
A CFD/CSD INTERACTION METHODOLOGY FOR
AIRCRAFT WINGS

By

Manoj K. Bhardwaj

a dissertation submitted to the faculty of

virginia polytechnic institute and state university

in partial fulfillment of the requirements for the degree of

doctor of philosophy

in

Aerospace Engineering

Rakesh K. Kapania, Chairman

Eric R. Johnson William H. Mason

Bernard Grossman Liviu Librescu

October 1997

Blacksburg, Virginia

A CFD/CSD INTERACTION METHODOLOGY FOR AIRCRAFT WINGS

by

Manoj K. Bhardwaj

Committee Chairman: Rakesh K. Kapania

Aerospace Engineering

(ABSTRACT)

With advanced subsonic transports and military aircraft operating in the tran-

sonic regime, it is becoming important to determine the effects of the coupling between

aerodynamic loads and elastic forces. Since aeroelastic effects can contribute signifi-

cantly to the design of these aircraft, there is a strong need in the aerospace industry

to predict these aero-structure interactions computationally.

To perform static aeroelastic analysis in the transonic regime, high fidelity compu-

tational fluid dynamics (CFD) analysis tools must be used in conjunction with high

fidelity computational structural dynamics (CSD) analysis tools due to the nonlinear

behavior of the aerodynamics in the transonic regime. There is also a need to be able

to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the

transonic regime. Because source codes are not always available, it is necessary to

couple the CFD and CSD codes without alteration of the source codes. In this study,

an aeroelastic coupling procedure is developed which will perform static aeroelastic

analysis using any CFD and CSD code with little code integration. The aeroelastic

coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-

house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic

Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling pro-

cedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite

element wing-box code (developed as a part of this research). The results obtained

from the present study are compared with those available from an experimental study

conducted at NASA Langley Research Center and a study conducted at NASA Ames

Research Center using ENSAERO and modal superposition. The results compare

well with experimental data.

Parallel computing power is used to investigate parallel static aeroelastic analysis

because obtaining an aeroelastic solution using CFD/CSD methods is computation-

ally intensive. A parallel finite element wing-box code is developed and coupled

with an existing parallel Euler code to perform static aeroelastic analysis. A typical

wing-body configuration is used to investigate the applicability of parallel comput-

ing to this analysis. Performance of the parallel aeroelastic analysis is shown to be

poor; however with advances being made in the arena of parallel computing, there is

definitely a need to continue research in this area.

Acknowledgements

A variety of people have contributed to the work in this study. Mr. Vic Spain

(Lockheed Martin) showed great patience in helping me in my understanding of the

material. The help of Dr. Guru Guruswamy from NASA Ames Research Center and

Dr. Chansup Byun (MCAT Institute) was invaluable. My friend, Mehrdad Farhang-

nia, gave great support at the time most needed. In addition, Mr. Rudy Yurkovich

and Mr. Eric Reichenbach from McDonnell Douglas Aerospace-East contributed sig-

nificantly to the direction of this research. I would also like to thank Drs. Grossman,

Mason, Librescu, and Johnson for their technical guidance. And finally, I would like

to thank my advisor and committee chairman, Dr. Kapania. His guidance helped me

in realizing my goals. Without him, none of this would have been possible.

iv

Dedications

I have been very fortunate to have some of the most loving, passionate, and supporting

people as my family. My sister, Minni Powell, and my brother, Jimmy Powell, smiled

at every accomplishment, encouraged me at every turn, and supported me in every

decision. Without them, I’d have been studying something else, somewhere else. My

uncle, Raghu Bhardwaj, and my aunt, Sushma Bhardwaj have also been supportive

in my goals. They too deserve my thanks. My cousins, Alok and Anuj, have been

very interesting to talk to. They have been great sources of amusement and laughter.

Urvashi, my wife, has given meaning to my life. With her love and heavenly smile, I

now know why I have worked so hard. And finally the two most important people in

my life, my father, Brahm Tej Bhardwaj, and my mother, Chander Kanta Bhardwaj,

deserve more than just the gratitude I give them. Thanking them is just the beginning.

They have worked and worked so I can have a better life. They didn’t let me get lazy

in achieving minor milestones. They have supported, loved, and encouraged me to

bring out my best; it worked. I hope to be able to return to them what they have

given me. My parents are the base of my heart and soul. I am truly lucky.

v

Contents

Abstract ii

Acknowledgements iv

Dedications v

1 Literature Review 1

1.1 Aeroelasticity . 1

1.2 Previous CFD/CSD work . 4

1.3 Interface Mappings . 7

1.3.1 Finite-Plate Spline . 8

1.3.2 Multiquadric-Biharmonic . 9

1.3.3 Thin-Plate Spline . 9

1.3.4 Inverse Isoparametric Mapping 9

1.3.5 Non-Uniform B-Splines . 10

1.3.6 Infinite-Plate Spline . 10

1.4 Convergence of the Aeroelastic Solution 11

1.4.1 Exterior Grid Deformation . 12

1.5 Parallel Computing . 13

2 Aeroelastic Coupling Procedure 16

3 Analysis of Aircraft Wings 29

3.1 F/A-18 Stabilator . 29

vi

3.1.1 CFD and CSD Modeling . 29

3.1.2 Aeroelastic Coupling Procedure 30

3.2 Aeroelastic Research Wing (ARW-2) 32

3.2.1 CFD and CSD Modeling . 32

3.2.2 Aeroelastic Coupling Procedure 33

4 Results 46

4.1 F/A-18 Stabilator . 46

4.2 Aeroelastic Research Wing (ARW-2) 47

4.2.1 Validation of the ARW-2 Wing Finite Element Model 48

4.2.2 Rigid Steady State Solution 48

5 Parallel Aeroelastic Analysis 80

5.1 Governing Aerodynamic Equations 80

5.2 Aeroelastic Equations of Motion . 81

5.2.1 Wing-box Model . 81

5.3 Parallelization of the Aeroelastic Equations 82

5.4 Structural Analysis . 83

5.4.1 A Square Panel . 84

5.4.2 A Cantilevered Beam . 84

5.4.3 Box Beam . 84

5.5 Aeroelastic Analysis . 85

5.5.1 Aerodynamic Modeling . 85

5.5.2 Structural Modeling . 85

5.5.3 Typical Wing-body Configuration 86

5.6 Structural Analysis Results . 86

5.6.1 A Square Panel . 86

5.6.2 Cantilevered Beam . 87

5.6.3 Box Beam . 88

5.7 Aeroelastic Analysis Results . 88

5.7.1 Typical Wing-body Configuration 88

5.8 Conclusions . 90

vii

6 Conclusions 113

Bibliography 115

Appendices 122

A Finite Element Wing-box Source Code 122

B Aeroelastic Coupling Procedure Source Code 188

Vita 198

viii

List of Figures

2.1 Diagram of 2-D Airfoil . 25

2.2 Convergence of Solution for 2-D Airfoil 26

2.3 Mapping of a CFD Grid Point to a CSD Triangle 27

2.4 Area Coordinates of a CFD Grid Point within a CSD Triangle 28

3.1 CFD Grid for the F/A-18 Stabilator 35

3.2 Finite Element Model of the F/A-18 Stabilator 36

3.3 Mapping of CFD Points to Structural Triangles for the F/A-18 Stabilator 37

3.4 Spline Points Used for Mapping for F/A-18 Stabilator 38

3.5 CFD Surface Grid of the F/A-18 Stabilator 39

3.6 Cosine Spacing Function Used to Deform Exterior Grid 40

3.7 k = Constant Face of the CFD Grid of the F/A-18 Stabilator 41

3.8 CFD Grid of the ARW-2 Wing . 42

3.9 Finite Element Model of the ARW-2 Wing 43

3.10 Mapping of Structural Triangles to CFD Points for the ARW-2 Wing 44

3.11 Spline Points Used in Aeroelastic Coupling of ARW-2 Wing 45

4.1 Convergence of the Wing Tip of the F/A-18 Stabilator 51

4.2 Convergence of the Trailing Edge Tip of the F/A-18 Stabilator 52

4.3 Final Converged and Initial Undeflected F/A-18 Stabilator 53

4.4 Cp Variation on the Upper Surface of the Rigid F/A-18 Stabilator . . 54

4.5 Cp Variation on the Upper Surface of the Flexible F/A-18 Stabilator . 55

4.6 Mach Number Variation on the Upper Surface of the Rigid F/A-18

Stabilator . 56

ix

4.7 Mach Number Variation on the Upper Surface of the Flexible F/A-18

Stabilator . 57

4.8 Displacement of the Front Spar of the Composite Skin and the Isotropic

ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at the Tip 58

4.9 Displacement of the Rear Spar of the Composite Skin and the Isotropic

ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at the Tip 59

4.10 Displacement of the Auxiliary Spar of the Composite Skin and the

Isotropic ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at

the Tip . 60

4.11 Displacement of the Front Spar of the Composite Skin and the Isotropic

ARW-2 Wing Subjected to a Twisting Load Applied at the Tip . . . 61

4.12 Displacement of the Rear Spar of the Composite Skin and the Isotropic

ARW-2 Wing Subjected to a Twisting Load Applied at the Tip . . . 62

4.13 Twisting of the Composite Skin and the Isotropic ARW-2 Wing Sub-

jected to a Twisting Load Applied at the Tip 63

4.14 L2 Norm of the Residual of the Navier-Stokes Equations for the Rigid

Steady State Solution at α = 1 deg 64

4.15 L2 Norm of the Residual of the Navier-Stokes Equations for the Rigid

Steady State Solution at α = 2 deg 65

4.16 Comparison of Cp Variation for Rigid Steady State Solution at the

70.7% Semi-span Location for α = 1 deg 66

4.17 L2 Norm of the Residual of the Navier-Stokes Equations for the Flexible

Steady State Solution at α = 1 deg 67

4.18 L2 Norm of the Residual of the Navier-Stokes Equations for the Flexible

Steady State Solution at α = 2 deg 68

4.19 Comparison of Cp Variation of Experimental Data Versus Computa-

tional Results at the 70.7% Semi-span Location for α = 1 deg 69

4.20 Section Lift Coefficient Variation Along Span for α = 1 deg 70

4.21 Section Lift Coefficient Variation Along Span for α = 2 deg 71

4.22 Cp Variation on the Upper Surface of the Rigid and Flexible ARW-2

Wing, at α = 1 deg . 72

x

4.23 Cp Variation on the Upper Surface of the Rigid and Flexible ARW-2

Wing, at α = 2 deg . 73

4.24 Cp Variation for α = 2 deg at the 70.7% Semi-span Location 74

4.25 Comparison of the Experimental and Computational Front Spar De-

flections of the ARW-2 Wing at α = 1 deg 75

4.26 Comparison of the Experimental and Computational Rear Spar De-

flections of the ARW-2 Wing at α = 1 deg 76

4.27 Comparison of the Experimental and Computational Front Spar De-

flections of the ARW-2 Wing at α = 2 deg 77

4.28 Comparison of the Experimental and Computational Rear Spar De-

flections of the ARW-2 Wing at α = 2 deg 78

4.29 Comparison of the Rear Spar Deflections Using Modal Analysis Versus

Finite Element Analysis of the ARW-2 Wing at α = 1 deg 79

5.1 Allman’s Triangular Element . 91

5.2 Schematic of the Solution Procedure and the Coupling between Fluid

and Structure Domains . 92

5.3 Uni-Partitioning Scheme of the Fluid Domain 93

5.4 Discretization of a Square Panel with Linearly Varying Edge Normal

Stress . 94

5.5 Discretization of a Cantilever Beam with Tip Load 95

5.6 A Box Beam Subjected to Axial Loads 96

5.7 Aerodynamic Surface Grid for a Typical Wing-body Configuration . . 97

5.8 Aerodynamic Surface Grid of Wing 98

5.9 Top View of the Structural Discretization of the Wing 99

5.10 Structural Modeling of the Entire Wing 100

5.11 Structural Discretization of the Spars and Ribs of the Wing 101

5.12 Stress Contours Due to a Tip Load on the Cantilevered Beam 102

5.13 Wing Leading Edge Tip History Versus Iteration Step 103

5.14 L2 Norm of the Residual of the Energy Equation 104

5.15 Comparison of the Stresses in the Axial Bars of Box Beam 105

xi

5.16 Cp Variation on the Upper Surface of a Rigid Wing 106

5.17 Cp Variation on the Upper Surface of a Flexible Wing 107

5.18 Initial Undeflected and Final Converged Wing-box Tip Section 108

5.19 Initial Undeflected and Final Converged Wing-box Leading Edge (Front

Spar) . 109

5.20 Bending Stress Variation on the Upper Surface of a Flexible Wing (psi) 110

5.21 CPU Time for the Execution of the Various Parts of the Finite Element

Wing-box Code . 111

xii

List of Tables

5.1 Comparison of Allman’s Triangular Element, Constant Strain Triangle,

and Linear Strain Triangle for Analysis of Cantilevered Beam 112

xiii

Chapter 1

Literature Review

1.1 Aeroelasticity

Aeroelasticity is defined as phenomena which exhibit appreciable reciprocal interaction

(static or dynamic) between aerodynamic forces and the deformations induced thereby

in the structure of a flying vehicle, its control mechanisms, or its propulsion system [1].

Aeroelastic problems would not exist if airplanes were perfectly rigid [2]. The primary

focus of this research is static aeroelasticity, i.e. the interactions between elastic and

aerodynamic forces. Control system reversal, control surface effectiveness, divergence,

and load distribution are some of the areas in which static aeroelasitcity plays an

important role.

Traditionally, aircraft designers have viewed aeroelastic effects as undesirable. To

avoid aeroelastic phenomena, the flexibility of the wing was decreased, but this added

weight to the structure. Recently, there has been an increased interest in taking ad-

vantage of these aeroelastic effects for roll control, load alleviation, and drag reduction

while reducing the wing weight as seen in the Active Flexible Wing (AFW) [3,4] and

the Active Aeroelastic Wing (AAW) [5] programs.

In the AFW program, large amounts of aeroelastic twist in fighter aircraft type

wings are permitted to increase manuverability. Roll performance is degraded as a

1

CHAPTER 1. LITERATURE REVIEW 2

direct result in the form of aileron reversal over a large portion of the flight enve-

lope. The problem is alleviated using multiple leading and trailing edge wing control

surfaces in various combinations. The AAW program also examines multiple control

surface blending in increasing roll performance, especially in the transonic regime.

Miller [6] predicted that savings of at least 15 percent of take-off gross weight could be

achieved for an advanced fighter configuration by taking advantage of fluid-structure

interactions.

In addition, the accurate prediction of wind tunnel model static aeroelastic de-

formations is becoming increasingly important for transonic testing of transport air-

craft [7]. A computational fluid dynamics (CFD) code in conjunction with a computa-

tional structural dynamics (CSD) code is used to predict the aeroelastic deformations

under given flight conditions for a 1-g wing. The deformations are “subtracted” from

the original 1-g wing to obtain the “jig” wing model. The jig wing will deform to the

designed 1-g wing under the given flight conditions. Experimental data are obtained

in wind tunnel tests using the jig wing. Thus, the correlation between experimen-

tal and computational data is improved since aeroelastic deformations are taken into

account.

Whether viewed as undesirable or desirable, it is becoming more important to

predict static aeroelastic behavior in the transonic regime of transport and fighter

aircraft. Advanced CFD tools are necessary to capture the nonlinear behavior of the

aerodynamics in the transonic regime (shocks, vortices, separation). In transonic flow,

the nonlinear nature of the aerodynamics makes load prediction difficult. The loads

an airfoil experiences are dependent of the accurate prediction of the shock waves

[8]. Numerous studies have also shown the need for using advanced CSD analysis

tools, Ref. [7,9–15], for obtaining the structural response of the aircraft in aeroelastic

solutions. Hooker et al. [7] stated the need for a complete definition of all the wind

tunnel model cut-outs when performing static aeroelastic analyses which significantly

improved the correlation between CFD predicted and wind tunnel measured wing

surface pressures. The finite element method (FEM), which is fundamentally based on

discretization, has proven to be computationally efficient to solve aerospace structures

problems [13].

CHAPTER 1. LITERATURE REVIEW 3

The coupling of high fidelity CFD and CSD tools to solve aeroelastic problems has

received interest only in the past few years. Large amounts of computational power is

required to make the use of such tools feasible. However, continuous improvements in

computer speed, memory, and architecture have made solving these computationally

intensive problems more cost effective.

Both uncoupled and coupled methods for solving these nonlinear systems of equa-

tions [16] exist. Aeroelastic problems of aerospace vehicles are often dominated by

flow nonlinearities and at times by large structural deformations. Therefore, coupled

approaches are necessary to solve such problems accurately [9].

