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PREFACE 

The term ''multicomponent mass transport," as used here re­
fers to those physical processes whereby molecular species in a mix­
ture are caused to move relative to one another. By such processes 
a change in composition can be brought about. 

For example, consider a sample of water containing a pollu­
tant, say a dissolved pesticide. Suppose that a portion of this aque­
ous solution is forced through a suitable porous membrane by the 
use of pressure. In general, the membrane is more easily pene­
trated by the small water molecules than by the larger molecules 
of pesticide. Thus, the effluent from the low pressure side of the 
membrane will contain a very much reduced pesticide concentra­
tion. Therefore, it is possible to extract potable water from a con­
taminated source through use of a pressure difference and a suit­
able membrane. The rate and efficiency of this and similar pro­
cesses is determined by the rates of mass transfer across a multi­
component system consisting of water, pesticide, and the mem­
brane matrix. It is to the quantitative prediction of the rates and 
efficiencies of such multicomponent mass transfer operations that 
this work is addressed. 

Processes involving such multicomponent mass transport are 
found .throughout the water resource field. For example, the kin­
etics and efficiency of membrane desalination processes are gov­
erned by rates of mass transport. Similar membrane processes have 
been proposed for use in contaminate removal from a wide variety 
of industrial waste disposal streams. Another example are those 
processes in which rates of oxygen transfer into natural bodies of 
water is an important parameter in pollution control. 

This project has been concerned with mass transport in aque­
ous and membrane systems. The objective has been to develop the 
underlying theory and to propose and test practical, quantitative 
models for the rates of mass transport in such systems. The quan­
titative information developed should prove invaluable in the en­
gineering and control of pollution control processes. 

William R. Walker 
Director 
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MULTICOMPONENT MASS TRANSPORT 
IN AQUEOUS AND MEMBRANE 

SYSTEMS 

Project Objectives 

The basic objective of this study has been to develop and crit­
ically test models for multicomponent mass transport in aqueous 
and membrane systems. More specifically, this basic aim has been 
pursued through the following set of sub-objectives: 

(1) Selecting a set of aqueous systems for detailed study 
followed by a comprehensive literature review to collect all pertin­
ent data for the selected systems. 

(2) Measuring multicomponent mass transport data in 
a selP-cted system over a wide range of compositions. 

(3) Developing a general mathematical model for multi­
component mass transport 

( 4) Obhining optimum parameters for the mass trans­
port models developed in (3). 

(5) Determining whether the effective water of hydra­
tion of solutes in aqueous solutions can be reasonably determined 
as that value giving the best fit of the experimental transport d·ata. 

Summary of Research Procedures 

System Selection and Literature Review 

The transport phenomena selected for study were diffusion, 
electrical conductivity, and transport number. The systems selected 
for detailed study were those formed from the ions H+, Na+, c1-, 
N03-, and water, H20. The possible binary and ternary systems 
are as follows: 



Binary Systems 

NaCl-H20 
HN03-H20 
NaN03-H20 

HCl-HNOg 

Ternary Systems 

f{Cl-HN0 3-H20 
HCl-NaCl-H20 
NaCl-NaN03-H20 
HNOg-NaN03-H20 
NaCl-HN03-H20 
NaNOg-HCl-H20 

A survey of the transport data for such systems is given in 
Table (1). The numbers in t!ie table are those of the references 
listed in the bibliography. 

Theoretical Considerations and Numerical Procedures 

For analysis , the data were divided into binary and ternary 
systems. A numerical procedure was then developed to extract op­
timum parameters from the transport data for each system. 

