ and } m_4$$

Other economic variables held constant



### Data Requirements

- Quantity of each variety consumed in each demand region
- Price paid for each variety in each demand region
- Net prices received by producers in each supply region
- Estimate of compliance costs (when available)



### Model Implementation

- Need a specific functional form for each demand and supply function
- Key parameters: demand and supply elasticities
- Choice of functional form
  - Prefer functions that are parsimonious in number of parameters
  - Common choices for supply and demand



#### Problem with CES Demand Function

 Demand function will never equal zero (e.g. intersect axis) if price is finite





## Why is This Important?

- May need to assess the impact of replacing an import ban with a different regulatory option
- Quantity consumed from supply region facing a ban initially would equal zero in the demand region imposing the ban
- Problem with CES:
  - Cannot move from zero consumption initially to positive consumption after removal of ban without making ad hoc changes to parameters of the utility function



#### Solution?

Trans-log expenditure function:

$$\ln e_j(p) = \alpha_{0j} + \sum_{i=1}^{N_T} \alpha_{ij} \ln p_{ij} + \frac{1}{2} \sum_{i=1}^{N_T} \sum_{k=1}^{N_T} \gamma_{ikj} \ln p_{ij} \ln p_{kj}$$

Demand function for variety i in demand region j:

$$s_{ij} = \alpha_{ij} + \sum_{k=1}^{N_T} \gamma_{ikj} \ln p_{kj}$$

Reservation price



## Implementing Trans-log

- How to deal with large number of parameters?
- Bergin and Feenstra
  - All cross-price effects are equal  $(\gamma_{iki} = \gamma_i)$
  - Same as CES utility function
- Choosing parameters if all varieties available
  - $\gamma_i$  chosen to replicate one own-price demand elasticity
  - $\alpha_{ii}$  chosen to match observed budget shares
  - $\alpha_{0i}$  chosen to match observed expenditure on all goods



#### What if All Varieties Not Available?

- Will need to determine value of reservation price for unavailable variety
- Consider two available and one unavailable varieties:

$$s_{1} = \alpha_{1} - 2\gamma \ln p_{1} + \gamma \ln p_{2} + \gamma \ln p_{3}$$

$$s_{2} = \alpha_{2} + \gamma \ln p_{1} - 2\gamma \ln p_{2} + \gamma \ln p_{3}$$

$$0 = \alpha_{3} + \gamma \ln p_{1} + \gamma \ln p_{2} - 2\gamma \ln p_{3}$$

- Imposing linear homogeneity:  $\alpha_3 = 1 \alpha_1 \alpha_2$
- 3 equations in 3 unknowns, but no unique solution



## Solution to Indeterminacy?

- Indentify available variety that would be close substitute in demand with unavailable variety
  - Countries in close proximity?
- Assumption
  - Reservation price for unavailable variety is equal to a similar available variety
- If reservation price exceeds forecasted post-entry price for variety that is initially unavailable, entry will occur



## Case Study of the U.S. Beef Market

#### U.S. Beef Production, Exports and Imports





### U.S. Beef Model Database

(fresh beef)

|        |                                                       | U.S. import share, % |
|--------|-------------------------------------------------------|----------------------|
| HS-6   | Description                                           | ave. 2006-2010       |
| 020110 | Bovine Carcasses And Half Carcasses, Fresh Or Chilled | 0.45                 |
| 020120 | Bovine Cuts Bone, Fresh Or Chilled                    | 3.97                 |
| 020130 | Bovine Cuts Boneless, Fresh Or Chilled                | 36.24                |
| 020210 | Bovine Carcasses And Half Carcasses, Frozen           | 0.03                 |
| 020220 | Bovine Cuts Bone, Frozen                              | 0.47                 |
| 020230 | Bovine Cuts Boneless, Frozen                          | 58.84                |
|        | Total                                                 | 100.00               |



## Sources of U.S. Fresh Beef Imports, ave. 2006-2010 (mil kg)





## Fresh Beef Exports, ave. 2006-2010 (mil kg)





## U.S. Production of Cuts and Ground Beef, ave. 2006-2010 (%)



"National Comprehensive Boxed Beef Cut" of USDA/AMS contains weekly data on U.S. beef production of the following types: Prime, Branded, Choice, Select and Ungraded (grinds and trims)