Coupled approaches for solving aeroelastic problems are usually categorized in

two ways: fully or loosely coupled. The loosely coupled approaches can be integrated

or modular. Integrated, loosely coupled methods alter the source code of either the

CSD or CFD analysis tool by including the coupling schemes in either code. Though

the codes are integrated, the CFD and CSD equations are not being altered and are

solved as one system, but remain loosely coupled. Modular, loosely coupled methods

do not integrate the coupling schemes into either the CFD or CSD code. This allows

the use of a variety of CFD/CSD codes.

Fully or strongly (single domain) coupled approaches require the solution of the

CFD and CSD equations simultaneously which necessitates the reformulation of the

equations of each discipline [17]. The numerical matrices associated with the struc-

tures are orders of magnitude stiffer than those associated with fluids. Thus, it is

numerically inefficient or even impossible to solve both systems using a monolithic

numerical scheme [9]. Recently, there have been renewed attempts to solve both fluids

and structures in a single computational domain [18, 19]. However, they have been

limited to simple two-dimensional problems and have not proven to be better than

the loosely coupled approach. The drop in convergence rate from the rigid case to

the flexible case in Ref. [19] indicates another weakness of a fully coupled approach.

Guruswamy and Yang [16] demonstrated a loosely coupled approach to aeroelastic-

ity. The fluids and structures were modeled independently and exchanged boundary

information to obtain aeroelastic solutions. The fluids were modeled using finite-

difference based transonic small perturbation (TSP) equations. The structures were

CHAPTER 1. LITERATURE REVIEW 4

modeled using finite element equations. The two disciplines were used to solve aeroe-

lastic problems of two-dimensional airfoils. This loosely coupled or domain decom-

position approach was shown to be efficient and accurate. This approach has been

extended to three-dimensional problems and is incorporated into advanced aeroelastic

codes as XTRAN3S [20], ATRAN3S [21], and CAP-TSD [22]. Guruswamy [23, 24]

also demonstrated the same technique by modeling fluids with Euler/Navier-Stokes

equations on moving grids. Matching the CFD grid displacements with the CSD or

finite element model response maintains the accuracy of this loosely coupled approach.

The CFD and CSD codes are usually integrated using this loosely coupled ap-

proach. The two disciplines exchange information at the boundaries in an efficient

manner since the codes have been tightly integrated. Several papers have presented

techniques for calculating aeroelastic solutions using this approach.

1.2 Previous CFD/CSD work

Chipman et al. [25] obtained transonic loads on a flexible supercritical transport

wing. The transonic aerodynamics were modeled using GAC/AMES [26] which uses

a finite-difference formulation of the modified small perturbation equation. The wing

is structurally discretized using a beam model. The fluid and structure models are

coupled loosely. The solution is obtained in an iterative scheme using underrelaxation.

However, shock location and separation were not predicted accurately. More accurate

aerodynamic modeling is required to obtain the transonic loads.

Batina et al. [27,28] obtained transonic aeroelastic solutions coupling an unstruc-

tured grid Euler method with modal structures. The CFD and CSD equations were

loosely coupled, but were tightly integrated into a CFD code, CFL3D. Mode shapes

were used to obtain the structural response which reduces the number of equations

to be solved. The coupling of the CFD and CSD equations is simpler since the mode

shapes can be interpolated to the CFD grid. Hence, the forces are obtained at CFD

grid points on the wing and do not need to be mapped to the CSD nodes. The

structural system of equations is solved to obtain the generalized coordinates at the

CHAPTER 1. LITERATURE REVIEW 5

CFD grid points. The disadvantages of using modal analysis [29] (mode superpo-

sition method) is the assumption that the wing deformations can be described by

a linear combination of a finite set of modes. The increasing use of composite ma-

terials for aeroelastic tailoring and highly sensitive nature of transonic flows makes

the linearization assumption inherent in modal techniques less attractive [11]. And

if the number of modes needs to be increased, then a separate modal identification

technique has to be solved. Conversely, there is no assumption of harmonic motion

when using finite element equations and detailed stresses may be obtained directly

from the solution The storage and CPU time required are increased, but more reliable

results are obtained.

Ref. [27, 28] use unstructured grid technology to obtain the CFD solution. The

time required to obtain steady-state solutions on unstructured grids is two to five

times more expensive than using structured grids with the same number of cells

[30], therefore the CFD codes used in this research obtain the transonic flowfield on

structured grids.

Purcell et al. [31] presented a loosely coupled approach to solving aeroelastic

problems in the transonic regime. Any CFD analysis tool can be coupled with a

particular CSD analysis tool, ELFINI [32], to calculate aeroelastic solutions. The

algorithms which map the displacements and loads between the CFD and CSD codes

are integrated into ELFINI which restricts the use of a variety of CSD codes.

Aerodynamicists have been forced to utilize vortex flow to enhance fighter wing

performance in the transonic regime, leading to localized high loads since only small

portions of the wing are generating the overall lift. To aid in identifying these areas,

Schuster et al. [33] obtained static aeroelastic solutions of fighter aircraft by coupling

Navier-Stokes flow equations with finite element equations. Finite element equations

were used since they tend to give more reliable results than modal analysis. Details

of the mappings required to interpolate displacements and loads were not given in

Ref. [33]. The CFD and CSD codes were loosely coupled and integrated in a single

code, restricting the use of a wide variety of CFD and CSD codes.

Other similar work [7,13,14,34–36] has also attacked the problem of aeroelasticity

by using loosely coupled high fidelity CFD and CSD methods. Often the coupling

CHAPTER 1. LITERATURE REVIEW 6

is integrated, not allowing a wide variety of CFD and CSD codes to be used. The

CSD analysis, in some of this work, is performed using a modal analysis approach;

this makes the exchange of boundary information easier. The loads need only to be

calculated on the CFD grid points. As a direct result, not many algorithms have

been presented for accurate transformation of pressures on the CFD grid to loads

on the CSD nodes. Future work, however, requires the use of detailed finite element

models and the use of direct finite element equations, not modal analyses. Therefore,

an accurate load transformation scheme is needed.

Macmurdy et al. [11] obtained a static aeroelastic solution on an intermediate

complexity wing (ICW) using Euler flow equations (ENSAERO) coupled with finite

element equations. The finite element wing-box was modeled using an Air Force

in-house structural analysis code, ANALYZE [37]. Static aeroelastic solutions were

obtained by loosely coupling ENSAERO with ANALYZE in a modular manner. This

modularity allows a variety of CFD/CSD codes to be used. The twist and leading

edge plunge are obtained from the structural response which is then applied to the

CFD grid. The loads are calculated at the CFD grid points and are transferred to the

CSD nodes using various schemes. The schemes do not transfer the loads accurately

since some of the information is extrapolated. The calculated stresses on the wing

were not accurate since constant strain triangles (CST) were used to model the wing

skin and due to the inaccurate load transfer schemes.

Tzong et al. [10] presented a general method for calculating aero-structure interac-

tions. An interface method based on finite element technology was used to exchange

information between the CFD and CSD codes. The CFD analysis was performed

using OVERFLOW [38] and a Douglas panel code [39]. The CSD response was cal-

culated using a McDonnell Douglas Corporation finite element code. The interface

method maps each CFD grid point to a host finite element. The displacements and

loads are transferred between the CFD grid point and the CSD nodes using the shape

functions of the host finite element. The disadvantage of this approach is that the

shape functions of the finite elements in the model might not be available to the user.

In addition, the necessary degrees of freedom might not be contained in the host fi-

nite element to transfer the boundary information accurately. This interface method

CHAPTER 1. LITERATURE REVIEW 7

has been integrated into the finite element code at Douglas. This again restricts the

user’s ability to use a wide variety of CFD and CSD codes.

Two ways of transferring the pressures on the CFD grid to the CSD nodes are

possible [10]. In the first transfer method, the pressures on the CFD grid are interpo-

lated onto the CSD model and are integrated to obtain the forces on the CSD nodes.

Ref. [10] stated that the inconsistency between the CFD and CSD models makes

this conversion improper. The pressures can be converted to the CSD model, but

the loads may not be integrated accurately since information about the true surface

areas is often not available from the CSD model. In the second method, the forces at

the CFD grid points are calculated by using the CFD grid information and then are

transferred to the CSD nodes. This transfer calculates loads on the CSD nodes more

accurately and is easier to implement. This is the method used in this research.

1.3 Interface Mappings

In this research, static aeroelastic solutions are calculated using a loosely coupled and

modular approach. This allows a wide variety of CFD and CSD codes to be used in

calculating static aeroelastic solutions and does not require the source codes. The

one disadvantage is that the process is not as efficient as an integrated approach.

In the loosely coupled modular approach, boundary information between the CFD

and CSD codes is exchanged through the codes’ native files. Native files are the files

required by the code as input and the files to which the output is written. The forces

are obtained from the output of pressures from the CFD code. A pressure mapping

algorithm transfers the pressures from the CFD grid to the CSD nodes. The CSD code

calculates the response of the structure. The resulting output, the displacements, are

interpolated to the CFD grid using a displacement mapping algorithm. The CFD

code calculates the flow field about this new CFD grid. The procedure is repeated in

an iterative manner until a specified convergence criterion is met.

Two mappings are necessary to obtain static aeroelastic solutions in a loosely

coupled and modular manner. The pressures on the wing CFD grid have to be

transferred to forces on the CSD nodes and the displacements on the CSD nodes

CHAPTER 1. LITERATURE REVIEW 8

have to be interpolated to the CFD grid points on the wing. In this research, the

forces at the CFD grid point are obtained and then transferred to the CSD nodes.

The mapping used is described in chapter /refchapter:mapping.

The mapping of the displacements from the CSD nodes to the CFD grid requires an

interpolation scheme. Smith et al. [40] presented a review of the methodologies used to

do this mapping in interfacing CFD/CSD codes. A significant literature review and an

industry/government survey narrowed the search to six schemes: (i) the Infinite-plate

spline; (ii) Finite-plate spline; (iii) Multiquadric-Biharmonic; (iv) Thin-Plate Spline;

(v) Inverse Isoparametric Mapping; and (vi) Non-Uniform B-Splines; These methods

were analyzed by a series of mathematical test cases and selected applications. The six

schemes were rated based on accuracy, smoothness, diminishing variation, robustness,

extrapolation, CPU memory, and CPU time. Next, brief descriptions of the methods

taken from Ref. [40] are stated.

1.3.1 Finite-Plate Spline

The finite-plate spline (FPS), originally developed by Appa [41], employs uniform

plate elements to represent a given planform. The virtual surface created by these

plate elements is constrained to pass through both the structural and aerodynamic

grid points. The constraints are applied at the element level, and a proper choice

of shape functions are necessary. The shape functions of the elements relate the

displacements at the CSD nodes to the CFD grid points. The structural nodes of

the virtual mesh do not have to coincide with either the CFD or CSD grid, but are

usually a subset of the CSD grid. The FPS has the advantage of accommodating

changes in fluid and structural models easily. The approach conserves the work done

by the aerodynamic forces when obtaining the global node force vector. It is versa-

tile enough to model realistic body geometries because it is finite element based. The

known disadvantages of the FPS are few since the method is new. Using this method,

a mapping matrix, 3m×3n, is generated, where m is the number of aerodynamic grid

points and n is the number of structural nodes. Therefore, large amounts of CPU

CHAPTER 1. LITERATURE REVIEW 9

time and memory are required to generate and store this matrix. This method is rec-

ommended for mainframes or supercomputers with large memory cores. Guruswamy

at. al [13, 14] have used the finite-plate spline with extensions to 3-D, but no other

details were found in literature.

1.3.2 Multiquadric-Biharmonic

The multiquadric-biharmonic (MQ) scheme was developed to perform interpolation of

various topographies. The scheme is used to represent a surface using quadratic basis

functions. The system of equations is biharmonic because they can always be solved.

The MQ method is stable and consistent with respect to a user-defined parameter

which controls the shape of the basis functions. The method produces an infinitely

differentiable function that preserves monotonicity and convexity. This method has

not been applied to aeroelastic computations.

1.3.3 Thin-Plate Spline

The thin-plate spline (TPS) method allows a representation of an irregular surface

by using functions which minimize an energy functional. This method is similar to

the MQ method, but the problem is approached from an engineering or physical rep-

resentation of the surface. This method can be applied to 1-D, 2-D, or 3-D problems

by varying the functional. The 2-D method minimizes bending energy of a thin-plate

which is exactly the same as the infinite-plate spline method. The TPS has been used

in aeroelastic applications, but has been limited to the 2-D method as an infinite-plate

spline.

1.3.4 Inverse Isoparametric Mapping

The inverse isoparametric mapping (IIM) method is based on finite element analysis

where an isoparametric element uses the same shape functions to interpolate both

coordinate and displacement vectors. This method is limited in that it is unable to

extrapolate data. The method has been used in aeroelastic applications as seen in

CHAPTER 1. LITERATURE REVIEW 10

Refs. [42, 43].

1.3.5 Non-Uniform B-Splines

Splines in their simplest form are used to represent curves in 2-D space. Spline

functions can be polynomial or rational in type. Polynomial splines are piecewise

polynomial functions of a specified degree. The B-splines (basic splines), a sub-

class of polynomial splines, are linearly independent and span the space of univariate

polynomial splines. Any polynomial spline function can be represented as a series

B-splines. Only polynomial cubic splines were investigated in Ref. [40]. B-splines are

not currently used in aeroelastic applications.

1.3.6 Infinite-Plate Spline

The method of infinite-plate spline (IPS) is used extensively in programs such as

ASTROS, MSC/NASTRAN, XTRAN3S, ENS3DAE, and CLF3DAE. The method is

based on a superposition of the solutions of the partial differential equation of equilib-

rium for an infinite plate. Using solutions of the equilibrium equation, a concentrated

set of loads are calculated that give rise to the deflections at the data points. The

concentrated forces are substituted back into the solution providing a smooth sur-

face that passes through the data. The deflections at the CFD grid points are easily

calculated using the deflections at the CSD nodes.

Of the presented methods, the IPS method was chosen to interpolate displace-

ments from the CSD nodes to the CFD grid in this study. The IPS method is re-

ferred to as the Harder and Desmarais surface spline [44]. The IPS method provides

reasonable results without having the requirement that the input grid be a rectangu-

lar array. In addition, its ease of use and implementation make it one of the better

methods as can be seen by its use in several codes. Details of this method are given

in chapter 2. More details of the other methods discussed above can be found in the

excellent analyses given in Ref. [40].

CHAPTER 1. LITERATURE REVIEW 11

1.4 Convergence of the Aeroelastic Solution

In a loosely coupled approach, the static aeroelastic solution is obtained in the tran-

sonic regime in an iterative manner. The pressures on the CFD grid are mapped

to forces on the CSD nodes. The structural system of equations is solved and the

displacements are used to deform the CFD grid. The pressures on the deformed grid

are obtained and the process repeated. This iterative technique obtains the solution

for certain static aeroelastic cases. In this work, the structural system of equations is

solved using direct methods. The CFD equations are solved using various techniques

depending on the code. If the quality of the CFD grid is retained after deformation,

the limitation on this approach will depend on the capability of the CFD code. If the

deformations become too large, the CFD grid will lose its quality. The deformations

will be large near divergence dynamic pressures. Therefore, this method is limited

in that it will not predict divergence. However, the method will provide the static

aeroelastic response, load distributions, under given conditions which a designer can

use to optimize an aircraft design.

Due to the oscillatory nature of convergence of an aeroelastic solution, the time to

obtain an aeroelastic solution can be reduced in various ways. This oscillatory con-

vergence is due to the iterative scheme applied to obtain a static aeroelastic solution.

The loads are calculated using the CFD solution on a rigid wing and applied to the

CSD model. The swept back wing will bend and twist negatively. These deformations

are applied to the CFD grid. The pressures are decreased since the angle of attack

has decreased. The loads are again applied to the CSD model. Since the loads are

less than the rigid loads, the wing twists less. These deformations are applied to the

CFD grid again. The loads have increased since the angle of attack has increased

since the last calculation. This is repeated until convergence which will be oscillatory

as explained above.

Several researchers have investigated either artificial structural damping [45] or

under-relaxation techniques (Ref. [10, 25]) to converge the solution faster and/or to

keep it stable. In this research, an initial rigid steady state solution of the lifting

CHAPTER 1. LITERATURE REVIEW 12

surface is used to decrease the time to calculate a static aeroelastic solution as op-

posed to starting impulsively from free stream boundary conditions. In addition, the

CFD solution is not fully converged after each grid deformation before exchanging

information with the structural analysis code for the case when NASTD is used. This

has the same effect as an underrelaxation scheme and has been used effectively as

seen in Ref. [15].

