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A Simulation Analysis of Bivariate Failure Models

Elise M. Caruso

(ABSTRACT)

Equipment behavior is often discussed in terms of age and use. For example, an
automobile is frequently referred to 3 years old with 30,000 miles. Bivariate failure
modeling provides a framework for studying system behavior as a function of two
variables. This is meaningful when studying the reliability/availability of systems and
equipment.

This thesis extends work done in the area of bivariate failure modeling. Four bivariate
failure models are selected for analysis. The study includes exploration of bivariate
random number generation. The random data is utilized in estimating the bivariate
renewal function and bivariate availability function. The two measures provide insight
on system behavior characterized by multiple variables.

A method for generating bivariate failure and repair datais developed for each model. Of
the four models, two represent correlated random variables; the other two, stochastic
functionally dependent variables. Also, methods of estimating the bivariate renewals
function and bivariate availability function are constructed. The bivariate failure and
repair data from the four failure models is incorporated into the estimation processes to

study various failure scenarios.
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Chapter 1 — Introduction

1.1 Background

The study of reliability problems began as early as the late 1930s, largely in
response to technological advances and problems encountered in some of the complex
military systems used in World War Il. Réiability theory has maintained a strong
presence in the field of applied mathematics, each year increasing in popularity. An
overal increase in system complexity has contributed to the growing interest in the field
of reliability. Reliability, as defined by Nachlas [1998], is the probability that a device
properly performs its intended function over time when operated within the environment
for which it is designed. In the event that a system experiences no failures, we can say
that system is absolutely reliable; however, that situation is unlikely to occur.

Each system experiences failures unique to that particular system. For example,
the solenoid in an oven fails to function properly, thus causing the oven to heat
improperly or not at all, or the oil pump in an automobile malfunctions causing the
engine to halt. Failure distributions are used as a method of representing the life length
of a system. “A failure distribution represents an attempt to describe mathematically the
length of life of a material, structure, or a device (Barlow and Proschan [1965]).” In
reliability studies, various distributions, such as the exponential, the gamma, the normal,
and the Weibull distributions are commonly used to represent the failure behavior of a
system (component). The system behavior dictates the choice of the family of the
probability distribution; the selection of an adequate failure distribution can sometimes be
difficult. The goal is to select an appropriate distribution in an attempt to accurately
represent the system behavior in order to determine various reliability measures for that

system.

In a reliability context, failure models are used to characterize the lifetime

behavior of a system. Over the last several years, much work has been done in the area



of failure modeling; much of that work has focused on problems of a univariate nature.
A univariate failure model focuses on failure as a function of a single index or variable,
such as time to failure, cycles to failure, or usage to failure. It is apparent that univariate
measures are adequate in many situations; however, situations exist where multiple
measures seem to be more appropriate. Multivariate failure models combine two or more

variables in order to describe the behavior of the system.

In both the univariate and multivariate cases, it may be possible to use failure
behavior information to aid in maintenance planning. For example, in order to avoid
unplanned work stoppages (due to failure), it may be beneficia to perform planned
maintenance operations on a system with an increasing failure rate. Often failures are
repairable through corrective maintenance operations; however, corrective maintenance
actions typically demand more time and resources than a simple preventive maintenance
activity. All types of maintenance actions contribute to the availability of a system;
availability can be described as the probability a system will be operating at any given
point in time. It is plausible that higher availability will result in increased production
and/or system utilization—both desirable goals. Therefore, it is important to understand
all aspects of systems behavior (i.e. failure processes, corrective maintenance, and

preventive maintenance).

1.2 Failure Modeling

Aging is inherent in almost any operating system (component). Aging can be
described as a gradual deterioration of the performance characteristics and/or gradual
increase of the possibility of component failure (Gertsbakh [1989]). In terms of the
system reliability, it is necessary to develop a mathematical description of the aging
process. Reliability theory suggests several formal descriptions of aging, for example,
increasing failure rate (IFR), increasing failure rate average (IFRA), and new better than
used in expectation (NBUE). These classifications along with the lifetime distribution of

the system allow for the determination of useful reliability measures.



The most commonly encountered failure models make use of univariate
distributions, indexed by a single scale, to describe the failure of an item. Extensive work
has been done in this area leading to many well-known concepts. All univariate
distributions have a well-established relationship between the distribution and the aging
process. For example, the exponential distribution displays a constant failure rate; the
gamma and normal distributions, an increasing failure rate; the Weibull distribution, an
increasing failure rate, a decreasing failure rate, and a specia case of the exponential.
The above-mentioned associations are commonly known in the univariate case; however,

these concepts have not been extended to the multivariate case.

There are some situations where a univariate model does not adequately represent
the system. A particularly useful example is the determination of failure points of an
automobile. It is important to not only know that the car is expected to survive for 7
years, but it is also important to know that it will last for 75,000 miles. The significance
lies in the fact that different users will reach usage values at varying points along the life
of the unit. Clearly, multiple indices are useful; however, a single index model is
typically used because it is mathematically more tractable. Some reliability models do
account for the need to include multiple scales, but most are designed such that they may

be reduced to asingle scale.

A logical progression from the univariate case to the multivariate case is to consider
reliability in terms of two variables or the bivariate case. Several researchers, including
Mercer [1961], Birnbaum and Saunders [1969], Barlow and Proschan [1975], Lemoine
and Wenocur [1985], and Yang [1999], have suggested that bivariate failure models
appear to accurately represent system (equipment) behavior. In particular, Yang [1999],
identifies five classes of bivariate reliability models. These models target situations that
include maintenance operations and those that do not include maintenance. It is
important to recall, maintenance activities can significantly impact the behvaior of a
system. The models are developed sequentially and with an increasing level of detail.
Equipment behavior is portrayed in terms of bivariate failure modeling, bivariate renewal

modeling, bivariate corrective maintenance modeling, bivariate preventive maintenance



modeling, and bivariate availability modeling. These objectives are not universal, but
serve as the basis for the research presented here.  Considerable advances were made in
each of these areas. A general structure of bivariate probability models of system failure,
which allows for numerical analysis of system behavior, was determined. Numerical
integration techniques were used for the analysis. Additional analysis is necessary to

more fully understand system behavior.

1.3 Problem Description

The purpose of the research presented here is to gain a better understanding of
bivariate failure processes. Various bivariate failure models have been developed;
however, the analysis of these models has been rather difficult. In particular, Yang
[1999] was able to develop useful bivariate models, but was not able to obtain the
corresponding performance measures—reliability and/or availability. The complexity of
the Laplace transforms prohibited the determination of these measures. In order to
provide further insight into the failure behavior of systems characterized by bivariate

failure, four of Yang’'s models are examined.

Much of the work in the area of failure modeling has focused on univariate failure
processes. For many of the univariate models a relatively good understanding of the
relationship between the aging process and the lifetime distribution exist (e.g., the
exponential distribution). It is not clear that similar relationships exist in the bivariate
case and if the relationships exist the nature of each is unknown. Therefore, in order to

provide useful applications of bivariate models, further study in this area is necessary.

Discrete-Event simulation is used to model system behavior. The first objective
Is to develop a method for computing bivariate random failure and repair data. Using the
failure/repair data, simulation models are built to estimate the bivariate renewal function,
when repair is instantaneous and the bivariate availability function, when repair is not
instantaneous. For instantaneous repair, a sequence of failure events are generated and

examined to find the expected number of renewals at a certain point in the time-use



gpace. The failure data is used to gain a better understanding of the bivariate renewal
process. For cases of non-instantaneous repair, a similar approach is used, but in addition
to the generation of failure data, repair times are generated. The combination of failures
and repairs alows for the estimation of system availability. The chief objective is to
measure and analyze system availability. Also, the simulation results will be employed

in an effort to strengthen and confirm analytic solutions.



Chapter 2 — Literature Review

2.1 Bivariate Modeling

Throughout the last several decades various researchers have addressed the idea
of bivariate failure modeling and among these works many interpretations of bivariate
failure modeling exist. Much of the early work in this area does not consider bivariate
failure models in the sense studied here. The research presented in this thesisis based on
the work of Yang [1999] and considers a classification scheme defined by the
relationship between the two variables contributing to failure. In this case the two
variables associated with the failure of a system are time and use. In one case the

variables are treated as correlated random variables; the other, functionally dependent.

Researchers focusing on variables that are functionally dependent include Mercer
[1961], Birnbaum and Saunders [1969], Barlow and Proschan [1975], and Lemoine and
Wenocur [1985]. Within this body of work, the efforts of Mercer are the most closely
related to the aims of the research here. Mercer studies failure as a function of both time
and wear. He contends that afailure rate classified as afunction of time alone ignores the
underlying processes that can contribute to the failure of an item (in this study, the
process of wear was considered). The resulting model includes a component related to
the wear process in order to more accurately model falure. Mercer investigates

alternative replacement strategies and provides insight on optimal replacement intervals.

There are severa authors (Gumbel [1960], Marshall and Olkin [1967 a, b],
Downton [1970], Baggs and Nagargja[1996], and Signpurwalla and Wilson [1993]) who
focus attention to the study of multivariate probability distributions in a reliability
context. Marshall and Olkin concentrate on the discussion of life-length using a bivariate
exponential (BVE) distribution to represent two components versus two distinct failure
characteristics, such as time and usage. Other researchers (Block and Basu [1974] and
Baggs and Nagaraja [1996]) extend the work of Marshall and Olkin to further investigate
the intricacies of the BVE. In particular, Baggs and Nagaraja model a two-component



system with dependent components whose lifetimes are characterized by the BVE. They
consider dependent lifetimes in which failure is based on asingle index—time. The work

that is most closely related to that presented here was introduced by Singpurwalla and
Wilson [1993].

Singpurwalla and Wilson discuss bivariate models in the context of warranty
applications. They determine that the application of univariate failure models is
sufficient in dealing with univariate warranties, but not appropriate for warranties such as
automobile warranties that consider multiple failure criteria. In the case of an
automobile, the warranty considerations may be based on model year and mileage.
Singpurwalla and Wilson construct a generic bivariate model to reflect failure based on
two scales. However, difficulty obtaining useful results led to a need for simulation
studies. In later work [1998], simulation methods are used to determine optimal warranty

periods based on the newly developed bivariate models.

Similar to the efforts of Singpurwalla and Wilson [1993], Yang [1999] develops
generic bivariate failure models that focus on failure as a function of two variables. Yang
proposes the use of bivariate models to characterize the behavior of equipment in the area
of reliability. There is a progression from the generic failure model to models that
include renewal and maintenance activities. As mentioned earlier, Yang identified five
key efforts for the application of bivariate probability distributions to

reliability/availability. Those efforts include:

I) Bivariate Failure Modeling

i) Bivariate Renewal Modeling

iii) Bivariate Corrective Maintenance Modeling
Iv) Bivariate Preventive Maintenance Modeling
v) Bivariate Availability Modeling

The next section includes a brief summary of Yang’'s modeling efforts, including useful

definitions of each objective. The two subsequent sections provide explanations of the



concepts used by Yang to apply bivariate probability distributions to
reliability/availability.

2.1.1 Objectives

Yang [1999] identifies five objectives to progress through the construction of
bivariate failure models to the development of models that allow for the measurement of
system behavior. The work presented here is based on these efforts; it is important that
the objectives are well understood.

1) Bivariate Failure Modeling

This step focuses on the construction of bivariate failure models, which consider a
single-unit system with bivariate longevity. The goal of this step is to construct and
evaluate bivariate failure models in an attempt to improve upon existing univariate failure
models. The two model classes are defined and examples are included. Given the two
model classes, the corresponding bivariate failure models are devel oped.

i) Bivariate Renewal Modeling

Bivariate renewal models consider systems with independent and identically
distributed (i.i.d) lifetimes, which are instantaneously repaired/replaced upon failure. Itis
assumed once a system is repaired/replaced the new system behaves identically to the
repaired/replaced system. Under this assumption a bivariate renewal process may be
used to describe system behavior. A bivariate renewal theory and a quasi-renewal theory

are proposed and results are included.

1) Bivariate Corrective Maintenance Modeling

Bivariate corrective maintenance models are an extension of the bivariate renewa

models in that cases with non-instantaneous repair are considered. The lifetime



distributions and the repair time distributions are i.i.d. Following a maintenance action, it

is assumed the system ias“good as new.” In these models, preventive maintenance
time is not included, only corrective maintenance. Of the two model classes — functional
relationships and correlated relationships — only the correlated models are examined.

Yang is able to obtain the Laplace transform of the renewal function.

V) Bivariate Preventive Maintenance Modeling

Bivariate preventive maintenance models build upon the results of the bivariate
renewal models and the bivariate corrective maintenance models, by considering the
effects of preventive maintenance. These models are similar to the corrective
maintenance models, but include distinct preventive maintenance times. The purpose of
the models is to capture the effects of preventive maintenance on a system. The models
are investigated under an age-replacement policy and it is noted that other preventive

maintenance policies may be considered.

V) Bivariate Availability Modeling

In this stage, bivariate availability models are provided; the models are derived
from the developed bivariate corrective maintenance and preventive maintenance models.
The corrective maintenance and preventive maintenance cases are considered separately;
however, the availability measure for the preventive maintenance models is based on the
results from the corrective maintenance models. The Laplace transforms for the bivariate
availability models are presented, along with general results.

2.1.2 Definitions

The application of bivariate probability distributions to reliability is not a trivial
task. The first step is to carefully define and interpret the bivariate probabilities. The
following concepts are necessary to fully describe the bivariate failure models identified

by Yang [1999]. Each model is defined by two variables—time to failyrand usage



to failure, U. Time and usage are generic terms used to represent a variety of
characteristics that contribute to system failure. System lifetimes are defined by the

cumulative failure probability, F;,(t,u), which is the probability failure occurs by time t
and usage u, more formally:
Fro(tu)=PrT <t,U <u).

This probability represents the proportion of the population that have longevity
vector values that do not surpass (t,u) in either vector component (Y ang [1999]).

Each cumulative failure probability distribution has a corresponding reliability
function, Fryu (t,u), that represents the portion of the population whose failure age

exceedst, and failure usage exceeds u. Theresulting reliability function is:

00 00

Fru(t,u)=Pr[T=t,U > u] =[[ fru (t,u)dudt,

where f;(t,u) isthe joint probability density function of T and U. In addition to the

joint probability density function, it is useful to determine the marginal distributions on t

andu, f,(t)and f, (u), aswell asthe conditional distributions, f,, (t|u)and . (u]t) .

