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(ABSTRACT) 

 

Equipment behavior is often discussed in terms of age and use.  For example, an 

automobile is frequently referred to 3 years old with 30,000 miles.  Bivariate failure 

modeling provides a framework for studying system behavior as a function of two 

variables.  This is meaningful when studying the reliability/availability of systems and 

equipment.   

 

This thesis extends work done in the area of bivariate failure modeling.  Four bivariate 

failure models are selected for analysis.  The study includes exploration of bivariate 

random number generation.  The random data is utilized in estimating the bivariate 

renewal function and bivariate availability function.  The two measures provide insight 

on system behavior characterized by multiple variables.    

 

A method for generating bivariate failure and repair data is developed for each model.  Of 

the four models, two represent correlated random variables; the other two, stochastic 

functionally dependent variables.  Also, methods of estimating the bivariate renewals 

function and bivariate availability function are constructed.  The bivariate failure and 

repair data from the four failure models is incorporated into the estimation processes to 

study various failure scenarios.   
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Chapter 1 – Introduction  
 

1.1 Background 
 

The study of reliability problems began as early as the late 1930s, largely in 

response to technological advances and problems encountered in some of the complex 

military systems used in World War II.  Reliability theory has maintained a strong 

presence in the field of applied mathematics, each year increasing in popularity.  An 

overall increase in system complexity has contributed to the growing interest in the field 

of reliability.  Reliability, as defined by Nachlas [1998], is the probability that a device 

properly performs its intended function over time when operated within the environment 

for which it is designed.  In the event that a system experiences no failures, we can say 

that system is absolutely reliable; however, that situation is unlikely to occur.   

 

Each system experiences failures unique to that particular system.  For example, 

the solenoid in an oven fails to function properly, thus causing the oven to heat 

improperly or not at all, or the oil pump in an automobile malfunctions causing the 

engine to halt.  Failure distributions are used as a method of representing the life length 

of a system.  “A failure distribution represents an attempt to describe mathematically the 

length of life of a material, structure, or a device (Barlow and Proschan [1965]).”  In 

reliability studies, various distributions, such as the exponential, the gamma, the normal, 

and the Weibull distributions are commonly used to represent the failure behavior of a 

system (component).  The system behavior dictates the choice of the family of the 

probability distribution; the selection of an adequate failure distribution can sometimes be 

difficult.  The goal is to select an appropriate distribution in an attempt to accurately 

represent the system behavior in order to determine various reliability measures for that 

system. 

 

In a reliability context, failure models are used to characterize the lifetime 

behavior of a system.  Over the last several years, much work has been done in the area 
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of failure modeling; much of that work has focused on problems of a univariate nature.  

A univariate failure model focuses on failure as a function of a single index or variable, 

such as time to failure, cycles to failure, or usage to failure.  It is apparent that univariate 

measures are adequate in many situations; however, situations exist where multiple 

measures seem to be more appropriate.  Multivariate failure models combine two or more 

variables in order to describe the behavior of the system.   

 

In both the univariate and multivariate cases, it may be possible to use failure 

behavior information to aid in maintenance planning.  For example, in order to avoid 

unplanned work stoppages (due to failure), it may be beneficial to perform planned 

maintenance operations on a system with an increasing failure rate.  Often failures are 

repairable through corrective maintenance operations; however, corrective maintenance 

actions typically demand more time and resources than a simple preventive maintenance 

activity.  All types of maintenance actions contribute to the availability of a system; 

availability can be described as the probability a system will be operating at any given 

point in time.  It is plausible that higher availability will result in increased production 

and/or system utilization—both desirable goals.  Therefore, it is important to understand 

all aspects of systems behavior (i.e. failure processes, corrective maintenance, and 

preventive maintenance).   

 

1.2 Failure Modeling 
 

Aging is inherent in almost any operating system (component).  Aging can be 

described as a gradual deterioration of the performance characteristics and/or gradual 

increase of the possibility of component failure (Gertsbakh [1989]).  In terms of the 

system reliability, it is necessary to develop a mathematical description of the aging 

process.  Reliability theory suggests several formal descriptions of aging, for example, 

increasing failure rate (IFR), increasing failure rate average (IFRA), and new better than 

used in expectation (NBUE).  These classifications along with the lifetime distribution of 

the system allow for the determination of useful reliability measures.   
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The most commonly encountered failure models make use of univariate 

distributions, indexed by a single scale, to describe the failure of an item.  Extensive work 

has been done in this area leading to many well-known concepts.  All univariate 

distributions have a well-established relationship between the distribution and the aging 

process.  For example, the exponential distribution displays a constant failure rate; the 

gamma and normal distributions, an increasing failure rate; the Weibull distribution, an 

increasing failure rate, a decreasing failure rate, and a special case of the exponential.  

The above-mentioned associations are commonly known in the univariate case; however, 

these concepts have not been extended to the multivariate case.   

 

There are some situations where a univariate model does not adequately represent 

the system.  A particularly useful example is the determination of failure points of an 

automobile.  It is important to not only know that the car is expected to survive for 7 

years, but it is also important to know that it will last for 75,000 miles.  The significance 

lies in the fact that different users will reach usage values at varying points along the life 

of the unit.  Clearly, multiple indices are useful; however, a single index model is 

typically used because it is mathematically more tractable.  Some reliability models do 

account for the need to include multiple scales, but most are designed such that they may 

be reduced to a single scale.   

 

A logical progression from the univariate case to the multivariate case is to consider 

reliability in terms of two variables or the bivariate case.  Several researchers, including 

Mercer [1961], Birnbaum and Saunders [1969], Barlow and Proschan [1975], Lemoine 

and Wenocur [1985], and Yang [1999], have suggested that bivariate failure models 

appear to accurately represent system (equipment) behavior.  In particular, Yang [1999], 

identifies five classes of bivariate reliability models.  These models target situations that 

include maintenance operations and those that do not include maintenance.  It is 

important to recall, maintenance activities can significantly impact the behvaior of a 

system.  The models are developed sequentially and with an increasing level of detail.  

Equipment behavior is portrayed in terms of bivariate failure modeling, bivariate renewal 

modeling, bivariate corrective maintenance modeling, bivariate preventive maintenance 
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modeling, and bivariate availability modeling.  These objectives are not universal, but 

serve as the basis for the research presented here.    Considerable advances were made in 

each of these areas.  A general structure of bivariate probability models of system failure, 

which allows for numerical analysis of system behavior, was determined.  Numerical 

integration techniques were used for the analysis.  Additional analysis is necessary to 

more fully understand system behavior.   

 

1.3 Problem Description 
 

The purpose of the research presented here is to gain a better understanding of 

bivariate failure processes.  Various bivariate failure models have been developed; 

however, the analysis of these models has been rather difficult.  In particular, Yang 

[1999] was able to develop useful bivariate models, but was not able to obtain the 

corresponding performance measures—reliability and/or availability.  The complexity of 

the Laplace transforms prohibited the determination of these measures.  In order to 

provide further insight into the failure behavior of systems characterized by bivariate 

failure, four of Yang’s models are examined.       

 

Much of the work in the area of failure modeling has focused on univariate failure 

processes.  For many of the univariate models a relatively good understanding of the 

relationship between the aging process and the lifetime distribution exist (e.g., the 

exponential distribution).  It is not clear that similar relationships exist in the bivariate 

case and if the relationships exist the nature of each is unknown.  Therefore, in order to 

provide useful applications of bivariate models, further study in this area is necessary.   

 

Discrete-Event simulation is used to model system behavior.  The first objective 

is to develop a method for computing bivariate random failure and repair data.  Using the 

failure/repair data, simulation models are built to estimate the bivariate renewal function, 

when repair is instantaneous and the bivariate availability function, when repair is not 

instantaneous.  For instantaneous repair, a sequence of failure events are generated and 

examined to find the expected number of renewals at a certain point in the time-use 
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space.  The failure data is used to gain a better understanding of the bivariate renewal 

process.  For cases of non-instantaneous repair, a similar approach is used, but in addition 

to the generation of failure data, repair times are generated.  The combination of failures 

and repairs allows for the estimation of system availability.  The chief objective is to 

measure and analyze system availability.  Also, the simulation results will be employed 

in an effort to strengthen and confirm analytic solutions.   
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Chapter 2 – Literature Review 

2.1 Bivariate Modeling 
 

Throughout the last several decades various researchers have addressed the idea 

of bivariate failure modeling and among these works many interpretations of bivariate 

failure modeling exist.  Much of the early work in this area does not consider bivariate 

failure models in the sense studied here.  The research presented in this thesis is based on 

the work of Yang [1999] and considers a classification scheme defined by the 

relationship between the two variables contributing to failure.  In this case the two 

variables associated with the failure of a system are time and use.  In one case the 

variables are treated as correlated random variables; the other, functionally dependent.   

 

Researchers focusing on variables that are functionally dependent include Mercer 

[1961], Birnbaum and Saunders [1969], Barlow and Proschan [1975], and Lemoine and 

Wenocur [1985].  Within this body of work, the efforts of Mercer are the most closely 

related to the aims of the research here.  Mercer studies failure as a function of both time 

and wear.  He contends that a failure rate classified as a function of time alone ignores the 

underlying processes that can contribute to the failure of an item (in this study, the 

process of wear was considered).  The resulting model includes a component related to 

the wear process in order to more accurately model failure.  Mercer investigates 

alternative replacement strategies and provides insight on optimal replacement intervals.   

 

There are several authors (Gumbel [1960], Marshall and Olkin [1967 a, b], 

Downton [1970], Baggs and Nagaraja [1996], and Signpurwalla and Wilson [1993]) who 

focus attention to the study of multivariate probability distributions in a reliability 

context.  Marshall and Olkin concentrate on the discussion of life-length using a bivariate 

exponential (BVE) distribution to represent two components versus two distinct failure 

characteristics, such as time and usage.  Other researchers (Block and Basu [1974] and 

Baggs and Nagaraja [1996]) extend the work of Marshall and Olkin to further investigate 

the intricacies of the BVE.  In particular, Baggs and Nagaraja model a two-component 
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system with dependent components whose lifetimes are characterized by the BVE.  They 

consider dependent lifetimes in which failure is based on a single index—time.  The work 

that is most closely related to that presented here was introduced by Singpurwalla and 

Wilson [1993].   

 

Singpurwalla and Wilson discuss bivariate models in the context of warranty 

applications.  They determine that the application of univariate failure models is 

sufficient in dealing with univariate warranties, but not appropriate for warranties such as 

automobile warranties that consider multiple failure criteria.  In the case of an 

automobile, the warranty considerations may be based on model year and mileage.  

Singpurwalla and Wilson construct a generic bivariate model to reflect failure based on 

two scales.  However, difficulty obtaining useful results led to a need for simulation 

studies.  In later work [1998], simulation methods are used to determine optimal warranty 

periods based on the newly developed bivariate models.   

 

Similar to the efforts of Singpurwalla and Wilson [1993], Yang [1999] develops 

generic bivariate failure models that focus on failure as a function of two variables.  Yang 

proposes the use of bivariate models to characterize the behavior of equipment in the area 

of reliability.  There is a progression from the generic failure model to models that 

include renewal and maintenance activities.  As mentioned earlier, Yang identified five 

key efforts for the application of bivariate probability distributions to 

reliability/availability.  Those efforts include:  

 

i) Bivariate Failure Modeling 

ii) Bivariate Renewal Modeling 

iii) Bivariate Corrective Maintenance Modeling 

iv) Bivariate Preventive Maintenance Modeling 

v) Bivariate Availability Modeling 

 

The next section includes a brief summary of Yang’s modeling efforts, including useful 

definitions of each objective.  The two subsequent sections provide explanations of the 
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concepts used by Yang to apply bivariate probability distributions to 

reliability/availability. 

 

2.1.1 Objectives 

 

 Yang [1999] identifies five objectives to progress through the construction of 

bivariate failure models to the development of models that allow for the measurement of 

system behavior.  The work presented here is based on these efforts; it is important that 

the objectives are well understood.    

 

i) Bivariate Failure Modeling 

 

This step focuses on the construction of bivariate failure models, which consider a 

single-unit system with bivariate longevity.  The goal of this step is to construct and 

evaluate bivariate failure models in an attempt to improve upon existing univariate failure 

models.  The two model classes are defined and examples are included.  Given the two 

model classes, the corresponding bivariate failure models are developed.   

 

ii) Bivariate Renewal Modeling 

 

Bivariate renewal models consider systems with independent and identically 

distributed (i.i.d) lifetimes, which are instantaneously repaired/replaced upon failure.  It is 

assumed once a system is repaired/replaced the new system behaves identically to the 

repaired/replaced system.  Under this assumption a bivariate renewal process may be 

used to describe system behavior.  A bivariate renewal theory and a quasi-renewal theory 

are proposed and results are included.   

 

iii) Bivariate Corrective Maintenance Modeling 

 

Bivariate corrective maintenance models are an extension of the bivariate renewal 

models in that cases with non-instantaneous repair are considered.  The lifetime 
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distributions and the repair time distributions are i.i.d.  Following a maintenance action, it 

is assumed the system is “as good as new.”  In these models, preventive maintenance 

time is not included, only corrective maintenance.  Of the two model classes – functional 

relationships and correlated relationships – only the correlated models are examined.  

Yang is able to obtain the Laplace transform of the renewal function.   

 

iv) Bivariate Preventive Maintenance Modeling 

 

Bivariate preventive maintenance models build upon the results of the bivariate 

renewal models and the bivariate corrective maintenance models, by considering the 

effects of preventive maintenance.  These models are similar to the corrective 

maintenance models, but include distinct preventive maintenance times.  The purpose of 

the models is to capture the effects of preventive maintenance on a system.  The models 

are investigated under an age-replacement policy and it is noted that other preventive 

maintenance policies may be considered.   

 

v) Bivariate Availability Modeling 

 

In this stage, bivariate availability models are provided; the models are derived 

from the developed bivariate corrective maintenance and preventive maintenance models.  

The corrective maintenance and preventive maintenance cases are considered separately; 

however, the availability measure for the preventive maintenance models is based on the 

results from the corrective maintenance models.  The Laplace transforms for the bivariate 

availability models are presented, along with general results.   

 

2.1.2  Definitions 

 

The application of bivariate probability distributions to reliability is not a trivial 

task.  The first step is to carefully define and interpret the bivariate probabilities.  The 

following concepts are necessary to fully describe the bivariate failure models identified 

by Yang [1999].  Each model is defined by two variables—time to failure, T, and usage 
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to failure, U.  Time and usage are generic terms used to represent a variety of 

characteristics that contribute to system failure.  System lifetimes are defined by the 

cumulative failure probability, (t,u)FT,U , which is the probability failure occurs by time t 

and usage u, more formally:  

( ) ].,Pr[,, uUtTutF UT ≤≤=  

This probability represents the proportion of the population that have longevity 

vector values that do not surpass (t,u) in either vector component (Yang [1999]). 