Objective Function Selection 

The optimum parameters for each binary system were defined 
as those which minimized the following objective function: 

Sum Squares of Errors 

= ~ (1-D ID )2 + (1-k /k )2 + (l-t+/t+)2 all e p ep ep 
data 

where: De = experimental diffusion coefficients 

Dp. =predicted diffusion coefficients 

ke = experimental electrical conductivity 

kp = predicted electrical conductivity 

t; = expenmental cation transport number 

t; = predicted cation transport number 

Eq. (1) 
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TABLE I 

RESULTS OF LITERATURE SURVEY 

Data Electrolytic Transport 
System Conductance Diffusivity Number 

NaCl-H20 7, 12,22 2, 7, 21, 1, 6, 12, 13, 18, 
26, 27, 28, 28, 36, 21, 27, 29, 30, 
32, 36, 38, 39,42 43,44 
41 

HC1-H20 1, 13, 14, 2, 7, 28, 1, 12, 13, 14, 18, 
22, 28, 35, 36,39 19,21,25 
36,38 

HN03-H20 1, 16, 17, 2,23 1, 3, 4, 15, 16, 
22, 28, 32, 22, 24, 25, 28, 
37 32,40 

NaN03-H20 11, 12, 22, 20, 23, 4,32 
28,41 33,36 

HC1-HN03H20 9 

HCl-NaCl-H20 5, 10, 21, 2,28 
31,34 

NaCl-NaN03-H20 8 

HN03-NaH03-H20 28 
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The experimental data were points taken at 0.1 eq/l. increments 
from a smooth curve through the experimentally determined val­
ues of D, k, and t+ in the range of 0 to 1 eq./l. The DP, kp, and t; 

are complicated functions of the model parameters. It is these 
parameters which are adjusted to give a minimum in the sum of 
squares of the errors (as defined in Eq. ( 1) ). Expressions such as 
(1-De/Dp) are used rather than simpl~ (Dp-De), etc._, ~o that eac~ 
type of transport data has equal weight m determmmg the opti­
mum coefficients. The goal is to obtain a single set of parameters 
which will give a good representation of all three types of data 
over the selected range of concentration. 

Optimization Procedure 

Because Eq. (1) is a highly non-linear function of the system 
parameters, considerable difficulty was experienced in finding op -
timum model parameters. The procedure finally developed was es­
sentially a steepest descent procedure with an acceleration step to 
speed convergence. Double precision programming was used upon 
nearing an optimum solution. The acceleration step was a "creep­
and-leap" procedure in which a straight-forward steepest ascent was 
carried out for five iterations using a very small step length. Then 
the pattern of these small steps was projected using a step length 
such that if it were doubled, an over-shooting would result (i.e. a 
worse rather than a better result). In this way the length of the 
"leap" was nearly the largest permissible, and yet a better result 
was still guaranteed following the "leap". 

Only the numerical procedures for parameter optimization 
have been outlined. Presumably, this procedure could be used suc­
cessfully to obtain parameters for a number of models. Here, a 
particular model was developed and tested. 

Model Development 

A model for multicomponent mass transport consists of a flux 
expression for each component in the system. The flux equations 
must be an explicit expression containing: driving forces, Fi, con­
centrations, and system parameters. From irreversible thermody­
namics, the general form of these flux expressions is known to be 
linear in the forces. Thus, in a system of n-components, the flux 
of species i, Ji, must be of the form shown in Eq. (2): 
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n 

J. ·= ~ 1 . 
J 

L··F· lJ J 
Eq. (2) 

The Lij are the phenomenological coefficients, and these are com­

plex functions of concentration and system parameters, but are in­

dependent of the forces, F·. A model for multicomponent mass 

transport gives an explicit, Jgebraic expression for the Lij in terms 

of the concentrations, Cj, and the system parameters. In the model 

developed for testing here, the system parameters are given the 

symbol Nij· 

While the same general model is used for mass transport in 

both membranes and aqueous solutions, there are differences. 
These differences arise because of an immobilized species present 
in the membrane--the membrane matrix. Because of this special 

feature, the basic set of flux equations governing mass transport in 
membranes form an independent set. While very similar flux ex­

pressions govern mass transport in aqueous solutions, the appro­

priate set of flux expressions is not independent. One of the signi­

ficant advantages of the model developed here is that it is equally 

applicable to both the membrane and solution cases. However, in 

determining the range of convergence of the model developed here 

it is necessary to consider the membrane and solution cases sep­

arately. 