2.1.3 Performance Measures

The effectiveness of a system can be measured in several ways. In this research,
the two measures are the number of failures experienced by a certain point (or in a
particular interval) and the availability of a system. Availability is the probability a
system is in a functioning state at a particular point. It is important to note, there is an
abundance of literature concerning each of these ideas in the univariate sense; however,
there are no efforts to extend the results. Yang [1999] describes an approach for
determining each of these measures for the bivariate case — the bivariate renewal models
and the bivariate availability models, respectively. Yang provides several important

terms to describe both of these processes.
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The bivariate renewal function is an extension of the univariate renewal function.
In either case, the basis is a counting process for which interarrival times are independent
and identically distributed with a common distribution; this type of counting process is
referred to as a renewal process. To define the renewal process in the univariate sense,
let {X,,n=12,..}be a sequence of nonnegative independent random variables with a
common distribution F, where X is the time between the (n-1)st and the nth event. Also,

let
S, =0, sn:ixi, n>1,

where S, isthe time of the nth event. It iswell known that
N(t)=sup{n: s, <t}
and the counting process {N(t),t = 0} istermed arenewal process. The renewal function
may is defined as the expected number of renewals by timet, or more formally:
M ()= E[N(t)].

The bivariate renewal function is based on the same theory given in the univariate
renewa function, only all definitions are extended to two include two variables. The
following definitions are used to construct the bivariate renewal function. First, let
X, ={(T,,U,)l,n=1,2.., be a sequence of independent and identically distributed non-
negative bivariate random vectors, with common joint distribution function--

Fru = Pr{T, <t,U, <u} — whereT, and U, represent the interarrival time and usage
between thertl)st andnth, n > 1. The stochastic proce#NT’U (t,u).t>0,u >O} IS

defined as a&ounting process that represents the total number of renewals by time t and
usage u, or thbivariate renewal counting process. It follows that thebivariate renewal

function may be stated as:
M (t,u) = E[Nry (t,u)].

For the bivariate availability measures, Yang [1999] defines four types of

availability—bivariate point availability, bivariate limiting availability, bivariate average

11



availability, and bivariate limiting average availability. This research will focus on

bivariate point availability, Alt,u), and is defined by:

Alt,u) = Pr{I (t,u) =2 = E[1 (t,u)],
wherel (t,u)is the system status and is defined as:
| (t,u) _ a, if thec%eviceisoperatingattimetand usageu'
E), otherwise
In other words, bivariate point availability can be described as the probability that a

system is functioning at any point — timet and usage.

2.2 Bivariate Failure Model Cases

Yang [1999] addresses the problem of constructing bivariate failure, repair, and
preventive maintenance models. He identifies two potentially important model classes
and the difference between the model classes lies in the definition of the relationship
between the two variables. One category is defined by variables that have a stochastic
functional relationship. The other category serves to represent variables that are
correlated versus stochastically dependent. The development of these types of models

forms the cornerstone of this research.

There are many possible approaches to the development of bivariate failure
models. In the case of those models with functionally dependent variables, the initial step
in defining the model is to determine the representation of the stochastic element of the
life variable. The functiotJ = g(t) represents the relation between the time and usage to
failure, T andU respectively. It is assumed that the relationship betWesrdU can be
determined by treating one or more of the parametegétlofs random variables. Once
the random feature is determined a transformation of variables is performed in order to
obtain the marginal distribution on usage, which is then used to find the joint failure
density (Yang [2000]). The following examples were suggested as possible functional

relationships:
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i) gy =at+p (2.1)

i) g)=at? +Bt+y 2.2)
i) gH)=at" (2.3)
iv) o= (e -1)/(e" +p). (2.4)

The relationships shown in equations 2.1 and 2.4 will be explored here. For each of these
models the parameter a is treated as a random variable, with probability distribution

, (.

In addition to situations that warrant a functionally dependent set of variables,
there are many scenarios where the two variables appear to be correlated. When the
variables are correlated as opposed to functionally dependent it appears that the
construction of bivariate models is less intensive; a bivariate distribution is selected and
manipulated. It is important to note that the determination of the bivariate distribution
must be done very carefully to ensure that it appropriately describes equipment behavior.
Three candidate distributions that seem to accurately represent bivariate failure processes
with correlated random variables are proposed. The distributions include a generalization
of the bivariate exponentia distribution, the bivariate normal distribution, and a model

presented by Hunter [1974]. The density functions are as follows:

)y (L) = e L4 plL- 267 — 267 +e7lrm)) (2.5)
_ 2
”) fT,U(t’u): —1 %t /'It _ lut)(u luu) (U l'lu) % (26)
21,0,/ 1- p? Q 2(1‘ 0.0, o,
_ i )\t+r]uD
i) fo, (tu)= 1-p ¢ 1/)\r]tu %xpm— o D 2.7)

where 1, (iis the modified Bessel function of the first kind, of order n.
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Yang [1999] explores four of the models (2 functionally dependent, 2 correlated)
in great detail and uses those models as examples. For the example models, definitions
are given and some basic results are provided. The focus here will be on the example
models of Yang.

2.2.1 Functionally Dependent Models

The two functionally dependent models are asimple linear relationship,
g(t)=at +j,
and, the logistic mode!:
o= (e -1)/(e" + )
Eliashberg, Singpurwalla, and Wilson [1997] examined the logistic model in a multiple-
index warranty application. Each of these models appearsto be realistic option to
represent equipment behavior in regard to multiple failure characteristics. Yang [1999]
was able to compute probability values, reliability measures, and hazard function values.
It isimportant to note there is no closed form expression of the cumulative distribution
function (CDF) for either of these models.

2.2.2 Correlated Models

For the models representing correlated random variables, Yang [1999] chose the
bivariate exponential distribution,
fry (tu) = Ane ) (1+ p(l— 2e —2e7™ + 4g~i*m) ))
and the bivariate normal distribution,
L o b t-u)’ _Zp(t—M)(u—ﬂu)Ju—uu)z%
ZHJIUUW = 2(1‘,02) g o 0,0, o, M
The bivariate exponential (BVE) distribution is alogical choice since it has been studied

in related applications (Marshall and Olkin [1967 ab], Block and Basu [1974], and
Baggs and Nagargja [1996]). Also, the BVE exhibits the attractive features of having

fT,U(t’ u)=

closed form expression for the CDF and having exponential marginal densities. These
characteristics make the analysis more tractable. The second choice, the bivariate normal

14



distribution, is relatively straightforward from an analytical standpoint. In addition, the
marginal densities are normal, again making analysis less complicated Yang [1999]

provides computational results for the probability values, reliability measures, and hazard
function values.
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Chapter 3 — Problem Statement

3.1 Introduction

Chapter 2 introduced the application of bivariate distributions to model failure
with respect to two variables, time and usage. In this chapter, procedures are developed
to generate random failure and repair data corresponding to the bivariate distributions.
The processes are constructed for two classes of bivariate distributions — stochastic
functional relationships and correlated random variables. The failure and repair data
characterizes the behavior associated with each distribution and is then used to develop
performance measure estimation methods. Procedures are created to estimate the
bivariate renewal function and the bivariate availability function. The results from these
tests are used to compare and contrast the 4 bivariate models.

3.2 Generating Bivariate Failure/Repair Data

The first step in developing the simulation models is the determination of a
generation procedure for failure and repair data for each of the bivariate failure models
selected. The failure/repair data is used to estimate two measures of system performance
— reliability and availability. Each failure vector has two compondnts) representing
the time to failure and the use to failure, respectively. The same is true for the repair
vectors; however, the componenR,R,) represent the amount of time (or use) to
complete a repair. Because the two components have dependence relationships
(functional or correlated) it is necessary to employ a multivariate random number

generation scheme.

Several algorithms that are candidates for the construction of multivariate random
vectors exist. The most commonly used methods for multivariate random vector
generation include the conditional method, transformation methods, and the acceptance-
rejection method. Algorithms for each of these methods exist in the literature (Devroye
[1986], Johnson [1987], and Law and Kelton [1991]) and are only valid when used in

16



conjunction with a “good” uniform random number generator. Each has specific

characteristics that warrant its use in various situations.

The conditional distribution method is a universal tool that can be used in many
situations. It provides the ability to reduce the multivariate generation problem into a
series of univariate generation problems (Devroye [1986]). This simplification allows for
the use of numerous generation techniques that have been developed for the univariate
case. In order to use this method, the distribution must be invertible and a series of
conditional distributions must be obtainable. This is equivalent to knowing each

marginal distribution since:
f (%,0%)
fia (6%20)

wheref*; is the marginal density of the firsicomponents (i.e. the density o,(...X)).
The critical step in the conditiona distribution method is the determination of the

Fi 06X %4) =

marginal distribution of the first vector element and subsequent conditional distributions
for the remaining vector elements. For the cases anayzed here, the distributions

f.(t)or f,(u) and f(tlu)or f,(ult) are obtainable when necessary. After the

marginal distributions and corresponding conditional densities are found, the univariate
generation technique, inversion, isimplemented to generate T and U.

For the generation of R; and R, it is important to note, the procedures are
identical to those for the generation of T and U. The difference appears in the parameter
selection. The parameters for the repair distribution are selected such that the repair rate
is 10 percent of the failure distribution. It isimportant to note, the values generated from
the above procedures are individual failure (repair) vectors. A series of 10 failure (repair)
vectors is generated for each machine and used to determine the lifetime of the machine.
Each failure vector represents the amount of time and usage that has passed since the
previous failure. So, failurei is determined by adding (T;, U;) to the longevity vector for
failurei-1. For example, given the following failure vectors:

(T1, Ug) = (1750, 2345)
(T2, Up) = (3420, 2190),
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the first failure would occur at (1750, 2345) and the second failure would occur at (5170,
4535). The same method is used to generate machine lifetimes when repair is included.
However, to find the i failure point, the values of the i-1¥ failure and repair vectors are
added to the i failure vector. For instance, using the same failure vectors mentioned
above and including the following repair vector (R, Rua) = (355, 195), the second failure
would occur at (5525, 4730). It isimportant to note that in all model instances, the repair
distribution is taken from the same family as the failure distribution. The code used to
generate failure/repair data can be found in Appendix A. The subsequent sections

describe the various generation techniques in greater detail.

3.2.1 Bivariate Exponential Model

To address the issue of generating failure/repair behavior for the bivariate
exponential model,

fy(tU) = netm) (1+ p(l— 267 — g™ + 4g () )) (3.1)
the conditional distribution method is utilized. It iswell known the marginal distributions
of the bivariate exponential distribution are exponential. Using this result, the conditional

distribution on either variable is found using the definition of conditional density
function, formally stated as:

oy 1= L) 32

For the purposes of this study, time was considered as the first vector component.

Therefore, following the conditional distribution procedure, T is generated from the

marginal distribution, f (t)=Ae™ , using the inversion method as follows:
T= —/\iln(l— z,), (33)

where Z; is a uniform random number on the interval (0,1). The next step is to construct

the conditional distribution, f, (u]t). Theconditional distribution is found to be:
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e_(M+nu) (1 + p(l_ 2e—M —2e™ 4 4e—(Xt+1111) )) (34)

e
=ne ™[+ plL-2e7 267 + et

_Mn

Using the conditional distribution, f,, (u|t), and the value of T, U may be generated

using the inverse transformation technique as follows:

U=-Linz> (—cl—\/cf+4czy—4c2)g, (35
n 2 U
where
¢, =-1-p+2p0e™ (3.6)
c,=p-2pe" (3.7)

3.2.2 Bivariate Normal Model

For the bivariate normal distribution,

g 1 Ot-u) ) (t-u)u-w), (v-4)
ex . -2 ! ul ¢ v g (3.8)
21m0,0,/1- p° %2(1—0 )D a; i 0,0, a,

fT,U(t' u)=

the conditional distribution method is a valid generation technique. However, Scheuer
and Stoller [1962] develop a smpler method. The method is applicable when generating
a n-dimensional multivariate normal distribution with mean vector g = (U, Mz, -.... )"
and covariance matrig, where the (i,ff entry isajj. Also, Z must be symmetric and
positive definite; this gives us the ability to factor it uniquel\zas CC', where C is a
lower triangularn x n matrix (Law and Kelton [1991]). The resulting algorithm is
formally stated as:

1. Generat&y, Z,,...., 4 as1ID N(0,1) random variates

2. Fori=1,2,...nlet X, =y + Zijzlcijzj and return X = (X1, Xo,..... %) "

Barr and Slezak [1972] assert that this method is the most appropriate of a number

of methods of generating the multivariate normal. Based on this method, Banks, Carson,
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and Nelson [1996] provide a specific procedure for the bivariate case. The algorithm is
asfollows:

1. Generate Z; and Z; as 11D N(0,1) random variates

2. Set X, =u +o0,Z,

3. Setxzzluz"'az(pzl"' 1_:0222)

For the case presented here, the following substitutions are made: X, =T, Xo = U, 14 = 4,

Lo = Wy, 01= &, and 0z = oy.

