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ABSTRACT

The CS5604 class at Virginia Tech has been tasked with developing an information retrieval

and analysis system that can handle the collection of data of at least 500,000 Electronic

Theses and Dissertations (ETDs), under the direction of Dr. Edward A. Fox. This program

should function as a search engine with a variety of capabilities, including browsing, search-

ing, giving suggestions, and rating search results. The class has been split into six teams to

execute this job, and each team has been given a specific task. The goal of this report is to

provide an overview of Team 4’s contribution, which focuses on classification, summariza-

tion, and language models. Our prime tasks were testing out various models for classification

and summarization. During the course of this project, we evaluated models developed by

the previous team working on this task and explored various strategies to improve them.

For the classification task, we fine-tuned the SciBERT model to get standardized subject

category labels that are in accordance with ProQuest. We also evaluated a large language

model, LLaMA 2, for the classification task, and after comparing its performance with the

fine-tuned SciBERT model, we observed that LLaMA 2 was not efficient enough for a large-

scale system that the class was working on. For summarization, we evaluated summaries

generated by various transformer, non-transformer, and LLM-based models. The five models

that we evaluated for summarization were TextRank, LexRank, LSA, BigBirdPegasus, and

LLaMA 2 7B. We observed that although TextRank and BigBirdPegasus had comparable

results, the summaries generated by TextRank were more comprehensive. This experimen-

tation gave us valuable insight into the complexities of processing a large set of documents

and performing tasks such as classification and summarization. Additionally, it allowed us

to explore the deployment of these models in a production environment to evaluate their

performance at scale.
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Chapter 1

Overview

1.1 Introduction

Team 4 has been entrusted with the responsibility of helping develop an Information Retrieval

and Analysis system capable of efficiently and reliably handling a collection of over 500,000

ETDs. Our primary focus within this project revolves around leveraging advanced language

models to enhance the segmentation, summarization, and classification of these ETDs.

To commence our work, we are closely collaborating with Team 5, responsible for overseeing

database management and information flow within the system. This collaboration is crucial

for acquiring the necessary data to fuel our research and development efforts.

Our initial objective is to summarize the segmented ETD chapters and then classify these

summaries into various academic disciplines. In pursuit of this goal, we are dedicated to

refining and optimizing existing summarization and classification models, ensuring they de-

liver superior performance. Our efforts encompass the exploration of diverse configurations

for existing summarization models. This includes adjustments to parameters such as the

maximum context length, choice of summarization models, resulting summary lengths, and

strategies to mitigate repetition.

In parallel with these endeavors, we investigated the use of open-source large language mod-

els like LLaMA 2 [42] to support our capabilities in both classification and summarization
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tasks. We explored prompt-tuning methodologies for classification and summarization to

get the inference before having to fine-tune these models, thereby trying to avoid computa-

tionally heavy workloads.

Ultimately, our goal is to integrate our models with the broader components of the retrieval

system. This integration will facilitate the analysis of ETDs, enabling comprehensive and

insightful examinations of this valuable academic content.

1.1.1 User Stories

Table 1.1 outlines user stories for a system handling ETDs. The first story, for experimenters,

involves generating three summarized versions of a chapter text. The second story, also for

experimenters, focuses on retrieving disciplines associated with a specific ETD. The third

story, designed for curators, encompasses processing a batch of ETDs through summarization

and classification pipelines, demonstrating a comprehensive approach to managing academic

texts on a larger scale.

User Story Description
User story 1 As an experimenter, I want to provide a chapter text and obtain 5

different summarized versions.
User story 2 As an experimenter, I want to fetch disciplines associated with an

ETD.
User story 3 As a curator, I want to process a batch of ETDs and run through

summarization and classification pipelines.

Table 1.1: User stories
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1.2 Discussions with Subject Matter Experts

During our discussions with SMEs in the field of ETD Classification, Summarization, and

Language Models, which included invaluable insights from Bipasha and Sara, we engaged in

a comprehensive exploration of our project objectives and associated timelines. This dialogue

was essential not only for aligning our project with the expectations of potential end users

but also for gaining a deeper understanding of the dataset at hand.

Our initial task was to review and execute the existing code. However, it became clear that

dataset curation for evaluating chapter summaries had not been completed, resulting in a

shortage of ground truth data. Consequently, we were given the responsibility of creating

a comprehensive evaluation dataset. This initiative aimed to enhance the robustness of our

summarization pipeline.

For classification, the prior team utilized a set of labels that did not align with the ProQuest

subject categories [35]. To overcome this, we were given an updated dataset with suitable

labels. Our task now is to retrain the classification model so that it provides accurate subject

categories.

Our discussions emphasized the critical importance of evaluating summarization techniques

and exploring language models, with specific attention to LLaMA 2 [42].

We were responsible for improving current models and exploring new models with poten-

tially superior outcomes. Ultimately, our task involved assessing the models we developed,

including the LLaMA 2 model, to determine and finalize the one that surpasses all others in

performance.
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Chapter 2

Literature Review

2.1 Classification

ETDs are a valuable repository of academic knowledge, covering a wide range of subjects.

With the growing volume of digital academic documents, automated document classification

systems are increasingly important. These systems aid in efficient document indexing and

retrieval and also contribute to academic research by uncovering emerging trends.

In recent years, the emergence of powerful pre-trained language models like BERT [12]

and SciBERT [4] has significantly impacted document classification, leading to improved

accuracy and efficiency. We drew inspiration from the work of the previous Fall 2022 class

[14] while developing our models. In the upcoming sections, we will delve into the different

models that we have explored.

2.1.1 BERT: Bidirectional Encoder Representations from Trans-

formers

BERT [12], developed by Google AI, has emerged as a breakthrough in NLP due to its ability

to capture contextual information bi-directionally. This pre-trained model has demonstrated

success in various NLP tasks, including sentiment analysis, named entity recognition, and

text classification. BERT’s contextual embeddings have allowed it to understand the se-
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mantics and relationships between words and phrases, making it particularly suitable for

document understanding and classification.

2.1.2 SciBERT: Domain-Specific Language Model

SciBERT [4], an extension of BERT [12], is specifically fine-tuned on a corpus of scientific

literature. This specialization equips SciBERT with domain-specific knowledge and enhances

its ability to comprehend scholarly documents. As a result, SciBERT [4] has emerged as a

tool for classifying academic texts, including ETDs.

In the paper “Summarizing ETDs with deep learning” [20], the authors used the SciBERT

[4] language model based on its promising performance in diverse academic disciplines. They

created a dedicated pipeline for training and evaluating SciBERT, and notably, SciBERT [4]

outperformed BERT on their evaluation dataset. This approach highlights the benefits of

using domain-specific language models in academic document classification.
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2.2 Summarization

One of the most extensively studied topics in the NLP domain is summarization, which

is to compress the document’s length while maintaining its content. There are two types

of summarization approaches, namely extractive and abstractive, depending on whether

particular phrases are taken into account as they exist in the original text or whether new

sentences are produced using NLP techniques [15].

Adhikari et al. [38] explore a wide range of machine learning models, including recurrent

neural networks, convolutional neural networks, and transformer-based architectures, to gen-

erate abstractive and extractive summaries. They discuss the use of attention mechanisms,

reinforcement learning, and reinforcement-based methods for improving summary quality.

Additionally, the paper covers diverse datasets, evaluation metrics, and applications across

domains. Overall, they provide insights into the evolving landscape of NLP-based machine-

learning approaches for text summarization.

“A Scalable Summarization System Using Robust NLP” [2] has presented a summarization

system designed to efficiently generate summaries from large volumes of text data while

ensuring robustness through NLP techniques. The paper discusses the development of a

system capable of summarizing extensive textual content effectively.

“Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond” [29] ex-

plores the use of sequence-to-sequence RNNs and their extensions for the task of abstractive

text summarization. The paper discusses the foundational approach of using RNNs to gen-

erate summaries by encoding source text and decoding summaries in a sequence-to-sequence

fashion. It goes beyond the basic framework by introducing improvements such as attention

mechanisms, pointer-generator networks, and coverage mechanisms to enhance the quality

of generated summaries. The paper also highlights the challenges and future directions in
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abstractive text summarization, making it a valuable resource for researchers in the field.

“Summarizing ETDs with deep learning” [20] explores the innovative use of ETDs for text

summarization. The study assesses deep learning summarization techniques on a large ETD

collection, addressing challenges posed by domain-specific language and diverse subjects. To

tackle data constraints, the research introduces transfer learning for ETD chapter summa-

rization and evaluates multiple deep learning models. It provides insights into adapting

summarization to specific domains, and underscores the potential of transfer learning in

handling data limitations.

TextRank [28] is a graph-based ranking model for text analysis, which identifies key sentences

and extracts keywords. It constructs a sentence graph, linking sentences based on content

overlap measured by shared words, and uses the PageRank [32] algorithm to select the most

significant sentences for summarization. For keyword extraction, TextRank creates a word

network by linking consecutive words, assigning higher weights to frequent pairs, and then

applying PageRank to select the top one-third as relevant keywords. The model recommends

parts of speech tagging or a custom dictionary to filter out common stopwords, and focus

on meaningful content

LexRank, implemented by Güneş Erkan et al. [13], is an algorithm used in natural language

processing and text summarization. It is designed to automatically extract key sentences

or phrases from a text document to create a summary, and it is based on the concept of

graph-based ranking. LexRank was developed as an extension of the PageRank algorithm

used by Google to rank web pages in search results. LexRank has been used in various

applications, including text summarization, document clustering, and information retrieval.

Latent Semantic Analysis (LSA) [31] is a natural language processing technique that can be

used in text summarization, among other applications. LSA is primarily a dimensionality
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reduction method that helps uncover the hidden relationships between words and concepts

in a large collection of texts. It operates on the principle that words with similar meanings

tend to occur in similar contexts.

The BigBirdPegasus model was introduced by Zaheer et al. [45]. “Big Bird: Transformers

for Longer Sequences” extends Transformer-based models like BERT to process longer se-

quences using a sparse-attention mechanism. The model combines sparse attention, global

attention, and random attention, enabling it to approximate full attention for long docu-

ments. BigBirdPegasus has demonstrated improved performance on various long-document

NLP tasks, including question answering and summarization, compared to models like BERT

[12] or RoBERTa [25].

The Longformer model [3] is designed to work with long texts more efficiently than traditional

Transformer models, which struggle with lengthy documents due to increased computational

requirements. Longformer addresses this issue by adjusting how it focuses on different parts

of the text, primarily considering nearby words and certain keywords regardless of their

position. This change significantly reduces the amount of computation needed, enabling

Longformer to handle longer texts with ease. In practical applications, Longformer consis-

tently outperforms models like RoBERTa in tasks involving long documents and achieves

impressive results on benchmarks like text8 [27] and enwik8 [26], which test a model’s pre-

dictive capabilities.
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2.3 Language Models

Large Language Models (LLMs) leverage a class of deep learning algorithms known as trans-

formers [43], comprising self-attention, multi-head self-attention, feed-forward layers, and

normalization. Transformers process sequences of tokens (words, characters, or subword

units) from training data. Different LLMs adopt varied training strategies. For instance,

BERT [12] is trained in a supervised manner to predict masked items in a sequence, whereas

GPT [36] focuses on predicting the next token.

The training involves pretraining the model through unsupervised learning on a large text

corpus, followed by fine-tuning on specific tasks like summarization and translation. The

foundational architecture of LLMs involves transformers [43], which have superseded previous

models like LSTMs [17] and GRUs [6] due to their parallel processing capabilities. Key

components of this architecture include an attention mechanism, which assigns significance

to different tokens, and multi-head attention, allowing simultaneous focus on various parts

of the input.

OpenAI’s series of models - GPT-1.0 [36], GPT-2.0 [37], GPT-3.0 [5], and GPT-4.0 [30] - have

been pivotal in LLM advancements, demonstrating exceptional ability in generating human-

like text. Each version exhibits notable improvements in architecture, training corpus, and

functionalities, including zero-shot learning, few-shot learning, and many-shot learning.

Google’s PaLM [8] and PaLM 2 [1] models, built on the transformer architecture, introduced

modifications like SwiGLU [39] activation, parallel layers, multi-query attention, and RoPE

embeddings [40]. These models emphasize efficiency, training speed, and scalability. PaLM

2, in particular, employs compute optimal scaling for enhanced performance.

Meta’s LLaMA [41] and its successor, LLaMA 2 [42], also follow the transformer architec-

ture, integrating advancements like SwiGLU [39], rotational position embeddings, and root
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mean squared normalization. They focus on reduced computational demands and enhanced

efficiency, with a pretraining corpus extending to 2 trillion tokens.

The paper titled “Improved Sampling Techniques for Learning an Imbalanced Data Set” by

Lauron and Pabico [23], addresses the challenges posed by imbalanced datasets in classifica-

tion tasks. They introduce five new sampling techniques, including SMOTERandRep, Lax

Random Oversampling (LRO), and Lax Random Undersampling (LRU), proposing improve-

ments over traditional methods like Random Undersampling, Random Oversampling, and

SMOTE. Evaluation metrics such as F-measure and G-mean are employed to assess classi-

fier performance, revealing that, without sampling techniques, satisfactory performance is

observed only for the majority class. Notably, SMOTE, SMOTERandRep, and LRO con-

sistently outperform other techniques, showcasing their effectiveness in enhancing classifier

performance, with LRO achieving the highest G-mean value. The paper underscores the

importance of sampling methods in handling imbalanced datasets and advocates for further

exploration, particularly on larger multiclass imbalanced datasets.
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Chapter 3

Requirements

3.1 Overall Project Requirements

The goal of our project was to develop an information retrieval system that would process a

collection of 500k ETDs and provide a way for users to find and interact with ETDs. Some

of the specific tasks included:

• Developing a UI so that users can sign up and interact with the system.

• Indexing the available ETDs.

• Building a recommendation system for users.

• Building an object-detection system to extract text from scanned ETDs.

• Hosting the system on Kubernetes containers and ensuring uptime.

3.2 Team 4 Requirements

Team 4 was tasked with experimenting with classification and summarization models for

assigning subject categories and generating summaries for the ETDs uploaded by users.

This process included assessing open-source large language models, such as LLaMA 2, to
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compare their performance with traditional summarization and classification models. Once

the models were optimized, our responsibility extended to developing utility codes for getting

inferences for the collection of 500k ETDs. These inferences, i.e., summaries and subject

category tags, would help organize the collection of ETDs.

The utility code incorporated Kafka topics to manage data flow within the classification

and summarization pipelines. It involves processes like retrieving ETD data from databases

through APIs, converting the data into batches, processing each batch for model inference,

and storing the results back into the database.

Both summarization and classification pipelines were developed to handle the scale required

by the information retrieval system being developed in the class.

3.3 Collaborations

Collaboration with other Teams:

• Team 4 was provided ETDs segmented into chapters for the summarization process.

• The classification tags generated by our classification model will be utilized by Team

2 to build a search and recommendation system.

• Team 5 was responsible for handling the infrastructure to host our classification and

summarization models.

12



Chapter 4

Design

4.1 Classification

Figure 4.1 depicts the overall flow of the classification task.