 

Each cumulative failure probability distribution has a corresponding reliability 

function, ( )utF UT ,, , that represents the portion of the population whose failure age 

exceeds t, and failure usage exceeds u.  The resulting reliability function is: 

( ) ( )∫ ∫
∞ ∞

=≥≥=
t u

UTUT dudtutfuUtTutF ,],Pr[, ,, , 

where (t,u) fT,U is the joint probability density function of T and U.  In addition to the 

joint probability density function, it is useful to determine the marginal distributions on t 

and u, ( ) ( )uftf UT  and , as well as the conditional distributions, ( ) ( ) | and | || tufutf TUUT .  

 

2.1.3 Performance Measures 

 

The effectiveness of a system can be measured in several ways.  In this research, 

the two measures are the number of failures experienced by a certain point (or in a 

particular interval) and the availability of a system.  Availability is the probability a 

system is in a functioning state at a particular point.  It is important to note, there is an 

abundance of literature concerning each of these ideas in the univariate sense; however, 

there are no efforts to extend the results.  Yang [1999] describes an approach for 

determining each of these measures for the bivariate case – the bivariate renewal models 

and the bivariate availability models, respectively.  Yang provides several important 

terms to describe both of these processes.  
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The bivariate renewal function is an extension of the univariate renewal function.  

In either case, the basis is a counting process for which interarrival times are independent 

and identically distributed with a common distribution; this type of counting process is 

referred to as a renewal process.  To define the renewal process in the univariate sense, 

let { },...2,1, =nX n be a sequence of nonnegative independent random variables with a 

common distribution F, where Xn is the time between the (n-1)st and the nth event.  Also, 

let  

,1     ,       ,0
1

0 ≥== ∑
=

nXSS
n

i
in  

where Sn is the time of the nth event.  It is well known that  

( ) { }tSntN n ≤=   :sup  

and the counting process ( ){ }0, ≥ttN  is termed a renewal process.  The renewal function 

may is defined as the expected number of renewals by time t, or more formally: 

( ) ( )[ ]tNEtM = . 

The bivariate renewal function is based on the same theory given in the univariate 

renewal function, only all definitions are extended to two include two variables.    The 

following definitions are used to construct the bivariate renewal function.  First, let 

( ){ } ...,2 ,1 ,, == nUTX nnn be a sequence of independent and identically distributed non-

negative bivariate random vectors, with common joint distribution function--

{ }uUtTF nnUT ≤≤= ,Pr,  – where Tn and Un represent the interarrival time and usage 

between the (n-1)st and nth, n ≥ 1.  The stochastic process ( ){ }0 ,0 ,,, >> ututN UT  is 

defined as a counting process that represents the total number of renewals by time t and 

usage u, or the bivariate renewal counting process.  It follows that the bivariate renewal 

function may be stated as: 

( ) ( )[ ]. ,, , utNEutM UTF =  

 

For the bivariate availability measures, Yang [1999] defines four types of 

availability—bivariate point availability, bivariate limiting availability, bivariate average 
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availability, and bivariate limiting average availability.  This research will focus on 

bivariate point availability, ( )utA , , and is defined by:  

 ( ) ( ){ } ( )[ ]utIEutIutA ,1,Pr, === , 

where ( )utI , is the system status and is defined as: 

( )




=
otherwise ,0

u usage and t at time operating is device  theif  ,1
,utI . 

In other words, bivariate point availability can be described as the probability that a 

system is functioning at any point – time t and usage u.   

 

2.2 Bivariate Failure Model Cases 
 

Yang [1999] addresses the problem of constructing bivariate failure, repair, and 

preventive maintenance models.  He identifies two potentially important model classes 

and the difference between the model classes lies in the definition of the relationship 

between the two variables.  One category is defined by variables that have a stochastic 

functional relationship.  The other category serves to represent variables that are 

correlated versus stochastically dependent.  The development of these types of models 

forms the cornerstone of this research.   

 

There are many possible approaches to the development of bivariate failure 

models.  In the case of those models with functionally dependent variables, the initial step 

in defining the model is to determine the representation of the stochastic element of the 

life variable.  The function U = g(t) represents the relation between the time and usage to 

failure, T and U respectively.  It is assumed that the relationship between T and U can be 

determined by treating one or more of the parameters of g(t) as random variables. Once 

the random feature is determined a transformation of variables is performed in order to 

obtain the marginal distribution on usage, which is then used to find the joint failure 

density (Yang [2000]).  The following examples were suggested as possible functional 

relationships: 
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i)  β+α=   t  g(t)        (2.1) 

ii) γ+β+α=  t t  g(t) 2       (2.2) 

iii)  nt  g(t) α=        (2.3) 

iv) ( ) ( )βαα +−=  e 1e  g(t) tt .     (2.4) 

 

 

The relationships shown in equations 2.1 and 2.4 will be explored here.  For each of these 

models the parameter α is treated as a random variable, with probability distribution 

( )⋅απ .  

 

In addition to situations that warrant a functionally dependent set of variables, 

there are many scenarios where the two variables appear to be correlated.  When the 

variables are correlated as opposed to functionally dependent it appears that the 

construction of bivariate models is less intensive; a bivariate distribution is selected and 

manipulated.  It is important to note that the determination of the bivariate distribution 

must be done very carefully to ensure that it appropriately describes equipment behavior.  

Three candidate distributions that seem to accurately represent bivariate failure processes 

with correlated random variables are proposed.  The distributions include a generalization 

of the bivariate exponential distribution, the bivariate normal distribution, and a model 

presented by Hunter [1974].  The density functions are as follows:  

 

i) ( ) ( )( )( )XWXWXW

UT, eeeHu)(t,f +−−−+ +−−+= 42211     (2.5) 

ii) ( )
( ) ( )( ) ( )
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iii) 








ρ−
η+λ−










λη

ρ−
ρ

ρ−
=

1
exp

1

2

1 0

ut
tuIu)(t,f UT, ,    (2.7) 

where ( )⋅nI is the modified Bessel function of the first kind, of order n.   
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Yang [1999] explores four of the models (2 functionally dependent, 2 correlated) 

in great detail and uses those models as examples.  For the example models, definitions 

are given and some basic results are provided.  The focus here will be on the example 

models of Yang.   

2.2.1 Functionally Dependent Models 

 

The two functionally dependent models are a simple linear relationship,  

β+α=   t  g(t) ,  

and, the logistic model: 

( ) ( )βαα +−=  e 1e  ttg(t) . 

Eliashberg, Singpurwalla, and Wilson [1997] examined the logistic model in a multiple-

index warranty application.  Each of these models appears to be realistic option to 

represent equipment behavior in regard to multiple failure characteristics.  Yang [1999] 

was able to compute probability values, reliability measures, and hazard function values.  

It is important to note there is no closed form expression of the cumulative distribution 

function (CDF) for either of these models.   

2.2.2 Correlated Models 

 

For the models representing correlated random variables, Yang [1999] chose the 

bivariate exponential distribution,  

( ) ( )( )( )XWXWXW

UT, eeeHu)(t,f +−−−+ +−−+= 42211 , 

and the bivariate normal distribution,  

( )
( ) ( )( ) ( )
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. 

The bivariate exponential (BVE) distribution is a logical choice since it has been studied 

in related applications (Marshall and Olkin [1967 a,b],  Block and Basu [1974], and 

Baggs and Nagaraja [1996]).  Also, the BVE exhibits the attractive features of having 

closed form expression for the CDF and having exponential marginal densities.  These 

characteristics make the analysis more tractable.  The second choice, the bivariate normal 
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distribution, is relatively straightforward from an analytical standpoint.  In addition, the 

marginal densities are normal, again making analysis less complicated  Yang [1999] 

provides computational results for the probability values, reliability measures, and hazard 

function values.    
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Chapter 3  – Problem Statement 
 

3.1 Introduction 
 

Chapter 2 introduced the application of bivariate distributions to model failure 

with respect to two variables, time and usage.  In this chapter, procedures are developed 

to generate random failure and repair data corresponding to the bivariate distributions.  

The processes are constructed for two classes of bivariate distributions – stochastic 

functional relationships and correlated random variables.  The failure and repair data 

characterizes the behavior associated with each distribution and is then used to develop 

performance measure estimation methods.  Procedures are created to estimate the 

bivariate renewal function and the bivariate availability function.  The results from these 

tests are used to compare and contrast the 4 bivariate models.       

3.2 Generating Bivariate Failure/Repair Data 
 

The first step in developing the simulation models is the determination of a 

generation procedure for failure and repair data for each of the bivariate failure models 

selected.  The failure/repair data is used to estimate two measures of system performance 

– reliability and availability.  Each failure vector has two components (T, U) representing 

the time to failure and the use to failure, respectively.  The same is true for the repair 

vectors; however, the components (Rt,Ru) represent the amount of time (or use) to 

complete a repair.  Because the two components have dependence relationships 

(functional or correlated) it is necessary to employ a multivariate random number 

generation scheme.   

 

Several algorithms that are candidates for the construction of multivariate random 

vectors exist.  The most commonly used methods for multivariate random vector 

generation include the conditional method, transformation methods, and the acceptance-

rejection method.  Algorithms for each of these methods exist in the literature (Devroye 

[1986], Johnson [1987], and Law and Kelton [1991]) and are only valid when used in 
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conjunction with a “good” uniform random number generator.  Each has specific 

characteristics that warrant its use in various situations.   

 

The conditional distribution method is a universal tool that can be used in many 

situations.  It provides the ability to reduce the multivariate generation problem into a 

series of univariate generation problems (Devroye [1986]).  This simplification allows for 

the use of numerous generation techniques that have been developed for the univariate 

case.  In order to use this method, the distribution must be invertible and a series of 

conditional distributions must be obtainable.  This is equivalent to knowing each 

marginal distribution since:  

,
),....(

),....(
),....|(

11
*

1

1
*

11

−−
− =

ii

ii
iii

xxf

xxf
xxxf  

where f*i is the marginal density of the first i components (i.e. the density of (x1,….xi)).  

The critical step in the conditional distribution method is the determination of the 

marginal distribution of the first vector element and subsequent conditional distributions 

for the remaining vector elements. For the cases analyzed here, the distributions 

( ) ( )uftf UT or   and ( ) ( )tufutf tuut |or  | ||  are obtainable when necessary.  After the 

marginal distributions and corresponding conditional densities are found, the univariate 

generation technique, inversion, is implemented to generate T and U. 

For the generation of Rti and Rui, it is important to note, the procedures are 

identical to those for the generation of T and U.  The difference appears in the parameter 

selection.  The parameters for the repair distribution are selected such that the repair rate 

is 10 percent of the failure distribution.  It is important to note, the values generated from 

the above procedures are individual failure (repair) vectors.  A series of 10 failure (repair) 

vectors is generated for each machine and used to determine the lifetime of the machine.  

Each failure vector represents the amount of time and usage that has passed since the 

previous failure.  So, failure i is determined by adding (Ti, Ui) to the longevity vector for 

failure i-l.  For example, given the following failure vectors: 

(T1, U1) = (1750, 2345) 

(T2, U2) = (3420, 2190), 
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the first failure would occur at (1750, 2345) and the second failure would occur at (5170, 

4535).  The same method is used to generate machine lifetimes when repair is included.  

However, to find the ith failure point, the values of the i-1st failure and repair vectors are 

added to the ith failure vector.  For instance, using the same failure vectors mentioned 

above and including the following repair vector (Rt1, Ru1) = (355, 195), the second failure 

would occur at (5525, 4730).  It is important to note that in all model instances, the repair 

distribution is taken from the same family as the failure distribution.  The code used to 

generate failure/repair data can be found in Appendix A.  The subsequent sections 

describe the various generation techniques in greater detail.   

3.2.1 Bivariate Exponential Model 

 

To address the issue of generating failure/repair behavior for the bivariate 

exponential model,  

( ) ( )( )( ) e4e2e211H XWXWXW +−−−+ +−−+=(t,u)fT,U ,  

the conditional distribution method is utilized.  It is well known the marginal distributions 

of the bivariate exponential distribution are exponential.  Using this result, the conditional 

distribution on either variable is found using the definition of conditional density 

function, formally stated as: 

( ) ( )
( )xf

yxf
xyf

X

YX
XY

,
| ,

| = .                              

For the purposes of this study, time was considered as the first vector component.  

Therefore, following the conditional distribution procedure, T is generated from the 

marginal distribution, ( ) t
T etf λλ −= , using the inversion method as follows:  

( ),1ln
1

1ZT −−=
λ

 

where Z1 is a uniform random number on the interval (0,1).  The next step is to construct 

the conditional distribution, ( )tuf tu || .  The conditional distribution is found to be:    

(3.2) 

(3.1) 

(3.3) 
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Using the conditional distribution, ( )tuf tu || , and the value of T, U may be generated 

using the inverse transformation technique as follows:  
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3.2.2 Bivariate Normal Model 

 

For the bivariate normal distribution,  
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the conditional distribution method is a valid generation technique.  However, Scheuer 

and Stoller [1962] develop a simpler method.  The method is applicable when generating 

a n-dimensional multivariate normal distribution with mean vector µ = (µ1, µ2, .…., µn)
T 

and covariance matrix Σ, where the (i,j)th entry is σij.  Also, Σ must be symmetric and 

positive definite; this gives us the ability to factor it uniquely as Σ = CCT, where C is a 

lower triangular n x n matrix (Law and Kelton [1991]).  The resulting algorithm is 

formally stated as: 

1. Generate Z1, Z2,…., Zn as IID N(0,1) random variates 

2. For i = 1,2,….n, let ∑ =
+= i

j jijii ZcX
1

µ and return X = (X1, X2,.….XN)T. 

Barr and Slezak [1972] assert that this method is the most appropriate of a number 

of methods of generating the multivariate normal.  Based on this method, Banks, Carson, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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and Nelson [1996] provide a specific procedure for the bivariate case.  The algorithm is 

as follows: 

1. Generate Z1 and Z2 as IID N(0,1) random variates 

2. Set 1111 ZX σµ +=  

3. Set ( )2
2

1222 1 ZZX ρρσµ −++=  

For the case presented here, the following substitutions are made: X1 = T, X2 = U, µ1 = µt, 

µ2 = µu, σ1 = σt, and σ2 = σu. 

 

3.2.3 Linear Stochastic Functional Relationship 

 

The first of the functionally dependent relationships studied is a linear 

relationship between T and U, denoted by:  

( ) ,βα += ttg  

where g(t) = u, β is a constant, and α is a random variable with distribution ( )⋅απ .  In all 

cases considered α is assumed to have the exponential distribution of the form:  

( ) .α
απ cce−=⋅  

It is important to recognize the difficulty in generating the linear stochastic functional 

relationship.  An appropriate method using the joint distribution function was not 

obtained.  Therefore, an initial attempt of generation was made by assuming a 

distribution for T and using the linear function to generate U.  The vector component, t, is 

assumed to behave according the exponential distribution, with parameter λ.  Using these 

two assumptions the following procedure is implemented to generate the failure vector 

components (T,U): 

1. Set β = constant 

2. Generate Z1 and Z2 as IID U(0,1) random variates.  

3.  Set ( )11ln
1

ZT −−=
λ

 

4. Set ( )21ln
1

Z
c

−−=α  

(3.9) 

(3.10) 
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5. Set βα += tU . 