1.4.1 Exterior Grid Deformation

In the loosely coupled approach to obtain static aeroelastic solutions, the exterior

CFD grid has to be deformed using the deflections on the wing surface. There are

two ways of doing this: (i) regenerate a completely new CFD exterior grid or (ii)

deform the existing CFD grid. In most research, the existing CFD grid is deformed.

These methods redistribute points along grid lines that are in the radial direction

normal to the surface. The grid points are distributed by moving them along these

grid lines by displacing them a value equal to the surface value times some spacing

parameter. Guruswamy [9] used a normalized arc length as the spacing parameter.

Batina [27] represented the exterior grid using a spring network. The stiffness of the

spring is inversely proportional to the length of the side of the CFD cell. This prevents

the CFD grid from losing its quality. In this research, only vertical displacements are

taken into account. Therefore, a simple cosine spacing function is used to deform the

exterior grid, details of which are given in chapter 2.

Static aeroelastic solutions are obtained in this research assuming a linear struc-

tural model. The loads obtained from the pressures are applied to the original finite

element model to obtain the displacements. The finite element is not regenerated us-

ing the displacements in the previous iteration although this capability is not difficult

to include in the aeroelastic coupling procedure.

In this work, an aeroelastic coupling procedure is presented by which static aeroe-

lastic solutions of aircraft wings are obtained. The aeroelastic coupling procedure

requires only the grid point coordinates of the CFD and CSD grids to create the in-

terface mappings. To demonstrate this procedure, a static aeroelastic solution of the

CHAPTER 1. LITERATURE REVIEW 13

F/A-18 Stabilator is calculated by using Euler flow equations as available in NASTD

(an in-house McDonnell Douglas Aerospace - East code) and finite element equations

as available in the structural analysis tool NASTRAN [46]. The solution is obtained in

the highly nonlinear transonic range at Mach 0.95, one degree angle of attack. Next,

two different CFD and CSD codes are used to obtain a static aeroelastic solution for

the Aeroelastic Research Wing (ARW-2). Navier-Stokes equations, as available in

ENSAERO [47], are coupled with a finite element wing-box code to obtain a static

aeroelastic solution in the transonic regime at Mach 0.85, at one and two degrees

angle of attack. The flexible solutions are also compared with experimental results,

and a good agreement is obtained. The examples use direct finite element equations,

not modal analysis equations, to obtain the structural response. The advantage of

the aeroelastic coupling procedure is shown by using two different sets of CFD/CSD

codes to perform static aeroelastic analyses.

1.5 Parallel Computing

There is an increasing need to reduce turn around time between converged aeroelastic

solutions due to the computational intensity of using high fidelity CFD and CSD

methods to perform aeroelastic analyses. The most recent trends show that the

performance of serial machines is saturating due to the physical limit imposed by the

speed of light [48]. Therefore, the next step in high performance computing is the

use of many processors in parallel to reduce computational times.

The speed of current microprocessors is one order of magnitude less than the speed

of the fastest serial computers [48]; however, microprocessors cost much less. Using

a network of these microprocessors, researchers can obtain raw computing power

comparable to the fastest serial machines at a lower cost. Therefore serial codes can

be “ported” to parallel machines and run faster.

However, in order to take advantage of parallel computing, a code must be par-

allelizable, i.e. the underlying physical problem should be amenable to being broken

down efficiently among a group of processors. Using an analogy, if one person paints

four walls in a room, the work could be done much faster using more people. So this

CHAPTER 1. LITERATURE REVIEW 14

work is highly parallelizable. Alternatively, there might be only one can of paint,

therefore this process might become highly inefficient if all the people are waiting idly

to use the can of paint. In addition, the work must be broken down evenly among the

workers, or some workers will wait idly while other workers finish the job. This brings

forth an important point, the issues involved in parallel algorithms vary significantly

from those for serial algorithms. In addition, the parallel computer hardware itself

can greatly influence the development of parallel algorithms. Unfortunately, there are

different models of parallel computers varying from shared memory architectures to

distributed memory architectures. Also, the type of network used in the parallel ma-

chine can affect the performance of the code. So when developing parallel algorithms,

there are many factors that need to be considered which normally do not come into

play when developing sequential algorithms.

Significant advances have been made for single-discipline use of both CFD and

CSD, with computations being made on complete aircraft. However, due to the

lack of computational power, only a limited amount of work has been performed in

coupling these two disciplines for multidisciplinary applications. As mentioned be-

fore, serial machines are reaching their physical limits, so there has been increased

interest in parallel computing for aeroelastic analyses. Aeroelasticity, like other mul-

tidisciplinary applications, contains inherent parallelism which can be exploited using

parallel computing. With respect to aeroelastic analysis, the ability to run CFD and

CSD codes independently using some type of communication has great potential for

parallel computing. And if propulsion is needed in the analysis, then coupling rou-

tines can be created, and a number of processors can be assigned to the propulsion

code. One way of gaining advantage is to run the CSD code on one processor and the

CFD code on another processor and have the two codes communicate directly with

some code integration efforts. In addition, the CSD and CFD codes themselves can

be parallel algorithms designed to run on many processors.

The current paradigm of doing aeroelastic analysis would seem inefficient for this

application. In other words, while the CFD code obtains an intermediate solution

(not converged), the CSD code sits idle, and vice-versa. However, work has been

done performing parallel aeroelastic analysis whereby both disciplines start with an

CHAPTER 1. LITERATURE REVIEW 15

initial guess and exchange information at rendezvous points and iteratively converge

towards a flexible solution. The effects of varying the initial guess were not studied.

The CSD code assumes a constant pressure field over the wing as an initial guess.

The CFD code starts from the rigid steady state solution. In this manner, neither

code will sit idle for a long time. However, if the process of obtaining a CSD solution

is ten times faster than obtaining a CFD solution, then the processors devoted to the

CSD code will remain idle. This will be inefficient. Thus load balancing would have

to be implemented. For example, if both codes are parallel, and one code is ten times

faster, then the slower code will have assigned to it, ten times more processors. This

assumes that both codes are scalable, i.e. with increasing number of processors the

time to obtain the solution decreases proportionally.

In this study, an existing parallel CFD code is coupled with a parallel CSD code,

and parallel aeroelastic analysis capability is investigated. The Intel iPSC/860 hyper-

cube, a multiple-instruction, multiple-data (MIMD) machine, is used to demonstrate

the parallel aeroelastic analysis. However, there is no parallel CSD code available. So

a major portion of this study was devoted to the creation of a parallel finite element

wing-box code. A typical wing-body type configuration is used for demonstration

purposes using Euler flow equations in the parallel version of ENSAERO.

The details of this research are given as follows. Chapter 2 describes the aeroelastic

coupling procedure which is applied to the F/A-18 Stabilator and the Aeroelastic

Research Wing (ARW-2). The details of the two lifting surfaces are outlined in chapter

3, followed by the results of the static aeroelastic analysis in chapter 4. Investigation

of parallel computing as applied to aeroelastic analyses is described in chapter 5.

Finally, the work is summarized in chapter 6.

Chapter 2

Aeroelastic Coupling Procedure

A general coupling procedure is presented by which static aeroelastic solutions of

wings may be obtained using a wide variety of CFD/CSD codes. Many methods

presented to do this require specific codes or assume the source codes are available

for alteration. The aeroelastic coupling procedure uses two mappings to exchange

information between CFD and CSD codes through the codes’ native files; thus no

code integration is required.

A static aeroelastic solution of a wing is obtained using the following aeroelastic

coupling procedure:

1 Obtain an intermediate or rigid steady state CFD solution for the wing

2 Calculate the pressures at the CFD grid points on the aerodynamic surface

3 Map pressures at the CFD grid points to forces on the CSD nodes

4 Obtain the structural response of the wing

5 Map displacements at the CSD nodes to the displacements on the CFD grid

points of the aerodynamic surface

6 Deform the entire CFD grid

7 Repeat steps 1-6 until preselected convergence criteria is met

16

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 17

The above steps are repeated in an iterative manner until a converged solution is

obtained. This fixed-point iteration scheme is used for its simplicity and for its ap-

plication to obtaining loosely coupled CFD/CSD solutions. To use a method which

converges faster, like Newton’s method [49], large amounts of computational time

would have to be spent in calculating sensitivities of pressure with respect to defor-

mations. Direct finite element analysis, not modal analysis, determines the structural

response, thus the number of unknowns makes this process inefficient. Therefore New-

ton’s method is computationally too expensive to make this approach feasible.

To help converge to the solution faster using this fixed-point iteration scheme,

a rigid steady state solution is obtained before initiating the aeroelastic coupling

procedure. An intermediate, not fully converged CFD solution was sometimes used

to decrease the time to converge to a solution. This iterative scheme is demonstrated

on a 2-D airfoil.

A simplified aeroelastic system [50] of an airfoil mounted to a wall by a torsional

spring is used to demonstrate the fixed-point iteration scheme. The equation of

equilibrium for the 2-D airfoil (Fig. 2.1) is

Kθ = Lec+Mo (2.1)

where K is the stiffness of the rotational spring, L is the lift at the aerodynamic

center, Mo is the moment about the aerodynamic center, e is the distance from the

aerodynamic center to the elastic axis in percent chord, and c is the chord length of

the airfoil. For simplicity, assume Mo = 0. The lift is calculated as

L =
1

2
ρV 2S

∂CL
∂α

(α + θ) (2.2)

where ρ is the free stream density, V is the free stream velocity, S is the reference

wing area, ∂CL
∂α

is the lift curve slope, α is the rigid angle of attack, and θ is the

rotation of the airfoil due to its flexibility. Substituting Mo = 0 and the expression

for lift into Eqn. 2.1, the divergence velocity is calculated to be

V 2
d =

K

Sec∂CL
∂α

(2.3)

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 18

The divergence velocity Vd is the velocity at which θ → ∞. The iterative scheme in

the aeroelastic coupling procedure is applied to this example to calculate the rotation

θ at a specified free stream velocity V .

An initial guess of θ0 = 0.1 deg is used to calculate θi. For specified values of V

and θi, the lift is calculated using Eqn. 2.2. The new rotation angle is then calculated

by using Eqn. 2.1. Rewriting the equation,

θi+1 =
1
2
ρV 2Sec∂CL

∂α

K
(α + θi) (2.4)

Now let V 2 = γV 2
d , Eqn. 2.4 becomes,

θi+1 = γ(α + θi) (2.5)

Let g(θ) = γ(α + θ). This fixed-point iteration scheme will converge if |∂g
∂θ
| < 1.

Taking the partial derivative of g with respect to θ, get

∂g

∂θ
= γ (2.6)

Thus, the fixed-point iteration scheme will converge if |γ| < 1. Physically, if the free

stream velocity, V , is less than Vd, the solution will converge.

To validate the above analysis, various values of γ are chosen, and the solution

θ is calculated using the fixed-point scheme of Eqn. 2.5. As shown in Fig. 2.2, the

fixed-point scheme works for all values of γ < 1. Note, the case where γ > 1, θ

diverges quickly. If the free stream velocity is less than Vd, the fixed-point scheme

will converge. Since swept back wings are not inhibited by divergence, but rather

flutter, the iterative scheme will converge. The limitations of the aeroelastic coupling

procedure are in the modeling of the deformations on the CFD grid. The iterative

scheme will not be a limiting factor if the velocities close to divergence are avoided.

In obtaining the static aeroelastic solution of a wing, either a fully converged

rigid steady state solution is obtained or an intermediate solution is obtained before

initiating the aeroelastic coupling procedure. In this research, both methods were

used. However, the aeroelastic solution converges faster if the aeroelastic coupling is

started with the CFD rigid steady state solution as opposed to starting impulsively

from free stream boundary conditions. This is shown in Sec. 5.7.1. The CFD solution

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 19

is calculated using any CFD code. Then, the pressures are calculated at the CFD

grid points of the wing. The forces are calculated at each CFD grid point using the

pressures and calculated areas. The forces at the CFD grid points of the wing are

then mapped onto the CSD nodes. Therefore, given the pressures on the aerodynamic

surface, the mapping will transform the pressures on the CFD grid to forces on the

CSD or finite element model. To explain the coupling, the grid is assumed to be

structured with indices i, j varying along the wing surface and the index, k, varying

in the normal direction.

The area on which the pressure acts and the unit normal are calculated using the

aerodynamic surface CFD grid. The load at the CFD grid point i, j is calculated as
Gi,j
x

Gi,j
y

Gi,j
z

 = Si,j pi,ja


ni,jx

ni,jy

ni,jz

 (2.7)

where Gi,j
x , G

i,j
y , and Gi,j

z are the forces in the x, y, and z directions, respectively. Si,j

is the area on which the pressure, pi,ja , acts, and ni,jx , n
i,j
y , and ni,jz are the x, y, and z

components of the unit normal for CFD point i, j. Si,j and {ni,j} are calculated by

taking the cross products between adjacent CFD points. Si,j is calculated using four

neighboring points (Fig. 2.3) , namely (i− 1, j), (i+ 1, j), (i, j − 1), and (i, j + 1), as

Si,j =
1

4
(|~r i−1,j × ~r i,j+1|+ |~r i,j+1 × ~r i+1,j|+ |~r i+1,j × ~r i,j−1|+ |~r i,j−1 × ~r i,j+1|) (2.8)

where ~r a,b is the distance between CFD grid points i, j and a, b. The unit normal,

{ni,j}, for CFD point i, j is
ni,jx

ni,jy

ni,jz

 = (
1

4
)

(~r i−1,j × ~r i,j+1) + (~r i,j+1 × ~r i+1,j) + (~r i+1,j × ~r i,j−1) + (~r i,j−1 × ~r i,j+1)

|(~r i−1,j × ~r i,j+1) + (~r i,j+1 × ~r i+1,j) + (~r i+1,j × ~r i,j−1) + (~r i,j−1 × ~r i,j+1)|

(2.9)

If the CFD grid point i, j lies on the trailing edge, wing root, or wing tip, then only

the CFD grid points which exist as its neighbors are used in Eqn. 2.8 and 2.9.

Next, each CFD grid point is mapped to a structural triangle. Using Fig. 2.3,

step 1 shows the area used to obtain the force at CFD grid point i, j as indicated by

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 20

the dotted box and explained above. Steps 2-3 in Fig. 2.3 are designed to find the

structural triangle associated with the CFD grid point. Here it is assumed that the

CFD grid is denser than the CSD grid. The four closest structural nodes are obtained

using the upper or lower surface structural grid depending on which surface the CFD

grid point is located. All possible triangles are formed using the four CSD nodes.

Triangles that do not contain the CFD point as an interior point are eliminated.

The area coordinates of the CFD point i, j with respect to the structural triangle

determine whether the point is an interior point. If the area coordinates sum to

1.0± 0.01, the CFD grid point is interior to the structural triangle. Area coordinates

are explained later. From Fig. 2.3, there are four triangles and triangles 1 and 2

do not contain the CFD grid point and therefore are eliminated. Of the remaining

triangles, the distance, vi, between the CFD grid point i, j and each CSD node of

triangle m is calculated as,

vmi =
√

(xmp − xa)2 + (ymp − ya)2 + (zmp − za)2 For i = 1, 3 (2.10)

where (xa, ya, za) are the coordinates of the CFD grid point i, j and (xmp , y
m
p , z

m
p) are

the coordinates of CSD node p of triangle m. The largest vertex distance for each

triangle m is obtained as

wmmax = max(vm1 , v
m
2 , v

m
3) (2.11)

where max is the maximum of the values vm1 , v
m
2 , v

m
3 . The triangle with the smallest

value of wmax is the “smallest” structural triangle for CFD point i, j; thus the forces

at CFD grid point i, j are mapped to this triangle. Using Fig. 2.3, triangle 3 has CSD

node 4 as the farthest node from the CFD grid point i, j. Triangle 4 has CSD node

2 as the farthest node the CFD grid point i, j. In this example, triangle 4 has the

smallest of the largest vertex distances, so it is chosen as the mapped CSD triangle

for this CFD grid point.