Model for ... Membranes 

In the model developed here, there are postulated frictional 

forces between species i and j. These forces are taken proportional 
to the product of the concentration of species j , Cj , and the rela­
tive velocity of species i with respect to species j. The total fric­

tional force, f i, is set equal to the negative of the total external 

force on species i, Fi, taken to be the negative of the gradient of 
the total potential. These assumptions lead to a set of equations 

of the following form. Similar expressions have been obtained by 
others. 
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Eq. (3) 

There are n-mobile components, and one fixed component, 
m, the membrane being treated as a completely homogeneous phase 
in which the matrix material is included as a component. Mem­
brane swelling is allowed for by including a concentration term, 
cm' for the matrix material. 

If the set of linear t!quations of the form of (3) are solved for the 
species velocities ui, the flux equations Ji can be calculated as fol­
lows: 

Eq. (4) 

Solution of (3) for the ui is straightforward, but even for a single 
1-1 electrolyte, the results are fairly complex, for solution (3) is re­
written so that each species velocity appears but once: 

F· = U·I:C·N·· -I:C·N··U· l l j J lJ j J IJ J j t= i Eq. (5) 

For a system of n + 1 components, the set of equations given by (5) 
can be written in matrix notations, a bracket indicating that the en­
closed array is a matrix: 

F1 Au A12 · A1n ul 

F2 A21 A22 · A2n u2 

= Eq. (6) 

Fn Anl Ann Un 

The ~j have been introduced for convenience and a..e related to 
the Cj and Nij as follows: . 

A·· = I: C·N·· J. t= i Eq. (7) ll j J IJ 

Eq. (8) 
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Equation (6) can be abbreviated if it is understood that F, A, and 
u represent the appropriate matrices: 

~] = [A] [u] Eq. (9) 

The solution of (9) leads to a similar matrix equation where A-1 is 
now the inverse matrix of A. 

[u] = [\-~ [FJ Eq. (10) 

Since matrix A is of order n and there are n + 1 components in the 
system, matrix A is non-singular in the model given here. Thus, 
the inverse matrix can be found by standard means. However, this 
holds only for the case where the matrix material is considered as 
a component so that there are a total of n+ 1 components in the 
the system. 

The flux equations are found by multiplying the u's in (10) 
by the appropriate concentrations. In matrix notation this can be 
written as follows: 

Eq. (11) 

Results of the form shown by (11) are such that for a four com­
ponent system there are four external forces and each is multiplied 
by a term involving a third order determinant divided by a fourth 
order determinant. It is thus evident that the algebra is rapidly be­
coming complicated. Nonetheless, if the Nij is known, direct ma­
trix inversion would remain a reasonable procedure since well­
known numerical methods are available. However, the Nij must in 
general be determined from experiments involving the flux equa­
tions or quantities derivable from them. This is where difficulty is 
encountered. The purpose here is to show how the exact flux equ­
ations can be approximated to give expressions of greatly .reduced 
complexity. In this way, the task qf extracting the Nij's from ex­
perimental data is greatly facilitated. 

First, it will be noted that the diagonal terms in the matrix in 
(6) are the major elements. The off-diagonal terms would be ex­
pected to be significantly smaller than the diagonal terms. This 
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suggests a procedure for obtaining an approximate inverse. In par­
ticular, a first approximation is obtained by setting the off-diagonal 
terms equal to zero. The first approximate inverse to matrix A is 
then A(1. 

Eq. (12) 

This approximate inverse corresponds to fluxes in a hypo­
thetical case where each species moves through the membrane with 
the other species held fixed. With this first approximation, a more 
realistic inverse results from use of a second order iteration formula 
which is reported to converge rapidly. This is as follows: 

Eq. (13) 

Here A 1 - l is the first approximate inverse, A2 - l is a second ap­
proximation to the true inverse of A, and I is a unit matrix. Apply­
ing this to (12), one obtains the following approximate inverse: 

= 

l/A11 

-A21IA22A11 

-A31/A33A11 

-A31/A33An 

-A12IA11A22 

l/A22 

Eq. (14) 

The iteratio~ formula could be again applied to A2 - l but this 
would result in a significantly more complicated approximate in­
verse. No further refinement of the approximate inverse will be 
sought here. 