Figure 4.1: Classification overall flow

For classification, the ETD title-abstract pairs are collected from the database and through

the APIs provided by Team 5. After fetching this data, it is processed in batches to get

inferences. Each title-abstract pair is classified into either of the 18 ProQuest level-2 subject

categories [35]. Along with the most probable subject category, the output of the classifica-

tion model also contains the second-most probable subject category.
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Our approach to ETD classification is influenced by the work of the Fall 2022 class [14]. We

have chosen to utilize the fine-tuned SciBERT [4] model for classifying summarized ETD

chapters.

However, we have made a change in our approach while training our model. In our imple-

mentation, we use the ProQuest level 2 subject categories [35] as labels. These 21 subject

categories cover various disciplines. This categorization strikes a balance between being de-

tailed enough to be meaningful and broad enough to avoid excessive specificity, making it

well-suited for classifying ETDs.

Table 4.1 depicts the label distribution in the training dataset (provided by the SME) after

preprocessing. The training dataset is discussed in detail in Section 5.2.1.

Label Count
ENGINEERING 10430
EDUCATION 5565
MATHEMATICAL AND PHYSICAL SCIENCES 4690
SOCIAL SCIENCES 3501
FINE AND PERFORMING ARTS 2719
BEHAVIORAL SCIENCES 2276
LANGUAGE AND LITERATURE 1885
ENGINEERING | ARCHITECTURE | ENVIRONMENTAL SCIENCES 1797
GEOSCIENCES 1372
HISTORY 1083
ARCHITECTURE 809
BIOLOGICAL SCIENCES 722
COMMUNICATIONS AND INFORMATION SCIENCES 698
AGRICULTURE 672
BUSINESS 669
HEALTH AND MEDICAL SCIENCES | EDUCATION 294
COMMUNICATIONS AND INFORMATION SCIENCES | INTERDISCIPLINARY 258
PHILOSOPHY AND RELIGION 209
BEHAVIORAL SCIENCES | EDUCATION 203
Total 39852

Table 4.1: Distribution of labels in the classification dataset
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4.2 Summarization

4.2.1 Workflow of the Model

Summarizing ETDs is a challenging job as these documents are typically very long, and

there’s a shortage of appropriate training data. Consequently, our proposed methodology is

centered around chapter-level summarization, as depicted in Figure 4.2.

Every chapter is subjected to preprocessing and tokenization of the text. Real-world data

generally contains noise, and missing values, and may be in an unusable format that cannot

be directly used for machine learning models. Data preprocessing is a required task for clean-

ing the data and making it suitable for a machine learning model, which also increases the

accuracy and efficiency. Tokenization is the first step in preprocessing text data. It involves

dividing a text document into smaller units known as tokens, which can be words, phrases,

or even individual characters. These tokens are subsequently transformed into numerical

representations. After tokenization, each word or phrase is converted into a dense vector

of real numbers. The significant advantage of these embeddings is their ability to capture

semantic meanings and relationships between words or phrases, which enables machines to

understand and process human language efficiently.

The numerical vector that represents that text is subsequently forwarded to the text summa-

rizer model which in turn produces a summary of the entire chapter. By iterating through

these steps for each chapter input, we obtain a collection of chapter summaries. These

summaries can be employed individually to address the specific needs of the end user.
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Figure 4.2: ETD chapter summarization flow

4.3 Language Models

4.3.1 Summarization

The goal is to use LLaMA 2 [42] to get summaries of the ETDs. Since LLaMA 2 is available

in three model sizes, i.e., 7, 13, and 70 billion parameters, training all the parameters for our

task would be computationally expensive and out of scope for this project. The most common

way to use LLaMA 2 for a custom task would be to instruction-tune already pretrained

models trained upon a huge dataset suitable for the summarization task. To instruction-

tune LLaMA 2 for ETD summarization the arXiv Summarization Dataset [9] and BookSum

dataset [21] have been selected.

arXiv: This dataset was designed for the task of summarizing long documents, particularly

scientific papers, which are often characterized by complex structures and detailed discourse.

The choice to utilize this particular dataset for fine-tuning a summarization model is because

of its domain-specificity. For the ETDs that include scientific content, fine-tuning this data

allows the model to become more attuned to the domain-specific language and terminologies
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of research papers, which is crucial for producing accurate and relevant summaries. The

dataset has also been empirically validated by the original authors.

BookSum: BookSum is an extensive dataset assembly designed for long-form narrative

summarization, encompassing a range of literary works like novels, plays, and stories. It fea-

tures expertly crafted summaries at varying levels of detail, including paragraph, chapter,

and book length. The selection of this specific dataset is pivotal for the task at hand. In

the case of Electronic Theses and Dissertations (ETDs) that encompass non-scientific sub-

jects, it’s crucial to employ a specialized dataset tailored for summarization. Disciplines like

History, Education, and Behavioral Sciences exhibit unique content structures and thematic

elements, necessitating a dataset that is fine-tuned to effectively summarize ETDs within

these fields.

However, before proceeding with fine-tuning, both of the datasets needed to be preprocessed.

The arXiv Summarization dataset, while a valuable resource, contains various forms of noise

that need to be addressed for optimal use. This includes the presence of LaTeX notations,

special characters, and symbols, which are commonplace in academic papers but can disrupt

the fine-tuning process. Additionally, the reference sections in these documents, although

essential for academic purposes, may introduce irrelevant information for certain computa-

tional tasks. To enhance the dataset’s utility, it’s important to carefully filter out these

elements. The BookSum dataset is characterized by its relatively low levels of noise, primar-

ily because it consists of straightforward book chapters. This attribute enhances its usability

for fine-tuning, as it minimizes the need for extensive data cleaning or preprocessing typi-

cally associated with more complex or technical datasets such as the arXiv Summarization

Dataset.

In preparing the arXiv Summarization Dataset for analysis, we have employed a series of

functions that utilize regular expressions (regex) for efficient preprocessing:
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1. clean_latex: Removes LaTeX notations, including command sequences, subscript

and superscript expressions, and brackets from the text, enhancing readability and

processing.

2. remove_citations: Targets and removes citation markers like @xcite and @xmath0,

decluttering the text from academic placeholders.

3. remove_xmath_instances: Eliminates instances of mathematical notation mark-

ers, focusing the text on verbal content.

4. remove_empty_parentheses: Searches for and removes empty parentheses, further

cleaning the text.

5. remove_references: Extracts and removes reference entries, including authors, pub-

lication years, and DOIs, to focus on the core content of the text.

6. remove_special_characters_and_digits: Strips away all non-alphabetic charac-

ters and digits, leaving only letters and spaces for text analysis purposes.

7. remove_extra_spaces: Reduces multiple spaces to a single space and trims leading

and trailing spaces for text uniformity.

8. remove_specific_word: Allows for the removal of a specific word from the text,

useful for filtering out unwanted terms.

9. remove_references1: Similar to ‘remove_references’ but uses a more comprehensive

regex pattern to remove a wider variety of reference formats for thorough academic

citation cleanup.

In our project, we faced a constraint with the LLaMA 2 model’s maximum token limit of

4096, a challenge particularly evident when dealing with Electronic Theses and Dissertations
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(ETDs) that typically exceed this length. Although we initially considered utilizing the

variant of LLaMA 2 capable of handling a larger context of 32,000 tokens, this option was not

feasible due to its substantial memory requirements, which exceeded our available resources.

Consequently, our approach was constrained to using the standard LLaMA 2 model, limited

to processing 4096 tokens at a time. This limitation likely resulted in partial content analysis,

a reduction in contextual depth, and a skew towards prioritizing initial segments of the

content.