Figure 2.4 shows that the force at the CFD grid point i, j is distributed to the

CSD nodes of triangle 4 since it is the “smallest” structural triangle for CFD point

i, j. The weight factors used are the area coordinates of the CFD grid point i, j within

the structural triangle. Thus, the loads at the CSD nodes of the triangle are,

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 21


~F i,j
n1

~F i,j
n2

~F i,j
n3

 =



L1 0 0

L1 0 0

L1 0 0

0 L2 0

0 L2 0

0 L2 0

0 0 L3

0 0 L3

0 0 L3




Gi,j
x

Gi,j
y

Gi,j
z

 (2.12)

where ~F i,j
n1 , ~F

i,j
n2 and ~F i,j

n3 are the forces at nodes 1, 2, and 3 of the structural triangle

due to the load at CFD point i, j. Li are the area coordinates of the CFD grid point

i, j within the structural triangle. Here n1, n2, and n3 correspond to the actual node

numbers of the CSD nodes to which the load at CFD point i, j is distributed. If

a CSD node, ni, is not part of the structural triangle which contains the CFD grid

point i, j, then ~F i,j
ni

= ~0.

The area coordinates Li are obtained as follows. Three separate lines are drawn

from the CFD grid point i, j to each CSD node of the structural triangle (Fig. 2.4).

The three triangles formed have areas A2, A3, and A4. The total area of the structural

triangle is A = A2 +A3 +A4. The area coordinates are then defined as Li = Ai
A

. If F

is the force at CFD grid point i, j, then node i of the CSD triangle will have a force

of LiF . Area coordinates are helpful since no additional moment or twist needs to be

applied to compensate for the transfer of the load.

Four CSD nodes were used to show this mapping algorithm, but this number can

be increased to nclo. The number chosen depends on the density of the structural grid.

It is possible not to find a structural triangle for a CFD grid point if this number is

too low. For example, if all four nodes in the previous example are to the same side

of the CFD grid point, then none of the formed triangles would contain the CFD grid

point. In this research, nclo = 20 was used. This number was validated by graphically

viewing the mapping of the CFD grid points to the structural triangles for various

choices nclo.

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 22

The global force vector, ~FG
ni

, for each structural node ni is calculated as follows:

~FG
ni

=
imax∑
i=1

jmax∑
j=1

~F i,j
ni

For ni = n1, n2, ..., nmax (2.13)

where imax, jmax are the number of points on the wing CFD grid only, and nmax is

the number of CSD nodes.

The global force vector, {fs}, for the finite element model is obtained by,

{fs} =



~Fn1

~Fn2

.

.

.

~Fnmax


(2.14)

The structural response of the system is calculated using the forces obtained above

on the CSD nodes. The following system of equations are solved,

[K]{us} = {fs} (2.15)

where {us} are the displacements at the CSD nodes, and {K} is the stiffness matrix

of the CSD or finite element model. This can be solved by any structural analysis

tool to obtain the displacements, {us}, on the CSD nodes.

The displacements, {ua}, on the aerodynamic portion of the CFD grid are calcu-

lated using the structural response, {us}. A surface spline [44] is used to interpolate

the displacements from the CSD nodes to the CFD grid points. Reasonable accu-

racy [51] is obtained as long as extrapolation is avoided. The surface spline equation

is derived from the governing equations of a plate of infinite extent that deforms in

bending only. The surface spline equation is

Wj = a0 + a1xj + a2yj +
N∑
i=1

Fir
2
ij ln r2

ij for j=1,N (2.16)

where Wj is the displacement at CSD node j, r2
ij = (xi − xj)2 + (yi − yj)2, and N is

the number of points where the displacements, Wj, are known. Note,

lim
r→0

r2 ln r2 = 0 (2.17)

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 23

Thus, the term r2
ij ln r2

ij is set to zero when rij = 0, though ln rij |rij=0
does not exist.

Eqn. 2.16 has N+3 unknowns, but there are only N equations. Therefore, the three

additional equations are

N∑
i=1

Fi =
N∑
i=1

xiFi =
N∑
i=1

yiFi = 0 (2.18)

These are the equations of equilibrium.

The surface spline system of equations becomes

[As]{c} = {uspl} (2.19)

where [As] is dependent on the coordinates of the spline points, {c} is the vector of

unknown coefficients of the surface spline equation, and {uspl} are the displacements

at the spline points. In the preprocessing stage, some of the structural nodes are

chosen as the spline points. [As] is formed using the coordinates of the chosen spline

points. The spline point displacements, {uspl}, are extracted from the structural

response, {us}, as

{uspl} = [E]{us} (2.20)

Here [E] is a nspl × nmax matrix where nspl is the number of spline points and nmax

is the number of CSD nodes. [E] is composed of zeroes and ones. [As] is decomposed

using an LU factorization. The coefficients of the surface spline, {c}, are solved by

forward and backward substitutions.

The displacements at the CFD surface grid points, {ua}, are calculated by using

the coordinates of the CFD grid points within the surface spline equation. The

exterior CFD grid is deformed using the CFD surface grid displacements, {ua}, but

the deformation of the exterior CFD grid depends on the aerodynamic analysis tool.

Two separate codes for fluid analysis are used in this research. One of the codes,

ENSAERO [47], has a built in scheme to move the grid once the CFD surface grid is

deformed. The other code, NASTD [52], does not have a scheme to move the grid. So

a simple grid moving scheme was applied when NASTD was used. This is explained

in Sec. 3.1.2.

The aeroelastic coupling procedure is demonstrated by calculating a flexible solu-

tion of an F/A-18 Stabilator (horizontal tail) using Euler flow equations in NASTD

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 24

(an in-house McDonnell Douglas Aerospace East CFD code) coupled with an ad-

vanced structural analysis tool, NASTRAN. Also, a flexible solution of the the Aeroe-

lastic Research Wing (ARW-2) is calculated by using Navier-Stokes flow equations

in ENSAERO in conjunction with a finite element wing-box code (Ref. [12]); the

wing-box code is developed as a part of this research.

In summary, a CFD/CSD interface approach consisting of two mappings has been

presented. One mapping transfers loads from the CFD grid points to the CSD nodes.

The second mapping interpolates the displacements from the CSD nodes to the CFD

grid points. Both of these mappings require only the coordinates of the CFD surface

grid and the CSD nodes. Therefore, the mappings can be created in the preprocessing

stage. The mappings communicate essential information using the native files of

the respective codes; thus no code integration is required. Hence, static aeroelastic

solutions of wings can be obtained using a wide variety of CFD and CSD codes.

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 25

L

Mo

K

V

θ + α

ec

Figure 2.1: Diagram of 2-D Airfoil

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 26

100 200 300
Step

5

10

15

20

25

30

35

40

45

R
o

ta
tio

n
(d

eg
)

v/vd = 0.1221837
v/vd = 0.3855286
v/vd = 0.6137608
v/vd = 0.6664298
v/vd = 0.7190987
v/vd = 0.8771057
v/vd = 0.9297747
v/vd = 0.9824437
v/vd = 1.035113

Figure 2.2: Convergence of Solution for 2-D Airfoil

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 27

1 2

3

4

1 2

3

4

Triangle 3 Triangle 4

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

Triangle 1 Triangle 2 Triangle 3 Triangle 4

Step 2

CFD grid point

CSD node

i−1 i i+1

j−1

j

j+1

1 2

3

4

Step 1

Step 3

Figure 2.3: Mapping of a CFD Grid Point to a CSD Triangle

CHAPTER 2. AEROELASTIC COUPLING PROCEDURE 28

A
4

A
2

A
3

2

3

4
Figure 2.4: Area Coordinates of a CFD Grid Point within a CSD Triangle

Chapter 3

Analysis of Aircraft Wings

Details of the static aeroelastic analyses on two lifting surfaces, the F/A-18 Stabi-

lator and the Aeroelastic Research Wing (ARW-2), are presented in this chapter.

To demonstrate the aeroelastic coupling procedure, static aeroelastic solutions of the

F/A-18 Stabilator and the Aeroelastic Research Wing (ARW-2) are obtained in the

transonic regime. A complex finite element model of both of the wings’ structures is

used in conjunction with an advanced CFD tool to capture the aeroelastic interac-

tions. The static aeroelastic solution of the two modern complex wings is compared

with experimental and other available computational data.

3.1 F/A-18 Stabilator

3.1.1 CFD and CSD Modeling

For the F/A-18 Stabilator, Euler flow equations, as available in NASTD, are used

to demonstrate the aeroelastic coupling procedure. The analysis is performed at

sea-level, one degree angle of attack, and Mach 0.95. The CFD grid of the F/A-18

Stabilator, as seen in Fig. 3.1, is approximately 800,000 grid points.

A general purpose finite element program, NASTRAN, is implemented to analyze

the structure. The stiffness matrix produced by NASTRAN is used to obtain the

29

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 30

displacements for given aerodynamic loads. NASTRAN is utilized to obtain the stiff-

ness matrix, [K], of the structure. Another simple code is used to solve the structural

system of equations using the [K] matrix produced by NASTRAN. Therefore, during

the linear aeroelastic analysis procedure, NASTRAN is not directly involved, since

the stiffness matrix does not change during the procedure. The finite element model

of the F/A-18 Stabilator, as seen in Fig. 3.2, consists of 2000 nodes and 12000 d.o.f.

3.1.2 Aeroelastic Coupling Procedure

The first step in the aeroelastic coupling procedure is obtaining the CFD solution for

the lifting surface. For this case, the rigid steady state solution is obtained before

the aeroelastic analysis cycle begins. Once the CFD solution is obtained, the forces

on the CSD grid are calculated using the preprocessed mapping. The mapping of the

CFD points to the structural triangles, previously discussed in chapter 2, is shown in

Fig. 3.3. Here the mapped structural triangle for each CFD point is presented. The

structural triangle does not refer to an actual structural element. So shape functions

are not necessary, and if linear displacements are assumed over each element, then

energy is conserved during the mapping. The actual structure of the wing does not

extend to the wing root, but this was done to avoid computational problems. This

was required by the CFD code NASTD.

Once the forces on the CSD grid are known, the structural response, {us}, is

obtained by solving the structural system of equations. The spline points for the

Stabilator are chosen to be a subset of the structural nodes and some far field points

of the CFD grid. The choice of these spline points is subjective. The spline points

are chosen as to be distributed evenly across the planform of the surface. So, after

the displacements on the nodes, {us}, are obtained, the displacements, {uspl}, at the

spline points are extracted. The spline points for this case are shown in Fig. 3.4.

The reason for this choice can be seen when looking at Fig. 3.5, which is the surface

grid of the F/A-18 Stabilator. The surface grid includes the aerodynamic surface

and the points extending beyond the wing tip in the spanwise direction, and the

points extending beyond the trailing edge in the chordwise direction. The points on

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 31

the aerodynamic surface grid are chosen so the displacements vary smoothly from the

aerodynamic surface to the farfield. The right hand side of the surface spline system of

equations is known, so the surface spline coefficients are obtained. Next the deflections

on the CFD surface grid are calculated using the surface spline equation.

Next, the exterior grid is deformed. The CFD grid for this case has the i index

varying circumferentially around the wing section, the j index varying in the normal

direction, and the k index varying along the span. Once the surface deflections are

known at j =1, a cosine spacing function is used to deform the exterior grid at each

spanwise (k = constant face) location. The spacing function is dependent on the

location along the normal direction , i.e. the j index. Fig. 3.6 show the plot of the

spacing function used, given as

αjs = cos
π(j − 1)

2(jmax − 1)
forj = 1, jmax (3.1)

where jmax are the maximum number of points extending in the radial direction

normal to the surface. Using the displacements at the CFD surface grid, i.e. j = 1,

the exterior grid is deformed at each k = constant surface, by multiplying the surface

displacement by the spacing parameter, αs, i.e. the new vertical coordinate at some

j section is,

znewi,k = zrigidi,k + αjsu
j=1
i,k (3.2)

Only the vertical displacements are taken into account. Note that the zrigidi,k coor-

dinates are used and not the z coordinates from the previous iteration. To avoid

overlapping of the CFD grid, a minimum spacing criteria, αmin is chosen as,

αmin = fs ∗ (α1
s − α2

s) (3.3)

where α1
s = 1 and fs is subjectively chosen to prevent loss of grid quality. For this

analysis, fs is chosen in the range of 1-2. α2
s depends on jmax. This assumes the grid

is stretching smoothly away from the surface. If the spacing between two consecutive

points is smaller than αmin, if zj+1
i,k − z

j
i,k < αmin, then αs is set to one for that entire

j section. In this example, all the points within the j = 26 boundary are moved the

same amount as the aerodynamic surface at j = 1. All the points exterior to j = 26,

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 32

i.e. 26 < j < jmax, are moved using Eqn. 3.1. This enforces that the outer boundaries

of the CFD grid do not move. This is done to take advantage of distributed computing

capabilities in the future where the grid can be broken into many zones. So, to avoid

problems with grid mismatching at the zonal boundaries, the zonal boundaries are

fixed. In this case, the CFD grid is broken into two zones, but distributed computing

was not used. Zone 1 consists of the Stabilator CFD grid, and zone 2 consists of the

region extending downstream from the trailing edge. The CFD solution is obtained

in zone 1. The boundary information is used to calculate a CFD solution in zone 2.

This process is repeated until convergence of some specified criteria is obtained.

After the CFD grid is deformed, the aeroelastic coupling procedure is repeated

until some specified convergence criteria is met. Initially, the rigid steady state solu-

tion was obtained before exchanging information with the CSD code. After initiating

the aeroelastic coupling procedure, the CFD solution was not fully converged before

exchanging information with the CSD code. The number of iterations during each

cycle was about 200±10. This has a similar effect as an underrelaxation scheme. A

Hewlett-Packard workstation was used to perform the calculations.

3.2 Aeroelastic Research Wing (ARW-2)

3.2.1 CFD and CSD Modeling

The Aeroelastic Research Wing (ARW-2), a supercritical airfoil with aspect ratio of

10.3 and a leading edge sweep of 28.8◦, is used to validate the force and displacement

mappings. In addition, it also provides as a validation tool for the finite element

wing-box code. The strong conservation law form of the thin-layer Reynolds-averaged

Navier-Stokes equations are used to calculate the fluid flow about the ARW-2 wing

as available in ENSAERO. The structural response is calculated by the finite element

wing-box code (see Section 5.2). The two codes are coupled using the aeroelastic

coupling procedure presented in chapter 2.

The CFD code uses a C-H type grid with a grid size of 171 (circumferentially) x

51 (spanwise) x 45 (normal) points. The wing CFD grid is shown in Fig. 3.8. The

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 33

wing has a grid size of 139 (circumferentially) x 39 (spanwise) points. The fluid flow

equations are solved for Mach 0.85, an angle of attack, α, of 1 and 2 degrees, and a

free stream dynamic pressure, q, of 200 psf.

The finite element wing-box model of the ARW-2 wing uses Allman’s triangular

elements in conjunction with axial bars to represent the wing’s spars, ribs, and skins.

Figure 3.9 shows the spars and ribs of the ARW-2 wing. The wing is discretized

into a 11 x 13 mesh, 312 nodes, 1872 d.o.f. The ARW-2 wing consists of composite

fiberglass skins, but the finite element wing-box code does not yet have composite

capability. An equivalent isotropic wing is created by matching bending and twisting

properties with the ARW-2 wing made of composite fiberglass skins.

3.2.2 Aeroelastic Coupling Procedure

The aeroelastic coupling procedure is more integrated using ENSAERO and the fi-

nite element wing-box code since the source code of ENSAERO is available. The

pressures from ENSAERO are obtained and mapped to forces on the finite element

model. The mapping of the structural triangle to the CFD point is shown in Fig.

3.10. The finite element wing-box code then solves for the structural response, {us}.
The displacements at the spline points (Fig. 3.11), {uspl}, are extracted. The sur-

face spline coefficients are calculated, and the displacements at the CFD grid points

are obtained. Again, only the vertical displacements are used. This version of EN-

SAERO only requires vertical displacements at the CFD aerodynamic surface, i.e. the

wing surface. Then ENSAERO regenerates the exterior grid and the pressures are

recalculated. The process is repeated until a convergence of the solution is reached.

Convergence of the CFD solution is monitored by whatever criteria the CFD code

uses. Here the L2 norm of the residuals of the CFD equations is used as the criteria for

convergence. The loads were also compared to ensure convergence. Convergence of

the CSD solution is checked by examining the tip displacement after each aeroelastic

cycle and the displacements at other locations, as seen in chapter 4.1.

Since only the vertical displacements are taken into account for the F/A-18 Sta-

bilator and ARW-2 wing, the quality of the CFD grid can be poor. ENSAERO uses

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 34

the vertical deflections to calculate a rigid body rotation and a deflection so as to

avoid this problem when dealing with the ARW-2 wing. This was also done for the

F/A-18 Stabiltor using NASTD. This means that chordwise rigidity is assumed for

the wing. This is a good approximation for the ARW-2 wing. Byrdsong et al. mea-

sured experimental data for the flexible ARW-2, where it was stated that the ARW-2

has sufficiently chordwise rigidity.