3.2.3 Linear Stochastic Functional Relationship

The first of the functionally dependent relationships studied is a linear
relationship between T and U, denoted by:
g(t)=at+5, (39)
where g(t) = u, B isaconstant, and a is a random variable with distribution 7z, ([)] In al

cases considered a is assumed to have the exponential distribution of the form:
m, (= ce™. (3.10)

It is important to recognize the difficulty in generating the linear stochastic functional
relationship. An appropriate method using the joint distribution function was not
obtained. Therefore, an initial attempt of generation was made by assuming a
distribution for T and using the linear function to generate U. The vector component, t, is
assumed to behave according the exponential distribution, with parameter A. Using these
two assumptions the following procedure is implemented to generate the failure vector
components (T,U):

1. Set[3 = constant

2. Generate Z; and Z, as 11D U(0,1) random variates.

3. SetT= —Alln(l—zl)

4. Seta= —%In(l—zz)
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5. SetU =at+p.
3.2.4 Logistic Dependence Relationship

The last model under consideration is the logistic model studied by Eliashberg,
Singpurwalla, and Wilson [1997]. Recall, the model is of the form:
g(t) — (eat _1)/( em + ﬂ)’ (311)
where g(t) = u, B isaconstant, and a is arandom variable with distribution 7z, ([)] Again,

a useful generation technique using the joint distribution function for this relationship
was not used. So, the two assumptions from the previous section (a and t are exponential
random variables) are made in this case as well. The resulting random vector generation
procedureis:

1. Set 3 = constant

2. Generate Z; and Z, as 11D U(0,1) random variates.

3 SetT= —/‘iln(l—zl)

3.3 Renewa Function Estimation

A bivariate renewa mode is provided by Yang [1999]; however, direct analysis
of the model is rather difficult due to the complexity of the Laplace transform. The goal
here is to develop a simulation procedure to portray the renewal behavior of a system that
undergoes instantaneous repair/replacement. A bivariate renewal estimation procedure is
developed to gather insight on the behavior the four failure models. The characteristics

are then used to compare the behavior across the model types.
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The estimation procedure considers the failure behavior of a fixed number of
machines for a fixed number of failures, over incremental observations in the time-usage
plane. The sample population consists of 1,000 machines with 10 failures per machine.
The first step in the estimation procedure is to determine an appropriate grid resolution
(for the observation points). In order to capture the cumulative behavior, the grid sizeis
selected based on the failure rate for either time or usage. Three observation grids are
constructed corresponding to the three failure rate levels (low, medium, and high); each
grid consists of two hundred observation points. To illustrate the process, consider a case
where the mean time to failure and usage are 3,000 and 18,500, respectively. Using these
values, statistics are collected every 2000 time (usage) units until 200 observations are
complete (i.e. lattice point (400000, 400000)). The observation intervals for the two
aternative grids are 300 and 800 units. The remainder of the renewa estimation

procedure is based on the observation grid.

A second method is developed to estimate the projection of the bivariate renewal
process on either the time or usage axis. The same random data generation procedure is
used; however, comparisons are made according to only one variable. The observation
interval corresponds to the interval used in the bivariate renewal estimation procedure.
This method is provides insight on the renewal behavior when considering only one of

the two variables.

3.3.1 Bivariate Renewal Estimation

The renewal estimation process begins by generating failure data for the sample
population. Then each of the 10 failures is compared, individually, against all
observation points, O(j,k), foral j =1, 2, ..., 200 an = 1, 2, ..., 200, whergrepresents
observation times, ankl represents observation usages. The comparison statistics are
used to generate a matrix of cumulative renewals across all machines, or the renewal
matrix. The comparison of failure point to observation point determines the location(s) in
the matrix that are updated to reflect the failure. An update to the matrix is performed
only if the following condition is true: the vector components of faillaee less than or

equal toO(j,k). In other words, the failure time component is less than or eq@(j)to
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and the failure usage component is less than or equal to O(k). The updated entries

correspond to the total number of renewals experienced until that point.

The following example illustrates two iterations of the bivariate renewal

estimation procedure. Given the failure points:

i Failure (i) Cumulative Renewal s
1 (3282, 2736) 1
2 (6303, 5591) 2

the resulting renewa matrix is as follows:

Jime 300 | 600 3000 | 3300| 3600 630( 660D 6940
U

300

600

2700
3000 1 1 - 1 1 1
3300 1 1 .- 1 1 1
5400 1 1 1 1 1 1
5700 2 2
6000 2 2

Table 3-1 RENEWAL MATRIX

The above example represents the matrix updates of 1 machine for 2 failures. The
procedure is repeated for the remaining failure vectors (i = 3, 4, ..., 10) and for the
remaining machinesN( = 10,000). The renewal updates from Bllmachines are
accumulated in one renewal matrix. Then an average Ndweachines is taken to find
the average cumulative number of renewals for a given parameter set. Figure 3-1
provides a graphical representation of the method described here and the Matlab code

used for this estimation procedure can be found in Appendix A.5.
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INITIALIZE MODEL PARAMETERS
INITIALIZE OBSERVATION GRID
N=0,J=1,K=1,R=1,i=0

>| GENERATE LIFETIME VECTOR IS N <10,000?

l 1ISi<10?

IDENTIFY MATRIX
LOCATION OF FAILURE (i)

RENEWALS(j k) = RENEWALS(,k) + 1

Figure3-1 FLOWCHART FOR BIVARIATE RENEWAL ESTIMATION
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3.2.2 Univariate Projection

The final renewal estimation procedure estimates the projection of the bivariate
renewa function, MF(t,u), onto one axis (time or use). Hunter [1974] addresses
renewa theory in two dimensions and finds a simplified method of addressing the

bivariate renewal process. First, he defines N andN{? as the univariate renewal
counting process for the X-renewals and the Y-renewas; N,  is defined as the two-

dimensional renewal counting process. In the cases presented here, X and Y are
equivalent to T and U, respectively. Hunter determines a relationship between the

univariate counting process and the bivariate counting process: N, , = mi n{NS’, Nf’}.

In this research a procedure is developed to anayze bivariate failure data in one
dimension and the results are compared to those of Hunter. The projection of the
bivariate process onto one axis (time or use) is informative for counting the number of

renewals in one dimension.

In this method, the same basic failure generation scheme is employed. To
maintain consistency between the two methods, the process is repeated for N = 1,000
machines. The renewa matrix is reduced to a renewal vector with the same observation
coverage as the bivariate method. The observation increment is chosen according to the
mean value for the given bivariate model; the larger of the two mean values is used in
order to capture the full extent of the behavior. Figure 3-2 describes the general outline
of the procedure and the simulation code used to generate the univariate renewal data can

be found in Appendix A.6
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INITIALIZE MODEL PARAMETERS
INITIALIZE OBSERVATION GRID
N=0,J=1,K=1,R=1,i=0

#I GENERATE LIFETIME VECTOR ISN < 10,0007

l 1Si<10?

IDENTIFY MATRIX
LOCATION OF FAILURE (i)

RENEWALS(j) = RENEWALS(j) + 1

Figure3-2 FLOWCHART FOR UNIVARIATE PROJECTION METHOD
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3.4 Availability Function Estimation

As is the case with the bivariate renewa model provided by Yang [1999], direct
analysis of the bivariate availability model is challenging. Estimation of the availability
function follows the same approach used in the estimation of the renewal function.
Simulation models are constructed to capture the lifetime behavior of a system that
undergoes corrective maintenance. Two methods of bivariate availability estimation are
developed. The basic procedures used in the availability estimation models are the same
as those used in the renewal estimation models, except a larger number of machines (N =
100,000) are considered. The two bivariate models consider afixed number of machines,

each with a predetermined number of failures.

3.4.1 Bivariate Availability Estimation

The two estimation procedures begin by selecting a distribution and the
corresponding parameters. Given thisinformation, an observation grid isinitialized from
the mean of the distribution on time or usage. The observation grid is a matrix
representing various lattice points in the time-usage plane where the system behavior is
monitored. After the parameters and the grid resolution are fixed, 10 failure and repair
vectors are generated for each machine (N = 100,000). The failure vector (T;, U;)
represents the time and usage failure i occurs; the repair vector (R, Ri), the time and
usage repair i is completed. Each component (time, usage) of the failure and repair
vectors is compared to O(j) or O(Kk) (O(j) refers to time, O(k) refers to usage). The
information gained here is used to determine the availability matrix, which is similar to
the renewal matrix. The availability matrix entries represent the number of machines
functioning at a particular observation point.

The comparison process identifies the matrix location corresponding to a failure
or repair completion. In method 1, al entries of the availability matrix are initialized to
N, meaning all machines are functioning. Given the matrix location of any failure and
repair sequence, al matrix location between the two points are decremented by 1 to
reflect the non-functioning machine. An overview of the process is shown in Figure 3-3
and the Simulation code appearsin Appendix A.6.
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INITIALIZE MODEL PARAMETERS
INITIALIZE OBSERVATION GRID
N=0,J=1,K=1,R=1i=0

GENERATE LIFETIME VECTOR YES

ISN < 10,0007

GENERATE REPAIR VECTOR

l 1ISi<10?

IDENTIFY MATRIX
LOCATION OF FAILURE (i)

IDENTIFY MATRIX
LOCATION OF REPAIR
COMPLETION (i)

v

UPDATE MATRIX
LOCATIONS TO REFLECT
FAILURE (i) and REPAIR
COMPLETION (i)

Figure3-3FLOWCHART FOR BIVARIATE AVAILABILITY ESTIMATION (METHOD 1)
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The following example illustrates the process for 1 machine and the first two

failure/repair sequences. Suppose the following two sequences occur:

[ Failure (i) Repair Completion
1 (2038, 3205) (2274, 3606)
2 (4791, 7088) (5104, 7358)

Using method 1, the resulting availability matrix is.

Time 300 600 1800 2100 2400 4500 480¢ 510D 540
Usag
300 1®O00 | 100000, ....| 100000p 100000 100000  [.. 100POO 100000 1QOOOO 1p0OOOO
600 1®MO00 | 100000, ....| 100000 [ 10000 | 100000{ ....[ 100000 100000 100000 100900
3000 1@O00 | 10000 100000 ADOO | 10000¢ [ .... | 100000| 100000 10000p 100040
3300 1@O00 | 10000 e 100000 99999 99999 ..|. 0ODO | 100000 10000 100040
3600 1®O00 | 10000 e 100000 99999 @000 | .... [ 100000 100009 100000 1000PO
6900 1®O00 | 100000( .... | 100000 | 100000( 100000| .... | 100000( 100000| 100000 10000p
7200 1®O00 | 100000( .... | 100000 | 100000 100000| .... | 100000 99999 99999 99999
7500 1@O00 | 100000( .... | 100000 | 100000( 100000| .... | 100000| 99999 99999| 1M000
7800 1®O00 | 100000( .... | 100000 | 100000| 100000| .... | 100000| 100000| 100000 10000p

Table3-2 AVAILABILITY MATRIX (METHOD 1)

For some matrix locations, the availability may be overestimated due to the
assumption al machines are functioning unless a failure occurs; this occurs because all
machines do not necessarily pass through all observation points. For example, O(7,10) —

(2400, 3000) reflects an availability of 1, dividing the number of functioning machines by
the total number of machines (N = 100,000). However, failure 1 occurs at (2038, 3205)
so the point (2400, 3000) is not accessible by this particular machine and at this point
10,000 machines are not functioning. A second method is developed to improve the
estimation procedure. The second method follows the same initial procedure, but takes a

different approach to obtaining the availability statistics.
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For method 2, two matrices are maintained — the availability matrix and the
relevant matrix. Similar to the second renewal estimation method, the relevant matrix
tracks the locations that are accessible by each machine. The availability matrix is
similar to that of availability estimation method 1; however, the assumption that all
machines are functioning is relaxed. In this case, the availability matrix accumulates the
total number of working machines that access a particular observation location. The two
matrices are then used to estimate the bivariate availability function by averaging over
the total number of machines that have visited each observation point. The following

example, using the same failure and repair information from above:

[ Failure (i) Repair Completion
1 (2038, 3205) (2274, 3606)
2 (4791, 7088) (5104, 7358)

shows the difference in the availability matrix (Table 3-3) from method 1 and method 2.

Also, the relevant matrix is presented in Table 3-4.

Time 300 600 1800 2100 2400 7DO| .... 4500 4800 5100 5400

Usg
300 1 1
600 1 1

3000 1 1 e 1
3300
3600
3900 1 1 e 1

6900 1 1 1
7200
7500 1
7800 1

Table3-3 AVAILABILITY MATRIX (METHOD 2)
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It is important to notice that, only some of the entries are filled, as opposed to all of the

entries in the availability matrix of method 1. In particular, for method 2 the entry in
O(7,10) — (2400, 3000) — reflects a zero because the machine is not functioning at that
particular point. Recall, the same entry O(7,10) is equal to 10,000 in method 1, implying
that all machines are functioning. Given the above availability matrix, the relevant
matrix (Table 3-4) is used to provide the number of machines working at a given

observation point.

Time 300 600 1800 2100 2400 70| ... 4500 4800 5100 5400

Usg
300 1 1
600 1 1

3000 1 1 1
3300 1
3600 1
3900 1 1 1

6900 1 1 1
7200 1 1
7500 1
7800 1

Table 3-4 RELEVANT MATRIX (METHOD 2)

The difference between the two methods can be made more clear by the observations
highlighted in Table 3-4. Although these points are not accessible by the machine,
method 1 considers them as accessible and the family of machines as fully functioning.
The degree of difference between the estimates is not clear. Figure 3-4 provides a
graphical representation of the second method of bivariate availability estimation. The
data generation code is available in Appendix A.9.