Further, to prepare the dataset for instruction-tuning, an instruction “Below is a text

followed by its abstract. Write a summary of the article based on the abstract

provided” is used for every row of the arXiv Summarization dataset. This methodology

was similarly applied to the BookSum dataset, employing the same structured approach to

enhance the model’s capability in synthesizing and contextualizing information from longer

narrative forms, such as books. The ‘Text’ column, which contains a prompt followed by

the article and its abstract, is central to instruction-tuning. It provides the model with a

clear task (summarization) within a specific context (using the abstract to summarize the

article). This format teaches the model to correlate detailed content with its summarized

form. The prompt explicitly instructs the model on the task, reinforcing its understanding

of the summarization process and how to approach it. By feeding the ‘Text’ column to the

language model, we are effectively training it to generate summaries based on abstracts.

During training, the model learns to parse the article and abstract, and then apply the

instruction to generate a summary. This enhances its ability to follow complex instructions

and produce relevant outputs. In our approach, we treat each book chapter as the equivalent

of an article, and its corresponding summary is viewed as the abstract. This analogy allows

for a consistent framework in processing and analyzing both of the datasets.

The approach of providing a language model like LLaMA 2 with both a text and a summary is
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because summaries often focus on the high-level findings and conclusions of a paper. During

training, the model has been instruction-tuned with a structured approach where the ‘Text’

column includes a prompt (“Below is a text followed by its abstract. Write a summary of the

article based on the abstract provided”), the article, and its abstract. This is a classic case

of instruction-tuning, where the model learns to generate summaries based on the specific

instructions provided in the prompt. The model learned to understand the structure and

content of both the article and its abstract, and how to condense the article into a summary

similar to the abstract. In the testing phase, we are providing only the article without the

abstract. This represents a different task for the model compared to its training. The model

now has to generate a summary without the direct guidance of an abstract. It relies on its

understanding of the article’s content, structure, and the inherent skill of summarization it

developed during training. This approach tests the model’s ability to generalize its learning.

It assesses whether the model can apply its summarization skills without relying on the

structure it was trained on (i.e., summarizing with an abstract as a reference). However,

no experimentation was done with the training set. The instruction-tuned model was used

to generate summaries on the test set as shown in Table 4.2. This approach was developed

following the guidance and recommendations of SMEs.

Table 4.2 depicts the overall structure of the dataset.

Feature Description
features [“article”, “abstract”, “text”]
num_rows 6398

Table 4.2: Overview of the arXiv dataset

Since LLMs including LLaMA 2 require heavy computational resources for performing op-

timally, quantization is used for fine-tuning. Quantization is a method that streamlines nu-

merical data by decreasing its precision level. Within the realm of LLMs, this process entails
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transitioning from high-accuracy floating-point figures to more simplified, lower-accuracy

fixed-point formats. Quantization markedly diminishes the memory requirements by shrink-

ing the model parameters, thereby facilitating the deployment of LLMs on platforms with

limited resources.

QLoRA [11] is also used to assist with the efficient memory usage. QLoRA optimizes the

process by introducing minimal trainable parameters, known as adapters, across each LLM

layer. This strategy allows for the original parameters to remain unchanged, with only the

lightweight adapters undergoing modifications during fine-tuning. This selective alteration

significantly reduces memory usage, making the procedure more manageable.

4.3.2 Classification

The initial stage involved loading the dataset from the CSV file named 'Classification_-

training.csv'. To focus on relevant information, the DataFrame was filtered to include

only the “abstract” and “Label” columns, thus removing any extraneous data. The loaded

dataset comprised ‘abstract’ and ‘Label’ features and contained 39,852 rows, each corre-

sponding to a different document.

To facilitate the classification task, a specific prompt format was created for each entry in

the dataset. This format included an introduction stating the task “Below is an abstract

of an article. Categorize it appropriately.”, the abstract of the article, the category

label. This structured format was applied to each data entry to standardize the input for

the classification model.

The dataset was shuffled and split into training, validation, and test sets using an 80-10-10

split ratio. The training, validation, and test sets were then combined into a final Dataset-

Dict. This final dataset was organized into distinct “train”, “validation”, and “test” parti-
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tions, each containing data entries in the standardized prompt format.

For the intital run, the classification task utilized the 'meta-llama/Llama-2-7b-hf' model.

The model was configured with BitsAndBytesConfig to enable 4-bit quantization. The com-

pute dtype was set to torch.bfloat16. The tokenizer for the model was set with the

end-of-sequence token as the padding token and padding side set to “right”. The model was

prepared for k-bit training to enhance efficiency with limited resources. LoRA [18] configu-

ration was applied to adapt the model for efficient learning, with settings like lora_alpha =

16, lora_dropout = 0.1, and rank = 64. A higher lora_alpha means the adjustments can

be more significant, potentially leading to more substantial changes in the model’s behavior

during fine-tuning. This can be useful when you want the model to adapt more aggressively

to new tasks or data. Lora_dropout means that a certain percent of the neurons in the

LoRA layers are randomly dropped out. This helps in making the fine-tuned model more

robust and less likely to overfit to the training data. Rank means that the low-rank matrices

are relatively small compared to the original model’s weights, which helps in keeping the ad-

ditional computational cost low. The choice of rank is a balance between the effectiveness of

adaptation and the additional computational cost and memory usage. LoRA configuration

was then integrated into the model to enhance its adaptability. After training, the model

was loaded and LoRA layers were merged with the base model, finalizing it for evaluation

and deployment.
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Chapter 5

Implementation

5.1 Tools

In our project, we have strategically selected a set of tools and technologies to ensure efficient

development, seamless collaboration, and the ability to harness state-of-the-art methods

in NLP and Deep Learning/Machine Learning. Here’s an overview of the key tools and

technologies that will be instrumental in our project’s success:

1. Python: Python [16] serves as our primary programming language due to its versatility

and robust support for various NLP and Deep Learning libraries. Python’s ease of use allows

us to rapidly prototype and explore different solutions, making it the ideal choice for our

research-oriented project.

2. Docker: Docker [10] plays a crucial role in providing a well-defined and isolated environ-

ment for running our specific solutions. It encapsulates all necessary prerequisites, libraries,

and system-level binaries required for seamless functioning. We will leverage Docker to cre-

ate containers for each of our project’s services, including summarization, segmentation, and

classification. This ensures consistency and portability across different environments.

3. GitLab: GitLab [7] serves as our code repository, facilitating effective version control and

collaboration among team members. It enables the maintenance of various feature branches

and supports the implementation of CI/CD pipelines for streamlined deployment processes.
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4. PyTorch: PyTorch [19] is our machine learning library of choice, offering a wide range of

tools and capabilities for building layers, models, and data pipelines. PyTorch accelerates

development by providing a flexible and intuitive framework while also supporting hardware-

accelerated training, essential for deep learning tasks.

5. HuggingFace: HuggingFace [44] is a valuable library built around PyTorch, specializ-

ing in state-of-the-art transformer models. It simplifies access to pre-trained weights for

transformer architectures like BERT, enabling us to experiment with cutting-edge models

efficiently. This library greatly enhances our ability to work with advanced language models

and embeddings.

6. LangChain: LangChain [22] is a specialized library that simplifies the creation and usage

of large language models. It streamlines the process of working with extensive language

models, making it easier to integrate them into our project.

7. Trello: Trello [34] serves as our project management tool, allowing us to assign tasks, track

progress, and ensure efficient coordination among team members. Its user-friendly interface

supports agile project management practices, helping us stay organized and on track.