The aeroelastic solution is obtained at Mach 0.85, α = 1 and 2 degrees, q =

200 psf, and compared with experimental results. In addition, the results are also

compared with another similar work, which uses modal analysis as opposed to the

direct finite element analysis used in this study. A Cray-90 was used to obtain the

solution for this case.

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 35

Figure 3.1: CFD Grid for the F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 36

Figure 3.2: Finite Element Model of the F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 37

Figure 3.3: Mapping of CFD Points to Structural Triangles for the F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 38

1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

Downstream Coordinate (in)

S
pa

nw
is

e
C

oo
rd

in
at

e
(in

)

Figure 3.4: Spline Points Used for Mapping for F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 39

Figure 3.5: CFD Surface Grid of the F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 40

10 20 30 40 50 60 70
Normal index j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
pa

ci
ng

 P
ar

am
et

er
 (

al
p

ha
)

Figure 3.6: Cosine Spacing Function Used to Deform Exterior Grid

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 41

Figure 3.7: k = Constant Face of the CFD Grid of the F/A-18 Stabilator

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 42

Figure 3.8: CFD Grid of the ARW-2 Wing

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 43

Figure 3.9: Finite Element Model of the ARW-2 Wing

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 44

Figure 3.10: Mapping of Structural Triangles to CFD Points for the ARW-2 Wing

CHAPTER 3. ANALYSIS OF AIRCRAFT WINGS 45

0 50 100 150 200
Chordwise Coordinate (in)

0

50

100

150

200

S
pa

nw
is

e
C

oo
rd

in
at

e
(i

n)

Figure 3.11: Spline Points Used in Aeroelastic Coupling of ARW-2 Wing

Chapter 4

Results

4.1 F/A-18 Stabilator

The convergence of the aeroelastic solution for the F/A-18 Stabilator is monitored in

several ways. The L2 norm of the residuals of the continuity, momentum, and energy

equations are examined. The loads on the wing surface are also examined. Examining

the two mentioned criteria helps assure that the CFD solution is converged. In

the CSD solution, the displacements at various locations are examined to assure

convergence. One of the convergence checks for the structural analysis is shown in

Fig. 4.1, where the deflection of the wing tip of the F/A-18 Stabilator is plotted

after each cycle of the aeroelastic coupling procedure. In addition, Fig. 4.2 shows the

convergence of the trailing edge tip of the F/A-18 Stabilator. The structural solution

converges very quickly. This is because the rigid steady state solution was obtained

prior to initiating the aeroelastic coupling procedure. In addition, the aeroelastic

effect is not significant; the largest displacement on the F/A-18 Stabilator is 1.55

inches.

The final converged flexible F/A-18 Stabilator is shown in Fig. 4.3 with the ini-

tial undeformed rigid F/A-18 Stabilator. The largest deflection occurs at the trailing

edge tip of the F/A-18 Stabilator, approximately 1.5 inches. The pressure coefficient

variation of the flexible versus rigid F/A-18 Stabilator is shown in Fig. 4.4 and 4.5.

In addition, the Mach number variation of the flexible versus rigid F/A-18 Stabilator

46

CHAPTER 4. RESULTS 47

is shown in Fig. 4.6 and 4.7. A presence of a shock can be seen in the figures. The

pressure coefficient variation and Mach variation contours show that the aeroelastic

effect is not significant, but this may be due to the fact that the aeroelastic solution is

obtained at one degree angle of attack at 0.3 psi, and not much aeroelastic interaction

is occurring. From a previous analytical study (performed at McDonnell Douglas)

using CAP-TSD, a transonic small disturbance CFD code, coupled with modal anal-

ysis structures, the largest deflection of the F/A-18 Stabilator was calculated to be

1.56 inches. The deflection using NASTD coupled with NASTRAN is also about 1.5

inches. The present results do compare well with existing data. Unfortunately, more

details of the comparisons are not available.

Next, the Aeroelastic Research Wing (ARW-2), is used to determine the accuracy

of the entire aeroelastic coupling procedure, since experimental static aeroelastic data

exist for it.

4.2 Aeroelastic Research Wing (ARW-2)

The ARW-2 wing is composed of spars and ribs made of isotropic materials while

the skins are made of composite materials. The finite element wing-box code used

in this study does not have composite capability, therefore an isotropic ARW-2 wing

model was created. The isotropic ARW-2 wing model was developed by matching

the structural properties of the spars and ribs with the composite skin ARW-2 wing.

The thicknesses of the spars, ribs, and skins are generated to match the composite

skin ARW-2 wing. To match the twisting properties of the isotropic ARW-2 wing

with that of the composite skin ARW-2 wing, the thicknesses of the skins and the

cross-sectional areas of the axial bars are altered. This is done so as not to change

the bending behavior of the isotropic ARW-2 wing while trying to match the twisting

behavior with that of the composite skin ARW-2 wing. To validate the isotropic

ARW-2 wing model, two different loading conditions are applied to both wings, and

the structural response is compared. The structural response of the composite skin

ARW-2 wing was obtained using Engineering Analysis Language (EAL) at NASA

Langley Research Center.

CHAPTER 4. RESULTS 48

4.2.1 Validation of the ARW-2 Wing Finite Element Model

For validation, the bending and twisting behaviors of the isotropic ARW-2 wing are

compared with the bending and twisting behaviors of the composite skin ARW-2 wing.

The structural response of the composite skin ARW-2 wing is calculated using Engi-

neering Analysis Language (EAL). Figures 4.8, 4.9, and 4.10 show the comparisons

between the displacements of the front, rear, and auxiliary spars of the composite

skin and isotropic ARW-2 wings with a 100 lb load applied upward at the wing tip

on the front spar. The bending behaviors of the composite skin and isotropic ARW-2

wings are in good agreement. Note, the auxiliary spar does not extend to the wing

tip although the displacements are shown for the entire span.

Figures 4.11, 4.12, and 4.13 show the deflections and twisting of the front and rear

spars of the isotropic and composite skin ARW-2 wings with a 1 lb upward and a 1

lb downward force applied to the front and rear spars, respectively, at the wing tip.

Fairly good agreement is obtained with the composite skin ARW-2 wing. Details of

the composite skin ARW-2 wing finite element model can be obtained in Ref. [53].

4.2.2 Rigid Steady State Solution

The next step after the validation of the ARW-2 wing finite element model is to

obtain the rigid steady state solution for the two cases, i.e. the one and two degree

angle of attack cases. Intermediate rigid steady state solutions were obtained by

using Navier-Stokes flow equations as available in ENSAERO. Convergence of the

rigid steady state solutions is checked by examining the L2 norm of the residuals of

the fluids equations. Figures 4.14 and 4.15 show the convergence of the relative L2

norm of the residual of the Navier-Stokes equations for the one and two degree cases,

respectively. The L2 norm has not been sufficiently reduced, but this is done since a

completely converged solution is not necessary to start the aeroelastic coupling. In

addition, Cp variation for the rigid steady state solution at α = 1 degree is compared

with computational results from Ref. [54]. This study and the Farhangnia et al. [54]

study start with the same rigid steady state solution of the ARW-2 using ENSAERO.

Farhangnia et al. use the first five mode shapes as opposed to the direct finite element

CHAPTER 4. RESULTS 49

equations used in the work. Since final results are compared later, the starting points

are compared by examining Fig. 4.16. This shows the Cp variation at the 70.7%

semi-span location. Because both studies used ENSAERO to obtain the rigid steady

state solution, the results match as expected.

After the rigid steady state solutions are obtained, static aeroelastic analysis is

performed by including the finite element wing-box code and the preprocessed map-

pings. Convergence is checked by examing CFD and CSD solution criteria. The

CFD solution convergence is checked by examining the L2 norm of the residual of

the fluids equations, while the CSD solution is checked by examing displacements at

various locations on the wing structure. Figures 4.17 and 4.18 show the L2 norm

during the aeroelastic analysis. Flexible steady state solutions are obtained at α =

1 and 2 deg. The spikes coincide with the restarting of ENSAERO. Cp variation at

the 70.7% semi-span location, for the flexible ARW-2 wing, is shown in Fig. 4.19 and

plotted with experimental data from Ref. [54]. The Cp variation compares well with

the experimental data. The shock location for the experimental data is 5% of chord

aft of the computational data.

Figures 4.20 and 4.21 show the section lift coefficient along the span for the rigid

and flexible wings. Note the decrease in lift when flexibility of the wing is included in

the analysis. The ability to predict the effects of flexibility on load distribution in the

transonic regime would be a useful tool. The designer can use this to help improve

the design of the wing in the preliminary stages.

Figures 4.22 and 4.23 show the Cp variation on the upper surface of the flexible

and rigid ARW-2 wing for the one and two degree angle of attack cases. Due to the

flexibility, the shock location has moved aft in both cases. The Cp plot at the 70.7%

semi-span location is shown in Fig. 4.24 verifies this for α = 2 deg case. For α = 1

deg case, the shock movement is less.

Figures 4.25 and 4.26 show the deflections of the front and rear spars, respectively,

for the one degree angle of attack case. Experimental data from Byrdsong et al. [55]

is also shown. The wing tip for the one degree case deflects approximate six inches,

while the wing tip for the two degree case deflects approximately eight inches. Good

agreement is obtained.

CHAPTER 4. RESULTS 50

Figures 4.27 and 4.28 show the deflections of the front and rear spars for the two

degree angle of attack case as compared with experimental data from Byrdsong et

al. [55]. Again, good agreement is obtained using direct finite element data coupled

with Navier-Stokes flow equations.

In addition, Fig. 4.29 also shows aeroelastic data from Farhangnia et al. [54] where

modal analysis was used for structural analysis for the one degree case. Modal anal-

ysis results are about 25% in error at the wing tip, where the first five mode shaped

were used. Finite element equations results are 3% in error compared to experimental

data. Here it is shown the increased accuracy of using direct finite element displace-

ment data as opposed to modal analysis data. Again, the accuracy of the aeroelastic

coupling procedure and the finite element wing-box code are demonstrated success-

fully.

CHAPTER 4. RESULTS 51

740 750 760 770

94.0

94.5

95.0

95.5

Streamwise Coordinate (in)

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

)

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 6

Figure 4.1: Convergence of the Wing Tip of the F/A-18 Stabilator

CHAPTER 4. RESULTS 52

1 2 3 4 5 6 7 8
Cycle Number

93.6

93.8

94

94.2

94.4

94.6

94.8

95

95.2

95.4

95.6

95.8

96

V
er

tic
al

 P
os

iti
o

n
(in

)

Figure 4.2: Convergence of the Trailing Edge Tip of the F/A-18 Stabilator

CHAPTER 4. RESULTS 53

Deflections scaled by a factor of 10

Figure 4.3: Final Converged and Initial Undeflected F/A-18 Stabilator

CHAPTER 4. RESULTS 54

Figure 4.4: Cp Variation on the Upper Surface of the Rigid F/A-18 Stabilator

CHAPTER 4. RESULTS 55

Figure 4.5: Cp Variation on the Upper Surface of the Flexible F/A-18 Stabilator

CHAPTER 4. RESULTS 56

Figure 4.6: Mach Number Variation on the Upper Surface of the Rigid F/A-18 Sta-
bilator

CHAPTER 4. RESULTS 57

Figure 4.7: Mach Number Variation on the Upper Surface of the Flexible F/A-18
Stabilator

CHAPTER 4. RESULTS 58

25 50 75 100
Spanwise Coordinate (in)

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

)

Front Spar Comp. ARW-2
Front Spar Isotropic ARW-2

Figure 4.8: Displacement of the Front Spar of the Composite Skin and the Isotropic
ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at the Tip

CHAPTER 4. RESULTS 59

25 50 75 100
Spanwise Coordinate (in)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

)

Rear Spar Comp. ARW-2
Rear Spar Isotropic ARW-2

Figure 4.9: Displacement of the Rear Spar of the Composite Skin and the Isotropic
ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at the Tip

CHAPTER 4. RESULTS 60

25 50 75 100
Spanwise Coordinate (in)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

)

Aux Spar Comp. ARW-2
Aux Spar Isotropic ARW-2

Figure 4.10: Displacement of the Auxiliary Spar of the Composite Skin and the
Isotropic ARW-2 Wing Subjected to a 100 lb Vertical Load Applied at the Tip

CHAPTER 4. RESULTS 61

25 50 75 100
Spanwise Coordinate (in)

-0.0008

-0.0007

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

D
is

pl
ac

em
en

t (
in

)

Front Spar Comp. ARW-2
Front Spar Isotropic ARW-2

Figure 4.11: Displacement of the Front Spar of the Composite Skin and the Isotropic
ARW-2 Wing Subjected to a Twisting Load Applied at the Tip

CHAPTER 4. RESULTS 62

25 50 75 100
Spanwise Coordinate (in)

-0.0012

-0.0011

-0.001

-0.0009

-0.0008

-0.0007

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

D
is

pl
ac

em
en

t (
in

)

Rear Spar Comp. ARW-2
Rear Spar Isotropic ARW-2

Figure 4.12: Displacement of the Rear Spar of the Composite Skin and the Isotropic
ARW-2 Wing Subjected to a Twisting Load Applied at the Tip

CHAPTER 4. RESULTS 63

25 50 75 100
Spanwise Coordinate (in)

0

1E-05

2E-05

3E-05

4E-05

5E-05

6E-05

7E-05

8E-05

9E-05

0.0001

0.00011

T
w

is
t (

ra
d)

Composite skin ARW-2
Isotropic ARW-2

Figure 4.13: Twisting of the Composite Skin and the Isotropic ARW-2 Wing Sub-
jected to a Twisting Load Applied at the Tip

CHAPTER 4. RESULTS 64

500 1000 1500
Iteration #

10-9

10-8

10-7

L-
2

N
or

m

Figure 4.14: L2 Norm of the Residual of the Navier-Stokes Equations for the Rigid
Steady State Solution at α = 1 deg

CHAPTER 4. RESULTS 65

1000 2000 3000
Iteration #

10-10

10-9

10-8

10-7

L-
2

N
or

m

Figure 4.15: L2 Norm of the Residual of the Navier-Stokes Equations for the Rigid
Steady State Solution at α = 2 deg

CHAPTER 4. RESULTS 66

0 0.25 0.5 0.75 1
x/c

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

C
p

Comp. (Direct F.E.A.)
Comp. (Modal Analysis)

Figure 4.16: Comparison of Cp Variation for Rigid Steady State Solution at the 70.7%
Semi-span Location for α = 1 deg

CHAPTER 4. RESULTS 67

2000 3000
Iteration #

10-10

10-9

10-8

L-
2

N
or

m

Figure 4.17: L2 Norm of the Residual of the Navier-Stokes Equations for the Flexible
Steady State Solution at α = 1 deg

CHAPTER 4. RESULTS 68

3500 4000 4500 5000
Iteration #

10-10

10-9

10-8

L-
2

N
or

m

Figure 4.18: L2 Norm of the Residual of the Navier-Stokes Equations for the Flexible
Steady State Solution at α = 2 deg

CHAPTER 4. RESULTS 69

0 0.25 0.5 0.75 1
x/c

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

C
p

Comp. (Direct F.E.A.)
Experiment

Figure 4.19: Comparison of Cp Variation of Experimental Data Versus Computational
Results at the 70.7% Semi-span Location for α = 1 deg

CHAPTER 4. RESULTS 70

0 50 100
Spanwise Coordinate (in)

0.15

0.2

0.25

0.3

0.35

0.4

S
ec

tio
n

Li
ft

 C
oe

ff
ic

ie
n

t

Flexible
Rigid

Figure 4.20: Section Lift Coefficient Variation Along Span for α = 1 deg

CHAPTER 4. RESULTS 71

0 50 100
Spanwise Coordinate (in)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S
ec

tio
n

Li
ft

 C
oe

ff
ic

ie
n

t

Flexible
Rigid

Figure 4.21: Section Lift Coefficient Variation Along Span for α = 2 deg

CHAPTER 4. RESULTS 72

-1.10 -0.51 0.08 0.67 1.26

Figure 4.22: Cp Variation on the Upper Surface of the Rigid and Flexible ARW-2
Wing, at α = 1 deg

CHAPTER 4. RESULTS 73

-1.20 -0.58 0.03 0.65 1.27

Figure 4.23: Cp Variation on the Upper Surface of the Rigid and Flexible ARW-2
Wing, at α = 2 deg

CHAPTER 4. RESULTS 74

0 0.25 0.5 0.75 1
x/c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
p

Flex. 2 deg
Rigid 2 deg

Figure 4.24: Cp Variation for α = 2 deg at the 70.7% Semi-span Location

CHAPTER 4. RESULTS 75

25 50 75 100
Spanwise coordinate (in)