3.2.4 Logistic Dependence Relationship 

 

The last model under consideration is the logistic model studied by Eliashberg, 

Singpurwalla, and Wilson [1997].  Recall, the model is of the form:  

( ) ( )βαα +−=  e 1e  g(t) tt , 

where g(t) = u, β is a constant, and α is a random variable with distribution ( )⋅απ .  Again, 

a useful generation technique using the joint distribution function for this relationship 

was not used.  So, the two assumptions from the previous section (α and t are exponential 

random variables) are made in this case as well.  The resulting random vector generation 

procedure is: 

1. Set β = constant 

2. Generate Z1 and Z2 as IID U(0,1) random variates.  

3. Set ( )11ln
1

ZT −−=
λ

 

4. Set ( )21ln
1

Z
c

−−=α  

5. Set ( ) ( )βαα +−=  e 1e ttU . 

 

3.3 Renewal Function Estimation 
 

A bivariate renewal model is provided by Yang [1999]; however, direct analysis 

of the model is rather difficult due to the complexity of the Laplace transform.  The goal 

here is to develop a simulation procedure to portray the renewal behavior of a system that 

undergoes instantaneous repair/replacement.  A bivariate renewal estimation procedure is 

developed to gather insight on the behavior the four failure models.  The characteristics 

are then used to compare the behavior across the model types.    

 

(3.11) 
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The estimation procedure considers the failure behavior of a fixed number of 

machines for a fixed number of failures, over incremental observations in the time-usage 

plane.  The sample population consists of 1,000 machines with 10 failures per machine.  

The first step in the estimation procedure is to determine an appropriate grid resolution 

(for the observation points).  In order to capture the cumulative behavior, the grid size is 

selected based on the failure rate for either time or usage.   Three observation grids are 

constructed corresponding to the three failure rate levels (low, medium, and high); each 

grid consists of two hundred observation points.  To illustrate the process, consider a case 

where the mean time to failure and usage are 3,000 and 18,500, respectively.  Using these 

values, statistics are collected every 2000 time (usage) units until 200 observations are 

complete (i.e. lattice point (400000, 400000)).  The observation intervals for the two 

alternative grids are 300 and 800 units.  The remainder of the renewal estimation 

procedure is based on the observation grid.   

 

A second method is developed to estimate the projection of the bivariate renewal 

process on either the time or usage axis.  The same random data generation procedure is 

used; however, comparisons are made according to only one variable.  The observation 

interval corresponds to the interval used in the bivariate renewal estimation procedure.  

This method is provides insight on the renewal behavior when considering only one of 

the two variables.   

3.3.1 Bivariate Renewal Estimation 

 

The renewal estimation process begins by generating failure data for the sample 

population.  Then each of the 10 failures is compared, individually, against all 

observation points, O(j,k), for all j = 1, 2, …, 200 and k = 1, 2, …, 200, where j represents 

observation times, and k represents observation usages.  The comparison statistics are 

used to generate a matrix of cumulative renewals across all machines, or the renewal 

matrix.  The comparison of failure point to observation point determines the location(s) in 

the matrix that are updated to reflect the failure.  An update to the matrix is performed 

only if the following condition is true: the vector components of failure i are less than or 

equal to O(j,k).  In other words, the failure time component is less than or equal to O(j) 
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and the failure usage component is less than or equal to O(k).  The updated entries 

correspond to the total number of renewals experienced until that point.  

 

The following example illustrates two iterations of the bivariate renewal 

estimation procedure.  Given the failure points:  

i Failure (i) Cumulative Renewals 

1 (3282, 2736) 1 

2 (6303, 5591) 2 

 

the resulting renewal matrix is as follows:  

 

Time 

Usage 
300 600 …. 3000 3300 3600 …. 6300 6600 6900 

300            

600           

. 

. 

. 

. 

. 

. 

 . 

. 

      

2700           

3000     1 1 …. 1 1 1 

3300     1 1 …. 1 1 1 

. 

. 

    . 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

5400     1 1 1 1 1 1 

5700         2 2 

6000         2 2 

Table 3-1 RENEWAL MATRIX  

 

The above example represents the matrix updates of 1 machine for 2 failures.  The 

procedure is repeated for the remaining failure vectors (i = 3, 4, …, 10) and for the 

remaining machines (N = 10,000).  The renewal updates from all N machines are 

accumulated in one renewal matrix.  Then an average over N machines is taken to find 

the average cumulative number of renewals for a given parameter set.  Figure 3-1 

provides a graphical representation of the method described here and the Matlab code 

used for this estimation procedure can be found in Appendix A.5. 
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Figure 3-1 FLOWCHART FOR BIVARIATE RENEWAL ESTIMATION 
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3.2.2 Univariate Projection 

 
The final renewal estimation procedure estimates the projection of the bivariate 

renewal function, ( )utM F , , onto one axis (time or use).  Hunter [1974] addresses 

renewal theory in two dimensions and finds a simplified method of addressing the 

bivariate renewal process.  First, he defines )2()1(  and yx NN  as the univariate renewal 

counting process for the X-renewals and the Y-renewals; yxN , is defined as the two-

dimensional renewal counting process.  In the cases presented here, X and Y are 

equivalent to T and U, respectively.  Hunter determines a relationship between the 

univariate counting process and the bivariate counting process: { })2()1(
, ,min yxyx NNN = .  

In this research a procedure is developed to analyze bivariate failure data in one 

dimension and the results are compared to those of Hunter.  The projection of the 

bivariate process onto one axis (time or use) is informative for counting the number of 

renewals in one dimension.   

 

In this method, the same basic failure generation scheme is employed.  To 

maintain consistency between the two methods, the process is repeated for N = 1,000 

machines.  The renewal matrix is reduced to a renewal vector with the same observation 

coverage as the bivariate method.  The observation increment is chosen according to the 

mean value for the given bivariate model; the larger of the two mean values is used in 

order to capture the full extent of the behavior.  Figure 3-2 describes the general outline 

of the procedure and the simulation code used to generate the univariate renewal data can 

be found in Appendix A.6 
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Figure 3-2 FLOWCHART FOR UNIVARIATE PROJECTION METHOD 
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3.4 Availability Function Estimation  
 

 As is the case with the bivariate renewal model provided by Yang [1999], direct 

analysis of the bivariate availability model is challenging.  Estimation of the availability 

function follows the same approach used in the estimation of the renewal function.  

Simulation models are constructed to capture the lifetime behavior of a system that 

undergoes corrective maintenance.  Two methods of bivariate availability estimation are 

developed.  The basic procedures used in the availability estimation models are the same 

as those used in the renewal estimation models, except a larger number of machines (N = 

100,000) are considered.  The two bivariate models consider a fixed number of machines, 

each with a predetermined number of failures.   

3.4.1  Bivariate Availability Estimation  

 
The two estimation procedures begin by selecting a distribution and the 

corresponding parameters.  Given this information, an observation grid is initialized from 

the mean of the distribution on time or usage.  The observation grid is a matrix 

representing various lattice points in the time-usage plane where the system behavior is 

monitored.  After the parameters and the grid resolution are fixed, 10 failure and repair 

vectors are generated for each machine (N = 100,000).  The failure vector (Ti, Ui) 

represents the time and usage failure i occurs; the repair vector (Rti, Rui), the time and 

usage repair i is completed.  Each component (time, usage) of the failure and repair 

vectors is compared to O(j) or O(k) (O(j) refers to time, O(k) refers to usage).  The 

information gained here is used to determine the availability matrix, which is similar to 

the renewal matrix.  The availability matrix entries represent the number of machines 

functioning at a particular observation point.   

The comparison process identifies the matrix location corresponding to a failure 

or repair completion.  In method 1, all entries of the availability matrix are initialized to 

N, meaning all machines are functioning.  Given the matrix location of any failure and 

repair sequence, all matrix location between the two points are decremented by 1 to 

reflect the non-functioning machine.  An overview of the process is shown in Figure 3-3 

and the Simulation code appears in Appendix A.6.   
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Figure 3-3 FLOWCHART FOR BIVARIATE AVAILABILITY ESTIMATION (METHOD 1) 
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The following example illustrates the process for 1 machine and the first two 

failure/repair sequences.  Suppose the following two sequences occur:  

 

i Failure (i) Repair Completion 

1 (2038, 3205) (2274, 3606) 

2 (4791, 7088) (5104, 7358) 

 

Using method 1, the resulting availability matrix is:  

 

Time 

 

Usage   

300 600 …. 1800 2100 2400 …. 4500 4800 5100 5400 

300 100000 100000 …. 1000000 100000 100000 …. 100000 100000 100000 100000 

600 100000 100000 …. 100000 100000 100000 …. 100000 100000 100000 100000 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

3000 100000 10000 …. 100000 100000 100000 …. 100000 100000 100000 100000 

3300 100000 10000 …. 100000 99999 99999 …. 100000 100000 100000 100000 

3600 100000 10000 …. 100000 99999 100000 …. 100000 100000 100000 100000 

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

6900 100000 100000 …. 100000 100000 100000 …. 100000 100000 100000 100000 

7200 100000 100000 …. 100000 100000 100000 …. 100000 99999 99999 99999 

7500 100000 100000 …. 100000 100000 100000 …. 100000 99999 99999 100000 

7800 100000 100000 …. 100000 100000 100000 …. 100000 100000 100000 100000 

Table 3-2 AVAILABILITY MATRIX (METHOD 1) 

 

For some matrix locations, the availability may be overestimated due to the 

assumption all machines are functioning unless a failure occurs; this occurs because all 

machines do not necessarily pass through all observation points.  For example, O(7,10) – 

(2400, 3000) reflects an availability of 1, dividing the number of functioning machines by 

the total number of machines (N = 100,000).  However, failure 1 occurs at (2038, 3205) 

so the point (2400, 3000) is not accessible by this particular machine and at this point 

10,000 machines are not functioning.  A second method is developed to improve the 

estimation procedure.  The second method follows the same initial procedure, but takes a 

different approach to obtaining the availability statistics.   
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For method 2, two matrices are maintained – the availability matrix and the 

relevant matrix.  Similar to the second renewal estimation method, the relevant matrix 

tracks the locations that are accessible by each machine.  The availability matrix is 

similar to that of availability estimation method 1; however, the assumption that all 

machines are functioning is relaxed.  In this case, the availability matrix accumulates the 

total number of working machines that access a particular observation location.  The two 

matrices are then used to estimate the bivariate availability function by averaging over 

the total number of machines that have visited each observation point.  The following 

example, using the same failure and repair information from above:  

 

i Failure (i) Repair Completion 

1 (2038, 3205) (2274, 3606) 

2 (4791, 7088) (5104, 7358) 

 

shows the difference in the availability matrix (Table 3-3) from method 1 and method 2.  

Also, the relevant matrix is presented in Table 3-4.   

 

Time 

 

Usage   

300 600 …. 1800 2100 2400 2700 …. 4500 4800 5100 5400 

300 1  …. 1    ….     

600 1  …. 1    ….     

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 …. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

3000 1 1 …. 1    ….     

3300   ….     ….     

3600   ….     ….     

3900      1 1 …. 1    

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

6900   ….   1 1 …. 1    

7200   ….     ….     

7500   ….     ….    1 

7800   ….     ….    1 

Table 3-3 AVAILABILITY MATRIX (METHOD 2) 
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It is important to notice that, only some of the entries are filled, as opposed to all of the 

entries in the availability matrix of method 1.  In particular, for method 2 the entry in 

O(7,10) – (2400, 3000) – reflects a zero because the machine is not functioning at that 

particular point.  Recall, the same entry O(7,10) is equal to 10,000 in method 1, implying 

that all machines are functioning.  Given the above availability matrix, the relevant 

matrix (Table 3-4) is used to provide the number of machines working at a given 

observation point.   

 

Time 

 

Usage   

300 600 …. 1800 2100 2400 2700 …. 4500 4800 5100 5400 

300 1  …. 1    ….     

600 1  …. 1    ….     

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 …. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

3000 1 1 …. 1    ….     

3300   ….  1   ….     

3600   ….  1   ….     

3900      1 1 …. 1    

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

…. 

…. 

. 

. 

. 

. 

. 

. 

. 

. 

6900   ….   1 1 …. 1    

7200   ….     ….  1 1  

7500   ….     ….    1 

7800   ….     ….    1 

Table 3-4 RELEVANT MATRIX (METHOD 2) 

 

The difference between the two methods can be made more clear by the observations 

highlighted in Table 3-4.  Although these points are not accessible by the machine, 

method 1 considers them as accessible and the family of machines as fully functioning.  

The degree of difference between the estimates is not clear.  Figure 3-4 provides a 

graphical representation of the second method of bivariate availability estimation.  The 

data generation code is available in Appendix A.9.    
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Figure 3-4 FLOWCHART FOR BIVARIATE AVAILABILITY ESTIMATION (METHOD 2) 
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3.5 Experimental Methodology 
 

Simulation experiments are constructed such that a wide variety of potential 

systems are presented.  For each of the correlated models and the linear stochastic 

functional relationship, the parameter values are varied on three levels in order to 

represent low, medium, and high failure/repair rates.  All possible parameter 

combinations are considered, giving 27 cases.  The parameter selection allows for 

comparison across models, by ensuring the mean values for time and use are similar.  In 

the case of the logistic stochastic functional relationship, identification of appropriate 

parameters is not clear.  Only two parameter sets are selected and comparison to other 

models is attempted.  In all cases, the parameters for the repair distribution are chosen 

based on those for the lifetime distribution.  The cases considered for each model are 

identified in Table 3-5. 
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 Bivariate Exponential Model 

(BVE) 

(λ, η, ρ) 

Bivariate Normal  

Model (BVN) 

(µT, µU, σT, σU, ρ) 

Linear Stochastic 

Function (LISF) 

(λ, c, β) 

Logistic Stochastic 

Function (LOSF) 

(λ, c, β) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

(0.00033, 0.00031, 0.2) 

(0.00033, 0.00031, 0.5) 

(0.00033, 0.00031, 0.8) 

(0.00033, 0.00014, 0.2) 

(0.00033, 0.00014, 0.5) 

(0.00033, 0.00014, 0.8) 

(0.00033, 0.000054, 0.2) 

(0.00033, 0.000054, 0.5) 

(0.00033, 0.000054, 0.8) 

(0.00013, 0.00031, 0.2) 

(0.00013, 0.00031, 0.5) 

(0.00013, 0.00031, 0.8) 

(0.00013, 0.00014, 0.2) 

(0.00013, 0.00014, 0.5) 

(0.00013, 0.00014, 0.8) 

(0.00013, 0.000054, 0.2) 

(0.00013, 0.000054, 0.5) 

(0.00013, 0.000054, 0.8) 

(0.00005, 0.00031, 0.2) 

(0.00005, 0.00031, 0.5) 

(0.00005, 0.00031, 0.8) 

(0.00005, 0.00014, 0.2) 

(0.00005, 0.00014, 0.5) 