5.2 Classification

5.2.1 Classification Fine-tuning

To align the model output with the ProQuest subject categories [35], we have fine-tuned the

classification model again with an updated label set. To accomplish this, we are utilizing a

dataset provided by our SME. This dataset leverages ETD abstracts as features and employs

ProQuest subject categories across all three levels as labels. Specifically, we have chosen to

focus on the ProQuest subject categories at level 2 for our fine-tuning efforts.
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Figure 5.1 shows a snapshot of the training data that we are using:

Figure 5.1: Classification training dataset snapshot

Before training the model, we are conducting pre-processing steps to resolve various issues

found within the dataset.

In the dataset, which includes roughly 39,000 entries, we found that about 2,600 entries were

missing their abstracts. These entries have been removed.

Moreover, we observed that for some abstracts, labels were a combination of two or more

subject categories separated by a pipe symbol “|”. For example, “ENGINEERING | ARCHI-

TECTURE | ENVIRONMENTAL SCIENCES”. To address this issue, we split such labels

to get individual subject categories and applied one-hot encoding on the label set. This

approach will help us get more granular output from the model as opposed to the label

powerset approach followed by the previous implementation by the Fall 2022 class.

To address the uneven distribution of labels, we have assigned weights to them based on

their frequency — the rarer the label, the higher its weight. These weights are then factored

into the loss function to balance the influence of each label during training.
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5.2.2 Classification Fine-tuning Results

After processing the data, to improve the SciBERT model’s performance on our test data, we

experimented with different settings, trying various batch sizes, learning rates, and numbers

of training epochs. We considered the following parameters and values to train the model:

• Batch sizes: 16, 32, 64

• Learning rates: 2× 10−4, 1× 10−5

• Epochs: 15, 20

The best-performing model, with batch size of 64, learning rate of 1 × 10−5, and that is

trained for 20 epochs, yielded an F1 score of 0.74 and a log loss of 0.72 on the test set, both

averaged over all batches in the test set. These values meet our expectations and provide us

with a reliable classification model.

5.2.3 Classification Fine-tuning Statistics

The model fine-tuning took approximately 2.5 hours to complete. After the training was

complete we worked on the helper file to run inference on the actual ETDs present in the

database created by Team 5. We calculated the time taken for our inference pipeline and

observed that to fetch 1000 title-abstract pairs it took around 73.7 sec and to run inference

on these 1000 title abstract pairs it took another 2.4 sec These numbers were helpful for

comparison with the classification task we were working on using LLaMA 2.
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5.3 Summarization

5.3.1 Summarization Results

We have utilized four different algorithms to generate summaries for segmented chapters.

The first three algorithms – TextRank, LexRank, and LSA – are non-transformer models.

In addition, we have implemented the BigBirdPegasus model, which is a transformer-based

algorithm.

Non-transformer models, like TextRank, LexRank, and LSA, rely on traditional approaches

such as statistical analysis, graph-based methods, and singular value decomposition, respec-

tively. These models tend to be simpler and faster, but may not capture the complexities

and nuances of language as effectively as transformer models.

On the other hand, transformer models, such as BigBirdPegasus, leverage attention mecha-

nisms to process input sequences. This enables the model to focus on different parts of the

input text and capture long-range dependencies, leading to more context-aware and coherent

outputs. While transformer models are generally more powerful and capable of producing

better results, they are also computationally intensive and can be slower to train and infer

compared to non-transformer models.

We employed the chapter “Discipline-Independent Text Information Extraction from Het-

erogeneously Styled References Using Knowledge from the Web” [33] for all four algorithms

in order to assess their performance. The output generated was a summarized text of ap-

proximately 500 words.

The TextRank [28] model was implemented using the TextRankSummarizer from the Sumy

library. Sumy is a Python library that employs different algorithms for text summarization

tasks. Figure 5.2 illustrates the summarized results of the chapter.
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Figure 5.2: Summary generated using TextRank

The LexRank [13] method is similar to TextRank and is based on the PageRank method. It

uses a graph-based technique for automatic text summarization. The LexRankSummarizer

model is employed for this task. Figure 5.3 illustrates the summarized chapter results using

LexRank.

Figure 5.3: Summary generated using LexRank

Figure 5.4 illustrates the summarized results of the chapter using the LSA [31] model.
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Figure 5.4: Summary generated using LSA

The summarize transformers function is designed to generate a chapter summary specifically

using the BigBirdPegasus model [45], a transformer-based model from Google. The function

initializes variables for the summarization model and the summary results.

Within the function, the BigBirdPegasus model is selected based on the input configuration.

If “BigBirdPegasus” is specified, the function uses Google’s implementation of this model.

The function takes the text from a chapter as input. It then uses the BigBirdPegasus model

to generate a summary. Several parameters were configured to control our summarization

pipeline:

• max_length: Sets the maximum acceptable length for the generated summary, ensur-

ing it does not exceed 500 tokens.

• min_length: Sets the minimum acceptable length for the summary, preventing it from

being too short by requiring a minimum of 200 tokens.

• do_sample: Determines whether the summarization process involves random sampling.

In this case, it is set to False, indicating a deterministic process without random

variations.
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• early_stopping: Enables early stopping during summarization, meaning the process

concludes once specific criteria, such as achieving a certain level of confidence in the

summary, are met.

Once the summary is generated, the function processes the output to ensure it is in string

format. It also truncates the summary if it exceeds the maximum allowed output length.

Finally, the processed summary is stored in the chapter summary attribute of the utility

object.

The summary produced by the BigBirdPegasus model is then displayed in Figure 5.5.

Figure 5.5: Summary generated using BigBirdPegasus

After looking at the summaries generated by different models we found that:

• TextRank demonstrated simplicity in implementation, and we found that it is a lightweight

and computationally efficient option as it excelled in quickly summarizing the content.

Moreover, its algorithmic simplicity enhances transparency, allowing one to compre-

hend and customize the summarization process easily. However, TextRank struggled

with capturing intricate contextual nuances, leading to potential oversimplification of

complex content.

• BigBirdPegasus, a transformer-based architecture, stood out in its ability to grasp

intricate contextual relationships, resulting in superior summarization quality. Its

strength lies in understanding the semantics and context of the input text comprehen-
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sively. While it offered high-quality summaries, the downside was that it took a longer

time to generate summaries.

• On the other hand, LSA and LexRank present some challenges. LSA, despite its focus

on semantic relationships, struggled to capture fine-grained details due to its reliance

on statistical patterns. LexRank, utilizing a graph-based approach, strikes a balance

between simplicity and efficacy, but it faced challenges when dealing with content that

lacked clear semantic structures.

5.3.2 Summarization Evaluation

Evaluation is a crucial aspect of our work, as it allows us to assess and confirm the qual-

ity, relevance, and effectiveness of the generated summaries by our models. The summary

needs to be well structured without unnecessary stop words, repetitions, and unnecessary

elaboration. There are two kinds of possible summaries, namely extractive and abstractive.

Extractive summarization extracts the important sentences or keywords grouped together

in order to form a concise summary, whereas abstractive summarization utilizes natural lan-

guage techniques to interpret and understand aspects of the entire text, so it can generate

new text.

In the evaluation of our text summarization models, we employed ROUGE metrics [24].

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. These metrics, in-

cluding ROUGE-1, ROUGE-2, and ROUGE-L, offer a comprehensive assessment of summa-

rization quality by measuring precision, recall, and F-measure. Here are the key aspects of

ROUGE:

• ROUGE-1 Score: This metric evaluates the overlap of unigrams (individual words)

between the generated text and the reference text. It’s a measure of how many words
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are in common in both texts, giving an indication of the content’s accuracy. ROUGE-1

is calculated by counting the number of overlapping unigrams in the generated sum-

mary and the reference summary, then calculating the recall (proportion of reference

unigrams captured by the generated summary) and precision (proportion of generated

unigrams present in the reference summary). The final score is often represented as

an F1-score, which combines precision and recall.