57

57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

V
er

tic
al

 p
os

iti
on

 (
in

)

Wind-off zero position
Comp. (N-S) alpha = 1 deg
Experimental alpha = 1 deg

Figure 4.25: Comparison of the Experimental and Computational Front Spar Deflec-
tions of the ARW-2 Wing at α = 1 deg

CHAPTER 4. RESULTS 76

25 50 75 100
Spanwise coordinate (in)

57

57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

V
er

tic
al

 p
os

iti
on

 (
in

)

Wind-off zero position
Comp. (N-S) alpha = 1 deg
Experimental alpha = 1 deg

Figure 4.26: Comparison of the Experimental and Computational Rear Spar Deflec-
tions of the ARW-2 Wing at α = 1 deg

CHAPTER 4. RESULTS 77

25 50 75 100
Spanwise coordinate (in)

57

57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

64

V
er

tic
al

 p
os

iti
on

 (
in

)

Wind-off zero position
Experimental alpha = 2 deg
Comp. (N-S) alpha = 2 deg

Figure 4.27: Comparison of the Experimental and Computational Front Spar Deflec-
tions of the ARW-2 Wing at α = 2 deg

CHAPTER 4. RESULTS 78

25 50 75 100
Spanwise coordinate (in)

57

57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

64

64.5

V
er

tic
al

 p
os

iti
on

 (
in

)

Wind-off zero position
Experimental alpha = 2 deg
Comp. (N-S) alpha = 2 deg

Figure 4.28: Comparison of the Experimental and Computational Rear Spar Deflec-
tions of the ARW-2 Wing at α = 2 deg

CHAPTER 4. RESULTS 79

25 50 75 100
Spanwise coordinate (in)

57

57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

64

64.5

65

V
er

tic
al

 p
os

iti
on

 (
in

)

Computational (Mode shapes)
Wind-off zero position
Computational (Direct F.E.M.)
Experimental alpha = 1 deg

Figure 4.29: Comparison of the Rear Spar Deflections Using Modal Analysis Versus
Finite Element Analysis of the ARW-2 Wing at α = 1 deg

Chapter 5

Parallel Aeroelastic Analysis

Due to the large number of floating point operations involved with CFD/CSD cou-

pling, a parallel computing approach to aeroelastic analysis in investigated. An ad-

vanced parallel CFD code, ENSAERO, is coupled with a parallel wing-box model

which uses Allman’s triangular element [56] in conjunction with axial bars for static

aeroelastic analysis. This study uses a wing-box model which calculates structural

properties in parallel on the iPSC/860 (discussed in later section). The structural

code incorporates a direct solver which calculates the solution to the structural equa-

tions of motion in parallel. Also, the structural and fluids models are run concurrently

on the iPSC/860 on separate cubes and through the use of intercube communication,

the two separate disciplines are directly coupled to solve aeroelastic problems.

5.1 Governing Aerodynamic Equations

The strong conservation law form of the Euler equations is used for shock capturing

purposes. The Euler equations in generalized coordinates can be written as [57]

∂τ Q̂+ ∂ξÊ + ∂ηF̂ + ∂ζĜ = 0 (5.1)

where Q̂, Ê, F̂ , and Ĝ are flux vectors in the generalized coordinates. To solve Eqn.

5.1, ENSAERO has time-accurate methods based on central-difference schemes. In

80

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 81

this work, the central-difference scheme used is based on the implicit approximate fac-

torization algorithm of Beam and Warming [58] with modifications for diagonalization

suggested by Pulliam and Chaussee [59].

5.2 Aeroelastic Equations of Motion

The governing equations of motion for structures can be written as

[M]{q̈}+ [C]{q̇}+ [K]{q} = {Z} (5.2)

where [M], [C], and [K] are the global mass, damping, and stiffness matrices, respec-

tively; {Z} is the aerodynamic force vector corresponding to finite element degrees

of freedom. For a given time t, {Z} is computed by solving the fluid equations.

5.2.1 Wing-box Model

Wing-box modeling discretizes the wing into spars, ribs, and skins to represent the

structure of the wing. Allman’s triangular element (Fig. 5.1), with three nodes at the

vertices, is used as a part of the wing-box model to represent the skins, spars, and

ribs. Each node has three degrees of freedom including two in-plane displacements

and an in-plane rotation. The element can represent all constant strain states exactly,

assuring convergence to an exact solution with consistent mesh refinement. The

element is more accurate for stress analysis than the constant strain triangle. Axial

bars are used in conjunction with Allman’s element to formulate the wing-box model

used in this study to represent the spar caps.

The structural system of equations is solved by the LDLt method, parallelized

by Farhat et al. (Ref. [60]). The solver assumes that the stiffness matrix is stored

in a skyline fashion, to reduce the storage requirements. The solver decomposes the

stiffness matrix by columns among the processors. The processors communicate to

perform an LDLt factorization. The solution of the system of equations is obtained

by a forward and backward substitution in parallel.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 82

5.3 Parallelization of the Aeroelastic Equations

A domain decomposition or loosely coupled approach enables solution methods for

fluid and structural equations to be developed independently. Fluid and structural

equations are modeled in separate computational domains. Each domain is mapped

individually onto a group of processors, referred to as a cube on the Intel iPSC/860.

The iPSC/860 allows 2n processors to be used per code, termed a cube. The structures

code runs on 2n processors and the fluids code runs on 2n processors. The codes

are independent; however, coupling of the disciplines requires the exchange of the

interface boundary data. When this exchange of data is performed using parallel

iteration, idle time is reduced as opposed to using a serial iteration (Fig. 5.2). This is

due to the fact that both sides have idle time when running sequentially, while only

one side has idle time during parallel iteration. This exchange between the fluid and

structural domains is accomplished through an intercube communication mechanism.

This intercube communication facility enables different processors in each cube to

communicate directly on the iPSC/860.

The Euler equations for fluids domain are solved by using 3-D uni-partitioning

of the computational domain. The uni-partitioning scheme denotes that one grid

subdomain is assigned to each of the processors. The arrangement of the proces-

sors,described in Fig. 5.3, show how the grid is decomposed. The arrows show how

the processors, representing the various grid sub-domains, communicate by exchang-

ing boundary information. The arrows denote bi-directional data communication.

There are a variety of concurrent algorithms available for solving the system of equa-

tions for fluids. Pipelined Gaussian Elimination [61] was chosen for this study.

For the structural domain, each node or processor assembles the portion of the

stiffness matrix required by the parallel solver. Therefore, there is no need of actually

assembling the global stiffness matrix on any one node and passing it to the remaining

nodes. This method involves redundant calculations, but is quicker than having global

communications, especially as the system of equations becomes large. This can also

help alleviate memory problems that might occur due to large storage requirements.

In other words, the parallel solver will break down the stiffness matrix by columns.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 83

If the processors are numbered from 0 to np − 1, where np is the total number of

processors, then process n will only require column n+1, (n+1)+np, (n+1)+2∗np...
and so on. Therefore, instead of having the solver break down the stiffness matrix,

only the portion required by that particular processor is calculated and stored. So, if

the matrix size is m x m, and there are np processors, each processor will only have

to store m x (m/np) matrix. And as stated earlier, this can help alleviate memory

problems with analysis of large scale finite element problems.

The structures and fluids codes only communicate at rendezvous points to ex-

change vital information. The structures code calculates the deflections on the struc-

tural grid and using the deflections, calculates a leading edge displacement and angle

of twist. The fluids code uses the displacements and twist angles to deform the

aerodynamic grid.

The forces are first calculated at the grid points of the aerodynamic grid which

must then be transferred to the structural nodes. This is done in the structures code,

by finding the structural element that contains the aerodynamic grid point. Using the

area coordinates of the CFD grid point within the element, the loads are transferred

to the structural nodes. A problem arises when the aerodynamic point lies outside the

structural grid. Currently, the load on an exterior aerodynamic point is transferred to

the closest structural node. Moment and twist produced by this transfer is neglected,

but the effect is negligible as long as the planforms of the CFD and CSD models are

the same. It is suggested that extrapolation be avoided by properly modeling the

structural finite element model to match planforms with the CFD wing grid.

5.4 Structural Analysis

Details of the validation of the finite element wing-box code are presented in the next

few sections. A square panel, a cantilever beam, and a box beam were subjected to

various loads, and the structural responses were obtained. The results are compared

with available analytical and published data.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 84

5.4.1 A Square Panel

To validate the finite element wing-box code, the response of an isotropic square

panel of length L, (taken from Ref. [56]) under a linearly varying edge normal stress

of amplitude σo given by

σx|x=±(L/2) = 2(
y

L
)σo (5.3)

is obtained. Poisson’s ratio is 0.3. Due to symmetry, only 1
4

of the panel is discretized,

as shown in Fig. 5.4, using a 4 x 4 mesh, a total of 32 elements. The antisymmetric

boundary conditions for the corner of the panel are u=0 along AB and the symmetric

boundary conditions are u=0 along line AD. To suppress the zero displacement mode,

ωi is set to zero at corner A.

5.4.2 A Cantilevered Beam

Another example is used to validate the finite element wing-box code. A cantilevered

beam (Fig. 5.5) of length L=48 inches, height H=12 inches, and a thickness t=1 inch,

is modeled using a 5 x 17 mesh, a total of 128 elements, 255 degrees of freedom. A tip

load of W = 40, 000 lbs is applied as a parabolic shear stress, taken from Ref. [56],

τxy|x=L
=

3W

2Ht
[1− 4(

y

H
)2] (5.4)

where Young’s modulus is 30,000 ksi; Poisson’s ratio is 0.25. The beam is clamped at

x=0, that is u, v, and ω are zero at x=0. The consistent load vector is used to obtain

the loads at the tip of the beam, at x=48 inches.

5.4.3 Box Beam

Next, a more complex example is chosen for validation of the structural code. A box

beam with axial rods and membrane elements is examined. It is discretized into 2 x

30 mesh, a total of 540 elements. The box beam has axial loads acting on the rods

and also producing a bending moment, Fig. 5.6. The stresses in the axial bars are

compared with those obtained analytically.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 85

5.5 Aeroelastic Analysis

5.5.1 Aerodynamic Modeling

The CFD code uses an H-O type grid with grid dimensions of 95 (axial) x 79 (cir-

cumferential) x 32 (normal) points. The wing-body grid is shown in Fig. 5.7. The

fuselage is assumed to be rigid and the wing is considered flexible. The wing surface

grid (Fig. 5.8) has dimensions of 40 (chordwise) x 49 (spanwise). Though a typical

wing-body configuration is selected for demonstration purposes, the code can be eas-

ily applied to more realistic configurations such as the High Speed Civil Transport

(HSCT) type wing-body configuration.

One of the major difficulties in using the Euler equations for computational aero-

dynamics lies in the area of grid generation. For steady flows, advanced techniques

such as blocked zonal grids [62] are currently being used. However, grid generation

techniques for aeroelastic calculations which involve moving components are still in

the early stages of development. In this work, the moving grid is generated using an

algebraic scheme. The grid is designed so that flow phenomena such as shock waves,

vortices, etc. and their movement on the wing-body configurations are accurately

simulated. The grid is generated at every iteration based on the aeroelastically de-

formed position of the structure. Details of the implementation of this grid-generation

technique on parallel computers is given in Ref. [42].

5.5.2 Structural Modeling

The wing is structurally discretized using Allman’s triangular elements and axial

bars. The code has the ability to discretize the wing into an m x n mesh, where m

is number of spars, and n is the number of ribs. The wing is discretized as to match

the physical structure of the wing. The spars and ribs of a wing are represented by

the combination of the AT elements with axial bars, while the skin is represented by

the AT elements only.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 86

5.5.3 Typical Wing-body Configuration

A typical wing-body configuration is chosen for parallel static aeroelastic analysis

using both fluid and structural codes. The wing is bi-convex with thickness varying

from 6% chord at the root to 4% chord at the tip. The wing is discretized into

an 8 × 10 mesh. The top view of the structurally discretized wing is shown in Fig.

5.9. Figure 5.10 shows the entire wing structure which includes the upper and lower

surface skins, the spars, and ribs, but not the axial bars, which run spanwise on both

surfaces. Figure 5.11 shows only the spars and ribs.

The wing-body configuration is examined at Mach 0.9 at α = 1.0 degree angle of

attack; the free stream dynamic pressure q is 0.3 psi. The L2 norms of the residuals of

the fluids equations are examined to validate solution convergence. The loads on the

CFD and structural grids are examined to assure proper transfer of loads from fluids

to structures. The loads also indicate the convergence of the CFD/CSD solution.

The displacements along the span and tip are also examined.

Scalability of the structural code is also examined by increasing the number of

processors. Although the results shown for the static aeroelastic analysis are per-

formed on the iPSC/860, the parallel performance of the structures code is studied

on the Intel Paragon. With computer technology increasing so rapidly, especially in

the area of parallel computing, the IBM SP-2 was replaced the iPSC/860 at NASA

Ames. Due to different message passing standards on the two machines, consider-

able time has to be spent before the fluids and structures codes will be IBM SP-2

ready. Therefore, performance of the CFD/CSD coupling on the Intel iPSC/860 is

not available. However, the Intel Paragon was available to test the performance of

the structures code.

5.6 Structural Analysis Results

5.6.1 A Square Panel

As stated earlier, to validate the finite element wing-box code, an isotropic square

panel under pure bending loads (eqn. 5.3) is examined. Due to the symmetry of the

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 87

problem, only 1
4

of the panel is analyzed, as shown in Fig. 5.4. The bending stress

at point C, σx
σo

, is obtained and compared with exact solution. The exact solution is

1.000 and the computational results show σx
σo

to be 0.998. The displacement in the

x-direction at point C, Euc
σoL

is 0.498 while the exact solution is 0.500. Good agreement

is obtained.

5.6.2 Cantilevered Beam

Allman’s triangular (AT) element is compared with the constant strain triangle (CST)

[63] and the linear strain triangle (LST) [64,65], by using a cantilevered beam analysis.

A cantilever beam with a parabolic shear tension (eqn. 5.4) is examined, and the

solutions compared. The beam is modeled by a 5 x 17 mesh, a total of 128 elements,

and 255 degrees of freedom, as seen in Fig. 5.12. The stress contours, σx are also

plotted in Fig. 5.12. The comparison of AT, CST, and LST is summarized in table

5.1. The stress, σx, computed at x=12 in and y=6 in, using the finite element wing-

box code, is 59.6 ksi. Using the constant strain triangle [63], the stress is calculated

to be 53.5 ksi. Using the LST, the stress is calculated to be 60.0 psi. The AT element

is accurate to 0.7% of the solution, while the CST element is almost 11% in error.

The LST element produced excellent results, with negligible error.

The tip deflection, v, at x=48 in, y=0 in, is also compared using AT, CST, and

LST elements, and the calculated deflections are 0.3471 in, 0.3115 in, and 0.3556 in,

respectively. The AT element calculated the tip deflection to 2.4% error, while the

CST element is 12.5% in error. The LST element produced good results again with

negligible error.

The stress, σx, and tip deflection, v, obtained for comparisons in Olsen and Bear-

den [66] are 60.0 ksi and 0.3558 in, respectively. The LST element is more accurate

then the AT element, but the AT element provides good accuracy for the mesh shown

in Fig. 5.12, for the degrees of freedom involved. So, for the 5 x 17 mesh used, the

LST element mesh is a 594 degree of freedom model as compared to the AT mesh,

which is only a 255 degree of freedom model. The stress and displacement results

show the accuracy of the AT element.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 88

5.6.3 Box Beam

A more complicated example is chosen to validate the finite element wing-box code.

A box beam modeled by using a 2 x 30 mesh of AT elements, and axial bars is

put under an axial loading at the tip of the box beam, therefore causing a bending

moment. Results from the analysis of the box beam are shown in Fig. 5.15. Stresses

in the three axial bars, A, B, and C, (Fig. 5.6) on the top surface of the box beam

are plotted along with the analytical results. Even though only three curves can be

seen, there are six curves plotted. It can be seen that the stresses match well with

those predicted analytically in this shear lag example. It is noted again that the box

beam is under axial loads acting on one side of the box beam, causing a moment.

Accuracy of the AT element has been shown by the above examples using the finite

element wing-box code. Next, the results of the aeroelastic analysis are shown on a

typical wing-body configuration.