31



INITIALIZE MODEL PARAMETERS
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Figure 3-4 FLOWCHART FOR BIVARIATE AVAILABILITY ESTIMATION (METHOD 2)

32



3.5 Experimental Methodol ogy

Simulation experiments are constructed such that a wide variety of potential
systems are presented. For each of the correlated models and the linear stochastic
functional relationship, the parameter values are varied on three levels in order to
represent low, medium, and high failure/repair rates. All possible parameter
combinations are considered, giving 27 cases. The parameter selection alows for
comparison across models, by ensuring the mean values for time and use are similar. In
the case of the logistic stochastic functional relationship, identification of appropriate
parameters is not clear. Only two parameter sets are selected and comparison to other
models is attempted. In al cases, the parameters for the repair distribution are chosen
based on those for the lifetime distribution. The cases considered for each model are
identified in Table 3-5.
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Bivariate Exponential Model

Bivariate Normal
Model (BVN)

(M, My, OT, O, P)

Linear Stochastic
Function (LISF)

(. cB)

Logistic Stochastic
Function (LOSF)

(. cB)

(BVE)
*.n.p)
1 (0.00033, 0.00031, 0.2)
2 (0.00033, 0.00031, 0.5)
3 (0.00033, 0.00031, 0.8)
4 (0.00033, 0.00014, 0.2)
5 (0.00033, 0.00014, 0.5)
6 (0.00033, 0.00014, 0.8)
7 (0.00033, 0.000054, 0.2)
8 (0.00033, 0.000054, 0.5)
9 (0.00033, 0.000054, 0.8)
10 (0.00013, 0.00031, 0.2)
11 (0.00013, 0.00031, 0.5)
12 (0.00013, 0.00031, 0.8)
13 (0.00013, 0.00014, 0.2)
14 (0.00013, 0.00014, 0.5)
15 (0.00013, 0.00014, 0.8)
16 (0.00013, 0.000054, 0.2)
17 (0.00013, 0.000054, 0.5)
18 (0.00013, 0.000054, 0.8)
19 (0.00005, 0.00031, 0.2)
20 (0.00005, 0.00031, 0.5)
21 (0.00005, 0.00031, 0.8)
22 (0.00005, 0.00014, 0.2)
23 (0.00005, 0.00014, 0.5)
24 (0.00005, 0.00014, 0.8)
25 (0.00005, 0.000054, 0.2)
26 (0.00005, 0.000054, 0.5)
27 (0.00005, 0.000054, 0.8)

(3000, 3250, 600, 650, 0.2)
(3000, 3250, 600, 650, 0.5)
(3000, 3250, 650, 600, 0.8)
(3000, 7400, 600, 1480, 0.2)
(3000, 7400, 600, 1480, 0.5)
(3000, 7400, 600, 1480, 0.8)
(3000, 18500, 600, 3700, 0.2)
(3000, 18500, 600, 3700, 0.5)
(3000, 18500, 600, 3700, 0.8)
(8000, 3250, 1600, 650, 0.2)
(8000, 3250, 1600, 650, 0.5)
(8000, 3250, 1600, 650, 0.8)
(8000, 7400, 1600, 1480, 0.2)
(8000, 7400, 1600, 1480, 0.5)
(8000, 7400, 1600, 1480, 0.8)
(8000, 18500, 1600, 3700, 0.2)
(8000, 18500, 1600, 3700, 0.5)
(8000, 18500, 1600, 3700, 0.8)
(20000, 3250, 4000, 600, 0.2)
(20000, 3250, 4000, 600, 0.5)
(20000, 3250, 4000, 600, 0.8)
(20000, 7400, 4000, 1480, 0.2)
(20000, 7400, 4000, 1480, 0.5)
(20000, 7400, 4000, 1480, 0.8)
(20000, 18500, 4000, 3700, 0.2)
(20000, 18500, 4000, 3700, 0.5)
(20000, 18500, 4000, 3700, 0.8)

(0.00033, 1, 0)
(0.00033, 1, 250)
(0.00033, 1, 500)
(0.00033, 0.4, 0)

(0.00033, 0.4, 250)
(0.00033, 0.4, 500)
(0.00033, 0.167, 0)
(0.00033, 0.167, 250)
(0.00033, 0.167, 500)
(0.00013, 2.5, 0)
(0.00013, 2.5, 250)
(0.00013, 2.5, 500)

(0.00013, 1, 0)
(0.00013, 1, 250)
(0.00013, 1, 500)
(0.00013, 0.5, 0)

(0.00013, 0.5, 250)
(0.00013, 0.5, 500)
(0.00005, 6.67, 0)
(0.00005, 6.67, 250)
(0.00005, 6.67, 500)
(0.00005, 2.85, 0)
(0.00005, 2.85, 250)
(0.00005, 2.85, 500)

(0.00005, 1, 0)
(0.00005, 1, 250)
(0.00005, 1, 500)

(0.00033, 416, 1511)
(0.00014, 1087, 1511)

Table 3-5 MODEL PARAMETERS

The parameters for the repair distributions are selected so that the repair rate is
approximately 10 percent of the failure rate. Also, the repair distribution for each model

is from the same family.



Chapter 4 — Results and Conclusions

4.1 Bivariate Failure Distributions

Examples of the bivariate probability densities for each of the candidate models are
shown in Figure 4-1 through Figure 4-6. The density plots provide an indication of the
behavior expected of each distribution. For instance, with the bivariate exponential
distribution (Figure 4-1), the observations are well dispersed throughout the plane, but are
concentrated near the origin and at values less than the mean on time and usage. From
this one can conclude there is a significantly high probability of early failure, but also late
failures are not uncommon. For the bivariate exponential distribution, variations in the
correlation coefficient do not greatly impact the shape of the distribution.

Qo

I o
@ Q

S o

Figure4-1 BIVARIATE EXPONENTIAL PROBABILITY DENSITY

However, with the bivariate normal distribution a noticeable change in the shape

of the distribution occurs after varying the correlation coefficient. Notice in Figure 4-2,
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for alow correlation value the function peaks around the point (1, |) and the base of the

function is symmetric about this point.
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30

Figure4-2 BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION (p=0.2)

In contrast, in

Figure 4-3 and

Figure 4-4, the function peak shifts toward increased usage values. Also, the base

of the function becomes narrower.
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Figure4-3BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION (p=0.5)
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Figure4-4 BIVARIATE NORMAL PROBABILITY DENSITY FUNCTION (p=0.8)

It is important to recognize the lack of dispersion in the plane for the bivariate

normal density. There is little dispersion as a result of the choice of a small standard
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deviation for time and usage. The standard deviations, o; and o, were chosen as 1/5 of
M and W, in order to avoid negative values in the generation procedure. Larger values
for the standard deviations would have provided more representation throughout the

plane.

Figure 4-5 depicts the redlization of the linear stochastic functiona relationship.
Similar to the BVE, there is a high concentration of observations near the origin and good
representation throughout the plane. Although, it appears the linear relationship tends to
have a higher proportion of early values than the bivariate exponential. Another
Interesting point is the sparcity of values near the mean values on time and usage, as seen
inthe BVE.

The last distribution, the logistic stochastic functional relationship Figure 4-6 also
resembles the BVE. Thereis a considerable increase in the number of observations near
the origin, implying a high percentage of early failures. An important distinction
between the behavior of this model and the others is the scale on the usage variable. The
values of U fall in the interval (0, 1]. Additional instances of the stochastic functional
probability densities can be found in Appendix B.
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Figure4-5LINEAR STOCHASTIC FUNCTION PROBABILITY DENSITY
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4.2 Renewa Estimation

After initial analysis of the results for renewa estimation, the collection of

parameter sets can be reduced to the cases enumerated in Table 4-1:

Bivariate Exponential Model Bivariate Normal Linear Stochastic Logistic Stochastic
(BVE) Model (BVN) Function (LISF) Function (LOSF)
(A.n,p) (Hr, M, O7, Ou, P) (*.cB) (A, c.B)
1 (0.00033, 0.00031, 0.2) (3000, 3250, 600, 650, 0.2) (0.00033, 1, 0) (0.00033, 416, 1511)
2 (0.00033, 0.00031, 0.5) (3000, 3250, 600, 650, 0.5) (0.00033, 1, 250) (0.00014, 1087, 1511)
3 (0.00033, 0.00031, 0.8) (3000, 3250, 650, 600, 0.8) (0.00033, 1, 500)
4 (0.00033, 0.00014, 0.5) (3000, 7400, 600, 1480, 0.5) (0.00033, 0.4, 250)
5 (0.00033, 0.000054, 0.5) (3000, 18500, 600, 3700, 0.5) (0.00033, 0.167, 250)
6 (0.00005, 0.00031, 0.5) (20000, 3250, 4000, 600, 0.5) (0.00005, 6.67, 250)

Table4-1 REPRESENTATIVE PARAMETER SETS

The reduction is made because qualitatively the behavior is the same across parameter
sets. Plots for the cases corresponding to variationsin p or 3, for cases 4-6, are provided
in Appendix B.1.
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4.2.1 Bivariate Exponential Model

In general, the renewal function for the bivariate exponential distribution
demonstrates reasonable behavior. The renewal function exhibits gradually increasing
behavior throughout the plane. However, there is a distinct area of greater increase,
particularly for low values of time and usage; this is understandable considering the
bivariate exponential density. By the nature of the bivariate exponential distribution,
there is a significant probability of early failures as well as a reasonably high likelihood
of late failure, which accounts for the shape of the renewal function. Figure 4-7 shows

the renewal function behavior for case 1, where A = 0.0003, n = 0.00031, and p = 0.2.
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Figure4-7 RENEWAL FUNCTION (CASE 1, BVE)

Figure 4-8 and Table 4-2 represents the results for the univariate projection
method for case 1. The results verify the behavior exhibited in the bivariate renewal
estimation procedure. Qualitatively the behavior is the same across all parameter sets and
all model instances. The results for the representative parameter sets can be found in
Appendix B.1. A distinction between Hunter’s univariate renewal counting process and

that used here is evident: in al instances, N, , # min{Nt(l),Nf)}. Hunter's univariate

process accumulates renewal s until the particular time or use value in question; however,
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the method used here counts the number of renewals across all values of time or use

while holding the second variable constant.

10 A

——Time
——Use

Number of Renewals

0 10000 20000 30000 40000 50000 60000
Time (Usage)

Figure4-8 UNIVARIATE PROJECTION (CASE1, BVE)

Parameter Values t u N N, min { N N.} Nty
(0.00033, 0.00031, 0.2) 300 300 0.103  0.091 0.091 0.016
4200 4200 1387 1.296 1.296 0.778
36000 36000 9.403 9.162 9.162 8.755

Table4-2 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE

Figure 4-9 and Figure 4-10 show the effects of varying the degree of correlation
between the variables. The variations in correlation do not appear to cause significant
differences in renewal function behavior. Upon increasing the correlation coefficient, p,

the function behavior is altered in the use component, but not time. In particular, the
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number of renewals increases more quickly in the usage variable for p = 0.5 and p = 0.8,

than for p=0.2. In all casesthe differenceisnominal.
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Figure4-9 RENEWAL FUNCTION (CASE 2, BVE)
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Figure 4-10 RENEWAL FUNCTION (CASE 3, BVE)

In the cases that vary the failure rates on different levels, the results are
comparable and the differences achieved are not surprising. For example, when the mean
for t is low and the mean for u is high it is expected that the number of renewals will
increase more quickly with respect to time. As seen in Figure 4-11 the area of steepest

increase is deflected toward the usage axis (i.e. low time, high usage). As the distance
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Figure 4-13 RENEWAL FUNCTION (CASE 6, BVE)

4.2.2 Bivariate Normal Model

In al instances of the bivariate normal distribution, at points early in the plane the
renewa function is not smooth. Early there are jumps in the number of renewals as time
and usage increase. However, as the renewal function approaches the observation point
(51, 5uy) the ridges become smooth. The smoothness of the function implies a more
gradua increase in the number of renewals as opposed to the early discrete jumps.
Figure 4-14 shows the renewal function for case 1 (u; = 3000, u, = 3250, p = 0.2); this
chart is representative of al parameter sets with comparable mean values for t and u and

low correlation.
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Figure 4-14 RENEWAL FUNCTION (CASE 1, BVN)
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Figure 4-15 and Table 4-3, represent the analysis of the univariate projection
method and the bivariate estimation procedure. The results confirm the behavior seen in
the bivariate estimation procedure. The bivariate normal case reiterates the difference
between Hunter's method and that used here. The results for the additional parameter sets
may be found in Appendix B.1.
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Figure 4-15 UNIVARIATE PROJECTION (CASE 1, BVN)
Parameter Values t u N; N, min {N;, N} Ny
(3000, 3250, 600, 650, 0.2) 300 300 0 0 0 0
4200 4200 0.992 0941 0.941 0.914
36000 36000 10 9.975 9.975 9.955

Table4-3 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE

As a point of comparison, Figure 4-16 and Figure 4-17 depict the effects of

increases in the value of p. The overall shape of the function is unchanged; however, the
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° Number of Renewals

Figure 4-20 RENEWAL FUNCTION (CASE 6, BVN)

4.2.3 Linear Sochastic Functional Relationship

The renewal function for the linear relationship exhibits many of the properties
seen with the bivariate exponential distribution. The function is smooth in all areas of the
plane, implying gradual increases throughout the plane. However, the number of
renewal's appears to increase faster early in the plane. Except for extremely early values
of time and use, the rate of increase along the axes is constant. This is expected since
failures with a high time (use) and low use (time) occur much less frequently than those
with low time and low use. Figure 4-21 depicts the general renewal behavior exhibited

by the linear stochastic function when A =0.0003, a =1, and 3 = 0.
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Figure4-21 RENEWAL FUNCTION (CASE 1, LISF)

Figure 4-22 and Table 4-4, represent the analysis of the univariate projection
method and the bivariate estimation procedure. The behavior exhibited in Figure 4-22 is
comparable to that seen in the bivariate estimate (Figure 4-21). It is important to note
that, for earlier values of time and use, the number of renewals increases more quickly in
the usage variable; however, as time and use progress the opposite istrue. The results for

the additional parameter sets may be found in Appendix B.1.
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Figure 4-22 UNIVARIATE PROJECTION (CASE 1, LISF)

Parameter Values t u Ny N, min {N; Ny} N\

(0.00033, 1, 0) 300 300 0.104 0.268 0.104 0.091
4200 4200 1387 2.092 1.387 1.178
36000 36000 9.488 9.129 9.129 8.755

Table4-4 DATA FOR UNIVARIATE PROJECTION vs. BIVARIATE ESTIMATE

Figure 4-23 and Figure 4-24 represent the changes in the renewa behavior as a
result of variations in the constant, 3. The global behavior mimics case 1, athough
differences exist in relation to the use variable. In general, the number of renewals
increases more quickly for smaller values of . This is understandable considering the
constant, 3, increases the amount of use between failures. It isinteresting, however, for 3
=0 and 3 250, renewals increase faster in usage than in time, but for 3 = 500 the number

of renewals tends to increase faster in time than in use.
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The last three cases represent the effects of varying the level of the mean value for
t and a. Variations in the mean level produce comparable behavior across all parameter
sets. The representative combinations are shown in Figure 4-25 through Figure 4-27. As
the separation between the means increases, the location of the steepest increase shifts
toward the axis corresponding to the larger mean. Also, the increase in the number of
renewals near the axes increases as the separation between the means increase. For case

4 and 5, the increase is noted along the usage axis; case 6, the time axis.
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Figure 4-27 RENEWAL FUNCTION (CASE 6, LISF)

4.2.4 Logistic Sochastic Functional Relationship

The renewal function for the logistic stochastic functiona relationship (Figure
4-28) demonstrates gradually increasing behavior as time progresses. However, as usage
increases there are periods of gradual increase followed by periods of steep increase.
For early usage values there is a sharp increase in the number of renewals as time
increases. This can be attributed to the high likelihood of extremely early failuresin both
time and use.