• ROUGE-2 Score: This metric focuses on the overlap of bigrams (pairs of consec-

utive words) between the generated text and the reference text. It provides insights

into how well the generated text captures two-word phrases from the reference text,

which is important for assessing the coherence and flow of the summary. Similar to

ROUGE-1, ROUGE-2 is calculated by identifying the common bigrams in both texts

and computing the recall, precision, and F1-score. This metric is more stringent than

ROUGE-1 as it requires matching pairs of words in the same order.

• ROUGE-L Score: ROUGE-L stands for ROUGE-Longest Common Subsequence. It

evaluates the longest common subsequence of words between the generated and refer-

ence texts. Unlike ROUGE-1 and ROUGE-2, ROUGE-L does not require consecutive

words to match but focuses on the order of words. It considers the longest sequence

of words that appears in both the generated and reference texts, regardless of whether

they are consecutive or not. It allows for non-consecutive matching of words in the

sequence, emphasizing the overall order of words rather than requiring them to be ad-

jacent to each other. This metric is particularly useful for assessing the sentence-level

structure and fluency of the summary. The score is calculated based on the length of

the longest common subsequence, with adjustments for recall and precision. ROUGE-

L is sensitive to longer sequences of correct word order, making it a good indicator of

overall summary quality, especially in terms of readability and coherence.
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Table 5.1, Table 5.2, and Table 5.3 provide insights into how well the generated summaries

align with reference summaries, considering both content and structure of one ETD. We

have taken the reference summaries that were generated manually.

Model precision recall F1 score
TextRank 0.258 0.319 0.285
LexRank 0.220 0.340 0.267
LSA 0.23 0.38 0.29
BigBirdPegasus 0.273 0.206 0.235

.

Table 5.1: Evaluation of summarization models - ROUGE-1

Model precision recall F1 score
TextRank 0.083 0.1036 0.092
LexRank 0.067 0.103 0.081
LSA 0.6 0.1 0.08
BigBirdPegasus 0.034 0.025 0.029

.

Table 5.2: Evaluation of summarization models - ROUGE-2

Model precision recall F1 score
TextRank 0.141 0.175 0.156
LexRank 0.117 0.180 0.141
LSA 0.11 0.18 0.14
BigBirdPegasus 0.164 0.123 0.141

.

Table 5.3: Evaluation of summarization models - ROUGE-L

In the context of ETD summarization tasks, achieving higher ROUGE scores indicates that

the generated summaries effectively capture the essential information present in the reference

summaries. After looking at the above tables we can see that the BigBirdPegasus model

performs better followed by TextRank.

Table 5.4 presents the ROUGE-1 values of the summaries in comparison to the reference

summary, which, in this case, was the abstract of the chapter.
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Model precision recall F1 score
TextRank 0.76 0.45 0.56
LexRank 0.74 0.39 0.51
LSA 0.70 0.56 0.46
BigBirdPegasus 0.55 0.08 0.1

.

Table 5.4: Evaluation of summaries with abstract - ROUGE-1

To complement the quantitative evaluation, we conducted a manual review of 8 ETDs as

shown in Figure 5.6. This qualitative assessment revealed that TextRank outperformed other

algorithms and also produced more appealing and quickly generated summaries. As a result

of this comprehensive evaluation, TextRank emerged as the preferred choice for summarizing

ETDs after facing strong competition from the BigbirdPegasus model.

Figure 5.6: Manual review of 8 ETDs

34



5.4 Experimenting with Large Language Models

5.4.1 Summarization

Table 5.5 lists LLaMA 2 models and datasets used for experimentation.

Model Dataset fine-tuned on
LLaMA-2-7B-32k arXiv

LLaMA-2-7B arXiv + BookSum
LLaMA-2-13B arXiv + BookSum

Table 5.5: LLaMA 2 models and datasets used for experiments

The instruction-tuning of the 'togethercomputer/LLaMA-2-7B-32K' model on the arXiv-

summarization dataset aimed to generate summaries from the “article” column. It should

be noted that despite using the LLaMA-2-7B-32K, the maximum token chosen was 4096,

which is the same as LLaMA-7B. Also, no few-shot learning was done for any of the models.

Inference using the base model is shown in Figure 5.7.

Figure 5.7: Summarized text of a paragraph

The inference results from the base model on arXiv dataset indicate a lack of improvement

across various examples, with certain instances yielding no summary generation at all, while

others produce summaries that are incoherent or nonsensical. This maybe be due to how
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the input data is being preprocessed and inputted for inference. Sometimes the inclusion of

digits and special characters significantly contributes to the lack of coherence in the content.

The instruction-tuning process on arXiv dataset was configured with the following training

arguments:

• num_train_epochs: 2

• per_device_train_batch_size: 6 if using flash attention, otherwise 2

• gradient_accumulation_steps: 2

• gradient_checkpointing: True

• optim: “paged_adamw_32bit”

• logging_steps: 10

• save_strategy: “epoch”

• learning_rate: 3e-5

• fp16: True

• max_grad_norm: 0.3

• warmup_ratio: 0.03

• lr_scheduler_type: “constant”

The decision to limit the model training to two epochs was primarily influenced by resource

constraints. Challenges with the Endeavour cluster necessitated the use of the ARC system,

which imposes a user restriction of 48 hours for access to two GPUs. Given that a single
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epoch could take upwards of 10 hours, depending on the dataset size, restricting the process

to two epochs was a pragmatic choice.

In terms of hyperparameter tuning, attempts to increase the training batch size were impeded

by CUDA Out of Memory errors, indicating a need for optimization within the constraints

of available memory. The exploration of learning rates ranged from 10−3 to 10−5. Notably,

higher learning rates often led to suboptimal model training; in some cases, they even resulted

in a significant increase in training loss. Although we experimented with a linear learning

rate scheduler, it did not yield any noticeable improvements in the model’s performance.

Table 5.6 presents the key performance metrics upon the completion of the training phase.

Metric Value
Training Runtime (s) 25,992.30
Training Samples per Second 0.347
Training Steps per Second 0.087
Training Loss 2.4734
Epoch 2

Table 5.6: Training performance metrics

An article was chosen to summarize using LLaMa that compares face-to-face social interac-

tions at large-scale real-world scenarios to understand epidemic spread.

Figures 5.8 and 5.9 show the generated summary and the ground truth summary respectively

for a comparison of the model’s summarization capabilities.

Figure 5.8: Summary generated by LLaMA 2 7B
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Figure 5.9: Ground truth summary (abstract) for LLaMA 2 7B

As part of our evaluation process, we measured the quality of these generated summaries

using the ROUGE score. It works by comparing an automatically produced summary or

translation against a set of reference summaries (typically human-generated).

The ROUGE score of Figure 5.8 is described in Table 5.7:

Metric Precision Recall F-measure
ROUGE-1 0.5260 0.5449 0.5353
ROUGE-2 0.1570 0.1627 0.1598
ROUGE-L 0.2601 0.2695 0.2647

Table 5.7: ROUGE scores for summary evaluation

This fine-tuned summarization model was used to generate summaries for some chapter text

from the segmented ETDs. Figure 5.10 is an example of a summary that performed well.

Figure 5.10: Generated summary example where LLaMA 2-7B performed well

This summary has specific terms like “pilotin”, “pilin subunits” and “hexameric” which

correctly identifies the specific terms present in the chapter, indicating that it is both clear

and concise. The summary appears accurate within the context given, correctly identifying

pilotin’s function and its unique characteristic among bacterial motors. The text has a logical
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flow, starting with the general role of pilotin and moving towards its specific function and

significance.