The condition for convergence of (13) is that the off-diagonal 
terms in the matrix A (given in ( 6)) be less than the diagonal 
terms. The diagonal terms are Afr while the off-diagonal terms 
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are of the form ~j. Thus, one needs to show that i\/ ~i is less 
than one. Since the Aii terms are sums of the form f c

1
.NiJ. 

j ;t: i ' 
while the Aij are single terms of the form CjNij' this condition 
will usually be satisfied, particularly since the large term CmNm 
will always appear in the Aii term and never as an i\j term. 

At this point, it is convenient to introduce generalized mo­
bilities, ui, which are defined by (15). 

U· = 1/ A·· = (LN··C-f 1 J. ;t: i Eq. (15) I 11 . IJ J 
J 

With this definition, the approximate flux expressions can be writ­
ten in simple form: 

J. = U·C·F· + C·U·LN··U·C·F· I I I I I l . IJ J J J 
J 

j ;t: i Eq. (16) 

Neglecting the explicit Nij in (16) a form results which is similar 
to the Nernst-Planck Equations, namely: 

J. = C·U·F· I I I I Eq. (17) 

By comparison with Eq. (2), one obtains the following predictive 
expressions for the Lij· These predictive expressions for the Lij 
then constitute the model for mass transport in membranes: 

L·· = C·U· 11 I I 

L·· = N··C·U·C·U· IJ IJ I I J J 

;t: j 

where: U· = (LC·N··)-l I J IJ 

;t: 

Eq. (18) 

Eq. (19) 

Eq. (20) 

From the predictive expressions for the Lij' it is possible to 
predict the theoretical expressions for the transport coefficients 
D , kp and t+ (for the binary solutions) and this will be given 
after the mode) for mass transport in aqueous solutions is developed. 
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Interestingly enough, the solution model is identical to the result 
for the membrane, although the method of obtaining it is quite 
different and the conditions for convergence are different. It will, 
of course, be realized that the matrix iteration formula used to 
develop the membrane model can not be applied directly to the 
singular set of solution flux expressions, and hence a difference in 
approach is needed in the solution case. 

Model for Aqueous Solutions 

As in the membrane case, Eq. (2) is the starting point, but in 
the solution case there are simply N-mobile components. This set 
of flux expressions can also be written in the matrix form given by 
Eq. (9). There is the complication here that the coefficient matrix 
formed from the set of equations given by Eq. (3) is singular. Hence, 
before an exact matrix inversion can be carried out, certain opera­
tions must be carried out; ordinarily, the N-th flux is algebraically 
eliminated and the N-th force expression is dropped. But in doing 
this, a great deal of the simplicity of Eq. (3) is lost. 

Because the approximation procedure to be used here involves 
only algebraic rearrangement of the singular set, the procedure can 
be used without first converting the singular set into a non-singular 
set. Thus, the approximate procedures used here have the property 
of transforming a singular set of force expressions into a singular 
set of flux expressions. 

In the case considered here, each element in the matrix (to be 
inverted) is already a moderately complex function. The further 
complication introduced by the inversion yields functions of ·the 
concentrations and the parameters (i.e. the Nij) that are so com­
plex that the task of extracting the parameters from experimental 
data is impractical. In such a case, two possible alternatives are: ( 1) 
to assume the highly non-linear functions of concentrations to be 
sensibly constant over the range of concentrations of interest or 
(2) to approximate the inversion process so that simpler functions 
result. The latter approach has been used here. Approach (1) can 
be used providing one is simply interested in correlating a single 
type of experimental data over a small range of concentrations. 