Number of Renewals

Figure 4-28 RENEWAL FUNCTION (CASE 1, LOSF)
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Figure 4-29 represents the renewal function for the second logistic function
parameter set. Here, the mean value for timeisincreased, while the mean valuefor a is
decreased. The resulting behavior is similar to case 1, although the number of renewals

increases more quickly as time advances.

Number of Renewals

Figure4-29 RENEWAL FUNCTION (CASE 2, LOSF)

4.25 Mode Comparison

The renewal function behavior exhibited for each of the models is reasonable
given the construction of the data generation procedure. In general, each model
illustrates gradually increasing behavior as time and use progress. However, for the
bivariate normal and the logistic stochastic functional relationship, relatively large
increases in the number of renewals occur at discrete locations. Also, the number of
renewals accumulates more quickly in the bivariate norma model than in the other
models.

With exception to observations near the axes, the behaviors of the bivariate
exponential and the linear stochastic functiona relationship are closely related. The
linear model tends to display greater immediate increases across comparable parameter
sets. The similarities between the linear relationship and the bivariate exponential are a



result of the generation procedure selected for the linear model. It is unclear that the
behavior seen here is representative of the linear relationship.

In al model instances, the results from the univariate projection method verify the
results obtained in the bivariate estimation process. Also, after reviewing the work of
Hunter [1974], it is determined that the univariate counting process used here is different
from that used by Hunter. The univariate counting process of Hunter accumulates the
number of renewals experienced until a particular observation point. The method
developed here accumulates the number of renewals experienced for a single variable,
while holding the other constant. The difference between the two methods is subtle, but

important.

4.3 Bivariate Availability Estimation

As is the case with the renewal estimation, the availability estimation results can
be limited to a group of representative cases. The cases reviewed in the renewal
estimation section are analyzed for the availability estimation. The cases are reiterated in
Table 4-5.

Bivariate Exponential Model Bivariate Normal Linear Stochastic Logistic Stochastic

(BVE) Model (BVN) Function (LISF) Function (LOSF)
(. n, p) (k. My, OT, O, P) (M cp) (*.cB)

1 (0.00033, 0.00031, 0.2) (3000, 3250, 600, 650, 0.2) (0.00033, 1, 0) (0.00033, 416, 1511)

2 (0.00033, 0.00031, 0.5) (3000, 3250, 600, 650, 0.5) (0.00033, 1, 250) (0.00014, 1087, 1511)

3 (0.00033, 0.00031, 0.8) (3000, 3250, 650, 600, 0.8) (0.00033, 1, 500)

4 (0.00033, 0.00014, 0.5) (3000, 7400, 600, 1480, 0.5) (0.00033, 0.4, 250)

5 (0.00033, 0.000054, 0.5) (3000, 18500, 600, 3700, 0.5) (0.00033, 0.167, 250)

6 (0.00005, 0.00031, 0.5) (20000, 3250, 4000, 600, 0.5) (0.00005, 6.67, 250)

Table4-5 REPRESENTATIVE PARAMETER SETS

4.3.1 Bivariate Exponential Model

The general behavior of the availability function is shown in Figure 4-30 and
Figure 4-31, methods 1 and 2, respectively. There is a sharp decrease in the availability
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near the origin; the decrease is followed by an immediate increase. The increase is
consistent throughout the plane and the function reaches steady state (method 1). The
availability function displays the anticipated behavior, with exception to the magnitude of
the availability values. While the availability is expected to be relatively high given the
moderate repair rate, the values reported seem unusually high. One last observation is
that the bulk of the availability function activity occurs along the 45° diagonal of the

plane, but the observations span a wide area along the diagonal.

Avallability

Availability

Figure4-31 AVAILABILITY FUNCTION (METHOD 2, CASE 1, BVE)
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Recall, there are two methods of estimating the availability function for each
bivariate model. At this point it is important to comment on the disparities between the
methods. Figure 4-30 and Figure 4-31 represent the availability statistics reported by
method 1 and method 2, respectively. For the bivariate exponentia model, the two
methods of estimation produce similar results near the origin, but not throughout the
plane, particularly near high time, low usage values. This behavior may be attributed to
the small number of observations that pass through those points. The inconsistency exists
in al experimental cases.

The shape of the availability function is not greatly affected by modifications in
the degree of correlation. Theincrease from p =0.2to 0.5and p =0.5t0 0.8, resultsin a
nominal decrease in the availability throughout the plane. Figure 4-32 through Figure
4-35 show the availability function for case 2 and case 3, p = 0.5 and p = 0.8,
respectively.

0.9
Availability

Figure4-32 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVE)
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Availability

0.985

0.98

Figure4-34 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVE)
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Availability

Figure4-35 AVAILABILITY FUNCTION (METHOD 2, CASE 2, BVE)

The various combinations of failure rate levels exhibit the expected outcomes.
For instance, the function shifts away from the axis with the smallest mean, since the
failures and repairs associated with the larger mean absorb more time (usage). The
estimates for availability tend to decrease, as the means grow farther apart, thisislikely a
result of the observation grid size. Recal, the grid size is based on the largest mean
value, so the smaller mean will incur a larger number of repairs between observations.

Theresults areillustrated in Figure 4-36 through Figure 4-41.

Availability

Figure4-36 AVAILABILITY FUNCTION (METHOD 1, CASE 4, BVE)
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Figure4-38 AVAILABILITY FUNCTION (METHOD 1, CASE 5, BVE)
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Figure4-40 AVAILABILITY FUNCTION (METHOD 1, CASE 6, BVE)
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Availability

Figure4-41 AVAILABILITY FUNCTION (METHOD 2, CASE 6, BVE)

Additional experiments were attempted to verify the findings from the original
simulation runs. The initial sample population of 100,000 machines was increased to
500,000 machines in order to see if an inadequate sample size caused the high
availability. The increased sample size produced a smoother curve (Figure 4-42), but the
availability estimation was unchanged. The final test was a decrease in the observation
grid interval. The resulting function values and the shape of the curve did not change
significantly, but the curve became much less jagged. This behavior is shown in Figure
4-43. In both test cases, the function characteristics did not vary from those found in the
initial comparable analysis, so no additional runs were performed.
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Figure4-42 AVAILABILITY FUNCTION (N = 500,000, CASE 2, BVE)
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0% Availability
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Figure4-43 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, BVE)
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4.3.2 Bivariate Normal Model

In the first bivariate normal case, Figure 4-44 and Figure 4-45 there are severa
observations that can be made about the availability function. First, notice there is an
initial transient period that begins to stabilize as the machine life increases in T and U.
Additionally, the availability function is concentrated along the 45° diagonal of the plane.
The minimum value for availability corresponds to an observation location approximately
equivalent to (Mr, Hu). This can be attributed to the high probability of experiencing
failure at values close to the means for time and usage. Another important observation is
the appropriately high availability this is due to the size of the repair interval. Each
failureisfollowed by amodest amount of repair time and usage (1/10 of the failure rate);
therefore, the population is expected to be in a functioning state for a high percentage of

the observation plane.

% Availability

0.95

Figure4-44 AVAILABILITY FUNCTION (METHOD 1, CASE 1, BVN)



0% Availability

Figure4-45 AVAILABILITY FUNCTION (METHOD 2, CASE 1, BVN)

Figure 4-44 and Figure 4-45 correspond to the availability statistics (case 1) reported by
method 1 and method 2, respectively. In this case and al other bivariate normal cases,
the two methods produce comparable results, however, two differences are instantly
obvious. First, method 2 generally reports higher availability. The second difference is
the sharp decrease in the availability near points late in the time-usage horizon. Both of
these distinctions can be attributed to the size of the population at the particular
observation points. In particular, the sharp decrease in availability can is associated with
the relatively small sample population that passes through late observation points. These
Inconsistencies appear in all cases of the bivariate norma model.

Figure 4-46 through Figure 4-49 depict the effects of the two additional degrees
of correlation on system availability. It is important to note that, the variation in
correlation produces the same changes in behavioral characteristics for all parameter sets.
At each level of correlation, the same general trends exist; however, as the correlation
increases, the curve becomes more concentrated along the diagonal (i.e. the function is
less disperse). The differences in the density function after a change in correlation
confirm this behavior.
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Figure4-46 AVAILABILITY FUNCTION (METHOD 1, CASE 2, BVN)

0.975
0% Availability
0.925

0.9

Figure4-47 AVAILABILITY FUNCTION (METHOD 2, CASE 2, BVN)
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Availability

Figure4-48 AVAILABILITY FUNCTION (METHOD 1, CASE 3,BVN)

0.975

s Availability

0.925

Figure4-49 AVAILABILITY FUNCTION (METHOD 2, CASE 3,BVN)

Figure 4-50 through Figure 4-55, cases 4-6, represent the remaining parameter
combinations that provide meaningful insights about the effects combining low, med, and
high values for the mean on the time and usage distributions. The examples provided
correspond to p = 0.5; charts for the remaining correlations are in Appendix B. The
observations made in cases 1-3 are appropriate for cases 4-6. The only significant

difference is the location of the availability function in the plane. For example, in case 5
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(Figure 4-52 and Figure 4-53) (ur = 3,000, py = 18,500), the diagram follows the same
pattern as the previous cases, but the curve is shifted toward lower time values paired
with higher usage values. A comparable shift occursin Case 4 (ur = 3,000, py = 7,400),
only the degree of the shift is decreased. An analogous shift occurs in case 6, (Figure
4-54 and Figure 4-55) (ur = 20,000, py = 3,250); however, the function is shifted toward
higher time values paired with lower usage values. The result is intuitive considering the

differences between the magnitude of the mean values of time and usage.

Availability

0%
Availability

Figure4-51 AVAILABILITY FUNCTION (METHOD 2, CASE 4, BVN)

68



Availability

Figure4-52 AVAILABILITY FUNCTION (METHOD 1, CASE 5, BVN)

0.9

Availability

0.9

Figure4-53 AVAILABILITY FUNCTION (METHOD 2, CASE 5, BVN)
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Figure4-54 AVAILABILITY FUNCTION (METHOD 1, CASE 6, BVN)

oss Availability

Figure4-55 AVAILABILITY FUNCTION (METHOD 2, CASE 6, BVN)

Further analysis of the representative plots led to additional simulations runs in
order to confirm the previous results. In particular, the availability values reported were
higher than expected so two modifications were implemented. First, the sample
population was increased from 100,000 to 500,000. The resulting curve (Figure 4-56)
was smoother and more full, but the availability estimates were unchanged. The second
modification entailed decreasing the observation grid in order to better estimate the
availability function. The limitation in doing this was a decrease in the amount of time

and usage observed. As a consequence only the early transient behavior, consistent with
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al other cases, is apparent. The smaller observation interval resulted in an overall
increase in the availability approximations. The increase was not anticipated; however, is
explained because the larger observation interval captures more instances of failure and

repair. Figure 4-57 represents the availability function for case 2 with a decreased
observation interval.

0.9
Availability

Availability

Figure4-57 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, BVN)
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4.3.3 Linear Sochastic Functional Relationship

The results for the availability function are not surprising given the underlying
assumption that t and a are generated from the exponential distribution. The function
demonstrates an early decrease in availability caused by predominately low failure times
and small repair durations. As time and usage progress the availability continuously
increases and reaches a steady state. The function is concentrated slightly off the 45°
diagonal (toward lower usage values) and is not dispersed throughout the plane. The
general characteristics of the availability function across parameter sets with similar
means are presented in Figure 4-58 and Figure 4-59.

Availability

Figure4-58 AVAILABILITY FUNCTION (METHOD 1, CASE 1, LISF)

72



Availability

Figure4-50 AVAILABILITY FUNCTION (METHOD 2, CASE 1, LISF)

As the constant, 3, increases the genera shape of the function does not change.
However, the height of the valleys varies between parameter sets signifying a decrease in
availability. Anincreasein [3, from O to 500 produces the most significant effect on the
availability function—a decrease in availability. Figure 4-60 through Figure 4-63

demonstrate the relationship for similar means and varied levgls of

Availability

Figure4-60 AVAILABILITY FUNCTION (METHOD 1, CASE 2, LISF)
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Figure4-62 AVAILABILITY FUNCTION (METHOD 1, CASE 3, LISF)
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Availability

Figure4-63 AVAILABILITY FUNCTION (METHOD 2, CASE 3, LISF)

The parameter sets including variations in the level of the mean values display
behavior analogous to the previous cases; however, the function location is shifted in the
plane. Figure 4-64 through Figure 4-67 represent cases with a (low mean time, medium
mean usage) and a (low mean time, high mean usage), so the curves are closer to the
usage axis indicating more activity for low times paired with higher usages. The opposite
occurs in Case 6, Figure 4-68 through Figure 4-69, where the mean on time is much

higher than the mean on use.
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Figure4-65 AVAILABILITY FUNCTION (METHOD 2, CASE 4, LISF)
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Figure4-67 AVAILABILITY FUNCTION (METHOD 2, CASE 5, LISF)
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Figure4-69 AVAILABILITY FUNCTION (METHOD 2, CASE 6, LISF)

The final two cases represent the additional tests run to verify the previous results.
Few differences were realized as aresult of increasing the sample size (Figure 4-70). The
function is less jagged throughout the plane; otherwise, the behavior is analogous to case
2, N = 100,000 (Figure 4-60). The decreased observation grid provided a smoother

curve, with dightly lower availability values. Figure 4-71 represents case 2 with a

decreased observation interval.
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Figure4-70 AVAILABILITY FUNCTION (N =500,000 CASE 2, LISF)

Availability

Figure4-71 AVAILABILITY FUNCTION (DECREASED GRID, CASE 2, LISF)

4.3.4 Logistic Sochastic Functional Relationship

For both cases, the availability function for the logistic model demonstrates
transient behavior throughout the plane (Figure 4-72 through Figure 4-75). In case 1,
methods 1 and 2 (Figure 4-72 and Figure 4-73), show an immediate decrease in
availability followed by a sharp increase. As time and use progress, the magnitude of

each decrease and increase lessens, but the pattern is repeated throughout the plane. Case
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2 (Figure 4-74 and Figure 4-75) differs from case 1 in that only two replications of the
pattern exist, after which the system appears to reach steady state. The function is
concentrated in the area of low time and use values. Thisis consistent with the behavior

of the function.