Figure 5.11 is an example of a summary where the model did not perform well.

Figure 5.11: Generated summary example where LLaMA 2-7B did not performed well

This summary is quite lengthy and repetitive, which is not ideal for a summary. It repeats

several points, particularly about the forces acting on the robot and the importance of

friction. While the text provides detailed technical information, it might be overwhelming

or confusing for someone not familiar with the subject matter. It lacks a clear introduction

and conclusion, making it difficult to understand the main points at a glance. The text

seems to focus on specific aspects of the robot’s design, particularly related to its movement

and interaction with the environment. However, it doesn’t provide a broader context or

overview of the robot’s purpose or capabilities, which would be important in a summary.

The structure is repetitive and lacks clear organization.

Based on the outcomes observed from the model, we can infer that the training data does

not adequately represent the diversity of disciplines found in the segmented chapter from
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the ETDs. This inadequacy is evident in the model’s limited ability to capture the diversity

and complexity inherent in the language and technical content. As a result, the model

struggles to generate coherent and varied text. This issue could be attributed to insufficient

training, particularly in the context of understanding and replicating the nuanced structure

of technical content.

Furthermore, there are indications of the model overfitting the training data. This is ap-

parent in its tendency to replicate specific patterns or phrases excessively, suggesting a lack

of generalizability in its learning. It’s also important to note the model’s varying perfor-

mance based on the length of the texts. For instance, in the case referenced as Figure 5.10,

where the context length was under 4096 tokens, LLaMA 2 demonstrated the ability to

provide concise summaries. However, for longer texts, as in Figure 5.11 where the context

exceeded 4096 tokens, the model’s limitations became evident, as it struggled to generate

concise summaries. This observation highlights a critical boundary in LLaMA’s operational

capacity, emphasizing the need for careful consideration of context length in its application.

Additionally, it’s crucial to emphasize the importance of choosing the appropriate level of

repetition penalty when generating summaries. This careful selection is key to ensuring that

the summaries are not only accurate but also retain the essential elements of the original

text without unnecessary redundancy. This balance is essential for maintaining the clarity

and effectiveness of the summarized content.

In the preprocessing phase of the experiment with the combined arXiv and BookSum dataset,

A choice was made to retain the functions remove_special_characters_and_digits and clean_-

general_text(text). This approach was deliberate and aimed at allowing the model to in-

corporate and learn from these elements in the data, with the intent that they would be

reflected in the generated summaries. All other parameters and prompts were maintained

consistent with those used in the instruction tuning of the arXiv dataset. However, this

40



decision influenced the quality of the text used for instruction-tuning. As a result, when

applying instruction-tuning to LLaMA-2-7B and LLaMA-2-13B models with this dataset,

the quality of the produced summaries, as shown in Figure 5.12, was suboptimal. This

outcome highlights the critical role of thorough preprocessing in enhancing the quality of

input data, thereby ensuring better performance of the model in generating high-quality

summaries. The issues observed in Figure 5.12, such as the inclusion of random characters,

incomplete phrases, and a mixture of languages, suggest that the model’s instruction-tuning

was compromised by the quality of the input data.

Figure 5.12: Summary generated by instruction-tuned LLaMA 2 13B
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5.4.2 Classification using LLaMA 2-7B-hf

Two classification instruction-tuning experiments were conducted: one using the oversampled

dataset to balance class representation, and a second utilizing an undersampled dataset to

achieve a similar objective. Instruction-tuning of the 'meta-llama/Llama-2-7b-hf' model

was done on the oversampled dataset. The 'meta-llama/Llama-2-13b-hf' was used for

instruction-tuning on the undersampled dataset. This instruction-tuning aimed to adapt the

model’s capabilities to our specific task. This process involved adjusting the model to better

understand and classify data according to predefined categories. The instruction-tuning

process for the oversampled dataset was configured with the following training arguments:

• num_train_epochs: 1

• per_device_train_batch_size: 6 if using flash attention, otherwise 1

• gradient_accumulation_steps: 4

• gradient_checkpointing: True

• optim: “paged_adamw_32bit”

• logging_steps: 1

• save_strategy: “epoch”

• learning_rate: 2e-4

• fp16: True

• max_grad_norm: 0.3

• warmup_ratio: 0.03
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• lr_scheduler_type: “linear”

As our dataset was huge, with 191,938 data points, training the model took a long time.

Just running it for one epoch took over 30 hours. To manage this, we decided to stick with

one epoch to save time and computational resources.

The model’s performance was evaluated using key metrics shown in Table 5.8.

Metric Value (%)
Accuracy 48.31
Precision 68.74
Recall 48.31
F1 Score 52.85

Table 5.8: LLaMA 2-7B evaluation performance metrics

Figure 5.13 represents an example of an article incorrectly categorized as ‘Education’.

Figure 5.13: Example of an article incorrectly categorized as ‘Education’.

Figure 5.14 represents an example of an article correctly categorized as ‘Fine and Performing

Arts’.
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Figure 5.14: Example of an article correctly categorized as ‘Fine and Performing Arts’.

The instruction-tuning process for the undersampled dataset was configured with the follow-

ing training arguments:

• num_train_epochs: 3

• per_device_train_batch_size: 6 if using flash attention, otherwise 1

• gradient_accumulation_steps: 4

• gradient_checkpointing: True

• optim: “paged_adamw_32bit”

• logging_steps: 1

• save_strategy: “epoch”

• learning_rate: 2e-4

• fp16: True

• max_grad_norm: 0.3

• warmup_ratio: 0.03
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• lr_scheduler_type: “constant”

We trained the model for three epochs on a dataset with 3,572 data points because it was

smaller and could benefit from more training. However, for a larger dataset of 191,938 points,

we ran it for just one epoch due to the significant increase in data size, making each epoch

more computationally demanding. The model’s performance was evaluated using metrics

shown in Table 5.9.

Metric Value
Accuracy 0.5
Precision 0.54
Recall 0.5
F1 Score 0.46

Table 5.9: LLaMA 2-13B evaluation performance metrics

The substantially larger size of the oversampled dataset (191,938 data points) compared to

the undersampled one (3,572 data points) played a slight role in enhancing model perfor-

mance [23]. We adjusted the dataset because some categories, like ‘Behavioral Sciences’ and

‘Philosophy and Religion’, had very few instances (around 200), while ‘Engineering’ had a lot

(10,430 instances). To make things fair, we increased the instances for the smaller categories

(oversampling) proportionally based on the count of ‘Engineering’. Conversely, we reduced

instances for categories with around 200 counts (undersampling) to strike a balance. This

ensured our dataset reflected a more even distribution for training the model effectively. A

larger dataset not only offers a richer array of information but also fosters a more varied

learning environment. This diversity is instrumental in enabling the model to discern and

adapt to intricate patterns, a factor likely contributing to the improved results observed with

oversampling.

Overall, the enhanced performance with the oversampled dataset can be attributed to its size
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and diversity, enabling more comprehensive learning and pattern recognition by the model,

as opposed to the limited scope presented by the smaller, undersampled dataset.
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5.5 Tasks and Timeline

Phase 1: Data exploration and execution of existing models by IR1

• Data Source Identification. Date: 08/29/2023. Status: Complete.

• Executing previous summarization and classification models. Date: 09/10/2023. Sta-

tus: Complete.

• Getting access to LLaMA 2 and fetching model weights. Date: 09/18/2023. Status:

Complete.

Phase 2: LLM POC by IR2

• Building the chapter-level summarization and classification workflows, integrating to-

kenization and embeddings for LLaMA 2. Date: 10/26/2023. Status: Complete.