10 



For reasons that will become apparent later, Eq. (3) is re­
written so that each species velocity appears but once: 

F· = U·LC·N·· - LC·N··U· 1 1 . J lJ . J lJ J 
J J 

j t- i Eq. (21) 

The first sum in Eq. (21) is defined to be a generalized mobility, 
Ui, and an ideal flux, Jf, is introduced and defined by Eq. (23). 

ui = 117cjNij j ·t- i Eq. (22) 

Jr- = C·U·F· 
1 1 1 1 

Eq. (23) 

With these definitions, Eq. (21) can be recast as follows: 

J· = Jr-+ C·U·LN··l 
1 1 1 1 j lJ 1 

j t- i Eq. (24) 

Equation (24) is simply Eq. (21) with the definitions in Eqs. (22) 
and (23) introduced. No approximations have been made, and only 
the form of Eq. (21) has been changed. 

Why the Ji are called ideal fluxes and why the Ui are termed 
generalized mobilities can be seen from Eq. (24). Suppose that all 
of the fluxes were zero except for a particular one, h Then Ji 
would be equal to Ji. Thus, Ji would be directly proportional to 
Fi. The proportionality constant would be equal to the product of 
the generalized mobility and the concentration of species i. This 
will, of course, be recognized as being in the form of the so-called 
"Nernst-Planck" flux equations. 

From the foregoing discussion, one apparent method of ap­
proximating the inversion of Eq. (21) is to neglect the second term 
on the right hand side of Eq. (24). Then using Eq. (23), a Nernst­
Planck expression is obtained in which the generalized mobilities, 
Ui, have a particular concentration dependence. Hence, as a first 
order approximation, one obtains the following inverted form: 

J· = ]:* = C·U·F· 
1 1 1 1 1 

Eq. (25) 
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where: u. = ln:;c.N .. 
I j ) 1) 

j :/= i 

Higher order approximations can be obtained in the following 
way: starting with the form of Eq. (24) one writes a general ex­
pression for the flux of a species j and introduces another index k. 

J· = f* + C·U. LN·kJk 
J J J J k J 

k :/= j Eq. (26) 

This expresssion for Nj is then substituted into Eq. (24) to give: 

} 1· = }1~ + C·U· LN··f* + C·U· LN··C·U· LN·kJk J. :/= i, k :/= j 
I I j 1) ) I I j 1) J J k J 

Eq. (27) 

This process of substituting Eq. (24) into itself yields a new ex­
pression with three terms on the right hand side; the first contain­
ing no explicit Nij 's, a secoud term which is linear in the Nij 's, and 
a third term which is quadratic in the Nij 's. This substitution pro­
cess can be continued by eliminating Jk from Eq. (27) to give a 
term which is third order in the Nij 's. Further substitution gives a 
term which is fourth order in the Nij 's, etc. At each stage, only the 
last term contains Jj 's; the other terms contain only J:*'s. The gen­
eral approximation scheme, then, is to expand Eq. (t4) by substi­
tuting it into itself until the terminal factor becomes negligible. 
With neglect of the last term in Eq. (27), for example, one obtains 
the following form: 

J. = r + C·U. LN· ·r* 
I I I I . IJ J 

J 
j :/= i Eq. (28) 

With Eq. (23) this is cast in the desired, inverted from as follows: 

Ji = Ci UiFi + Ci Ui~Nifj UjFj 
J 

j :/= i Eq. (29) 

This is exactly the result obtained for the membrane case, Eq. ( 16 ). 
Thus, the predictive expressions for the Lij are also given by Eqs. 
(18) and (19). 
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It remains to be shown that each succeeding term in a form 
such as Eq. (27) is smaller than its predecessor, since this is not 
evident upon casual inspection. One method of demonstrating this 
is to suppose that all of the Nij 's are identical. This might be the 
case, for example, if one had several isotopes of the same parent 
compound. 