5.7 Aeroelastic Analysis Results

5.7.1 Typical Wing-body Configuration

A typical wing-body configuration is analyzed using Euler flow equations as available

in ENSAERO, in conjunction with the finite element wing-box code. The deflections

for the flexible wing are calculated in two ways. One method is to start impulsively

from the free stream boundary conditions and the other is to start from the rigid

steady state solution. Figure 5.13 shows the wing leading edge tip history versus

iteration step for both cases. The total number of iterations required are about the

same for the two methods when including the number of iterations required to deter-

mine the rigid steady state solution. If many calculations are needed, e.g. parametric

studies, then using the rigid steady state solution will reduce the computational time

required. It is also noted that both methods converge toward the same solution.

The rigid steady state solution can help avoid the transients that cause havoc in the

convergence of some problems.

The convergence of the static aeroelastic analysis is shown through the L2 norm of

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 89

the residual of the energy equation. Figure 5.14 indicates the convergence of the fluids

equations versus the iteration step on a semi-log scale. Also, as a validation of the force

transfer scheme used to transfer loads from the aerodynamic grid to the structural

mesh, the summation of the loads in the z-direction on the aerodynamic grid and

finite element model were compared; they remained identical at each iteration. The

comparisons of the loads also shows the convergence of the CFD/CSD solution. The

moments were not compared.

Figures 5.16 and 5.17 show the pressure coefficient variation on the upper surface of

a rigid and flexible wing, respectively. The rigid wing pressure contours are calculated

using fluids code only. The flexible wing pressure contours are calculated using the

fluids and structures codes. The wing deflects less than one inch. This is due to

the high stiffness of the wing structure and can be seen by comparing the pressure

coefficient contours for the rigid and flexible wings.

The initial undeflected state of the wing-box tip section and the final converged

state are shown in Fig. 5.18. It can be seen that the trailing edge deflects more

than the leading edge. Also, in Fig. 5.19, the initial undeflected and final statically

converged wing-box leading edge displacements are shown. Again, it can be seen that

the wing does not deflect much. The tip is displaced by less than 1% of the root

chord. The stress variation, σyy, on the upper surface of the wing is shown in Fig.

5.20. It can be seen in Fig. 5.20 that the maximum compressive stresses occur at the

wing root. The entire upper wing surface is in compression, while near the tip the

stresses are nearly zero.

The parallel performance of the structures code is summed up in Fig. 5.21. There

are five lines indicating assembly, factorization, forward substitution, backward sub-

stitution, and total times. The factorization part of the structures code dominates

the time as the number of processors increases. This is probably due to the increasing

number of communications needed as more processors are involved. The communi-

cation to computation speeds are also important when looking at the performance of

the code. This can be seen by the fact that one processor can factor much faster than

anything greater than one processor. Therefore, it might be concluded that parallel

computers are not worth the research effort, but that would be short sighted. One

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 90

reason for the results in Fig. 5.21 is that the communication speed of the computer

used is much slower than the computational speed of the computer. Communication

speeds are increasing with the use of high performance networks, e.g. IBM SP-2, and

the ability of parallel computers will be even more demonstrable in the near future.

In addition, when parallelizing a code, there is an overhead cost which involves the

time it takes to communicate between the processors. If the problem size is fixed, and

the number of processors is increased, then eventually, there will be so many com-

munications and little computation, and the overhead cost will dominate the results.

But if the overhead cost is small compared to that for the computations, then good

parallel performance results can be obtained. Parallel performance of the aeroelastic

analysis is not shown due to the unavailability of the iPSC/860.

5.8 Conclusions

Parallel aeroelastic analysis was performed on a typical wing-body configuration using

a parallel CFD code in conjunction with a parallel CSD code. A parallel CSD code

is developed in this study using Allman’s triangular element in conjunction with

axial bars to represent the wing-box structure of the wing. Reasonable results were

obtained, however the performance of the CSD code on a parallel machine seemed

poor. But this can be easily attributed to the fact the the problem size was not large

enough to overcome the cost of parallelization of the code, the overhead cost. Parallel

computing is the future of scientific computing. It is this researcher’s belief that most

large scale applications will be created for parallel computing paradigms in the near

future.

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 91

1x

y
1

Ω
1

2x

y
2

Ω

3x

y
3

Ω
3

Y

X

2

Figure 5.1: Allman’s Triangular Element

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 92

Solver for
Structural Dynamics

Send Surface

Deflection Data

Receive Surface
Pressure Data

Start Structure CubeStart Fluid Cube

Solver for

Fluid Dynamics

Send Surface
Pressure Data

Receive Surface
Deflection Data

Moving Grid

Idle
Time

Idle
Time

Start Fluid Cube

Solver for

Fluid Dynamics

Send Surface
Pressure Data

Receive Surface
Deflection Data

Moving Grid

Solver for
Structural Dynamics

Send Surface

Deflection Data

Receive Surface
Pressure Data

Start Structure Cube

Idle
Time

Sequential Iteration Parallel Iteration

Figure 5.2: Schematic of the Solution Procedure and the Coupling between Fluid and
Structure Domains

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 93

Bidirectional
Communication

Bidirectional
Communication

Nodes

Figure 5.3: Uni-Partitioning Scheme of the Fluid Domain

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 94

A B

CD σo

x,u

y,v

Figure 5.4: Discretization of a Square Panel with Linearly Varying Edge Normal
Stress

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 95

x,u

y,v

Figure 5.5: Discretization of a Cantilever Beam with Tip Load

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 96

P

P

A

B

C

44
44
44
44
44
44
44
44

L

Z

2d

A B C

Figure 5.6: A Box Beam Subjected to Axial Loads

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 97

Figure 5.7: Aerodynamic Surface Grid for a Typical Wing-body Configuration

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 98

X

Y

Wing Root

Wing Tip

V

Figure 5.8: Aerodynamic Surface Grid of Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 99

X

Y

Wing Root

Wing Tip

V

Figure 5.9: Top View of the Structural Discretization of the Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 100

Wing Root

Wing Tip

V

Figure 5.10: Structural Modeling of the Entire Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 101

Wing Root

Wing Tip

V

Figure 5.11: Structural Discretization of the Spars and Ribs of the Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 102

Figure 5.12: Stress Contours Due to a Tip Load on the Cantilevered Beam

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 103

500 1000 1500
Iteration Step

0

1

2

3

4

5

D
is

pl
ac

em
en

t (
in

)

Starting Impulsively from Free Stream Boundary Conditions

Starting from Rigid Steady State Solution

Figure 5.13: Wing Leading Edge Tip History Versus Iteration Step

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 104

500 1000 1500
Iteration Step

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

L-
2

N
or

m

Figure 5.14: L2 Norm of the Residual of the Energy Equation

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 105

0 10 20 30 40
Spanwise Coordinate (in)

0

10

20

30

40

50

60

70

80

90

100

S
tr

es
s

(p
si

)

Anal. Axial Bar C
Comp. Axial Bar C
Anal. Axial Bar B
Comp. Axial Bar B
Anal. Axial Bar A
Comp. Axial Bar A

Figure 5.15: Comparison of the Stresses in the Axial Bars of Box Beam

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 106

Figure 5.16: Cp Variation on the Upper Surface of a Rigid Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 107

Figure 5.17: Cp Variation on the Upper Surface of a Flexible Wing

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 108

710 720 730 740 750 760 770 780 790
Chordwise Coordinate (in)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V
er

tic
al

 D
is

pl
ac

em
en

t (
in

)

Undeflected Wing-Box
Final Converged Wing-Box

Figure 5.18: Initial Undeflected and Final Converged Wing-box Tip Section

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 109

50 100 150 200
Spanwise Coordinate (in)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
er

tic
al

 C
oo

rd
in

at
e

(in
)

Undeflected Wing-Box L.E.
Final Converged Wing-Box L.E.

Figure 5.19: Initial Undeflected and Final Converged Wing-box Leading Edge (Front
Spar)

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 110

Figure 5.20: Bending Stress Variation on the Upper Surface of a Flexible Wing (psi)

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 111

5 10 15 20
Number of Processors

1

2

3

4

5

6

7

8

9

10

11

12

C
P

U
 T

im
e

(s
ec

)

Assembly Stage
Factorization Stage
Forward Sub. Stage
Backward Sub. Stage
Total Time

Figure 5.21: CPU Time for the Execution of the Various Parts of the Finite Element
Wing-box Code

CHAPTER 5. PARALLEL AEROELASTIC ANALYSIS 112

Element Stress at Vertical deflection
type x=12 in and y=6 in at x=48 in and y=0 in

Allman’s Triangular Element 59.6 ksi 0.3471 in
Constant Strain Triangle 53.5 ksi 0.3115 in

Linear Strain Triangle 60.0 ksi 0.3556 in
Olsen and Bearden [66] 60.0 ksi 0.3558 in

Table 5.1: Comparison of Allman’s Triangular Element, Constant Strain Triangle,
and Linear Strain Triangle for Analysis of Cantilevered Beam

Chapter 6

Conclusions

An aeroelastic coupling procedure is presented whereby static aeroelastic analysis is

performed by coupling a wide variety of computational fluid dynamics (CFD) codes

and computational structural dynamics (CSD) codes. The procedure is demonstrated

by performing static aeroelastic analysis on an F/A-18 Stabilator by using finite el-

ement capability in NASTRAN coupled with Euler flow equations as available in

NASTD (an in-house McDonnell Douglas CFD code). In addition, the Aeroelastic

Research Wing (ARW-2) is used to validate the aeroelastic coupling procedure by

using a finite element wing-box code (developed as part of this work) coupled with

Navier-Stokes equations as available in ENSAERO (NASA Ames CFD code). Ex-

perimental data was used to compare the computational aeroelastic solution of the

ARW-2 and good agreement was obtained. The increased accuracy of the use of direct

finite element displacement data as opposed to modal analysis is also shown. The ad-

vantage of this aeroelastic coupling procedure is that it only requires the grid points of

the CSD and CFD grids. Using only the grid point locations, necessary mappings are

created to perform static aeroelastic analysis. This procedure is modular. Currently,

only the vertical displacements are considered. Therefore, the interpolation scheme

can be changed to account for the in-plane displacements.

The aeroelastic coupling procedure is not as efficient as a completely integrated

scheme. This procedure is also limited in that large amounts of deformation will cause

the problems with CFD grid deformation. This will occur at points near divergence

113

CHAPTER 6. CONCLUSIONS 114

speeds. However, for swept back wings, divergence is not a problem.

Though the parallel aeroelastic analysis research is not at yet at the desired point

of completion due to the rapid changes in technology, there is a need for a parallel finite

element code which runs efficiently. This is required for the purpose of performing

parallel aeroelastic analysis. In this author’s opinion, there is no doubt that the future

applications of aeroelastic analyses will be performed on parallel computers. With

the costs of processors decreasing, more businesses and schools will be able to afford

parallel machines, increasing the need for parallel software. The overall result will

be the ability to run applications in a fraction of the time it takes now. Technology

is improving rapidly, and considerable research efforts will be spent in the future

creating efficient parallel codes.

Bibliography

[1] R. L. Bisplinghoff. Principles of Aeroelasticity , chapter 1. Dover Publications,

Inc.

[2] R. L. Bisplinghoff, H. Ashley, and R. L. Halfman. Aeroelasticity , chapter 1.

Addison-Wesley Publishing Company.

[3] R. Yurkovich. “Optimum Wing Shape for an Active Flexible Wing.” AIAA

Paper 95-1220 , April 1995.

[4] B. P. III, S. R. Cole, and G. D. Miller. “A Summary of the Active Flexible Wing

Program.” AIAA Paper 92-2080 , 1992.

[5] G. Andersen, E. Forster, R. Kolonay, and F. Eastep. “Multiple Control Sur-

face Utilization in Active Aeroelastic Wing Technology.” Journal of Aircraft,

volume 34, no. 4, July-August 1997.

[6] G. D. Miller. “Active Flexible Wing (AFW) Technology.” AFWAL-TR-87-3096 ,

1987.

[7] J. R. Hooker, A. W. Burner, and R. Valla. “Static Aeroelastic Analysis of

Transonic Wind Tunnel Models Using Finite Element Methods.” AIAA Paper

97-2243 , June 1997. Presented at the 15th Applied Aerodynamics Conference.

[8] H. S. Murty and G. W. Johnson. “Nonlinear Aspects of Transonic Aeroelasticity.”

Canadian Aeronautics and Space Journal , volume 39, no. 2, pages 78–84, June

1993.

115

BIBLIOGRAPHY 116

[9] G. P. Guruswamy. “Coupled Finite-Difference/Finite-Element Approach for

Wing-Body Aeroelasticity.” AIAA Paper 92-4680 , September 1992.

[10] G. Tzong, H. H. Chen, K. C. Chang, T. Wu, and T. Cebeci. “A General Method

for Calculating Aero-Structure Interaction on Aircraft Configurations.” AIAA

Paper 96-3982 , September 1996.

[11] D. Macumurdy, R. Kapania, and G. P. Guruswamy. “Static Aeroelastic Analysis

of Wings Using Euler/Navier-Stokes Equations Coupled with Wing-Box Finite

Element Structures.” AIAA Paper 94-1587 , April 1994.

[12] M. K. Bhardwaj, R. K. Kapania, C. Byun, and G. P. Guruswamy. “Parallel

Aeroelastic Computations by Using Coupled Euler Flow and Wing-Box Struc-

tural Models.” AIAA Paper 95-1291 , April 1995.

[13] G. P. Guruswamy and C. Byun. “Fluid-Structural Interactions Using Navier-

Stokes Flow Equations Coupled with Shell Finite Element Structures.” AIAA

Paper 93-3087 , July 1993.

[14] G. P. Guruswamy and C. Byun. “Direct Coupling of Euler Flow Equations with

Plate Finite Element Structures.” AIAA Journal , volume 33, no. 2, pages 375–

377.

[15] J. C. Neuman III. “Efficient Nonlinear Static Aeroelastic Wing Analysis.” Sub-

mitted to Computers and Fluids, December 1996.

[16] G. P. Guruswamy and T. Y. Yang. “Aeroelastic Time-Response Analysis of Thin

Airfoils by Transonic Code LTRAN2.” Computers and Fluids , volume 9, no. 4,

pages 409–425, December 1980.

[17] O. A. Bauchau and J. U. Ahmad. “Advanced CFD and CSD Methods for Mul-

tidisciplinary Applications in Rotorcraft Problems.” AIAA Paper 96-4151 , July

1996.

[18] O. O. Bendiksen. “A New Approach to Computational Aeroelasticity.” AIAA

Paper 91-0939 , April 1991.

BIBLIOGRAPHY 117

[19] F. F. Felker. “A New Method for Transonic Static Aeroelastic Problems.” AIAA

Paper 92-2123 , April 1992.

[20] C. J. Borland and D. Rizzetta. “XTRAN3S - Transonic Steady and Un-

steady Aerodynamics for Aeroelastic Applications, Volume 1-Theoretical Man-

ual.” AFWAL-TR-80-3017 , December 1985.

[21] G. P. Guruswamy, P. M. Goorjian, and F. J. Merritt. “ATRAN3S - An Unsteady

Transonic Code for Clean Wings.” NASA TM 86783 , December 1985.

[22] J. T. Batina, R. M. Bennett, D. A. Seidal, S. R. Cunningham, and S. R.

Bland. “Recent Advances in Transonic Computational Aeroelasticity.” NASA

TM 100663 , September 1988.

[23] G. P. Guruswamy. “Unsteady Aerodynamic and Aeroelastic Calculations of

Wings Using Euler Equations.” AIAA Journal , volume 28, no. 3, pages 461–

469, March 1990.

[24] G. P. Guruswamy. “Vortical Flow Computations on Swept Flexible Wings Using

Navier-Stokes Equations.” AIAA Journal , volume 28, no. 12, pages 2077–2084,

December 1990.

[25] R. Chipman, C. Walters, and D. MacKenzie. “Numerical Computation of Aeroe-

lastically Corrected Transonic Loads.” AIAA Paper 79-0766 , 1979.

[26] W. H. Mason, D. MacKenzie, M. Stern, W. F. Ballhaus, and J. Frick. “An

Automated Procedure for Computing the Three Dimensional Transonic Flow

over Wing Body Combinations, Including Viscous Effects. Volume 1 - Description

of Analysis Methods and Applications.” AFFDL TR-77-122 , volume 1, October

1977.

[27] J. T. Batina. “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for

Complex-Aircraft Aeroelastic Analysis.” AIAA Paper 89-1189 , April 1989.

BIBLIOGRAPHY 118

[28] R. D. Rausch, J. T. Batina, and H. T. Y. Yang. “Three-Dimensional Time-

Marching Aeroelastic Analyses Using an Unstructured Euler Method.” NASA

TM 107567 , March 1992.

[29] R. R. Craig Jr. Structural Dynamics, chapter 15. John Wiley & Sons, 1981.