Availability

Availability

Figure4-73 AVAILABILITY FUNCTION (METHOD 2, CASE 1, LOSF)
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Figure4-74 AVAILABILITY FUNCTION (METHOD 1, CASE 2, LOSF)

0s  Availability

Figure4-75 AVAILABILITY FUNCTION (METHOD 2, CASE 2, LOSF)

4.3.5 Mode Comparison

In al model instances, the availability estimate appears to be overestimated, but
the shape of the function represents the behavior of the model appropriately. For time
and use values with a high probability of occurring, there are significant reductionsin the
availability function. All models exhibit this behavior; however, it is clear to see that the
dispersion across observations effects the magnitude of the decrease. For instance,
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observations for the bivariate exponential and linear stochastic model are very similar,
except a higher proportion of early failures occur with the linear stochastic model. This
causes amore significant initial decrease in the availability function.

In all respects, the bivariate exponential and linear stochastic models are well
correlated; each experiences an early decrease in availability, but eventually proceeds to
steady state. The bivariate normal, however, exhibits oscillating behavior until very late
time and usage values where it reaches a steady state. The logistic model exhibits a
higher degree of transient behavior than any of the other models. The model does not
appear to reach steady state. It is important to note that in order to verify the bivariate
availability estimations, the univariate projection method was implemented. The results
for all cases of the bivariate estimation procedures are consistent with the univariate
projection, but are not included.

4.4 Summary

The research presented here is a cursory attempt at generating and analyzing
bivariate failure models. A reasonably acceptable method of failure/repair generation
was implemented for the correlated models and stochastic models; however, aternative
methods of generation exist that may provide useful results. Using the failure/repair data,
renewal function and availability function estimates were obtai ned.

The results provide a general idea of the behavior associated with the identified
failure models. It is important to note that alternative methodologies exist, but the
processes implemented here offer reasonable estimations of the two measures of system
effectiveness studied — the bivariate renewal function and the bivariate availability
function. Also, the behavior shown in all cases is consistent with the behavior
experienced when the values are calculated by holding one variable constant (i.e. the
univariate projection). Modifications of the methodologies presented here may provide
additional insight on bivariate failure processes. Further study of bivariate failure models
is necessary in order to more fully understand the bivariate renewal and availability

functions.
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Chapter 5 — Future Directions

Severa opportunities exist for further study of bivariate failure processes. In
particular, it is worth pursuing alternative methods of generating the stochastic functional
relationships. The assumption that t is exponential limited the usefulness of the results
for the functional models. It will be beneficial to explore methods of generation using the
joint distribution function.

Another useful area of study is the method of estimating the bivariate availability
function. The two methods utilized here, provide reasonable estimates for availability;
however, alternative methods should be developed to further verify the results. There are
still unanswered questions concerning the appropriate size of the sample population. An
alternate method might consider accumulation of the area corresponding to the amount of
time and use between failures and the duration (time and use) of repair activities.

The work presented here considers only instances of corrective maintenance. It
will be beneficial to include preventive maintenance in future studies of bivariate
availability.  This information will aid in maintenance planning of systems that

experience failure according to a bivariate process.

83



References

Baggs, G.E. and H.N. Nagargja (1996), Reliability Properties of Order Statistics From
Bivariate Exponential Distributions, Communications in Satistics—Stochastic
Models 12, pp. 611-631.

Banks, J., J.S. Carson I, and B.L. Nelson (1999), Discrete-Event System Simulation
Prentice Hall, Inc.

Barlow, R.E. and F. Proschan (1965), Mathematical Theory of Reliabilityohn Wiley
and Sons, Inc.

Barlow, R.E. and F. Proschan (1975), Statistical Theory of Reliability and Life Testing:
Probability Models, Holt, Rinehart, and Winston, Inc.

Barr, D.R. and N.L. Slezak (1972), A Comparison of Multivariate Normal Generators,
Communications of the AGNI5, pp. 1048-1049.

Birnbaum, Z.W. and S.C. Saunders (1969), A New Family of Life Distributions, Journal
of Applied Probability6, pp. 319-327.

Block, H.W. and A.P. Basu (1974), A Continuous Bivariate Exponential Extension,
Journal of the American Statistical Associatiéf, pp. 1031-1037.

Devroye, L. (1986), Non-Uniform Random Variate Generatj@pringer-Verlag.

Downton, F. (1970), Bivariate Exponential Distributionsin Reliability Theory, Journal of
the Royal Statistics Society, Serie8B pp. 408-417.

Eliashberg, J., N.D. Singpurwalla, and S.P. Wilson (1997), Calculating the Reserve for a
Time and Usage Indexed Warranty, Management ScidBC8, pp. 966-975.

Gertshakh, 1.B. (1989), Statistical Reliability TheoryMarcel Dekker.
Goldman, A.S. and T.B. Slattery, (1964), Maintainability, John Wiley and Sons, Inc.

Hunter, J.J. (19744), Renewal Theory in Two Dimensions: Asymptotic Results, Advances
in Applied Probability 6, pp. 546-562.

Hunter, J.J. (1974b), Renewa Theory in Two Dimensions: Basic Results, Advances in
Applied Probability 6, pp. 376-391.

Johnson, M. E. (1987), Statistical SimulationJohn Wiley and Sons, Inc.



Law, A.M. and W.D. Kelton (1991), Smulation and Modeling Analysis, Mc-Graw Hill,
Inc.

Lemoine, A.J. and M.L. Wenocur. (1985), On Failure Modeling, Naval Research
Logistics Quarterly, 32, pp. 497-508.

Lie, C.H., C.L. Hwang, and F.A. Tillman (1977), Availability of Maintained Systems:
A-State-of-the-Art-Survey, AllE Transactions, 9(3), pp. 247-259.

Marshall, A.W. and I. Olkin (1976a), A Multivariate Exponential Distribution, Journal of
the American Statistical Association, 62, pp. 30-44.

Marshall, A.W. and I. Olkin (1976b), A Generalized Bivariate Exponential Distribution,
Journal of Applied Probability, 4, pp. 291-302

Mercer, A. (1961), Some Simple Wear-dependent Renewal Processes, Journal of the
Royal Satistical Society, Series B, 23, pp. 368-376.

Nachlas, J.A. (1998), Introduction to Reliability Theory, unpublished manuscript,
Virginia Tech

Scheuer, E.M. and D.S. Stoller (1962), On the Generation of Normal Random Vectors,
Technometrics, 4, pp. 278-281.

Singurwalla, N.D. and S. Wilson (1993), The Warranty Problem: Its Statistical and Game
Theoretic Aspects, SAM Reviews, 35, pp. 17-42.

Singurwalla, N.D. and S. Wilson (1998), Failure Models Indexed by Two Scales,
Advances in Applied Probability, 30, pp.1058-1072.

Yang, S. (1999), A Bivariate Renewal Process and Its Applications in Maintenance
Palicies, Ph.D. Dissertation, Department of Industrial and Systems Engineering,
Virginia Tech.

Yang, S. (2000), Bivariate Failure Modeling, Proceedings. Annual Reliability and
Maintainability Symposium, pp. 281-287

85



Appendix A — Simulation Code

In this Appendix, the simulation code used in Chapter 3 is introduced. The
simulation code is used to generate failure/repair data and is used to collect statistics
regarding reliability and availability. The first four sections of this Appendix represent
the simulation code used to generate failure and repair data for the four bivariate failure
models. The last six sections include the code used to record the statistics necessary to
estimate reliability and availability. The estimation procedures included here reflect the
bivariate normal model. The same code is used for the other three models by substituting

the appropriate aternate generation method (Appendix A.1-A.3).

A.1 Linear Dependence Data Generation Procedure

%his is the subroutine that generates the |linear dependence dat a.

%9860/ARI ABLE DEFI NI TI ONY888%6

%reamrnean on the failure distribution (tinme)%

%reanal pha=mean on the distribution of alpha (failure)%
%et a=constant for functional relationship%
%cmmean=nmean on the repair distribution (tine)%
%enmeanal pha=nean on the distribution of alpha (repair)%
%t (j)=tinme elapsed since the last failure (tine)%
%u(j)=usage el apsed since the last failure (use)%
Y%enxt(j)=tinme to conplete repair (j)%

%mxu(j)=usage to conplete repair (j)%

% ai l ureti mes=vector of failure tinmes and usages%
%ntimes=vector of repair tinmes and usages%

%par aneters=natri x of failure nodel paraneters%
Y%nparaneters=nmatri x of repair nodel paraneters%

paranet ers=[ 3000 1 0; 3000 1 250; 3000 1 500; 3000 2.5 0O; 3000 2.5 250;
3000 2.5 500; 8000 .4 0O; 8000 .4 250; 8000 .4 500; 8000 1 0; 8000 1
250; 8000 1 500; 3000 6 0; 3000 6 250, 3000 6 500; 8000 2 0O; 8000 2
250; 8000 2 500; 20000 .15 0O; 20000 .15 250; 20000 .15 500; 20000 .35
0; 20000 .35 250; 20000 .35 500; 20000 1 0O; 20000 1 250; 20000 1 500];
cnpar anet er s=paraneters. *0.1

% his |loop sets the programto read the 27 paranmeters sets%
for h=1:1:27

nmean=par anet ers(h, 1);

nmeanal pha=par amet er s(h, 2);
bet a=par anet ers(h, 3);
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cmean=cnpar anet ers(h, 1);
cmreanal pha=par anet ers(h, 2);
cnbet a=cnpar anet ers(h, 3);

% his | oop generates 10 failure/repair vectors (not cunulative)%
for j=1:1:10

z1=r and;
z2=r and;

xt (j)=(-rmean)*l og(1-z1);
at=xt (j);

al pha=(- meanal pha) *I og( 1- z2) ;
xu(j)=(al pha*at) +bet a;

first=xt(j);
second=xu(j);

rowector =[first,second];
bi gvector(j,:)=rowector;
failureti mes=bi gvector;

cnzl=rand;

cne2=r and;

cnxt (j)=(-cmean) *| og(1-cnel);
cnt =cnxt (j);

cmal pha=(- crmeanal pha) *1 og(1-cne2);
cmxu(j ) =(cmal pha*cnt) +cnbet a;

cnfirst=cnxt(j);
cnsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];
cnbi gvector(j,:)=cnrowector;
cnt i nes=cnbi gvect or;
end
end

A.2 Logistic Dependence Data Generation Procedure

% his is the subroutine that generates the |inear dependence data.

%9880/ARI ABLE DEFI NI TI ONY88%8%

%reamnean on the failure distribution (tine)%

%reanal pha=nean on the distribution of al pha (failure)%
%et a=constant for functional relationship%

%cnmean=nean on the repair distribution (tinme)%
%enmeanal pha=nean on the distribution of alpha (repair)%
Wt (j)=time el apsed since the last failure (tine)%
9%u(j)=usage el apsed since the |last failure (use)%

%kt (j)=time to conplete repair (j)%
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%nmxu(j)=usage to conplete repair (j)%

% ai l ureti mes=vector of failure tinmes and usages%
%ntimes=vector of repair times and usages%
%paranmeters=matri x of failure nodel paraneters%
%cnparaneters=matri x of repair nodel paraneters%

par anet er s=[ 3000 0.0024 1511; 8000 0.0092 1511]
cnpar amet er s=par anet ers. *0. 1

% his |oop sets the programto read the 27 paranmeters sets%
for h=1:1:27

nean=par anet ers(h, 1) ;
nmeanal pha=par amet ers(h, 2);
bet a=paraneters(h, 3);

cmean=cnpar anet ers(h, 1) ;
cmreanal pha=par anet ers(h, 2);
cnbet a=cnpar anet er s(h, 3);

% his |oop generates 10 failure/repair vectors (not cunulative)%
for j=1:1:10

z1=r and;
z2=r and;

xt (j)=(-nmean)*l og(1-z1);
at=xt (j);

al pha=(- nmeanal pha) *I og( 1- z2) ;
t op=exp(al pha*at)-1;

bot t omrexp( al pha*at) +bet a;
xu(j)=top/bottom

first=xt(j);
second=xu(]j);

rowector =[first,second];
bi gvector (j,:)=rowector;
failureti mes=bi gvector;

cnel=rand;

cnez2=r and;

cnxt (j ) =(-cnmean) *| og(1-cnel);
cnt =cnxt (j);

cmal pha=(- crmeanal pha) *| og(1-cne2);
cmxu(j ) =(cmal pha*cnt) +cnbet a;

cnfirst=cnxt(j);
cnsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];
crbi gvector (j, :)=cnrowector;
cnt i nes=cnbi gvect or;
end
end
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A.3 Bivariate Exponential Data Generation Procedure

%his is the subroutine that generates the bivariate exponential data.