With the velocities in Eq. (21) with respect to the molar aver­
age, the fluxes sum to zero: 

n 

L J· = 0 
. 1 J 
1= 

Combining Eqs. (29) and (30), one obtains: 

J· = f* + C.U·N .. (-J.) 
1 1 1 1 lJ 1 

Eq. (30) 

Eq. (31) 

Solving for the ratio of Ji to Ji and introducing a new symbol ai, 
results in the following: 

f*IJ. = 1 + C·U.N .. = 1 + a
1
· 

1 1 1 1 lJ 
Eq. (32) 

The symbol ai has been introduced and one should remember that 
the term Ci UiNij will be equal to ai only for the special case of 
equal Nij 's. Rearranging Eq. (32) and expanding in an appropriate 
series form, one obtains: 

r (1-a· + a·2 ----) 
1 1 1 

J. = or 
1 

If a·< 1 i-

Ji (l/ak - l/ak 2 + l/ak 3 ----) If ak ~ 1 

Eq. (33) 

From substitution of the definition of Ui into Eq. (32), it is seen 
that the ai are simply related to the concentrations expressed as 
mole fractions, xi: 

Eq. (34) 

13 



However, this simple result applies only for the special case of eq­
ual Ni·· Also, only one a, denoted as ak, can be greater than unity 
(i.e. X1k)0.5). In the general multicomponent case, there need be 
no a greater than unity. Frequently, however, the solvent species 
mole fraction will be nearly unity, in which case the a for the sol­
vent species will be quite large. 

Substitution of Eq. (32 ) into Eq. (29) gives: 

J. = J~ + a-_ [~ (I - a· +a~ 
1 1 -1 ' . J J .)Jf + (l/ak - i1ak 2 .. )Jk.1 

J 
Eq. (35) 

= CiUli + ~ [~(1-aj + af ... )Uflj + (l/ak - l/ak 2 + l/ak 3) 
J 

UkCkFk] Eq. (35)a 

where: j -/= i,k 

k -/= i,j 

Equation (35) gives a result that can be compared with the 
successive approximation scheme for the special case of equal N ij. 
In this form, the requirements for rapid convergence can be seen, 
namely, the aj should be si,iall, and the ak, if any, should be .large. 

For example, by neglecting terms of order aia· :md higher, and 
terms of order ~/ak and higher, one obtains the following approx­
imate expression: 

J· = J~ + a· ~r 
1 I 1 j 1 

j -/= i,k Eq. (36) 

= C·U·F· + a· ~C·U·F· 
111 lj JJJ 

This same expression results from neglecting the last term in Eq. 
(27). 

For very small concentrations of solute, the corresponding ai 
becomes very small, and Ji might be taken as Ji for the solutes. 
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However, note that using a similar expression for the solvent would 
be quite invalid since ak woul~. be very large, and thus Eq. (36) 
could not be further simplified. 

The general form in which the Nij's are not necessarily equal, 
and where no particular reference is specified, can be written as 
follows: 

1- = f* + C·U· [~N··(l-a·+a-2 -a.3---)N:* 1 1 1 1 j IJ J J J J 

= C.U-F· + 1 1 1 

+Nik (l/ak - l/ak 2 - - -)Nk] 

C.U· [~ N .. (1 - a·+ a-2 - - -)C·U·F· 
1 1 j IJ J J J J J 

+Nik (l/ak - l/ak 2 - - -)Nkj 

j ~ i, k 

Eq. (37) 

Again, clearly, the method will converge if the ai's and aj 's are 
small, and the ak large. However, the simple interpretation tfiat the 
aj 's are equal to Ci UiNij is no longer valid. 

Predictive Expressions 

From the basic model, given by Eqs. (18) through (20), the 
expressions can be derived for the transport coefficients of interest 
in binary aqueous solutions, that is: the diffusion coefficient DP, 
the electrical conductivity kp, and the cation transport number t +. 
The model in this case can be used to predict the concentraticf n 
dependence of these transport coefficients in terms of concentra­
tions and model parameters. These derivations will not be given 
here since the detail can be found elsewhere. Here, only the result­
ing predicted expressions for the transport coefficients will be 
given. These are as follows: 

DP= (2RT/F) (U1 u 2-C2N122u 1
2u22)/(U1+U2-2CN12u 1 Uz) 

Eq. (38) 
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kp = C (U1+U2-2CN12U1 U2) 

t~ = (UrCN12u1 U2)/(k/C) 

where: R = gas const. 