(0.00005, 0.00014, 0.8) 

(0.00005, 0.000054, 0.2) 

(0.00005, 0.000054, 0.5) 

(0.00005, 0.000054, 0.8) 

(3000, 3250, 600, 650, 0.2) 

(3000, 3250, 600, 650, 0.5) 

(3000, 3250, 650, 600, 0.8) 

(3000, 7400, 600, 1480, 0.2) 

(3000, 7400, 600, 1480, 0.5) 

(3000, 7400, 600, 1480, 0.8) 

(3000, 18500, 600, 3700, 0.2) 

(3000, 18500, 600, 3700, 0.5) 

(3000, 18500, 600, 3700, 0.8) 

(8000, 3250, 1600, 650, 0.2) 

(8000, 3250, 1600, 650, 0.5) 

(8000, 3250, 1600, 650, 0.8) 

(8000, 7400, 1600, 1480, 0.2) 

(8000, 7400, 1600, 1480, 0.5) 

(8000, 7400, 1600, 1480, 0.8) 

(8000, 18500, 1600, 3700, 0.2) 

(8000, 18500, 1600, 3700, 0.5) 

(8000, 18500, 1600, 3700, 0.8) 

(20000, 3250, 4000, 600, 0.2) 

(20000, 3250, 4000, 600, 0.5) 

(20000, 3250, 4000, 600, 0.8) 

(20000, 7400, 4000, 1480, 0.2) 

(20000, 7400, 4000, 1480, 0.5) 

(20000, 7400, 4000, 1480, 0.8) 

(20000, 18500, 4000, 3700, 0.2) 

(20000, 18500, 4000, 3700, 0.5) 

(20000, 18500, 4000, 3700, 0.8) 

(0.00033, 1, 0) 

(0.00033, 1, 250) 

(0.00033, 1, 500) 

(0.00033, 0.4, 0) 

(0.00033, 0.4, 250) 

(0.00033, 0.4, 500) 

(0.00033, 0.167, 0) 

(0.00033, 0.167, 250) 

(0.00033, 0.167, 500) 

(0.00013, 2.5, 0) 

 (0.00013, 2.5, 250) 

(0.00013, 2.5, 500) 

(0.00013, 1, 0) 

(0.00013, 1, 250) 

(0.00013, 1, 500) 

(0.00013, 0.5, 0) 

(0.00013, 0.5, 250) 

(0.00013, 0.5, 500) 

(0.00005, 6.67, 0) 

(0.00005, 6.67, 250) 

(0.00005, 6.67, 500) 

(0.00005, 2.85, 0) 

(0.00005, 2.85, 250) 

(0.00005, 2.85, 500) 

(0.00005, 1, 0) 

(0.00005, 1, 250) 

(0.00005, 1, 500) 

(0.00033, 416, 1511) 

(0.00014, 1087, 1511) 

---- 

---- 

---- 

---- 

Table 3-5 MODEL PARAMETERS 

 

The parameters for the repair distributions are selected so that the repair rate is 

approximately 10 percent of the failure rate.  Also, the repair distribution for each model 

is from the same family. 
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Chapter 4 – Results and Conclusions 
 

4.1 Bivariate Failure Distributions 
 

Examples of the bivariate probability densities for each of the candidate models are 

shown in Figure 4-1 through Figure 4-6.  The density plots provide an indication of the 

behavior expected of each distribution.  For instance, with the bivariate exponential 

distribution (Figure 4-1), the observations are well dispersed throughout the plane, but are 

concentrated near the origin and at values less than the mean on time and usage.  From 

this one can conclude there is a significantly high probability of early failure, but also late 

failures are not uncommon.  For the bivariate exponential distribution, variations in the 

correlation coefficient do not greatly impact the shape of the distribution. 

Figure 4-1 BIVARIATE EXPONENTIAL PROBABILITY DENSITY 

 

However, with the bivariate normal distribution a noticeable change in the shape 

of the distribution occurs after varying the correlation coefficient.  Notice in Figure 4-2, 
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for a low correlation value the function peaks around the point (µt, µu) and the base of the 

function is symmetric about this point.     

 

Figure 4-2 BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION (ρ = 0 .2 ) 

 

In contrast, in  

 

Figure 4-3 and  

 

Figure 4-4, the function peak shifts toward increased usage values.  Also, the base 

of the function becomes narrower.   
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Figure 4-3 BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION  (ρ = 0 .5 ) 

 

 

Figure 4-4 BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION  (ρ = 0 .8) 

 

It is important to recognize the lack of dispersion in the plane for the bivariate 

normal density.  There is little dispersion as a result of the choice of a small standard 
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deviation for time and usage.  The standard deviations, σt and σu, were chosen as 1/5 of 

µt and µu, in order to avoid negative values in the generation procedure.  Larger values 

for the standard deviations would have provided more representation throughout the 

plane.   

 

Figure 4-5 depicts the realization of the linear stochastic functional relationship.  

Similar to the BVE, there is a high concentration of observations near the origin and good 

representation throughout the plane.  Although, it appears the linear relationship tends to 

have a higher proportion of early values than the bivariate exponential.  Another 

interesting point is the sparcity of values near the mean values on time and usage, as seen 

in the BVE.   

 

The last distribution, the logistic stochastic functional relationship Figure 4-6 also 

resembles the BVE.  There is a considerable increase in the number of observations near 

the origin, implying a high percentage of early failures.  An important distinction 

between the behavior of this model and the others is the scale on the usage variable.  The 

values of U fall in the interval (0, 1].  Additional instances of the stochastic functional 

probability densities can be found in Appendix B.   

 

Figure 4-5 LINEAR STOCHASTIC FUNCTION PROBABILITY DENSITY 
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Figure 4-6 LOGISTIC STOCHASTIC FUNCTION PROBABILITY DENSITY 

 

4.2 Renewal Estimation 
 

After initial analysis of the results for renewal estimation, the collection of 

parameter sets can be reduced to the cases enumerated in Table 4-1:  

 

 Bivariate Exponential Model 

(BVE) 

(λ, η, ρ) 

Bivariate Normal  

Model (BVN) 

(µT, µU, σT, σU, ρ) 

Linear Stochastic 

Function (LISF) 

(λ, c, β) 

Logistic Stochastic 

Function (LOSF) 

(λ, c, β) 

1 

2 

3 

4 

5 

6 

(0.00033, 0.00031, 0.2) 

(0.00033, 0.00031, 0.5) 

(0.00033, 0.00031, 0.8) 

(0.00033, 0.00014, 0.5) 

(0.00033, 0.000054, 0.5) 

(0.00005, 0.00031, 0.5) 

(3000, 3250, 600, 650, 0.2) 

(3000, 3250, 600, 650, 0.5) 

(3000, 3250, 650, 600, 0.8) 

(3000, 7400, 600, 1480, 0.5) 

(3000, 18500, 600, 3700, 0.5) 

(20000, 3250, 4000, 600, 0.5) 

(0.00033, 1, 0) 

(0.00033, 1, 250) 

(0.00033, 1, 500) 

(0.00033, 0.4, 250) 

(0.00033, 0.167, 250) 

(0.00005, 6.67, 250) 

(0.00033, 416, 1511) 

(0.00014, 1087, 1511) 

---- 

---- 

---- 

---- 

Table 4-1 REPRESENTATIVE PARAMETER SETS 

 

The reduction is made because qualitatively the behavior is the same across parameter 

sets.  Plots for the cases corresponding to variations in ρ or β, for cases 4-6, are provided 

in Appendix B.1.   
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4.2.1 Bivariate Exponential Model 

 

In general, the renewal function for the bivariate exponential distribution 

demonstrates reasonable behavior.  The renewal function exhibits gradually increasing 

behavior throughout the plane.  However, there is a distinct area of greater increase, 

particularly for low values of time and usage; this is understandable considering the 

bivariate exponential density.  By the nature of the bivariate exponential distribution, 

there is a significant probability of early failures as well as a reasonably high likelihood 

of late failure, which accounts for the shape of the renewal function.  Figure 4-7 shows 

the renewal function behavior for case 1, where λ = 0.0003, η = 0.00031, and ρ = 0.2.   
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Figure 4-7 RENEWAL FUNCTION (CASE 1, BVE) 

 

Figure 4-8 and Table 4-2 represents the results for the univariate projection 

method for case 1.  The results verify the behavior exhibited in the bivariate renewal 

estimation procedure.  Qualitatively the behavior is the same across all parameter sets and 

all model instances.  The results for the representative parameter sets can be found in 

Appendix B.1. A distinction between Hunter’s univariate renewal counting process and 

that used here is evident: in all instances, { })2()1(
, ,min ytut NNN ≠ .  Hunter’s univariate 

process accumulates renewals until the particular time or use value in question; however, 
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the method used here counts the number of renewals across all values of time or use 

while holding the second variable constant.        

 

Figure 4-8 UNIVARIATE PROJECTION (CASE1, BVE) 

 
 

Parameter Values t u Nt Nu min {Nt, Nu} Nt,u 

(0.00033, 0.00031, 0.2) 300 300 0.103 0.091 0.091 0.016 

 4200 4200 1.387 1.296 1.296 0.778 

 36000 36000 9.403 9.162 9.162 8.755 

Table 4-2 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE 

 
 

Figure 4-9 and Figure 4-10 show the effects of varying the degree of correlation 

between the variables.  The variations in correlation do not appear to cause significant 

differences in renewal function behavior.  Upon increasing the correlation coefficient, ρ, 

the function behavior is altered in the use component, but not time.  In particular, the 
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number of renewals increases more quickly in the usage variable for ρ = 0.5 and ρ = 0.8, 

than for ρ = 0.2.  In all cases the difference is nominal.   
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Figure 4-9 RENEWAL FUNCTION (CASE 2, BVE) 
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Figure 4-10 RENEWAL FUNCTION (CASE 3, BVE) 

 

In the cases that vary the failure rates on different levels, the results are 

comparable and the differences achieved are not surprising.  For example, when the mean 

for t is low and the mean for u is high it is expected that the number of renewals will 

increase more quickly with respect to time.  As seen in Figure 4-11 the area of steepest 

increase is deflected toward the usage axis (i.e. low time, high usage).  As the distance 
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between the failure rates increases, the shift toward the axis corresponding to the larger 

value is more apparent (Figure 4-12 and Figure 4-13).  In other words, the number of 

renewals increases more slowly in the variable with the larger mean value.   
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Figure 4-11 RENEWAL FUNCTION (CASE 4, BVE) 
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Figure 4-12 RENEWAL FUNCTION (CASE 5, BVE) 
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Figure 4-13 RENEWAL FUNCTION (CASE 6, BVE) 

 

4.2.2 Bivariate Normal Model 

 
 In all instances of the bivariate normal distribution, at points early in the plane the 

renewal function is not smooth. Early there are jumps in the number of renewals as time 

and usage increase.  However, as the renewal function approaches the observation point 

(5µt, 5µu) the ridges become smooth.  The smoothness of the function implies a more 

gradual increase in the number of renewals as opposed to the early discrete jumps.   

Figure 4-14 shows the renewal function for case 1 (µt = 3000, µu = 3250, ρ = 0.2); this 

chart is representative of all parameter sets with comparable mean values for t and u and 

low correlation.   
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Figure 4-14 RENEWAL FUNCTION (CASE 1, BVN) 
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Figure 4-15 and Table 4-3, represent the analysis of the univariate projection 

method and the bivariate estimation procedure.  The results confirm the behavior seen in 

the bivariate estimation procedure.  The bivariate normal case reiterates the difference 

between Hunter’s method and that used here.  The results for the additional parameter sets 

may be found in Appendix B.1.   

Figure 4-15 UNIVARIATE PROJECTION (CASE 1, BVN) 

 

 

Parameter Values t u Nt Nu min {Nt, Nu} Nt,u 

(3000, 3250, 600, 650, 0.2) 300 300 0 0 0 0 

 4200 4200 0.992 0.941 0.941 0.914 

 36000 36000 10 9.975 9.975 9.955 

Table 4-3 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE 

 
 
 As a point of comparison, Figure 4-16 and Figure 4-17 depict the effects of 
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location of the function is altered.  The base of the renewal function shifts away from the 

time axis as the correlation increases from 02. to 0.5 and 0.2 to 0.8.  This indicates a 

slower rate of increase in the usage variable as ρ increases.  This behavior occurs because 

an increase in ρ results in increased values for U.  Less of a distinction between the 

renewal function for ρ = 0.5 and ρ = 0.8 exists.    
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Figure 4-16 RENWAL FUNCTION (CASE 2, BVN) 
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Figure 4-17 RENEWAL FUNCTION (CASE 3, BVN) 

 
 
 A final observation can be made concerning the behavior of the renewal function 

as the mean failure rates are examined at varying levels.  The average cumulative number 

of renewals increases more quickly in relation to the variable with a smaller mean.  This 
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is not surprising since a smaller mean implies to earlier failures.  It is important to note 

the relative shape of the function is the same.  However, the function plateau is elongated 

and the peak occurs closer to the axis associated with the larger mean.  As the deviation 

between the means increases, the magnitude of the shifts increases (Figure 4-18 - Figure 

4-20).  Figure 4-18 and Figure 4-19 represent a low failure rate for time paired with a 

high usage failure rate, whereas Figure 4-20 shows the opposite relationship—high time 

failure rate and low usage failure rate.   
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Figure 4-18 RENEWAL FUNCTION (CASE 4, BVN) 
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Figure 4-19 RENEWAL FUNCTION (CASE 5, BVN) 
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Figure 4-20 RENEWAL FUNCTION (CASE 6, BVN) 

 

4.2.3 Linear Stochastic Functional Relationship 

 

The renewal function for the linear relationship exhibits many of the properties 

seen with the bivariate exponential distribution.  The function is smooth in all areas of the 

plane, implying gradual increases throughout the plane.  However, the number of 

renewals appears to increase faster early in the plane.  Except for extremely early values 

of time and use, the rate of increase along the axes is constant.  This is expected since 

failures with a high time (use) and low use (time) occur much less frequently than those 

with low time and low use.  Figure 4-21 depicts the general renewal behavior exhibited 

by the linear stochastic function when  λ = 0.0003, α = 1, and β = 0.   
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Figure 4-21 RENEWAL FUNCTION (CASE 1, LISF) 

 
Figure 4-22 and Table 4-4, represent the analysis of the univariate projection 

method and the bivariate estimation procedure.  The behavior exhibited in Figure 4-22 is 

comparable to that seen in the bivariate estimate (Figure 4-21).  It is important to note 

that, for earlier values of time and use, the number of renewals increases more quickly in 

the usage variable; however, as time and use progress the opposite is true.  The results for 

the additional parameter sets may be found in Appendix B.1.   
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Figure 4-22 UNIVARIATE PROJECTION (CASE 1, LISF) 

 
 

Parameter Values t u Nt Nu min {Nt, Nu} Nt,u 

(0.00033, 1, 0) 300 300 0.104 0.268 0.104 0.091 

 4200 4200 1.387 2.092 1.387 1.178 

 36000 36000 9.488 9.129 9.129 8.755 

Table 4-4 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE 

 

Figure 4-23 and Figure 4-24 represent the changes in the renewal behavior as a 

result of variations in the constant, β.  The global behavior mimics case 1, although 

differences exist in relation to the use variable.  In general, the number of renewals 

increases more quickly for smaller values of β.  This is understandable considering the 

constant, β, increases the amount of use between failures.  It is interesting, however, for β 

= 0 and β 250, renewals increase faster in usage than in time, but for β = 500 the number 

of renewals tends to increase faster in time than in use.   