Phase 3: Comparative analysis IR3

• Performing rigorous integration testing to validate data flow and model performance.

Date: 11/15/2023. Status: Complete.

• Comparing LLaMA 2 model performance with the established baselines. Date: 11/18/2023.

Status: Complete.

Phase 4: Model refinement, finalization and documentation by course end

• Refining and finalizing best-performing models. Date: 11/24/2023. Status: Complete.

• Creating guides and manuals to aid future users and maintainers. Date: 11/28/2023.

Status: Complete.
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Chapter 6

User Manual

In this chapter, we provide instructions on setting up and executing our classification

pipeline.

6.1 Running Inference on ETD Title-Abstracts

A new user needs access to the Team 4 container cluster:

https://team4-container-1.endeavour.cs.vt.edu

After accessing the Team 4 container, a user can get an inference on ETD title abstracts

to classify them in one of the subject categories. To do this, the user needs to open a new

terminal on the Team 4 container and change the directory to this path:

/mnt/camelot/Team4/fall23/classification/cs5604-fall23-team4-classification

The following steps describe the processes of using the model for inference:

1. First of all, the .env file present in the directory should be updated for the appropriate

API endpoint URLs for the etd-metadata API service developed by Team 5.

2. The offset and limit parameters should be assigned values as per requirement. The
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offset refers to the starting point from which to begin retrieving ETD IDs, while the

limit parameter specifies the maximum number of ETD IDs to return.

3. After setting the environment variables, the user can execute the main.py file and get

classification tags for each ETD specified by offset and limit. The command to execute

this file is:

python main.py

More detailed information about the code and the developer manual is present in Chapter

7.
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Chapter 7

Developer Manual

In this chapter, we provide instructions on setting up, developing, and contributing to our

current services and pipelines. We begin by discussing the installation process and then

proceed to explain how to execute the code and train models for each of the services.

7.1 Access

A new user needs access to the Team 4 container cluster:

https://team4-container-1.endeavour.cs.vt.edu

7.2 Summarization

7.2.1 Installation

The libraries needed to run the code are mentioned in the requirements.txt file. Install the

libraries needed to run the code:

1. Navigate to “camelot/Team4/fall23/Summarization/cs5604-f22-team-4”

2. Run “pip install -r requirements.txt” in your shell
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The following libraries would be installed:

nltk, pdfplumber, PyPDF2, python-dotenv, sumy, torch, transformers, Werkzeug

Following is the description of each file present in this directory:

• main.py: Entry point for the inference code.

• summarization.py: Responsible for executing the actual inference.

• utils.py: Handles the read and write functionality.

• requirements.txt: Describes the required libraries along with their version necessary

to run the inference code.

7.2.2 Execution

To run the summarization service, access the team-4-container-1 and navigate to

camelot/Team4/fall23/Summarization/cs5604-f22-team-4

1. Add required parameters (model, summary max length, etc.) in the internal con-

fig.json. To run different models like TextRank, LexRank, LSA, and BigBirdPegasus

update them under “summarizer model” field in internal-config.json.

2. Run » python summarization.py –input-path <path to input folder> –output-path

<output folder> on terminal.

3. - input-path: the data on which the model should run.

4. - output-path: location where the output file should be generated.

5. After running the above command one can see the summary generated and evaluation

metrics.
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7.3 SciBERT Classification

7.3.1 Code Repository

The code files for inference and the model fine-tuning are hosted on the GitLab server

provided by Virginia Tech: https://code.vt.edu/cs5604-team4/cs5604-fall23-team4-

classification.git

7.3.2 Code Structure

The README file presents an overview of the code files and helpful links. The code files

are divided into two sections:

1. Code for inference:

Following is the description of each file used for inference:

• main.py: Entry point for the inference code.

• API_calls.py: Hosts all the API call logic.

• classifier.py: Responsible for executing the actual inference.

• .env: Stores the configurable parameters like API endpoint URLs and auth keys.

• PyTorch checkpoint file (‘.pt’): This file has the saved state of the model after

fine-tuning and is created after all the epochs in the training phase are complete.

• requirements.txt: Describes the required libraries along with their version nec-

essary to run the inference code.

The steps to run the inference code are explained in Section 7.3.3.
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2. Code for fine-tuning

The code to fine-tune the SciBERT model is present in the SciBERT_based_TitleAbstract_-

classifier.ipynb file. Following is the description of each file needed to fine-tune

the SciBERT model:

• SciBERT_based_TitleAbstract_classifier.ipynb: This is a Python notebook

that is used for training the model and storing checkpoints.

• Classification_training.csv: This is the dataset file that will be used while

training the model.

7.3.3 Getting Inference from the Classifier

After fine-tuning the SciBERT model on the Classification_training.csv dataset, a

PyTorch model file with the extension ‘.pt’ should be created. This file has the saved model

state that is used for inference.

Before executing the inference code, the ‘.env’ file should be updated to use the latest API

endpoint URLs and other parameters like limit and offset. In this file, offset refers to the

(zero-based) offset of the first item returned from the collection of 500k ETD IDs, and the

limit is the number of ETD IDs that should be fetched. After setting up the environment

variables, the inference pipeline can be started by executing the main.py file. The execution

flow is described below at a high level:

1. The get_etd_titles_abstracts_df() method from API_calls.py file will invoke

the API endpoints to fetch ETD IDs that are described by offset and limit parameters

and will return a Pandas data frame with columns ‘ETD_ID’ and ‘Title_Abstract’.

The ‘Title_Abstract’ column will have concatenated titles and abstracts for each ETD

ID.
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2. The data frame will then be used to create a dataloader instance which will be passed

to the classifier.py file to get inference on title-abstract pairs.

3. In the classifier.py file, the model class is defined and the PyTorch model file is

loaded to configure the model state.

4. After the model has been initialized, the dataset is fed to the model in batches to get

the top 2 probability values for each title-abstract pair.

5. The result is sent back to main.py file for further processing.

7.4 Language Models

7.4.1 Installation

The libraries needed to run the code are mentioned in the requirements.txt file. Install the

libraries needed to run the code:

1. Navigate to “camelot/Team4/fall23/llama2”.

2. Run “conda env create -f environment.yml” to install the environment necessary to

instruction-tune LLaMA 2.

3. The fine-tuning code for summarization and classification is named as Llama_sum-

marization.ipynb and LLaMa_classification.ipynb, respectively. The inference code is

included there as well.

4. The weight files will be in the main directory after fine-tuning.
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Chapter 8

Future Work

1. System Integration and Streamlining:

• Introduce Kafka messaging to streamline the classification and summarization

pipelines.

• Integrate the models with the rest of the information retrieval system developed

by the class by connecting them to the database through API endpoints developed

by Team 5.

• Running inference on 500k ETD title-abstract pairs and chapters to get classifi-

cation tags and summaries.

• Running inference on the summaries generated by the summarization model to

get classification tags.

2. Model-Specific Improvements:

• BigBirdPegasus: Further enhance accuracy by refining preprocessing techniques

and exploring advanced tokenization methods.

• Long Former Model: Utilize the model more effectively through better fine-tuning

to enhance the accuracy and fluency of generated summaries.

• LLaMA 2 Model: Conduct additional experiments on the input text structure

during fine-tuning, and consider running it for a larger number of epochs.
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3. Performance Enhancement:

• Increase dataset size to improve overall model performance. Conduct extensive

model tuning to achieve optimal results.

4. Development of Evaluation Metrics:

• Refine and develop evaluation metrics that offer a comprehensive assessment of

summarization quality.

• Explore metrics such as coherence, informativeness, and coverage in addition to

traditional ROUGE scores.
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