F = Faraday 

Eq. (39) 

Eq. (40) 

The parameter Ui is introduced for convenience and is termed a 
generalized mobility. It is easily expressed in terms of Ci's and Nij's 
(see Eq. (20)), but its use allows simplifications in writing matlie­
matical expressions This mobility also has the physical significance 
of a true mobility. 

For ternary and more complex mixtures, only electrical con­
ductivity data have been obtained. The expression for conductives 
of these 1-1 electrolyte mixtures is as follows: 

k = RT/F (L L·· - LL··) p . IJ . IJ 
+ions -ions 

Eq. (41) 

Results 

Experimental Data 

Because of the scanty data available for ternary systems, a 
complete set of electrical conductivity data for the system NaCl­
HN03-H20 was determined for the concentration range of 0-1.0N. 
The determinations were made with a null bridge using a 60 cycle 
A. C. oscillator. All determinations were made at 25° C. These data 
are shown as points in Figure (1). Correlations of these data are 
shown as curves and these theoretical results will be discussed pre­
sently. 

Results of Numerical Analysis 

Results for Binary Systems: 

The literature data and the predicted data for the binary 

16 



FIG. (1) SPECIFIC CONDUCTANCE FOR NaCl-HCl-H20 SYSTEM AT 25° C 
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systems NaCl-H20, HN03-H20, and HCl-H20 are shown in Fig­
ures (2), (3), and (4). In all cases, the effective water of hydra­
tion of the solute has been taken to be 3.5 moles of H20/mole of 
solute. Complete data for the system NaN03-H20 was not avail­
able. Hence, this system has not been analyzed as yet. 

Effect of Water of Hydration: 

Figure (5) shows the effect of water of hydration on the 
deviations between prediction and experiment. The sum of squares 
of the errors, defined in Eq. (1), is shown as a function of the num­
ber of hydrate for each mole of solute. 

Tables (2), (3), and (4) show the predicted data and the 
associated optimum parameters for several assumed values for wa­
ter of hydration. 

Results for Ternary Systems: 

The experimental and predicted electrical conductivities 
for the ternary system NaCl-HN03-H20 are shown in Figure (1). 
The data points are shown and the curves are predicted from the 
model for multicomponent mass transport. As with the binary sys­
tems, an optimum set of system parameters, the Nij 's, were found 
by the numerical search technique developed for use in model test­
ing. However, it was necessary to determine only three of the ten 
parameters involved since values for the other seven were available 
from analysis of the binary data. Had complete data been available 
for the remaining possible binary system (NaN03-H20), only two 
parameters would have remained undetermined. The ten paramet­
ers, including the three that were determined from the ternary data, 
are given in Table (5). The first three parameters in the table are 
those determined from the ternary data. 

TABLE V OPTIMUM Nij FOR SYSTEM NaCl-HN03-H20 

i 2 1 1 1 2 1 2 3_ 3 4 

J 4 3 4 5 3 2 5 4 5 5 
N .. x100 .8962 1.9361 6.3798 .4139 .7732 3.8128 .2560 .6982 .0538 .3361 

l J 

(1) = Na+ (2) = Cr (3) = H+ (4) = N03 (5) = H20 

13 



FIG. (2) DIFFUSION COEFFICIENTS FOR BINARY SYSTEMS AT 25° C 
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Ffp. (3) EQUIVALENT CONDUCTIVITY FOR BINARY SYSTEMS AT 25° C 
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FIG. (4) CATION TRANSPORT NUMBERS FOR BINARY SYSTEMS AT 25° C 
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FIG. (5) SUM OF SQUARES OF ERRORS VS. WATER OF HYDRATION 
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Discussion of Results 

For the system HC1-H 20 and NaCl-H20, the plots of 
the sum of squares of errors versus water of hydration show a defi­
nite minimum at a reasonable value of this parameter: about 5 
moles H20/mole HCl and about 1 mole H20/mole NaCL For the 
HN03-H20 system, no minimum was found. A value of zero for 
this parameter gave the best fit of the data, negative values of this 
parameter being considered inadmissible on physical grounds. An­
other anomaly in the HN03-H20 data is that (see Figure (4)) the 
theoretical fit of the transport data for this system appears in­
consistent with the other results. It is quite possible that this 
data is in error and this may account for an unrealistic value in­
dicated for the water of hydration in this system. It also appears 
that the NaCl-H20 result is low, but almost equally good results 
were obtained at a more realistic value of this parameter (see 
Table (2)). 