0

2

4

6

8

10

0 10000 20000 30000 40000 50000 60000

Time (Usage)

N
u

m
b

er
 o

f 
R

en
ew

al
s

Time

Use



 51

0

20000

40000

60000

Time
0

20000

40000

60000

Usage

0

2.5

5

7.5

10

Number of Renewals

0

20000

40000

60000

Time

 

Figure 4-23 RENEWAL FUNCTION (CASE 2, LISF) 
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Figure 4-24 RENEWAL FUNCTION (CASE 3, LISF) 

 
The last three cases represent the effects of varying the level of the mean value for 

t and α.  Variations in the mean level produce comparable behavior across all parameter 

sets.  The representative combinations are shown in Figure 4-25 through Figure 4-27.  As 

the separation between the means increases, the location of the steepest increase shifts 

toward the axis corresponding to the larger mean.  Also, the increase in the number of 

renewals near the axes increases as the separation between the means increase.  For case 

4 and 5, the increase is noted along the usage axis; case 6, the time axis.   

 



 52

0

50000

100000

150000

Time

0

50000

100000

150000

Usage

0

2.5

5

7.5

10

Number of Renewals

0

50000

100000

150000

Time

 

Figure 4-25 RENEWAL FUNCTION (CASE 4, LISF) 
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Figure 4-26 RENEWAL FUNCTION (CASE 5, LISF) 
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Figure 4-27 RENEWAL FUNCTION (CASE 6, LISF) 

 

4.2.4 Logistic Stochastic Functional Relationship 

 
The renewal function for the logistic stochastic functional relationship (Figure 

4-28) demonstrates gradually increasing behavior as time progresses.  However, as usage 

increases there are periods of gradual increase followed by periods of steep increase.     

For early usage values there is a sharp increase in the number of renewals as time 

increases.  This can be attributed to the high likelihood of extremely early failures in both 

time and use.   
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Figure 4-28 RENEWAL FUNCTION (CASE 1, LOSF) 
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Figure 4-29 represents the renewal function for the second logistic function 

parameter set.  Here, the mean value for time is increased, while the mean value for α is 

decreased.  The resulting behavior is similar to case 1, although the number of renewals 

increases more quickly as time advances.   
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Figure 4-29 RENEWAL FUNCTION (CASE 2, LOSF) 

 

4.2.5 Model Comparison 

 

The renewal function behavior exhibited for each of the models is reasonable 

given the construction of the data generation procedure.  In general, each model 

illustrates gradually increasing behavior as time and use progress.  However, for the 

bivariate normal and the logistic stochastic functional relationship, relatively large 

increases in the number of renewals occur at discrete locations.  Also, the number of 

renewals accumulates more quickly in the bivariate normal model than in the other 

models.   

With exception to observations near the axes, the behaviors of the bivariate 

exponential and the linear stochastic functional relationship are closely related.  The 

linear model tends to display greater immediate increases across comparable parameter 

sets.  The similarities between the linear relationship and the bivariate exponential are a 
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result of the generation procedure selected for the linear model.  It is unclear that the 

behavior seen here is representative of the linear relationship.   

In all model instances, the results from the univariate projection method verify the 

results obtained in the bivariate estimation process.  Also, after reviewing the work of 

Hunter [1974], it is determined that the univariate counting process used here is different 

from that used by Hunter.  The univariate counting process of Hunter accumulates the 

number of renewals experienced until a particular observation point.  The method 

developed here accumulates the number of renewals experienced for a single variable, 

while holding the other constant.  The difference between the two methods is subtle, but 

important.   

 

4.3 Bivariate Availability Estimation 
 

As is the case with the renewal estimation, the availability estimation results can 

be limited to a group of representative cases.  The cases reviewed in the renewal 

estimation section are analyzed for the availability estimation.  The cases are reiterated in 

Table 4-5. 

 

 Bivariate Exponential Model 

(BVE) 

(λ, η, ρ) 

Bivariate Normal  

Model (BVN) 

(µT, µU, σT, σU, ρ) 

Linear Stochastic 

Function (LISF) 

(λ, c, β) 

Logistic Stochastic 

Function (LOSF) 

(λ, c, β) 

1 

2 

3 

4 

5 

6 

(0.00033, 0.00031, 0.2) 

(0.00033, 0.00031, 0.5) 

(0.00033, 0.00031, 0.8) 

(0.00033, 0.00014, 0.5) 

(0.00033, 0.000054, 0.5) 

(0.00005, 0.00031, 0.5) 

(3000, 3250, 600, 650, 0.2) 

(3000, 3250, 600, 650, 0.5) 

(3000, 3250, 650, 600, 0.8) 

(3000, 7400, 600, 1480, 0.5) 

(3000, 18500, 600, 3700, 0.5) 

(20000, 3250, 4000, 600, 0.5) 

(0.00033, 1, 0) 

(0.00033, 1, 250) 

(0.00033, 1, 500) 

(0.00033, 0.4, 250) 

(0.00033, 0.167, 250) 

(0.00005, 6.67, 250) 

(0.00033, 416, 1511) 

(0.00014, 1087, 1511) 

---- 

---- 

---- 

---- 

Table 4-5 REPRESENTATIVE PARAMETER SETS 

 

4.3.1 Bivariate Exponential Model 

 

The general behavior of the availability function is shown in Figure 4-30 and 

Figure 4-31, methods 1 and 2, respectively.  There is a sharp decrease in the availability 
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near the origin; the decrease is followed by an immediate increase.  The increase is 

consistent throughout the plane and the function reaches steady state (method 1). The 

availability function displays the anticipated behavior, with exception to the magnitude of 

the availability values.  While the availability is expected to be relatively high given the 

moderate repair rate, the values reported seem unusually high.  One last observation is 

that the bulk of the availability function activity occurs along the 45° diagonal of the 

plane, but the observations span a wide area along the diagonal.       
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Figure 4-30 AVAILABILITY FUNCTION (METHOD 1, CASE 1, BVE) 
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Figure 4-31 AVAILABILITY FUNCTION (METHOD 2, CASE 1, BVE) 
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Recall, there are two methods of estimating the availability function for each 

bivariate model.  At this point it is important to comment on the disparities between the 

methods.  Figure 4-30 and Figure 4-31 represent the availability statistics reported by 

method 1 and method 2, respectively.  For the bivariate exponential model, the two 

methods of estimation produce similar results near the origin, but not throughout the 

plane, particularly near high time, low usage values.  This behavior may be attributed to 

the small number of observations that pass through those points.  The inconsistency exists 

in all experimental cases.   

The shape of the availability function is not greatly affected by modifications in 

the degree of correlation.  The increase from ρ = 0.2 to 0.5 and ρ = 0.5 to 0.8, results in a 

nominal decrease in the availability throughout the plane.  Figure 4-32 through Figure 

4-35 show the availability function for case 2 and case 3, ρ = 0.5 and ρ = 0.8, 

respectively. 
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Figure 4-32 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVE) 
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Figure 4-33 AVAILABILITY FUNCTION (METHOD 2, CASE 2, BVE) 
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Figure 4-34 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVE) 
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Figure 4-35 AVAILABILITY  FUNCTION (METHOD 2, CASE 2, BVE) 

 

 

The various combinations of failure rate levels exhibit the expected outcomes.  

For instance, the function shifts away from the axis with the smallest mean, since the 

failures and repairs associated with the larger mean absorb more time (usage).  The 

estimates for availability tend to decrease, as the means grow farther apart, this is likely a 

result of the observation grid size.  Recall, the grid size is based on the largest mean 

value, so the smaller mean will incur a larger number of repairs between observations.  

The results are illustrated in Figure 4-36 through Figure 4-41. 
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Figure 4-36 AVAILABILITY FUNCTION (METHOD 1, CASE 4, BVE) 
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Figure 4-37 AVAILABILITY FUNCTION (METHOD 2, CASE 4, BVE) 
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Figure 4-38 AVAILABILITY FUNCTION (METHOD 1, CASE 5, BVE) 
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Figure 4-39 AVAILABILITY FUNCTION (METHOD 2, CASE 5, BVE) 
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Figure 4-40 AVAILABILITY FUNCTION (METHOD 1, CASE 6, BVE) 
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Figure 4-41 AVAILABILITY FUNCTION (METHOD 2, CASE 6, BVE) 

 

Additional experiments were attempted to verify the findings from the original 

simulation runs.  The initial sample population of 100,000 machines was increased to 

500,000 machines in order to see if an inadequate sample size caused the high 

availability.  The increased sample size produced a smoother curve (Figure 4-42), but the 

availability estimation was unchanged.  The final test was a decrease in the observation 

grid interval.  The resulting function values and the shape of the curve did not change 

significantly, but the curve became much less jagged.   This behavior is shown in Figure 

4-43.  In both test cases, the function characteristics did not vary from those found in the 

initial comparable analysis, so no additional runs were performed.   
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Figure 4-42 AVAILABILITY FUNCTION (N = 500,000, CASE 2, BVE) 
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Figure 4-43 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, BVE) 
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4.3.2 Bivariate Normal Model 

 

 In the first bivariate normal case, Figure 4-44 and Figure 4-45 there are several 

observations that can be made about the availability function.  First, notice there is an 

initial transient period that begins to stabilize as the machine life increases in T and U.  

Additionally, the availability function is concentrated along the 45° diagonal of the plane.  

The minimum value for availability corresponds to an observation location approximately 

equivalent to (µT, µU).  This can be attributed to the high probability of experiencing 

failure at values close to the means for time and usage.  Another important observation is 

the appropriately high availability this is due to the size of the repair interval.  Each 

failure is followed by  a modest amount of repair time and usage (1/10 of the failure rate); 

therefore, the population is expected to be in a functioning state for a high percentage of 

the observation plane.   
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Figure 4-44 AVAILABILITY FUNCTION (METHOD 1, CASE 1, BVN) 
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Figure 4-45 AVAILABILITY FUNCTION (METHOD 2, CASE 1, BVN) 

 
Figure 4-44 and Figure 4-45 correspond to the availability statistics (case 1) reported by 

method 1 and method 2, respectively.  In this case and all other bivariate normal cases, 

the two methods produce comparable results; however, two differences are instantly 

obvious.  First, method 2 generally reports higher availability.  The second difference is 

the sharp decrease in the availability near points late in the time-usage horizon.  Both of 

these distinctions can be attributed to the size of the population at the particular 

observation points.  In particular, the sharp decrease in availability can is associated with 

the relatively small sample population that passes through late observation points.  These 

inconsistencies appear in all cases of the bivariate normal model.   

 

 Figure 4-46 through Figure 4-49 depict the effects of the two additional degrees 

of correlation on system availability.  It is important to note that, the variation in 

correlation produces the same changes in behavioral characteristics for all parameter sets.  

At each level of correlation, the same general trends exist; however, as the correlation 

increases, the curve becomes more concentrated along the diagonal (i.e. the function is 

less disperse).  The differences in the density function after a change in correlation 

confirm this behavior.   
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Figure 4-46 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVN) 
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Figure 4-47 AVAILABILITY FUNCTION (METHOD 2, CASE 2, BVN) 
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Figure 4-48 AVAILABILITY FUNCTION (METHOD 1, CASE 3, BVN) 
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Figure 4-49 AVAILABILITY FUNCTION (METHOD 2, CASE  3, BVN) 

 

Figure 4-50 through Figure 4-55, cases 4-6, represent the remaining parameter 

combinations that provide meaningful insights about the effects combining low, med, and 

high values for the mean on the time and usage distributions.  The examples provided 

correspond to ρ = 0.5; charts for the remaining correlations are in Appendix B.  The 

observations made in cases 1-3 are appropriate for cases 4-6.  The only significant 

difference is the location of the availability function in the plane.  For example, in case 5 
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(Figure 4-52 and Figure 4-53) (µT = 3,000, µU = 18,500), the diagram follows the same 

pattern as the previous cases, but the curve is shifted toward lower time values paired 

with higher usage values.  A comparable shift occurs in Case 4 (µT = 3,000, µU = 7,400), 

only the degree of the shift is decreased.  An analogous shift occurs in case 6, (Figure 

4-54 and Figure 4-55) (µT = 20,000, µU = 3,250); however, the function is shifted toward 

higher time values paired with lower usage values.  The result is intuitive considering the 

differences between the magnitude of the mean values of time and usage.       
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Figure 4-50 AVAILABILITY FUNCTION (METHOD 1, CASE 4, BVN) 
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Figure 4-51 AVAILABILITY FUNCTION (METHOD 2, CASE 4, BVN) 
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Figure 4-52 AVAILABILITY FUNCTION (METHOD 1, CASE 5, BVN) 
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Figure 4-53 AVAILABILITY FUNCTION (METHOD 2, CASE 5, BVN) 
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Figure 4-54 AVAILABILITY FUNCTION (METHOD 1, CASE 6, BVN) 
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Figure 4-55 AVAILABILITY FUNCTION (METHOD 2, CASE 6, BVN) 

 
Further analysis of the representative plots led to additional simulations runs in 

order to confirm the previous results.  In particular, the availability values reported were 

higher than expected so two modifications were implemented.  First, the sample 

population was increased from 100,000 to 500,000.  The resulting curve (Figure 4-56) 

was smoother and more full, but the availability estimates were unchanged.  The second 

modification entailed decreasing the observation grid in order to better estimate the 

availability function.  The limitation in doing this was a decrease in the amount of time 

and usage observed.  As a consequence only the early transient behavior, consistent with 
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all other cases, is apparent.  The smaller observation interval resulted in an overall 

increase in the availability approximations.  The increase was not anticipated; however, is 

explained because the larger observation interval captures more instances of failure and 

repair.  Figure 4-57 represents the availability function for case 2 with a decreased 

observation interval.    
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Figure 4-56 AVAILABILITY FUNCTION (N = 500,000, CASE 2, BVN) 
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Figure 4-57 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, BVN) 
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4.3.3  Linear Stochastic Functional Relationship 

 

The results for the availability function are not surprising given the underlying 

assumption that t and α are generated from the exponential distribution.  The function 

demonstrates an early decrease in availability caused by predominately low failure times 

and small repair durations.  As time and usage progress the availability continuously 

increases and reaches a steady state.  The function is concentrated slightly off the 45° 

diagonal (toward lower usage values) and is not dispersed throughout the plane.  The 

general characteristics of the availability function across parameter sets with similar 

means are presented in Figure 4-58 and Figure 4-59. 
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Figure 4-58 AVAILABILITY FUNCTION (METHOD 1, CASE 1, LISF) 
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Figure 4-59 AVAILABILITY FUNCTION (METHOD 2, CASE 1, LISF) 

 
As the constant, β, increases the general shape of the function does not change.  