9%0880/ARI ABLE DEFI NI TI ONY888%0

%rut i me=mean on the failure distribution (time)%
%muuse=nean on the failure distribution (use)%

% hovec=correl ati on coefficient%

%enmuti me=nean on the repair distribution (tinme)%
%enmuuse=nmean on the repair distribution (use)%
Wt (j)=time el apsed since the last failure (tine)%
%u(j)=usage el apsed since the |last failure (use)%
%kt (j)=time to conplete repair (j)%
%mxu(j)=usage to conplete repair (j)%

% ai lureti nes=vector of failure tines and usages%
%ntimes=vector of repair times and usages%

%oar aneters=natri x of failure nodel paraneters%
Y%enparaneters=matri x of repair nodel paraneters%

par anet er s=[ 3000 3250 0.2; 3000 3250 0.5; 3000 3250 0.8; 3000 7400 O.2;
3000 7400 0.5; 3000 7400 0.8; 8000 3250 0.2; 8000 3250 0.5; 8000 3250
0.8; 8000 7400 0.2; 8000 7400 0.5; 8000 7400 0.8; 3000 18500 0.2; 3000
18500 0.5; 3000 18500 0.8; 8000 18500 0.2; 8000 18500 0.5; 8000 18500
0.8; 20000 3250 0.2; 20000 3250 0.5; 20000 3250 0.8; 20000 7400 0. 2;
20000 7400 0.5; 20000 7400 0.8; 20000 18500 0.2; 20000 18500 0.5; 20000
18500 0. 8] ;

cnpar anet er s=paraneters. *0.1

% his |oop sets the programto read the 27 paraneters sets%
for h=1:1:27

nut i ne=par aneters(h, 1);
nuuse=par anet ers(h, 2);
rhovec=par anet ers(h, 3);

cmut i mne=cnpar aneters(h, 1);
cmmuuse=cnpar anet ers(h, 2);

% his | oop generates 10 failure/repair vectors (not cunul ative)%
for j=1:1:10

z1=r and;

z2=r and;

xt(j)=(-rmutinme)*log(l-z1);

t=xt(j);
cl=-1-rhovec+(2*rhovec*exp((-1/nutinme)*t));
c2=r hovec- (2*rhovec*exp((-1/mutime)*t));
a2=(-cl-sqgrt((cl.”2)-(4*c2*z2)))/(2*c2);
xu(j)=(-rmuuse)*l og(a2);

first=xt(j);
second=xu(]j);

rowector =[first,second];
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bi gvector(j,:)=rowector;
failureti mes=bi gvector;

cnzl=rand;

cne2=r and;

cnxt (j)=(-cmutine)*log(1l-cnel);

cnt =cnxt (j);
cntl=-1-rhovec+(2*rhovec*exp((-1/cmutine)*cnt));
cnt2=rhovec- (2*r hovec*exp((-1/cmrutinme)*cnt));
cma2=(-cntl-sqgrt((cncl. *2)-(4*cnc2*cne2)))/(2*cnc2);
cmxu(j ) =(-cmuuse)*|l og(cma2);

cnfirst=cmxt(j);
cnsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];
cnbi gvector(j,:)=cnrowector;
cnti mes=cnbi gvect or;
end
end

A.4 Bivariate Normal Data Generation Procedure

%his is the subroutine that generates the bivariate nornal data.

9%0880/ARI ABLE DEFI NI TI ONY888%0

%rut i me=mean on the failure distribution (tinme)%
%muuse=nean on the failure distribution (use)%

%i gti me=standard deviation on failure (tine)%

%si guse=standard deviation on failure (use)%

% hovec=correl ation coefficient%

%nmuti me=nean on the repair distribution (tine)%
%enmuuse=nean on the repair distribution (use)%

% nsi gti ne=standard deviation on repair (tinme)%

% nsi guse=standard deviation on repair (use)%

Wt (j)=time el apsed since the last failure (tine)%
%%u(j)=usage el apsed since the |last failure (use)%
%nxt (j)=time to conplete repair (j)%
%nmxu(j)=usage to conplete repair (j)%

% ai l ureti mes=vector of failure tinmes and usages%
%ntimes=vector of repair times and usages%
%aranmeters=matri x of failure nodel paraneters%
%cnpar aneters=matri x of repair nodel paraneters%

par anet er s=[ 3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 O.5;
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0. 2;
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 O.8];

cnpar anet er s=paraneters. *0.1
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% his |loop sets the programto read the 27 paranmeters sets%
for h=1:1:27

nmut i me=par aneters(h, 1);
nmuuse=par anet ers(h, 2);
si gti me=par aneters(h, 3);
si guse=paraneters(h, 4);
rhovec=par aneters(h, 5);

cmut i mne=cnpar aneters(h, 1);
cmmuuse=cnpar anet ers(h, 2);
cnsi gti me=cnpar anet ers(h, 3);
cnsi guse=cnpar anet ers(h, 4);

squar er ho=sqrt (1-rhovec."2);
% his | oop generates 10 failure/repair vectors (not cunul ative)%
for j=1:1:10

z1=r andn;
z2=r andn;

cnel=r andn;
cne2=r andn;

xt(j)=nutinme+(sigtime*zl);

squar er ho=sqrt (1-rhovec."2);

xu(j ) =nuuse+(si guse*(rhovec*zl+squarerho*z2));
first=xt(j);

second=xu(]j);

rowector =[first,second];
bi gvector(j,:)=rowector;
failureti mes=bi gvector;

cnxt (j)=crmmuti me+(cnsigti me*xcnel);

cmxu(j ) =cmruuse+(cnsi guse* (rhovec*cnel+squar erho*cne2));
cnfirst=cnxt(j);

cnsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];
cnbi gvector(j,:)=cnrowector;
cnt i nes=cnbi gvect or;
end
end
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A.5 Bivariate Renewal Estimation

% his programestimates the bivariate renewal function (nmethod 1). The
programis shown for the bivariate normal distribution; for alternate
di stribution, substitute alternate generation procedure. %

9%0880/ARI ABLE DEFI NI TI ONS%888/%6

%par anet ers=fai |l ure nodel paraneters%

% enewnat =renewal nmatri x%

% ocationt=matrix |l ocation of failure (tine)%

% ocationu=matrix |ocation of failure (use)%

%heret (g)=vector of failure (tinme) matrix |locations%
%her eu(q)=vector of failure (use) matrix | ocati ons%
%matfailloct=matrix location of failure(m (tine)%
%matfaillocu=matrix |ocation of failure(m(use)%

par armet er s=[ 3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600
1480 0. 8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 O.5;
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0. 2;
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 0. 8];

% he observation grid is input here and varies based on the nean on the
failure distribution (tinme)%
r enewnat =dl ntead(’ renewmat.csv’',’,’);

% nitialize placeholder for failure |ocation vector (tine and use)%
wher et (11) =203;
wher eu(11) =203;
for h=1:1:27
mut i me=par anet ers(h, 1);
nmuuse=par anmet ers(h, 2);
si gti me=par aneters(h, 3);
si guse=par aneters(h, 4);
rhovec=par aneters(h,5);
cmut i ne=cnpar aneters(h, 1);
cmmuuse=cnpar anmet ers(h, 2);
cnsi gt i me=cnpar aneters(h, 3);
cnsi guse=cnpar aneters(h, 4);
squar er ho=sqrt (1-rhovec."2);
% his | oop generates data for 10000 nmachi nes%
for p=1:1:1000

% his part of the program generates 10 random failure vectors for
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each nmachi ne
for j=1:1:10

z1l=randn;
z2=r andn;

cnel=r andn
cne2=r andn

xt (j)=nutinme+(sigtinme*zl);

squar er ho=sqrt (1-rhovec."2);
xu(j)=nuuse+(siguse*(rhovec*zl+squarerho*z2));
first=xt(j);

second=xu(]j);

rowector =[first, second];
bi gvector(j,:)=rowector;

failureti mes=bi gvector;

cnxt (j)=cmrutime+(cnsi gti ne*cnel);

cnxu(j ) =cmruuse+(cnsi guse* (rhovec*cnel+squarerho*cne?));
cnfirst=cmxt(j);

cnsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];
cnbi gvector(j,:)=cnrowector;
cnt i nes=cnbi gvect or;

N=l engt h(failuretimes(:,1));

N=l engt h(failuretimes(:,1));
sunvector(1,:)=failuretimes(1,:);
dunmmy=failuretines(1,:);

% his | oop generates the cunmulative failure vector%

for k=2:1: N
sunvector (k, :)=dumry + failuretines (k,:)
dunmmy=sunvector (k, :);
end
end

| ocati ont =2;
| ocati onu=2;

for g=1:1:10

% his matri x steps through each observation tine to find the
matrix | ocation of failure(q), beginning with the matrix
| ocation of failure(qg-1)%

for t=locationt:1:201
i f sunvector(q, 1) <=renewmat (1,1t)
| ocati ont =t;
wher et (g) =l ocationt;
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br eak
end
end

% his matri x steps through each observation use to find the
matrix | ocation of failure(q), beginning with the matrix

| ocation of failure(qg-1)%

for s=locationu:1:201
i f sunvector(q,2)<=renewmat (s, 1)
| ocati onu=s;
wher eu( q) =l ocat i onu;
br eak
end
end
end

for nFl:1:10
mat f ai | | oct =wheret (n);
mat f ai | | ocu=whereu(m ;

% his | oop updates the renewal matrix to reflect the
cumul ative nunmber of renewal s. %

for t=matfailloct:1:201

for s=matfaill ocu:1:201
renewnat (s,t)=renewmat (s, t) +1;

end

end

end
end
end

A.6 Univariate Projection Method

9%0880/ARI ABLE DEFI NI TI ONS%888/%6

%par anet ers=fai |l ure nodel paraneters%

% enewal vect ort =vector of cunulative renewals (tine)%
% enewal vect oru=vector of cunul ative renewal s (use)%
% ocationt=matrix |location of failure (tinme)%

% ocationu=matrix |ocation of failure (use)%

%heret (gq)=vector of failure (tinme) matrix |locations%
%hereu(q)=vector of failure (use) matrix | ocati ons%
%ratfailloct=matrix |location of failure(m (tine)%
%ratfaillocu=matrix |ocation of failure(mn (use)%

par anet er s=[ 3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 O.5;
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400
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4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0. 2;
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 O.8];

% he observation grid is input here and varies based on the nean on the
failure distribution (tinme)%
r enewnat =dl nt ead(’ renewmat.csv’',’,’);

% nitialize placeholder for failure |ocation vector (tine and use)%
wher et (11) =203;
wher eu(11) =203;

for h=1:1:27

renewal vectort=zeros([201,1]);
renewal vect oru=zeros([ 201, 1]);
nmut i me=par aneters(h, 1);
nmuuse=par anet ers(h, 2);

si gti me=par aneters(h, 3);

si guse=paraneters(h, 4);
rhovec=paraneters(h,5);

cmut i mne=cnpar aneters(h, 1);
cmuuse=cnpar anet ers(h, 2);

cnsi gti me=cnpar anmet ers(h, 3);
crsi guse=cnpar aneters(h, 4);

squar er ho=sqrt (1-rhovec. "2);
% his | oop generates data for 10000 nmachi nes%
for p=1:1:1000

% his part of the programgenerates 10 random failure vectors for
each machi ne

for j=1:1:10

z1l=randn;
z2=r andn;

cnel=r andn;
cne2=r andn;

Xt (j)=nutinme+(sigtinme*zl);

squar er ho=sqrt (1-r hovec. "2);

xu(j)=nuuse+(si guse*(rhovec*zl+squarerho*z2));
first=xt(j);

second=xu(]j);

rowector =[first,second];
bi gvector(j,:)=rowector;

failureti mes=bi gvector;
cnxt (j)=crmmuti me+(cnsigti me*xcnel);
cnxu(j ) =cmruuse+(cnsi guse* (rhovec*cnezl+squar erho*cne2));

cnfirst=cnxt(j);
cnsecond=cnxu(j);
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end

| oc
| oc

for

end

for

cnrowector =[cnfirst, cnsecond];
cnbi gvector(j,:)=cnrowector;
cnt i nes=cnbi gvect or;

N=l engt h(failuretimes(:,1));

N=l ength(failuretimes(:,1));
sunvector(1,:)=failuretimes(1,:);
dunmmy=failuretines(1,:);

% his | oop generates the cunmulative failure vector%

for k=2:1: N
sunvector (k, :)=dumry + failuretines (k,:)
dunmmy=sunvector (k, :);

end

ati ont =2;
ati onu=2;

g=1:1:10

% his matri x steps through each observation tine to find the
matrix | ocation of failure(q), beginning with the matrix
| ocation of failure(qg-1)%

for t=locationt:1:201
i f sunvector(q, 1) <=renewmat (1,1t)
| ocationt =t;
wher et (g) =l ocationt;
br eak
end
end

% his matri x steps through each observation use to find the
matrix |l ocation of failure(q), beginning with the matrix
| ocation of failure(g-1)%

for s=locationu:1: 201
i f sunvector(q,2)<=renewmt (s, 1)
| ocati onu=s;
wher eu( q) =l ocati onu;
br eak
end
end

m=1:1: 10
mat f ai | | oct =wheret (m;
mat f ai | | ocu=whereu(m ;

% his | oop updates the renewal matrix to reflect the
cunul ative nunber of renewal s. %
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for t=matfailloct:1:201
renewal vectort (t, 1)=renewal vectort (t, 1) +1;
end

for s=matfaillocu:l:201
renewal vect oru(s, 1) =renewal vect or u(s, 1) +1;
end

end
end
end
end

A.7 Bivariate Availability Estimation (Method 1)

%his programestimtes the bivariate availability function (method 1).
The programis shown for the bivariate normal distribution; for
alternate distribution, substitute alternate generation procedure. %

9%0880/ARI ABLE DEFI NI TI ONS%888%6

%par anmet ers=fai |l ure nodel paraneters%

%cnpar anet ers=repai r nodel paraneters%

%wor kmat =avai lability matri x%

% ailloct=matrix l|ocation of failure (tinme)%

% aillocu=matrix | ocation of failure (use)%

% epl oct=matrix |location of repair (tine)%

% epl ocu=matrix |l ocation of repair(use)%

% ai | wheret (q)=vector of failure (time) matrix | ocati ons%

% ai | whereu(q)=vector of failure (use) matrix |ocations%

% epwher et (q) =vector of repair conpletion (tinme) matrix |ocations%
% epwheres(q) =vector of repair conpletion (use) matrix |ocations%
%rat | ocfailt=matrix |ocation of failure(m (tine)%

%rmat | ocfailu=matrix location of failure(m (use)%

%rat | ocrept=natrix |location of repair conpletion(n) (tinme)%

%rat | ocrepu=matrix [ocation of repair conpletions(m (use)%

% | ast=last tine update%

%ul ast =l ast use updat e%

par anet er s=[ 3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600
1480 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000
7400 1600 1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 O.5;
3000 18500 600 3700 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700
0.5; 8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000
650 0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400
4000 1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0. 2;
20000 18500 4000 3700 0.5; 20000 18500 4000 3700 O0.8];

cnpar anet er s=paraneters. *0.1

% he observation grid is input here and varies based on the nean on the
failure distribution (tinme)%

wor kmat =dl nr ead(’ workmat.csv’',’,’);
wor knmat d=wor knat ;
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for h=1:1:27

nmut i me=par aneters(h, 1);
nmuuse=par anet ers(h, 2);

si gti me=par aneters(h, 3);
si guse=paraneters(h, 4);
rhovec=par anet ers(h, 5);

cmrut i me=cnpar aneters(h, 1);
cmuuse=cnpar anet ers(h, 2);

cnsi gti me=cnpar aneters(h, 3);
cnsi guse=cnpar anet ers(h, 4);

squar er ho=sqrt (1-r hovec. "2);