## Types of U.S. Beef Imports, ave. 2006-2010 (%)



USDA/AMS also publishes weekly data on beef imports from various countries in the following categories: Ground, Miscellaneous fresh, Manufacturing (beef trimmings for processing), Cuts, Head/Check meat and Edible Organs



#### Structure of the U.S. Beef Simulation Model





## Recent Regulatory Assessments on South American Beef

- Brazil
  - In 2007, OIE declared Santa Catarina as FMD-free without vaccination (2% of Brazilian beef production)
  - In 2010, USDA/APHIS risk evaluation indicated the state as FMD-free
- Argentina
  - In 2007, USDA/APHIS proposed to recognize the province of Patagonia as FMD-free without vaccination (2% of Argentinean beef production)
- To date there have not been any regulatory changes proposed to allow imports of beef from Brazil or Argentina into the U.S.
- On August 30, 2012 Argentina requested WTO dispute settlement consultations on the U.S. import restrictions for beef meat and other products of animal origin



# Baseline Wholesale and Producer Prices, (\$/kg)

|                         | Wholesale | Producer     |
|-------------------------|-----------|--------------|
|                         | price     | price        |
| Composite price in U.S. | 5.08      | <del>-</del> |
| Beef cuts               | 5.38      |              |
| Ground Beef             | 4.71      |              |
| Beef Cuts               | 5.38      |              |
| U.S. Produced           | 5.47      | 4.48         |
| Imports                 |           |              |
| Canada                  | 3.31      | 3.20         |
| Australia               | 3.97      | 2.90         |
| New Zealand             | 3.63      | 2.33         |
| Uruguay                 | 3.30      | 2.10         |
| Nicaragua               | 3.31      | 2.60         |
| Mexico                  | 5.65      | 2.75         |
| Others                  | 3.52      | 2.14         |
| Brazil                  | _         | 1.95         |
| Argentina               | _         | 1.87         |
| For beef processing     | 4.56      |              |
| U.S. Produced           | 4.80      | 3.96         |
| Imports                 |           |              |
| Canada                  | 2.92      | 2.82         |
| Australia               | 3.47      | 2.56         |
| New Zealand             | 3.17      | 2.06         |
| Uruguay                 | 2.88      | 1.85         |
| Nicaragua               | 2.90      | 2.29         |
| Mexico                  | 4.89      | 2.43         |
| Others                  | 3.07      | 1.98         |
| Brazil                  | _         | 1.72         |
| Argentina               |           | 1.65         |



## Estimated Entry and Reservation Prices of Brazilian and Argentinean Beef, \$/kg







### U.S. Beef Tariff Rate Quotas (TRQs)

- In-quota tariff rate: 4.4 cents/kg
- Out-of-quota tariff rate: 26.4%
- Quota limits on non-NAFTA fresh beef imports

| Countries                | Beef quota limit, mil. kg |
|--------------------------|---------------------------|
| Canada                   | No limit                  |
| Mexico                   | No limit                  |
| Australia                | 378.2                     |
| New Zealand              | 213.4                     |
| Japan                    | 0.2                       |
| Argentina                | 20.0                      |
| Uruguay                  | 20.0                      |
| Other countries or areas | 64.8                      |

Source: USITC Harmonized Tariff Schedule of the U.S. (2011)



## Insights

- About 10% of U.S. beef production is exported and a similar percentage of U.S. beef consumption is imported
- Two major beef exporters from South America are Brazil and Argentina, but there are no fresh beef imports from these countries into the U.S. because of FMD concerns
- Recent regulatory assessments on South American beef could lead to regulatory changes that allow limited entry of beef from Brazil and Argentina
- Because of prohibitive TRQs, a beef import surge from Brazil and/or Argentina is unlikely
- We have developed a proto-type model that can be adapted and utilized to evaluate the economic impacts of any changes proposed to U.S. import regulations for beef