However, the height of the valleys varies between parameter sets signifying a decrease in 

availability.  An increase in β, from 0 to 500 produces the most significant effect on the 

availability function—a decrease in availability.  Figure 4-60 through Figure 4-63 

demonstrate the relationship for similar means and varied levels of β.   
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Figure 4-60 AVAILABILITY FUNCTION (METHOD 1, CASE 2, LISF) 
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Figure 4-61 AVAILABILITY FUNCTION (METHOD 2, CASE 2, LISF) 
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Figure 4-62 AVAILABILITY FUNCTION (METHOD 1, CASE 3, LISF) 
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Figure 4-63 AVAILABILITY FUNCTION (METHOD 2, CASE 3, LISF) 

 

The parameter sets including variations in the level of the mean values display 

behavior analogous to the previous cases; however, the function location is shifted in the 

plane.  Figure 4-64 through Figure 4-67 represent cases with a (low mean time, medium 

mean usage) and a (low mean time, high mean usage), so the curves are closer to the 

usage axis indicating more activity for low times paired with higher usages.  The opposite 

occurs in Case 6, Figure 4-68 through Figure 4-69, where the mean on time is much 

higher than the mean on use.   
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Figure 4-64 AVAILABILITY FUNCTION (METHOD 1, CASE 5, LISF) 
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Figure 4-65 AVAILABILITY FUNCTION (METHOD 2, CASE 4, LISF) 
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Figure 4-66 AVAILABILITY FUNCTION (METHOD 1, CASE 5, LISF) 
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Figure 4-67 AVAILABILITY FUNCTION (METHOD 2, CASE 5, LISF) 
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Figure 4-68 AVAILABILITY FUNCTION (METHOD 1, CASE 6, LISF) 
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Figure 4-69 AVAILABILITY FUNCTION (METHOD 2, CASE 6, LISF) 

 

 The final two cases represent the additional tests run to verify the previous results.  

Few differences were realized as a result of increasing the sample size (Figure 4-70).  The 

function is less jagged throughout the plane; otherwise, the behavior is analogous to case 

2, N = 100,000 (Figure 4-60).  The decreased observation grid provided a smoother 

curve, with slightly lower availability values.  Figure 4-71 represents case 2 with a 

decreased observation interval.   



 79

0

5000

10000

15000

20000

Time

0

5000

10000

15000

20000

Usage

0.96

0.97

0.98

0.99

1

Availability

0

5000

10000

15000

20000

Time

0.96

0.97

0.98

0.99

1

Availability

 

Figure 4-70 AVAILABILITY FUNCTION (N = 500,000 CASE 2, LISF) 
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Figure 4-71 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, LISF) 

 

4.3.4  Logistic Stochastic Functional Relationship 

 
For both cases, the availability function for the logistic model demonstrates 

transient behavior throughout the plane (Figure 4-72 through Figure 4-75).  In case 1, 

methods 1 and 2 (Figure 4-72 and Figure 4-73), show an immediate decrease in 

availability followed by a sharp increase.  As time and use progress, the magnitude of 

each decrease and increase lessens, but the pattern is repeated throughout the plane.  Case 
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2 (Figure 4-74 and Figure 4-75) differs from case 1 in that only two replications of the 

pattern exist, after which the system appears to reach steady state.  The function is 

concentrated in the area of low time and use values.  This is consistent with the behavior 

of the function.   
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Figure 4-72 AVAILABILITY FUNCTION (METHOD 1, CASE 1, LOSF) 

 
 

0

20000

40000

60000

Time

0

2

4

6

Usage

0.92

0.94

0.96

0.98

1

Availability

0

20000

40000

60000

Time

0.92

0.94

0.96

0.98

1

Availability

 
Figure 4-73 AVAILABILITY FUNCTION (METHOD 2, CASE 1, LOSF) 
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Figure 4-74 AVAILABILITY FUNCTION (METHOD 1, CASE 2, LOSF) 
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Figure 4-75 AVAILABILITY FUNCTION (METHOD 2, CASE 2, LOSF) 

 

4.3.5 Model Comparison 

 
In all model instances, the availability estimate appears to be overestimated, but 

the shape of the function represents the behavior of the model appropriately.  For time 

and use values with a high probability of occurring, there are significant reductions in the 

availability function.  All models exhibit this behavior; however, it is clear to see that the 

dispersion across observations effects the magnitude of the decrease.  For instance, 
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observations for the bivariate exponential and linear stochastic model are very similar, 

except a higher proportion of early failures occur with the linear stochastic model.  This 

causes a more significant initial decrease in the availability function.   

In all respects, the bivariate exponential and linear stochastic models are well 

correlated; each experiences an early decrease in availability, but eventually proceeds to 

steady state.  The bivariate normal, however, exhibits oscillating behavior until very late 

time and usage values where it reaches a steady state.  The logistic model exhibits a 

higher degree of transient behavior than any of the other models.  The model does not 

appear to reach steady state.  It is important to note that in order to verify the bivariate 

availability estimations, the univariate projection method was implemented.  The results 

for all cases of the bivariate estimation procedures are consistent with the univariate 

projection, but are not included.   

4.4 Summary 
 

The research presented here is a cursory attempt at generating and analyzing 

bivariate failure models.  A reasonably acceptable method of failure/repair generation 

was implemented for the correlated models and stochastic models; however, alternative 

methods of generation exist that may provide useful results.  Using the failure/repair data, 

renewal function and availability function estimates were obtained.   

The results provide a general idea of the behavior associated with the identified 

failure models.  It is important to note that alternative methodologies exist, but the 

processes implemented here offer reasonable estimations of the two measures of system 

effectiveness studied — the bivariate renewal function and the bivariate availability 

function.  Also, the behavior shown in all cases is consistent with the behavior 

experienced when the values are calculated by holding one variable constant (i.e. the 

univariate projection).   Modifications of the methodologies presented here may provide 

additional insight on bivariate failure processes.  Further study of bivariate failure models 

is necessary in order to more fully understand the bivariate renewal and availability 

functions.   
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Chapter 5 – Future Directions 
 

Several opportunities exist for further study of bivariate failure processes.  In 

particular, it is worth pursuing alternative methods of generating the stochastic functional 

relationships.  The assumption that t is exponential limited the usefulness of the results 

for the functional models.  It will be beneficial to explore methods of generation using the 

joint distribution function.   

Another useful area of study is the method of estimating the bivariate availability 

function.  The two methods utilized here, provide reasonable estimates for availability; 

however, alternative methods should be developed to further verify the results.  There are 

still unanswered questions concerning the appropriate size of the sample population.  An 

alternate method might consider accumulation of the area corresponding to the amount of 

time and use between failures and the duration (time and use) of repair activities.   

The work presented here considers only instances of corrective maintenance.  It 

will be beneficial to include preventive maintenance in future studies of bivariate 

availability.  This information will aid in maintenance planning of systems that 

experience failure according to a bivariate process.   
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Appendix A – Simulation Code 
 

In this Appendix, the simulation code used in Chapter 3 is introduced.  The 

simulation code is used to generate failure/repair data and is used to collect statistics 

regarding reliability and availability.  The first four sections of this Appendix represent 

the simulation code used to generate failure and repair data for the four bivariate failure 

models.  The last six sections include the code used to record the statistics necessary to 

estimate reliability and availability.  The estimation procedures included here reflect the 

bivariate normal model.  The same code is used for the other three models by substituting 

the appropriate alternate generation method (Appendix A.1-A.3).   

 

A.1 Linear Dependence Data Generation Procedure 
 
%This is the subroutine that generates the linear dependence data.  
 
%%%%VARIABLE DEFINITION%%%% 
%meam=mean on the failure distribution (time)% 
%meanalpha=mean on the distribution of alpha (failure)% 
%beta=constant for functional relationship% 
%cmmean=mean on the repair distribution (time)% 
%cmmeanalpha=mean on the distribution of alpha (repair)% 
%xt(j)=time elapsed since the last failure (time)% 
%xu(j)=usage elapsed since the last failure (use)% 
%cmxt(j)=time to complete repair (j)% 
%cmxu(j)=usage to complete repair (j)% 
%failuretimes=vector of failure times and usages% 
%cmtimes=vector of repair times and usages% 
%parameters=matrix of failure model parameters% 
%cmparameters=matrix of repair model parameters% 
 
parameters=[3000 1 0; 3000 1 250; 3000 1 500; 3000 2.5 0; 3000 2.5 250; 
3000 2.5 500; 8000 .4 0; 8000 .4 250; 8000 .4 500; 8000 1 0; 8000 1 
250; 8000 1 500; 3000 6 0; 3000 6 250; 3000 6 500; 8000 2 0; 8000 2 
250; 8000 2 500; 20000 .15 0; 20000 .15 250; 20000 .15 500; 20000 .35 
0; 20000 .35 250; 20000 .35 500; 20000 1 0; 20000 1 250; 20000 1 500]; 
cmparameters=parameters.*0.1; 
 
 
 
%this loop sets the program to read the 27 parameters sets% 
for h=1:1:27 
    
   mean=parameters(h,1); 
   meanalpha=parameters(h,2); 
   beta=parameters(h,3); 
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   cmmean=cmparameters(h,1); 
   cmmeanalpha=parameters(h,2); 
   cmbeta=cmparameters(h,3); 
    
   %this loop generates 10 failure/repair vectors (not cumulative)%    
   for j=1:1:10 
       
      z1=rand; 
      z2=rand; 
       
      xt(j)=(-mean)*log(1-z1);       
      at=xt(j); 
      alpha=(-meanalpha)*log(1-z2); 
      xu(j)=(alpha*at)+beta;     
       
      first=xt(j); 
      second=xu(j); 
       
      rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
      failuretimes=bigvector;          
       
      cmz1=rand; 
      cmz2=rand; 
      cmxt(j)=(-cmmean)*log(1-cmz1); 
      cmt=cmxt(j); 
       
      cmalpha=(-cmmeanalpha)*log(1-cmz2); 
      cmxu(j)=(cmalpha*cmt)+cmbeta;   
       
      cmfirst=cmxt(j); 
      cmsecond=cmxu(j); 
       
      cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector; 
      cmtimes=cmbigvector;               
   end 
end 
 
 

 

A.2 Logistic Dependence Data Generation Procedure 
 
%This is the subroutine that generates the linear dependence data.  
 
%%%%VARIABLE DEFINITION%%%% 
%meam=mean on the failure distribution (time)% 
%meanalpha=mean on the distribution of alpha (failure)% 
%beta=constant for functional relationship% 
%cmmean=mean on the repair distribution (time)% 
%cmmeanalpha=mean on the distribution of alpha (repair)% 
%xt(j)=time elapsed since the last failure (time)% 
%xu(j)=usage elapsed since the last failure (use)% 
%cmxt(j)=time to complete repair (j)% 
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%cmxu(j)=usage to complete repair (j)% 
%failuretimes=vector of failure times and usages% 
%cmtimes=vector of repair times and usages% 
%parameters=matrix of failure model parameters% 
%cmparameters=matrix of repair model parameters% 
 
parameters=[3000 0.0024 1511; 8000 0.0092 1511] 
cmparameters=parameters.*0.1; 
 
%this loop sets the program to read the 27 parameters sets% 
for h=1:1:27 
    
   mean=parameters(h,1); 
   meanalpha=parameters(h,2); 
   beta=parameters(h,3); 
    
   cmmean=cmparameters(h,1); 
   cmmeanalpha=parameters(h,2); 
   cmbeta=cmparameters(h,3); 
    
   %this loop generates 10 failure/repair vectors (not cumulative)%    
   for j=1:1:10 
       
      z1=rand; 
      z2=rand; 
 
    xt(j)=(-mean)*log(1-z1); 
      at=xt(j); 
      alpha=(-meanalpha)*log(1-z2); 
      top=exp(alpha*at)-1; 
      bottom=exp(alpha*at)+beta; 
      xu(j)=top/bottom;  
 
 
      first=xt(j); 
      second=xu(j); 
       
      rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
      failuretimes=bigvector;          
       
      cmz1=rand; 
      cmz2=rand; 
      cmxt(j)=(-cmmean)*log(1-cmz1); 
      cmt=cmxt(j); 
       
      cmalpha=(-cmmeanalpha)*log(1-cmz2); 
      cmxu(j)=(cmalpha*cmt)+cmbeta;   
       
      cmfirst=cmxt(j); 
      cmsecond=cmxu(j); 
       
      cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector; 
      cmtimes=cmbigvector;               
   end 
end 
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A.3 Bivariate Exponential Data Generation Procedure 
 
%This is the subroutine that generates the bivariate exponential data. 
 
%%%%VARIABLE DEFINITION%%%% 
%mutime=mean on the failure distribution (time)% 
%muuse=mean on the failure distribution (use)% 
%rhovec=correlation coefficient% 
%cmmutime=mean on the repair distribution (time)% 
%cmmuuse=mean on the repair distribution (use)% 
%xt(j)=time elapsed since the last failure (time)% 
%xu(j)=usage elapsed since the last failure (use)% 
%cmxt(j)=time to complete repair (j)% 
%cmxu(j)=usage to complete repair (j)% 
%failuretimes=vector of failure times and usages% 
%cmtimes=vector of repair times and usages% 
%parameters=matrix of failure model parameters% 
%cmparameters=matrix of repair model parameters% 
 
parameters=[3000 3250 0.2; 3000 3250 0.5; 3000 3250 0.8; 3000 7400 0.2; 
3000 7400 0.5; 3000 7400 0.8; 8000 3250 0.2; 8000 3250 0.5; 8000 3250 
0.8; 8000 7400 0.2; 8000 7400 0.5; 8000 7400 0.8; 3000 18500 0.2; 3000 
18500 0.5; 3000 18500 0.8; 8000 18500 0.2; 8000 18500 0.5; 8000 18500 
0.8; 20000 3250 0.2; 20000 3250 0.5; 20000 3250 0.8; 20000 7400 0.2; 
20000 7400 0.5; 20000 7400 0.8; 20000 18500 0.2; 20000 18500 0.5; 20000 
18500 0.8]; 
cmparameters=parameters.*0.1; 
 
 
 
%this loop sets the program to read the 27 parameters sets% 
for h=1:1:27 
    
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   rhovec=parameters(h,3); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
    
   %this loop generates 10 failure/repair vectors (not cumulative)%    
   for j=1:1:10 
       
      z1=rand; 
      z2=rand; 
      xt(j)=(-mutime)*log(1-z1); 
      t=xt(j); 
      c1=-1-rhovec+(2*rhovec*exp((-1/mutime)*t)); 
      c2=rhovec-(2*rhovec*exp((-1/mutime)*t)); 
      a2=(-c1-sqrt((c1.^2)-(4*c2*z2)))/(2*c2);       
      xu(j)=(-muuse)*log(a2); 
       
      first=xt(j); 
      second=xu(j); 
       
      rowvector =[first,second]; 
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      bigvector(j,:)=rowvector; 
      failuretimes=bigvector; 
       
      cmz1=rand; 
      cmz2=rand; 
      cmxt(j)=(-cmmutime)*log(1-cmz1); 
      cmt=cmxt(j); 
      cmc1=-1-rhovec+(2*rhovec*exp((-1/cmmutime)*cmt)); 
      cmc2=rhovec-(2*rhovec*exp((-1/cmmutime)*cmt)); 
      cma2=(-cmc1-sqrt((cmc1.^2)-(4*cmc2*cmz2)))/(2*cmc2);       
      cmxu(j)=(-cmmuuse)*log(cma2); 
       
      cmfirst=cmxt(j); 
      cmsecond=cmxu(j); 
       
      cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector; 
      cmtimes=cmbigvector;          
   end 
end 
 
 

A.4 Bivariate Normal Data Generation Procedure 
%This is the subroutine that generates the bivariate normal data.  
 