% his | oop generates data for 100,000 nmachi nes%
for p=1:1:100000

% his part of the program generates 10 random failure vectors for
each nachi ne

for j=1:1:10

z1=r andn;
z2=r andn;

cnel=r andn;
cne2=r andn

xt (j)=nutinme+(sigtinme*zl);

squar er ho=sqrt (1-rhovec."2);

xu(j ) =nuuse+(si guse*(rhovec*zl+squarerho*z2));
first=xt(j);

second=xu(]j);

rowector =[first,second];
bi gvector(j,:)=rowector;

failuretines=bi gvector;

cnxt (j)=cmrutime+(cnsigti ne*cnel);

cnxu(j ) =cmruuse+(cnsi guse* (rhovec*cnel+squar erho*cne2));
cnfirst=cmxt(j);

cnmsecond=cnxu(j);

cnrowector =[cnfirst, cnsecond];

cnbi gvector(j,:)=cnrowector;

cnt i nes=cnbi gvect or;

N=l engt h(failuretimes(:,1));
failurevector(1,:)=failuretinmes(l,:);
crmvector (1,:)=failuretines(l,:)+cntimes(l,:);
dummycmecnvector (1, :);

% his | oop generates the cunmulative failure/repair vectors%
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for g=2:1:N
failurevector(g,:)=failuretinmes(g,:)+dumycm
cnvector (g, :)=failurevector(g,:)+cntinmes(g,:);
dummycmecnvector (g, :);
end
end

faill oct=2;
repl oct =2;
faill ocu=2;
repl ocu=2;

for g=1:1:10

% his | oop steps through each observation tine to find the
matrix |ocation of failure(q), beginning with the matrix
| ocation of repair conpletion(g-1).%
for t=reploct:1:201
if failurevector(qg,1l)<=workmat(1,t)

failloct=t;
failwheret(q)=failloct;
br eak

end

end

% his | oop steps through each observation tine to find the
matrix | ocation of repair conpletion(q), beginning with the
matrix |l ocation of failure(qg-1).%
for ts=failloct:1:201
if cmvector(q,1)<=workmat(1,ts)
repl oct =ts;
repwher et (q) =repl oct;
br eak
end
end

% his | oop steps through each observation usage to find the
matrix |l ocation of failure(q), beginning with the matrix
| ocation of repair completion(g-1).%
for s=replocu: 1: 201
if failurevector(q, 2)<=workmat (s, 1)
faill ocu=s;
fail whereu(q)=faillocu
br eak
end
end

% his | oop steps through each observation use to find the
matrix | ocation of failure(q), beginning with the matrix
| ocation of failure(qg-1).%
for st=faillocu:1:201
i f cmvector(q, 2)<=workmat (st, 1)
repl ocu=st;
r epwher eu( q) =r epl ocu
br eak
end
end
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end
for nFl:1:10

mat | ocfailt=fail wheret(n);
mat | ocfai | u=fail whereu(nj;
mat | ocr ept =r epwheret (nj;
mat | ocr epu=r epwher eu(nj;

% his | oop updates the availability matrix based on the
failure/repair matrix location vectors found in the previous
step. %

for t=matlocfailt:1:matl ocrept

for s=matlocfailu:1l: matl ocrepu
wor kmat (s, t)=workmat (s,t)-1;
tl ast=mat | ocrept;
ul ast =mat | ocr epu;
end
end
wor kmat (ul ast, tlast) =wor kmat (ul ast, tlast) +1;
end
end
end
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A.8 Bivariate Availability Estimation (Method 2)

%his programestimates the bivariate availability function (nethod 2).
The programis shown for the bivariate normal distribution; for
alternate distribution, substitute alternate generation procedure. %

9%0880/ARI ABLE DEFI NI TI ONS%888/%6

%par anet ers=fai |l ure nodel paraneters%

%runmax=observation increment %

% enewal s=cumnul ati ve nunber of renewal s%

Yupmat =availabi ity matrix%

% el evant mat =rel evant matri x%

%ol =matrix location of failure(q)/repair conpletion(q) (tine)%
% ow=matrix location of failure(q)/repair conpletion(q) (usage)%
% astrow=the |last row of the matrix that has been updated%

% astcol =the last colum of the matrix that has been updated%

par anet er s=[ 3000 3250 600 650 0.2; 3000 3250 600 650 0.5; 3000 3250 600
650 0.8; 3000 7400 600 1480 0.2; 3000 7400 600 1480 0.5; 3000 7400 600
1480 0.8; 3000 18500 600 3700 0.2; 3000 18500 600 3700 0.5; 3000 18500
600 3700 0.8; 8000 3250 1600 650 0.2; 8000 3250 1600 650 0.5; 8000 3250
1600 650 0.8; 8000 7400 1600 1480 0.2; 8000 7400 1600 1480 0.5; 8000
7400 1600 1480 0.8; 8000 18500 1600 3700 0.2; 8000 18500 1600 3700 O0.5;
8000 18500 1600 3700 0.8; 20000 3250 4000 650 0.2; 20000 3250 4000 650
0.5; 20000 3250 4000 650 0.8; 20000 7400 4000 1480 0.2; 20000 7400 4000
1480 0.5; 20000 7400 4000 1480 0.8; 20000 18500 4000 3700 0.2; 20000
18500 4000 3700 0.5; 20000 18500 4000 3700 O0.8];

cnpar anet er s=paraneters. *0.1

for h=1:1:27

nmut i me=par aneters(h, 1);
nmuuse=par anet ers(h, 2);

si gti me=par aneters(h, 3);
si guse=paraneters(h, 4);
rhovec=par anet ers(h, 5);

cmut i ne=cnpar aneters(h, 1);
cmuuse=cnpar anet ers(h, 2);

cnsi gti me=cnpar aneters(h, 3);
cnsi guse=cnpar aneters(h, 4);
squar er ho=sqrt (1-r hovec."2);

%nitialize matrices to zero%

rel evant mat =zer os([ 201, 201]);

upmat =zer os([ 201, 201]);

mu=[ muti me nuuse];

poi nt =max( nu) ;

nmunax=poi nt/ 10

%generate data for 100,000 machi nes%

for p=1:1:100000
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| astrow=1;
| ast col =1;

% his part of the program generates 10 random failure vectors for
each machi ne

for r=1:1:10

z1=randn;
z2=r andn;

cnel=r andn
cne2=r andn

xt (r)=nmutinme+(sigtinme*zl);

xu(r)=nuuse+(si guse*((rhovec*zl) +(squarerho*z2)));
first=xt(r);

second=xu(r);

rowector =[first,second];
bi gvector(r,:)=rowector;
failuretines=bi gvector;

cnxt (r)=cmuti nme+(cnsigti ne*cnel);

cnxu( r)=cmruuse+(cnsi guse*((rhovec*cnel) +(squarerho*cne2)));
cnfirst=cnxt(r);

crmsecond=cnxu(r);

cnrowector =[cnfirst, cnsecond];
cnbi gvector(r,:)=cnrowector;
cnt i nes=cnbi gvect or;

failurevector(1,:)=failuretinmes(l,:);
cnmvector(1,:)=failuretimes(1,:)+cntimes(1,:);
dunmmycmecnvector (1, :);

N=l ength(failuretimes(:,1));

% his | oop generates the cunulative failure/repair vectors
for g=2:1: N
failurevector(g,:)=failuretinmes(g,:)+dumycm
cnvector (g, :)=failurevector(g,:)+cntinmes(g,:);
dummycmrcnvector (g, :);
end
end

for g=1:1:10
%ere, the matrix location of failure q is identified%
t=failurevector(q,1);

u=fail urevector(q,2);

col =f | oor (t/ numax) +1;
row=f | oor (u/ munmax) +1;
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end

end

end

| ast ronwcount =l ast r ow+1;
| ast col count =l ast col +1;

%ere, the matrix is updated to reflect the nunber of visits
to each matrix | ocation and the nunber of functioning

nmachi nes%

i f rows=l astrowcount & col >=| ast col count

for k=l astrowcount: 1:row
for n¥l astcol count: 1:co
rel evant mat (k, m =rel evant mat (k, m) +1
upmat (k, m) =upnmat (k, m +1

end
end
| ast r ow=r ow;
| ast col =col ;

end

%ere, the matrix |l ocation of repair conmpletion q is
identified%

t=cnvector(q,1);

u=cnvector(q,2);

col =f | oor (t/ mumax) +1;
r ow=f | oor (u/ mumax) +1;

| ast r oncount =l ast r ow+1;
| ast col count =l ast col +1;

%ere, the matrix is updated to reflect the nunber of visits
to each matrix location is updated (no update is nade to the
availability matrix because the machines are not functioning%

i f rows=lastrowcount & col >=| ast col count
for k=l astrowcount: 1:row
for n¥l astcol count: 1:co
rel evant mat (k, m =rel evant mat (k, m) +1
end
end
end

| astr ow=r ow;
| ast col =col
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Appendix B — Additional Charts

The figures included in this Appendix correspond to those discussed in Chapter 4.
The cases represented are identified in Table B-1.

Bivariate Exponential Model (BVE)  Bivariate Normal Model (BVN)  Linear Stochastic Function (LISF)

()\’ n, p) (th Hu, Ot, Oy, p) O\v C, B)

1 (0.00033, 0.00031, 0.2) (3000, 3250, 600, 650, 0.2) (0.00033, 1, 0)

2 (0.00033, 0.00031, 0.5) (3000, 3250, 600, 650, 0.5) (0.00033, 1, 250)
3 (0.00033, 0.00031, 0.8) (3000, 3250, 600, 650, 0.8) (0.00033, 1 500)
4 (0.00033, 0.00014, 0.5) (3000, 7400 600, 1480, 0.5) (0.00033, 2.5, 250)
4a (0.00033, 0.00014, 0.2) (3000, 7400 600, 1480, 0.2) (0.00033, 2.5, 0)
4b (0.00033, 0.00014, 0.8) (3000, 7400, 600, 1480, 0.8) (0.00033, 2.5, 500)
5 (0.00033, 0.000054, 0.5) (3000, 18500 600, 3700, 0.5) (0.00033, 6, 250)
5a (0.00033, 0.000054, 0.2) (3000, 18500 600, 3700, 0.2) (0.00033, 6, 0)
5b (0.00033, 0.000054, 0.8) (3000, 18500, 600, 3700, 0.8) (0.00033, 6, 500)
6 (0.00005, 0.00031, 0.5) (20000, 3250, 4000, 650, 0.5) (0.00005, 0.15, 250)
6a (0.00005, 0.00031, 0.2) (20000, 3250, 4000, 650, 0.2) (0.00005, 0.15, 0)
6b (0.00005, 0.00031, 0.8) (20000, 3250, 4000, 650, 0.8) (0.00005, 0.15, 500)

TableB-1 PARAMETER SETS

B.1 Renewa Function

The figures included here represent the effects of varying the correlation
coefficient, p, or the constant, 3. The results are qualitatively the same as those presented

in Chapter 4. Also, the figures related to the univariate projection method are included.
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B.1.2 Bivariate Normal Model
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Figure B-17 UNIVARIATE PROJECTION (CASESS5, 5a, 5b, BVN)
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Figure B-18 RENEWAL FUNCTION (CASE 6a, BVN)
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Figure B-19 RENEWAL FUNCTION (CASE 6b, BVN)
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Figure B-20 UNIVARIATE PROJECTION (CASES6, 6a, 6b, BVN)
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B.1.3 Linear Sochastic Functional Relationship
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Figure B-21 UNIVARIATE PROJECTION (CASES1, 2, 3, LISF)
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Figure B-22 RENEWAL FUNCTION (CASE 4a, LISF)
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Figure B-27 UNIVARIATE PROJECTION (CASESS5, 5a, 5b, LISF)
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Figure B-28 RENEWAL FUNCTION (CASE 6a, LISF)
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Figure B-29 RENEWAL FUNCTION (CASE 6b, LISF)
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Figure B-30 UNIVARIATE PROJECTION (CASES6, 6a, 6b, LISF)
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B.2 Availlability Function

The figures shown here represent the cases that correspond to those
mentioned in Chapter 4. The differences are aresult of the variationsin the

correlation coefficient, p, or the constant, 3.

B.2.1 Bivariate Exponential Model
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FigureB-32 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, BVE)
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FigureB-34 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, BVE)

121



Availzbility

Availability 0.9

FigureB-36 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, BVE)
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Availzbility

FigureB-38 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, BVE)
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Availzbility

Figure B-39 AVAILABILITY FUNCTION (METHOD 1, CASE 6a, BVE)
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FigureB-40 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, BVE)
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FigureB-42 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, BVE)
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B.2.2 Bivariate Normal Model
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Figure B-44 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, BVN)
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Figure B-45 AVAILABILITY FUNCTION (METHOD 1, CASE 4b, BVN)
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Figure B-46 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, BVN)
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Availzbility

Figure B-47 AVAILABILITY FUNCTION (METHOD 1, CASE 5a, BVN)
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Figure B-48 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, BVN)
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Availzbility

Figure B-49 AVAILABILITY FUNCTION (METHOD 1, CASE 5b, BVN)
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Figure B-50 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, BVN)
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Figure B-50 AVAILABILITY FUNCTION (METHOD 1, CASE 6a, BVN)
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Figure B-51 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, BVN)
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FigureB-52 AVAILABILITY FUNCTION (METHOD 1, CASE 6b, BVN)
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Figure B-53 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, BVN)
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B.2.3 Linear Sochastic Function
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Figure B-55 AVAILABILITY FUNCTION (METHOD 2, CASE 4a, LISF)
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Figure B-57 AVAILABILITY FUNCTION (METHOD 2, CASE 4b, LISF)
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Figure B-59 AVAILABILITY FUNCTION (METHOD 2, CASE 5a, LISF)
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Figure B-61 AVAILABILITY FUNCTION (METHOD 2, CASE 5b, LISF)
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FigureB-63 AVAILABILITY FUNCTION (METHOD 2, CASE 6a, LISF)
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Figure B-64 AVAILABILITY FUNCTION (METHOD 1, CASE 6b, LISF)
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Figure B-65 AVAILABILITY FUNCTION (METHOD 2, CASE 6b, LISF)
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