As can be seen from Tables (2), (3), and (4), the effective wa­
ter of hydration has only a small effect on the fit between the ex­
perimental and predicted data so long as a value not too far re­
moved from the optimum is chosen. Furthermore, when the same 
parameter (Nij) is compared for two binary systems (say the Nij 
coefficient for the er- and H20 interaction), the value should be 
the same for the model. This was approximately true for the Nij 
when the optimum waters of hydration were used, but an even 
closer agreement was achieved when the same value of the water 
of hydration was used for all of the systems. 

Finally, there is the main point of how well the derived mo­
del fits the experimental data. It is quite easy to calculate an aver­
age percentage deviation from the sum of squares of the errors re­
ported in Tables (2), (3), and (4). The figure shows the sum of 
squares of the percentage error for 33 points. The square root of 
this quantity divided by 33 is then approximately the average de­
viation between theory and experiment. Thus, for the system NaCl­
H20 at a water of hydration of 3.5, the sum of the squares of the 
errors is 0.03658. The square root of this quantity divided by 33 
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gives an average fractional deviation of about .033 or 3.3 percent. 
For the system HCl-H20 at water of hydration of 5.0, a corres­
ponding calculation gives an average deviation of about 2.1 per­

cent. Thus, it can be seen that, typically, the model fits the data 
with an average deviation of 2 to 3 percent, and that all three types 
of data are about equally represented. 

The largest deviations are in the concentration range .0-0. l 
eq./l., a region in which the experimental transport coefficients 
undergo an anomalously large change also. This implies that the 
Nij 's, assumed constant in the model, are moderately concentra­
tion dependent in the region of low concentrations, and that per­
haps the data should be divided into a low concentration group 
(i.e. 0 to 0.1 eq./l) and into a moderate to high concentration 
group (i.e. 0.1 to 1.0 eq./l.). This would undoubtedly lead to a 
very close agreement between theory and experiment, but would 
have the disadvantage of producing two sets of Nij rather than one. 
In any event, the comparison between theory and experiment for 
binary systems is well within the accuracy needed for engineering 
work, and the model can be used with confidence in this context. 

The comparison of the theory with the ternary data is less 
satisfactory. At very low NaCl but at high HN03 concentrations, the 
deviations are as large as 25 percent. At moderate or low HN03 
concentrations, the agreement is fairly good throughout the range 
of NaCl concentrations and high NaCl and high HN03 concentra­
tions, the agreement is satisfactory. It is thought that some of the 
data is perhaps in error, and it is planned to recheck these experi­
mental results before proceeding with further analysis. 
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Summary and Conclusions 

A general model for multicomponent mass transport was de­
veloped. A numerical procedure was developed for determining the 
optimum parameters for mass transport models, and this was used 
to establish the optimum parameters for several systems for the 
particular model derived here. The mass transport model developed 
was shown to reproduce experimental transport data of several 
types over an extended range of concentrations with an average 
accuracy of about 2 - 3 percent. 

Water of hydration was shown to be an important parameter 
in the determination of the average deviation between experimental 
and predicted data. In two cases studi~d (NaCl, HCl), an optimum 
water of hydration was found, corresponding to a physically rea­
sonable value for this parameter. In a third case (HN03) the opti­
mum parameter was found to be zero, but there appear to be other 
anomalies in this same data. 

Experimental electrical conductivities were measured in the 
system NaCl-HN03-H20, and optimum model parameters were ex­
tracted from this data. The comparison between experimental and 
theoretical results was less satisfactory for this ternary system than 
for the binary system in certain ranges of concentration and this 
was thought due to experimental errors. 
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