%%%%VARIABLE DEFINITION%%%% 
%mutime=mean on the failure distribution (time)% 
%muuse=mean on the failure distribution (use)% 
%sigtime=standard deviation on failure (time)% 
%siguse=standard deviation on failure (use)% 
%rhovec=correlation coefficient% 
%cmmutime=mean on the repair distribution (time)% 
%cmmuuse=mean on the repair distribution (use)% 
%cmsigtime=standard deviation on repair (time)% 
%cmsiguse=standard deviation on repair (use)% 
%xt(j)=time elapsed since the last failure (time)% 
%xu(j)=usage elapsed since the last failure (use)% 
%cmxt(j)=time to complete repair (j)% 
%cmxu(j)=usage to complete repair (j)% 
%failuretimes=vector of failure times and usages% 
%cmtimes=vector of repair times and usages% 
%parameters=matrix of failure model parameters% 
%cmparameters=matrix of repair model parameters% 
 
parameters=[3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600 
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600 
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250 
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000 
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 0.8]; 
cmparameters=parameters.*0.1; 
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%this loop sets the program to read the 27 parameters sets% 
for h=1:1:27 
    
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   sigtime=parameters(h,3); 
   siguse=parameters(h,4); 
   rhovec=parameters(h,5); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
   cmsigtime=cmparameters(h,3); 
   cmsiguse=cmparameters(h,4); 
       
   squarerho=sqrt(1-rhovec.^2);  
    
   %this loop generates 10 failure/repair vectors (not cumulative)% 
    
   for j=1:1:10 
       
      z1=randn; 
      z2=randn; 
       
      cmz1=randn; 
      cmz2=randn; 
       
      xt(j)=mutime+(sigtime*z1); 
      squarerho=sqrt(1-rhovec.^2); 
      xu(j)=muuse+(siguse*(rhovec*z1+squarerho*z2)); 
      first=xt(j); 
      second=xu(j); 
       
      rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
      failuretimes=bigvector; 
       
      cmxt(j)=cmmutime+(cmsigtime*cmz1); 
      cmxu(j)=cmmuuse+(cmsiguse*(rhovec*cmz1+squarerho*cmz2)); 
      cmfirst=cmxt(j); 
      cmsecond=cmxu(j); 
       
      cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector;    
      cmtimes=cmbigvector;          
   end 
end 
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A.5 Bivariate Renewal Estimation 
 
%This program estimates the bivariate renewal function (method 1).  The 
program is shown for the bivariate normal distribution; for alternate 
distribution, substitute alternate generation procedure.% 
 
%%%%VARIABLE DEFINITIONS%%%% 
%parameters=failure model parameters% 
%renewmat=renewal matrix% 
%locationt=matrix location of failure (time)% 
%locationu=matrix location of failure (use)% 
%wheret(q)=vector of failure (time) matrix locations% 
%whereu(q)=vector of failure (use) matrix locations% 
%matfailloct=matrix location of failure(m) (time)% 
%matfaillocu=matrix location of failure(m)(use)% 
 
parameters=[3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600 
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600 
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250 
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000 
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 0.8]; 
 
%the observation grid is input here and varies based on the mean on the 
failure distribution (time)% 
renewmat=dlmread(’renewmat.csv’,’,’); 
 
%initialize placeholder for failure location vector (time and use)% 
wheret(11)=203; 
whereu(11)=203; 
 
for h=1:1:27 
    
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   sigtime=parameters(h,3); 
   siguse=parameters(h,4); 
   rhovec=parameters(h,5); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
   cmsigtime=cmparameters(h,3); 
   cmsiguse=cmparameters(h,4); 
       
   squarerho=sqrt(1-rhovec.^2);  
    
   %this loop generates data for 10000 machines% 
 
   for p=1:1:1000 
             
  %this part of the program generates 10 random failure vectors for 
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  each machine 
 
      for j=1:1:10 
          
       z1=randn; 
         z2=randn; 
          
         cmz1=randn; 
         cmz2=randn; 
          
    xt(j)=mutime+(sigtime*z1); 
   squarerho=sqrt(1-rhovec.^2); 
   xu(j)=muuse+(siguse*(rhovec*z1+squarerho*z2)); 
   first=xt(j); 
   second=xu(j); 
    
   rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
    
     failuretimes=bigvector; 
          
         cmxt(j)=cmmutime+(cmsigtime*cmz1); 
   cmxu(j)=cmmuuse+(cmsiguse*(rhovec*cmz1+squarerho*cmz2)); 
   cmfirst=cmxt(j); 
   cmsecond=cmxu(j); 
    
   cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector;    
     cmtimes=cmbigvector; 
          
         N=length(failuretimes(:,1)); 
          
         N=length(failuretimes(:,1)); 
     sumvector(1,:)=failuretimes(1,:); 
         dummy=failuretimes(1,:); 
          
         %this loop generates the cumulative failure vector% 
 
         for k=2:1:N 
            sumvector(k,:)=dummy + failuretimes (k,:); 
        dummy=sumvector(k,:); 
         end 
      end 
             
      locationt=2; 
      locationu=2; 
             
      for q=1:1:10 
 
         %this matrix steps through each observation time to find the 
   matrix location of failure(q), beginning with the matrix 
   location of failure(q-1)% 
 
         for t=locationt:1:201 
            if sumvector(q,1)<=renewmat(1,t) 
               locationt=t; 
               wheret(q)=locationt; 
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               break 
            end 
         end    
 
         %this matrix steps through each observation use to find the 
   matrix location of failure(q), beginning with the matrix 
   location of failure(q-1)% 
 
         for s=locationu:1:201 
            if sumvector(q,2)<=renewmat(s,1) 
               locationu=s; 
               whereu(q)=locationu; 
               break    
            end 
         end       
      end 
       
      for m=1:1:10 
         matfailloct=wheret(m); 
         matfaillocu=whereu(m); 
          
         %this loop updates the renewal matrix to reflect the 
   cumulative number of renewals.% 
 
         for t=matfailloct:1:201 
            for s=matfaillocu:1:201 
               renewmat(s,t)=renewmat(s,t)+1; 
            end 
         end   
      end 
   end 
end 
 

A.6 Univariate Projection Method 
 
%%%%VARIABLE DEFINITIONS%%%% 
%parameters=failure model parameters% 
%renewalvectort=vector of cumulative renewals (time)% 
%renewalvectoru=vector of cumulative renewals (use)% 
%locationt=matrix location of failure (time)% 
%locationu=matrix location of failure (use)% 
%wheret(q)=vector of failure (time) matrix locations% 
%whereu(q)=vector of failure (use) matrix locations% 
%matfailloct=matrix location of failure(m) (time)% 
%matfaillocu=matrix location of failure(m)(use)% 
  
parameters=[3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600 
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600 
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250 
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000 
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 
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4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 0.8]; 
 
%the observation grid is input here and varies based on the mean on the 
failure distribution (time)% 
renewmat=dlmread(’renewmat.csv’,’,’); 
 
%initialize placeholder for failure location vector (time and use)% 
wheret(11)=203; 
whereu(11)=203; 
 
for h=1:1:27 
   renewalvectort=zeros([201,1]); 
   renewalvectoru=zeros([201,1]); 
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   sigtime=parameters(h,3); 
   siguse=parameters(h,4); 
   rhovec=parameters(h,5); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
   cmsigtime=cmparameters(h,3); 
   cmsiguse=cmparameters(h,4); 
       
   squarerho=sqrt(1-rhovec.^2);  
    
   %this loop generates data for 10000 machines% 
 
   for p=1:1:1000 
             
  %this part of the program generates 10 random failure vectors for 
  each machine 
 
      for j=1:1:10 
          
       z1=randn; 
         z2=randn; 
          
         cmz1=randn; 
         cmz2=randn; 
          
    xt(j)=mutime+(sigtime*z1); 
   squarerho=sqrt(1-rhovec.^2); 
   xu(j)=muuse+(siguse*(rhovec*z1+squarerho*z2)); 
   first=xt(j); 
   second=xu(j); 
    
   rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
    
     failuretimes=bigvector; 
          
         cmxt(j)=cmmutime+(cmsigtime*cmz1); 
   cmxu(j)=cmmuuse+(cmsiguse*(rhovec*cmz1+squarerho*cmz2)); 
   cmfirst=cmxt(j); 
   cmsecond=cmxu(j); 
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   cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector;    
     cmtimes=cmbigvector; 
          
         N=length(failuretimes(:,1)); 
          
         N=length(failuretimes(:,1)); 
     sumvector(1,:)=failuretimes(1,:); 
         dummy=failuretimes(1,:); 
          
         %this loop generates the cumulative failure vector% 
 
         for k=2:1:N 
            sumvector(k,:)=dummy + failuretimes (k,:); 
        dummy=sumvector(k,:); 
         end 
      end 
             
      locationt=2; 
      locationu=2; 
             
      for q=1:1:10 
 
         %this matrix steps through each observation time to find the 
   matrix location of failure(q), beginning with the matrix 
   location of failure(q-1)% 
 
         for t=locationt:1:201 
            if sumvector(q,1)<=renewmat(1,t) 
               locationt=t; 
               wheret(q)=locationt; 
               break 
            end 
         end    
 
         %this matrix steps through each observation use to find the 
   matrix location of failure(q), beginning with the matrix 
   location of failure(q-1)% 
 
         for s=locationu:1:201 
            if sumvector(q,2)<=renewmat(s,1) 
               locationu=s; 
               whereu(q)=locationu; 
               break    
            end 
         end       
      end 
       
      for m=1:1:10 
         matfailloct=wheret(m); 
         matfaillocu=whereu(m); 
          
         %this loop updates the renewal matrix to reflect the 
   cumulative number of renewals.% 
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   for t=matfailloct:1:201 
    renewalvectort(t,1)=renewalvectort(t,1)+1; 
   end 
 
         for s=matfaillocu:1:201 
           renewalvectoru(s,1)=renewalvectoru(s,1)+1; 
         end 
 
         end   
      end 
   end 
end 

A.7 Bivariate Availability Estimation (Method 1) 
 
%This program estimates the bivariate availability function (method 1).  
The program is shown for the bivariate normal distribution; for 
alternate distribution, substitute alternate generation procedure.% 
 
%%%%VARIABLE DEFINITIONS%%%% 
%parameters=failure model parameters% 
%cmparameters=repair model parameters% 
%workmat=availability matrix% 
%failloct=matrix location of failure (time)% 
%faillocu=matrix location of failure (use)% 
%reploct=matrix location of repair (time)% 
%replocu=matrix location of repair(use)% 
%failwheret(q)=vector of failure (time) matrix locations% 
%failwhereu(q)=vector of failure (use) matrix locations% 
%repwheret(q)=vector of repair completion (time) matrix locations% 
%repwheres(q)=vector of repair completion (use) matrix locations% 
%matlocfailt=matrix location of failure(m) (time)% 
%matlocfailu=matrix location of failure(m) (use)% 
%matlocrept=matrix location of repair completion(m) (time)% 
%matlocrepu=matrix location of repair completions(m) (use)% 
%tlast=last time update% 
%ulast=last use update% 
 
parameters=[3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600 
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600 
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250 
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000 
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 0.8]; 
cmparameters=parameters.*0.1; 
 
%the observation grid is input here and varies based on the mean on the 
failure distribution (time)% 
 
workmat=dlmread(’workmat.csv’,’,’); 
workmatd=workmat; 
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for h=1:1:27 
    
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   sigtime=parameters(h,3); 
   siguse=parameters(h,4); 
   rhovec=parameters(h,5); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
   cmsigtime=cmparameters(h,3); 
   cmsiguse=cmparameters(h,4); 
       
   squarerho=sqrt(1-rhovec.^2);  
    
   %this loop generates data for 100,000 machines% 
   for p=1:1:100000 
 
  %this part of the program generates 10 random failure vectors for 
  each machine 
       
      for j=1:1:10 
          
       z1=randn; 
         z2=randn; 
          
         cmz1=randn; 
         cmz2=randn; 
          
    xt(j)=mutime+(sigtime*z1); 
   squarerho=sqrt(1-rhovec.^2); 
   xu(j)=muuse+(siguse*(rhovec*z1+squarerho*z2)); 
   first=xt(j); 
   second=xu(j); 
    
   rowvector =[first,second]; 
      bigvector(j,:)=rowvector; 
    
     failuretimes=bigvector; 
          
         cmxt(j)=cmmutime+(cmsigtime*cmz1); 
   cmxu(j)=cmmuuse+(cmsiguse*(rhovec*cmz1+squarerho*cmz2)); 
   cmfirst=cmxt(j); 
   cmsecond=cmxu(j); 
    
   cmrowvector =[cmfirst,cmsecond]; 
      cmbigvector(j,:)=cmrowvector;    
     cmtimes=cmbigvector; 
          
         N=length(failuretimes(:,1)); 
          
         failurevector(1,:)=failuretimes(1,:); 
   cmvector(1,:)=failuretimes(1,:)+cmtimes(1,:); 
         dummycm=cmvector(1,:); 
          
         %this loop generates the cumulative failure/repair vectors% 
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         for g=2:1:N 
            failurevector(g,:)=failuretimes(g,:)+dummycm; 
            cmvector(g,:)=failurevector(g,:)+cmtimes(g,:); 
            dummycm=cmvector(g,:); 
         end 
      end 
       
      failloct=2; 
      reploct=2; 
      faillocu=2;      
      replocu=2; 
       
      for q=1:1:10          
          
         %this loop steps through each observation time to find the 
   matrix location of failure(q), beginning with the matrix 
   location of repair completion(q-1).% 
         for t=reploct:1:201 
            if failurevector(q,1)<=workmat(1,t) 
               failloct=t; 
               failwheret(q)=failloct; 
               break    
            end 
         end    
          
         %this loop steps through each observation time to find the 
   matrix location of repair completion(q), beginning with the 
   matrix location of failure(q-1).% 
         for ts=failloct:1:201 
            if cmvector(q,1)<=workmat(1,ts) 
               reploct=ts; 
               repwheret(q)=reploct; 
               break 
            end 
         end   
          
         %this loop steps through each observation usage to find the 
   matrix location of failure(q), beginning with the matrix 
   location of repair completion(q-1).% 
         for s=replocu:1:201 
            if failurevector(q,2)<=workmat(s,1) 
               faillocu=s; 
               failwhereu(q)=faillocu; 
               break    
            end 
         end     
          
         %this loop steps through each observation use to find the  
   matrix location of failure(q), beginning with the matrix 
   location of failure(q-1).% 
         for st=faillocu:1:201 
            if cmvector(q,2)<=workmat(st,1) 
               replocu=st; 
               repwhereu(q)=replocu; 
               break    
            end 
         end  
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      end 
       
      for m=1:1:10 
          
         matlocfailt=failwheret(m); 
         matlocfailu=failwhereu(m); 
         matlocrept=repwheret(m); 
         matlocrepu=repwhereu(m); 
          
         %this loop updates the availability matrix based on the 
   failure/repair matrix location vectors found in the previous 
   step.% 
         for t=matlocfailt:1:matlocrept 
             
            for s=matlocfailu:1:matlocrepu                  
               workmat(s,t)=workmat(s,t)-1; 
               tlast=matlocrept; 
               ulast=matlocrepu; 
            end     
         end 
         workmat(ulast,tlast)=workmat(ulast,tlast)+1;             
      end 
   end       
end 
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A.8 Bivariate Availability Estimation (Method 2) 
 
%This program estimates the bivariate availability function (method 2).  
The program is shown for the bivariate normal distribution; for 
alternate distribution, substitute alternate generation procedure.% 
 
%%%%VARIABLE DEFINITIONS%%%% 
%parameters=failure model parameters% 
%mumax=observation increment% 
%renewals=cumulative number of renewals% 
%upmat=availability matrix% 
%relevantmat=relevant matrix% 
%col=matrix location of failure(q)/repair completion(q) (time)% 
%row=matrix location of failure(q)/repair completion(q) (usage)% 
%lastrow=the last row of the matrix that has been updated% 
%lastcol=the last column of the matrix that has been updated% 
 
parameters=[3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600 
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600 
1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 3000 18500 
600 3700 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250 
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000 
7400 1600 1480 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 0.5; 
8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 650 
0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 4000 
1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 20000 
18500 4000 3700 0.5; 20000 18500 4000 3700 0.8]; 
cmparameters=parameters.*0.1; 
 
for h=1:1:27 
    
   mutime=parameters(h,1); 
   muuse=parameters(h,2); 
   sigtime=parameters(h,3); 
   siguse=parameters(h,4); 
   rhovec=parameters(h,5); 
    
   cmmutime=cmparameters(h,1); 
   cmmuuse=cmparameters(h,2); 
   cmsigtime=cmparameters(h,3); 
   cmsiguse=cmparameters(h,4); 
   squarerho=sqrt(1-rhovec.^2);   
    
   %initialize matrices to zero% 
   relevantmat=zeros([201,201]); 
   upmat=zeros([201,201]); 
    
   mu=[mutime muuse]; 
   point=max(mu); 
   mumax=point/10 
    
   %generate data for 100,000 machines% 
 
   for p=1:1:100000 
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  lastrow=1; 
      lastcol=1; 
       
   
  %this part of the program generates 10 random failure vectors for 
  each machine 
       
      for r=1:1:10 
          
       z1=randn; 
         z2=randn; 
          
         cmz1=randn; 
         cmz2=randn; 
          
         xt(r)=mutime+(sigtime*z1); 
         xu(r)=muuse+(siguse*((rhovec*z1)+(squarerho*z2))); 
         first=xt(r); 
   second=xu(r); 
    
   rowvector =[first,second]; 
      bigvector(r,:)=rowvector;    
     failuretimes=bigvector; 
 
   cmxt(r)=cmmutime+(cmsigtime*cmz1); 
   cmxu(r)=cmmuuse+(cmsiguse*((rhovec*cmz1)+(squarerho*cmz2))); 
   cmfirst=cmxt(r); 
   cmsecond=cmxu(r); 
    
   cmrowvector =[cmfirst,cmsecond]; 
         cmbigvector(r,:)=cmrowvector; 
         cmtimes=cmbigvector;       
          
   failurevector(1,:)=failuretimes(1,:); 
   cmvector(1,:)=failuretimes(1,:)+cmtimes(1,:); 
         dummycm=cmvector(1,:); 
          
         N=length(failuretimes(:,1)); 
          
         %this loop generates the cumulative failure/repair vectors 
         for g=2:1:N 
            failurevector(g,:)=failuretimes(g,:)+dummycm; 
            cmvector(g,:)=failurevector(g,:)+cmtimes(g,:); 
            dummycm=cmvector(g,:); 
         end          
      end 
       
       
      for q=1:1:10       
          
         %here, the matrix location of failure q is identified% 
         t=failurevector(q,1); 
         u=failurevector(q,2); 
          
         col=floor(t/mumax)+1; 
         row=floor(u/mumax)+1; 
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         lastrowcount=lastrow+1; 
         lastcolcount=lastcol+1; 
          
         %here, the matrix is updated to reflect the number of visits 
   to each matrix location and the number of functioning 
   machines% 
         if row>=lastrowcount & col>=lastcolcount 
             
            for k=lastrowcount:1:row 
               for m=lastcolcount:1:col 
                  relevantmat(k,m)=relevantmat(k,m)+1; 
                  upmat(k,m)=upmat(k,m)+1; 
               end 
            end 
            lastrow=row; 
            lastcol=col; 
         end 
          
         %here, the matrix location of repair completion q is 
   identified% 
         t=cmvector(q,1); 
         u=cmvector(q,2); 
 
         col=floor(t/mumax)+1; 
         row=floor(u/mumax)+1; 
          
         lastrowcount=lastrow+1; 
         lastcolcount=lastcol+1; 
          
         %here, the matrix is updated to reflect the number of visits 
   to each matrix location is updated (no update is made to the 
   availability matrix because the machines are not functioning%         
 
         if row>=lastrowcount & col>=lastcolcount   
            for k=lastrowcount:1:row 
               for m=lastcolcount:1:col 
                  relevantmat(k,m)=relevantmat(k,m)+1; 
               end 
            end 
         end 
          
         lastrow=row; 
         lastcol=col; 
      end 
   end 
end 
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Appendix B – Additional Charts 

 
The figures included in this Appendix correspond to those discussed in Chapter 4.  

The cases represented are identified in Table B-1.   

 

 Bivariate Exponential  Model  (BVE) 

(λ, η, ρ) 

Bivariate Normal Model (BVN) 
(µt, µu, σt,  σu,  ρ) 

Linear Stochastic Function (LISF) 
(λ, c, β) 

1 
2 
3 
4 
4a 
4b 
5 
5a 
5b 
6 
6a 
6b 

(0.00033, 0.00031, 0.2) 
(0.00033, 0.00031, 0.5) 
(0.00033, 0.00031, 0.8) 
(0.00033, 0.00014, 0.5) 
(0.00033, 0.00014, 0.2) 
(0.00033, 0.00014, 0.8) 

(0.00033, 0.000054, 0.5) 
(0.00033, 0.000054, 0.2) 
(0.00033, 0.000054, 0.8) 
(0.00005, 0.00031, 0.5) 
(0.00005, 0.00031, 0.2) 
(0.00005, 0.00031, 0.8) 

(3000, 3250, 600, 650, 0.2) 
(3000, 3250, 600, 650, 0.5) 
(3000, 3250, 600, 650, 0.8) 
(3000, 7400 600, 1480, 0.5) 
(3000, 7400 600, 1480, 0.2) 
(3000, 7400, 600, 1480, 0.8) 
(3000, 18500 600, 3700, 0.5) 
(3000, 18500 600, 3700, 0.2) 
(3000, 18500, 600, 3700, 0.8) 
(20000, 3250, 4000, 650, 0.5) 
(20000, 3250, 4000, 650, 0.2) 
(20000, 3250, 4000, 650, 0.8) 

(0.00033, 1, 0) 
(0.00033, 1, 250) 
(0.00033, 1 500) 

(0.00033, 2.5, 250) 
(0.00033, 2.5, 0) 

(0.00033, 2.5, 500) 
(0.00033, 6, 250) 

(0.00033, 6, 0) 
(0.00033, 6, 500) 

(0.00005, 0.15, 250) 
(0.00005, 0.15, 0) 

(0.00005, 0.15, 500) 

Table B-1 PARAMETER SETS 

 

B.1 Renewal Function 
 

The figures included here represent the effects of varying the correlation 

coefficient, ρ, or the constant, β.  The results are qualitatively the same as those presented 

in Chapter 4.  Also, the figures related to the univariate projection method are included.     
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B.1.2 Bivariate Exponential Model 

 

Figure B-1 UNIVARIATE PROJECTION (CASES 1, 2, 3, BVE) 
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Figure B-2 RENEWAL FUNCTION (CASE 4a, BVE) 
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Figure B-3 RENEWAL FUNCTION (CASE 4b, BVE) 

 

 

Figure B-4 UNIVARIATE PROJECTION (CASES 4, 4a, 4b, BVE) 
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Figure B-5 RENEWAL FUNCTION (CASE 5a, BVE) 
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Figure B-6 RENEWAL FUNCTION (CASE 5b, BVE) 
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Figure B-7 UNIVARIATE PROJECTION (CASES 5, 5a, 5b, BVE) 
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Figure B-8 RENEWAL FUNCTION (CASE 6a, BVE) 
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Figure B-9 RENEWAL FUNCTION (CASE 6b, BVE) 

 
 

 
 
 
 

 

Figure B-10 UNIVARIATE PROJECTION (CASES 6, 6a, 6b, BVE) 
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B.1.2 Bivariate Normal Model 

 

Figure B-11 UNIVARIATE PROJECTION (CASES 1, 2, 3, BVN) 

 
 

0

50000

100000

150000

Time

0

50000

100000

150000

Usage

0

2.5

5

7.5

10

Number of Renewals

0

50000

100000

150000

Time

 
Figure B-12 RENEWAL FUNCTION (CASE 4a, BVN) 
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Figure B-13 RENEWAL FUNCTION (CASE 4b, BVN) 

 

Figure B-14 UNIVARIATE PROJECTION (CASES 4, 4a, 4b, BVN) 
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Figure B-15 RENEWAL FUNCTION (CASE 5a, BVN) 
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Figure B-16 RENEWAL FUNCTION (CASE 5b, BVN) 
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Figure B-17 UNIVARIATE PROJECTION (CASES 5, 5a, 5b, BVN) 
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Figure B-18 RENEWAL FUNCTION (CASE 6a, BVN) 
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Figure B-19 RENEWAL FUNCTION (CASE 6b, BVN) 

 

Figure B-20 UNIVARIATE PROJECTION (CASES 6, 6a, 6b, BVN) 
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B.1.3  Linear Stochastic Functional Relationship 

 
 

Figure B-21 UNIVARIATE PROJECTION (CASES 1, 2, 3, LISF) 
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Figure B-22 RENEWAL FUNCTION (CASE 4a, LISF) 
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Figure B-23 RENEWAL FUNCTION (CASE 4b, LISF) 

 

Figure B-24 UNIVARIATE PROJECTION (CASES 4, 4a, 4b, LISF) 
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Figure B-25 RENEWAL FUNCTION (CASE 5a, LISF) 
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Figure B-26 RENEWAL FUNCTION  (CASE 5b, LISF) 
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Figure B-27 UNIVARIATE PROJECTION (CASES 5, 5a, 5b, LISF) 
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Figure B-28 RENEWAL FUNCTION (CASE 6a, LISF) 
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Figure B-29 RENEWAL FUNCTION (CASE 6b, LISF) 

 

Figure B-30 UNIVARIATE PROJECTION (CASES 6, 6a, 6b, LISF) 

 
 
 
 
 
 
 

0

2

4

6

8

10

12

0 50000 100000 150000 200000 250000 300000 350000 400000

Time (Use)

N
u

m
b

er
 o

f 
R

en
ew

al
s

Time

Use (0)

Use (250)

Use (500)



 120

B.2 Availability Function 
 

The figures shown here represent the cases that correspond to those 

mentioned in Chapter 4.  The differences are a result of the variations in the 

correlation coefficient, ρ, or the constant, β. 

B.2.1 Bivariate Exponential Model 
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Figure B-31 AVAILABILITY FUNCTION (METHOD 1, CASE 4a, BVE) 
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Figure B-32 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, BVE) 
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Figure B-33 AVAILABILITY FUNCTION (METHOD 1, CASE 4b, BVE) 
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Figure B-34 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, BVE) 

 



 122

0

100000

200000

300000

400000

Time

0

100000

200000

300000

400000

Usage

0.97

0.98

0.99

1

Availability

0

100000

200000

300000

400000

Time

 
Figure B-35 AVAILABILITY FUNCTION (METHOD 1, CASE 5a, BVE) 
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Figure B-36 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, BVE) 
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Figure B-37 AVAILABILITY FUNCTION (METHOD 1, CASE 5b, BVE) 
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Figure B-38 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, BVE) 
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Figure B-39 AVAILABILITY FUNCTION (METHOD 1, CASE 6a, BVE) 
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Figure B-40 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, BVE) 
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Figure B-41 AVAILABILITY FUNCTION (METHOD 1, CASE 6b, BVE) 
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Figure B-42 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, BVE) 
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B.2.2 Bivariate Normal Model 
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Figure B-43 AVAILABILITY FUNCTION (METHOD 1, CASE 4a, BVN) 
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Figure B-44 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, BVN) 
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Figure B-45 AVAILABILITY FUNCTION (METHOD 1, CASE 4b, BVN) 
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Figure B-46 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, BVN) 
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Figure B-47 AVAILABILITY FUNCTION (METHOD 1, CASE 5a, BVN) 
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Figure B-48 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, BVN) 
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Figure B-49 AVAILABILITY FUNCTION (METHOD 1, CASE 5b, BVN) 
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Figure B-50 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, BVN) 
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Figure B-50 AVAILABILITY FUNCTION (METHOD 1, CASE 6a, BVN) 
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Figure B-51 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, BVN) 
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Figure B-52 AVAILABILITY FUNCTION (METHOD 1, CASE 6b, BVN) 
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Figure B-53 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, BVN) 
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B.2.3 Linear Stochastic Function 
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Figure B-54 AVAILABILITY FUNCTION (METHOD 1, CASE 4a, LISF) 
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Figure B-55 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, LISF) 
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Figure B-56 AVAILABILITY FUNCTION (METHOD 1, CASE 4b, LISF) 
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Figure B-57 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, LISF) 
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Figure B-58 AVAILABILITY FUNCTION (METHOD 1, CASE 5a, LISF) 
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Figure B-59 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, LISF) 
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Figure B-60 AVAILABILITY FUNCTION (METHOD 1, CASE 5b, LISF) 
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Figure B-61 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, LISF) 
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Figure B-62 AVAILABILITY FUNCTION (METHOD 1, CASE 6a, LISF) 
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Figure B-63 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, LISF) 
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Figure B-64 AVAILABILITY FUNCTION (METHOD 1, CASE 6b, LISF) 
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Figure B-65 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, LISF) 
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