[30] M. D. Salas, editor, Accuracy of Unstructured Grid Techniques Workshop. NASA

Conference Proceedings, NASA Langley Research Center, January 1990.

[31] T. W. Purcell, C. J. Borland, and E. N. Tinoco. “Non-Linear Aeroelastic Pre-

dictions of Transport Aircraft.” AIAA Paper 90-1852 , 1990.

[32] “ELFINI Aeroelasticity - General Introduction Manual.” Document No. ELF-

AER-1 , Avions Marcel Dassault-Breguet, Aviation, Saint-Cloud. May 1989.

[33] D. Schuster, J. Vadyak, and E. Atta. “Static Aeroelastic Analysis of Fighter

Aircraft Using a Three-Dimensional Navier-Stokes Algorithm.” AIAA Paper

90-0435 , January 1990.

[34] D. T. Yeh. “Aeroelastic Analysis of a Hinged-Flap and Control Surface Effec-

tiveness Using the Navier-Stokes Equations.” AIAA Paper 95-2263 , June 1995.

[35] J. K. Nathman and J. M. Barton. “Aeroelastic Calculations with an Euler Code.”

AIAA Paper 97-2271 , June 1997. Presented at the 15th Applied Aerodynamics

Conference.

[36] B. A. Robinson, J. T. Batina, and H. T. Y. Yang. “Aeroelastic Analysis of Wings

Using the Euler Equations with a Deforming Mesh.” AIAA Paper 90-1032 , April

1990.

[37] V. B. Venkayya and V. A. Tischler. “ANALYZE - Analysis of Aerospace Struc-

tures with Membrane Elements.” AFFDL-TR-78-170 , December 1978.

[38] P. G. Buning, W. M. Chan, K. J. Renze, D. Sondak, I. T. Chiu, and J. P.

Slotnick. “OVERFLOW User’s Manual, Version 1.6.” NASA Ames Research

Center. 1991.

BIBLIOGRAPHY 119

[39] J. L. Hess, D. M. Friedman, and R. W. Clark. “Calculation of Compressible

Flow About Three-Dimensional Inlets with Auxiliary Inlets, Slats, and Vanes by

Means of a Panel Method.” NASA CR 174975 , 1985.

[40] M. J. Smith, D. H. Hodges, and C. E. S. Cesnik. “An Evaluation of Computa-

tional Algorithms to Interface between CFD and CSD Methodologies.” Report

WL-TR-96-3055 , November 1995.

[41] K. Appa. “Finite-Surface Spline.” Journal of Aircraft, volume 26, no. 5,

pages 495–496, 1989.

[42] C. Byun and G. P. Guruswamy. “Wing-Body Aeroelasticity Using Finite-

Difference Fluid/Finite- Element Structural Equations on Parallel Computers.”

AIAA Paper 94-1487 , April 1994.

[43] R. M. V. Pidaparti. “Structural and Aerodynamic Data Transformation Us-

ing Inverse Isoparametric Mapping.” Journal of Aircraft, volume 29, no. 3,

pages 507–509, 1992.

[44] R. L. Harder and R. N. Desmarais. “Interpolation Using Surface Splines.” Jour-

nal of aircraft , volume 9, no. 2, pages 189–191, October 1971.

[45] S. Obyashi and G. P. Guruswamy. “Convergence Acceleration of a Navier-

Stokes Solver for Efficient Static Aeroelastic Computations.” AIAA Journal ,

volume 33, no. 6, pages 1134–1141, June 1995.

[46] R. H. MacNeal. “The NASTRAN Theoretical Manual.” NASA SP-221(01),

April 1971.

[47] G. P. Guruswamy. “ENSAERO - A Multidisciplinary Program for

Fluid/Structural Interaction Studies of Aerospace Vehicles.” Company System

Engineering , volume 1, no. 2-4, pages 237–257, 1990.

[48] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting: Design and Analysis of Algorithms, chapter 1. The Benjamin/Cummings

Publishing Company, Inc., 1994.

BIBLIOGRAPHY 120

[49] R. L. Burden and J. D. Faires. Numerical Analysis, chapter 2. PWS-KENT

Publishing Company.

[50] E. H. D. et. al. A Modern Course in Aeroelasticity , chapter 1. Sijthoff and

Noordhoff.

[51] W. P. Rodden, J. A. McGrew, and T. P. Kalman. “Comment on ’Interpolation

Using Surface Splines’.” Journal of aircraft, volume 9, pages 869–871, December

1972.

[52] R. H. Bush. “A Three Dimensional Zonal Navier-Stokes Code for Subsonic

Through Hypersonic Propulsion Fields.” AIAA Paper 88-2830 , 1988.

[53] M. C. Sanford, D. A. Seidel, C. V. Eckstrom, and C. V. Spain. “Geometrical

and Structural Properties of an Aeroelastic Research Wing (ARW-2).” NASA

TM 4110 , April 1989.

[54] M. Farhangnia, G. P. Guruswamy, and S. Biringen. “Transonic-Buffet Associated

Aeroelasticity of a Supercritical Wing.” AIAA Paper 96-0286 , January 1996.

[55] T. A. Byrdsong, R. R. Adams, and M. C. Sanford. “Close-range Photogram-

metric Measurement of Static Deflections of an Aeroelastic Supercritical Wing.”

NASA TM 4194 , 1990.

[56] D. J. Allman. “A Compatible Triangular Element Including Vertex Rotations

for Plane Elasticity Problems.” Computers and Structures , volume 19, no. 1-2,

pages 1–8, 1996.

[57] R. Peyret and H. Viviand. “Computation of Viscous Compressible Flows Based

on Navier-Stokes Equations.” AGARD AG-212 , 1975.

[58] R. Beam and R. F. Warming. “An Implicit Finite-Difference Algorithm for Hy-

perbolic Systems in Conservation Law Form.” Journal of Computational Physics,

volume 22, no. 9, pages 87–110, September 1976.

BIBLIOGRAPHY 121

[59] T. H. Pulliam and D. S. Chaussee. “A Diagonal Form of an Implicit Approximate

Factorization Algorithm.” Journal of Computational Physics, volume 39, no. 2,

pages 347–363, February 1981.

[60] C. Farhat and E. Wilson. “A Parallel Active Column Equation Solver.” Com-

puters and Structures, volume 28, no. 2, pages 289–304, 1988.

[61] J. S. Ryan and S. K. Weeratunga. “Parallel Computation of 3-D Navier-Stokes

Flowfields for Supersonic Vehicles.” AIAA Paper 93-0064 , pages 87–110, January

1993.

[62] T. L. Holst, J. Flores, U. Kaynak, and N. Chaderjian. “Navier-Stokes Compu-

tations, Including a Complete F-16 Aircraft.” In P. A. Henne, editor, Applied

Computational Aerodynamics, volume 125 of Progress in Astronautics and Aero-

nautics, chapter 21. 1990.

[63] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp. “Stiffness and

Deflection Analysis of Complex Structures.” Journal of Aeronautical Sciences ,

volume 23, pages 805–823, 1956.

[64] B. F. de Veubeke. “Displacement and Equilibrium Models in the Finite Element

Method.” In O. C. Zeinkiewicz and G. S. Holister, editors, Stress Analysis ,

chapter 9, pages 145–197. Wiley, New York, 1965.

[65] J. H. Argyris. “Triangular Elements with Linearly Varying Strain for the Matrix

Displacement Method.” Journal of Royal Aeronautical Sciences , volume 69,

pages 711–713, 1965.

[66] M. D. Olsen and T. W. Bearden. “A Simple Flat Shell Element Revisited.” Inter-

national Journal of Numerical Methods in Engineering , volume 14, pages 51–68,

1979.

Appendix A

Finite Element Wing-box Source

Code

This is the finite element wing-box source code written in FORTRAN. It is used to do

the parallel aeroelastic analysis as well as serial analysis on the aeroelastic research

wing (ARW-2). The following is the serial version, but can be run using NX if the

csend and crecv routines are deleted. The forsub, bacsub, and factor routines are not

included, but can be found in Ref. [60].

c This is the program for wingbox modeling.

include ’wboxbc.f’

c include ’../fcube.h’

c maxsen = number of d.o.f. per processor (after b.c.)

c nsizeg = total number of elements in skyline scheme

c (after b.c.)

c tot = total number of elements per processor

c nsizes = total number of elements per processor

c (after b.c.)

integer maxsen , nsizeg , nsizes , tot

parameter (maxsen = nogn / nodcube + 1)

parameter (nsizeg = nogn * (nogn+1) / 2)

parameter (tot = (tdof * (tdof+1) / 2) / nodcube + 1)

122

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 123

parameter (nsizes = nsizeg / nodcube + 1)

c no1(i), no2(i)... : nodes 1,2,3 of element i

c xa(i), ya(i), za(i) : x, y, and z axis of node i

c dd(i) : direction of known disp. (dof)

c df(i) : direction of known force (dof)

c nodn : number of displacements known

c nofn : number of forces known

c colpos(i) : location in 1D array of

c beginning of column i

c con(i,j) : beginning row location of

c dof j in element i

c mm(i) : beginning row of column i

c for global stiffness

c nopel(i) : nodes per element i

c mp(i) : same as mm(i), except for

c reduced stiffness after

c applying boundary conditions

c colposp(i) : same as colpos, except it’s

c for reduced stiffness

c nproc : number of processors

c (same as nodcube)

c tids : used with PVM to identify

c each process

c node : defines which process this is

c nwksub, ncolpn, colpos1,

c coltip, maxa : used with Parallel Active

c Column Solver

c mat(i) : which material is element

c i made of

c static : 0 = static (Ku=F),

c 1 = dynamic (Mu: + Ku = F)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 124

c method : 1..5 depending on which

c dynamic solver (see below)

c The following integer delcarations based on include file.

integer no1(nele) , no2(nele) , no3(nele) , nopel(nele) ,

1 mat(nele) , isurf(nele) ,

2 dd(tdof) , df(tdof) , dap(tdof) ,

3 mp(nogn) , maxa(nogn+1) ,

4 colpos1(maxsen) , coltip(maxsen)

c The following are arrays for integers

integer tids(0:32) , ibuff(20) , nfldom(64) , ele(50,50)

c The following 4 lines are for common blocks

integer con , colpos , mm ,

7 colposp , mk ,

8 jwngle , jwngtre , kroot1 , kroot2 , indtip ,

9 nfspc , fsprocnum , ibeg , iend , jbeg , jend

c The remaining are all other integers.

integer n1 , n2 , n3 , nodn , nofn , nproc , node ,

1 ile , ite , jroot , jroot1 , jtip , mpp ,

2 m , step , i , j , ch , iii , nrsrt , indx ,

3 jj , add , col , del , dbs , k , band , q1 , q2

integer rowg , colg , tie , out , numt , info ,

5 nwksub , ncolpn , len , ii , ist , who ,

6 static , method , count , mess , icol ,

7 msgtype, myphynd , fphynd0 , msgid , msgid1 , msgid2

integer msgid3 , ldx , ldy , msglen ,

9 nxt , nyt , nstart , nstop , irestart ,

1 nlep , io , ijk , dep , ent , rowgp , colgp

c x(i), y(i), z(i) : coordinates of node i

c e(i) : Young’s Modulus of

c material i, NOT element i

c ke(i) : element stiffness matrix

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 125

c (membrane element)

c kz(i) : global stiffness matrix

c in skyline storage

c u(i) : global displacement vector

c fn(i) : global force vector

c kzp(i) : stiffness matrix in skyline

c storage after

c applying B.C.’s

c fp(i) : force vector used in solver

c colval(i) : used in LDL solver, indicates

c which values

c : of the stiffness vector

c are going to be

c worked on for this process

c nu(i) : Poisson’s Ratio for material i

c diagon, subfor, work : used in Active Column Solver

c mz(i) : global mass matrix

c mzp(i) : reduce mass matrix after

c applying B.C.’s

c me : element mass matrix for

c membrane element

c t1(i), t2(i), t3(i) : thickness of nodes 1,2,3

c of element i or

c if axial bar, t1(i) is

c cross sectional area

c rho(i) : density of material i

c ma, ka : mass and stiffness matrices

c for axial bar

c colvalm(i) : used in active column solver

c to indicate

c which part of mass matrix is

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 126

c being used in this process

c deltat, alpha, gamma,

c a1,a2,a3,a4,a5,time,

c limit, unew(i),uold(i),

c velo(i),veln(i),acco(i),

c accn(i),fo(i) : used in dynamic solver

real*8 x(tn) , y(tn) , z(tn) ,

1 e(nmat) , rho(nmat) , nu(nmat) ,

2 kz(tot) , mz(tot) ,

3 u(tdof) , fn(tdof) ,

4 unew(tdof) , velo(tdof) , veln(tdof) ,

5 acco(tdof) , accn(tdof) , fo(tdof) ,

6 uold(tdof) , fhat(tdof) , kzt(tdof,tdof+1) , err(tdof) ,

7 fp(nogn) , diagon(nogn) , sol(nogn) , sol1(nogn) ,

8 subfor(maxsen) ,

9 work(nsizeg) ,

1 t1(nele) , t2(nele) , t3(nele)

real*8 ke(18,18) , me(18,18) , rbuf(1000) , xg(3000) ,

1 yg(3000) , zg(3000) , area(50,50) , ug(100) ,

2 phig(100) , cp(50,50)

real*8 chord , x1 , y1 , x2 , y2 , x3 , y3 , t11 , t22 ,

1 t33 , z1 , z2 , z3 , lx , ly , lz , ln , deltat ,

2 alpha , gamma , a1 , a2 , a3 , a4 , a5 , time ,

3 pos , ti , limit

character *144 msgline

c external initcubecomm , cubemap

common /soup/ con(nele,dof) , colpos(tdof+1) , mm(tdof)

common /cream/ colposp(nogn+1) , mk(nogn)

common /gridinfo/ jwngle , jwngtre , kroot1 , kroot2 , indtip

common /cpinfo/ nfspc , fsprocnum(32) , ibeg(32) , iend(32) ,

* jbeg(32) , jend(32)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 127

c Find out number of processor and this process’s node number

c nproc = numnodes()

c node = mynode()

node = 0

nproc = 1

nstart = 1

nstop = 1

write(*,*) ’Hello’

if (nproc.ne.nodcube) stop

write(*,*) ’Hello’

c if static = 0, do static analysis, i.e., Ku=F, and

c if static not equal to zero, do dynamic analysis, i.e.,

c Mu: + Ku = F. Also, if doing a dynamic analysis, set

c time limit in seconds.

static = 0

limit = 0.1d0

step = 1

deltat = 0.01d0

time = 0.0d0

c If doing a dynamic analysis, need to choose which of Newmark’s

c methods to use.

c method = 1: constant-average acceleration method (stable)

c method = 2: linear acceleration method (conditionally stable)

c method = 3: central difference method (conditionally stable)

c method = 4: Galerkin method (stable)

c method = 5: backward difference method (stable)

method = 1

count = 0

c For dynamic analysis, set acceleration and

c velocity to zero initially

do i = 1 , tdof

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 128

unew(i) = 0.0d0

uold(i) = 0.0d0

velo(i) = 0.0d0

veln(i) = 0.0d0

acco(i) = 0.0d0

accn(i) = 0.0d0

fhat(i) = 0.0d0

end do

do i = 0 , 32

tids(i) = i

end do

c Setup Intercube Communtication Info

c call sficc_setup(node,nproc,nstart,nstop,irestart,nrsrt)

c Read Surface Aerodynamic Grid for Wing-Body and Extract Wing Only

c call rgrid(node,nproc,ile,ite,jroot,jroot1,jtip,phylen,xg,yg,zg)

c Calculate Areas for Pressures

c call areac(ile,ite,jroot,jtip,jroot1,phylen,xg,yg,zg,area)

c Need to get structural model here

c Call WINGP to partition the wing box and calculate initial

c configurations.

call wingp(nxt,nyt,nopel,no1,no2,no3,mat,x,y,z,t1,t2,t3,e,

* nu,rho,isurf)

call mesh(tn,nax,nrib+nspar+nmem,nele,nopel,no1,no2,no3,isurf,

* x,y,z)

c call beamp(nopel,no1,no2,no3,mat,x,y,z,t1,t2,t3,e,nu,rho)

c Map Aero. Grid Pts to Appropriate F.E.

c call ftsmap(nele,ile,ite,jroot,jtip,jroot1,nxt,nyt,isurf,

c * xg,yg,zg,no1,no2,no3,x,y,z,ele)

c Call BOUND to get the boundary conditions for the wing box

call bound(nodn,nofn,dd,df,u,fn)

c Get loads

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 129

x1 = 1.0d0/3.0d0

x2 = 100.0d0*0.4d0*0.4d0*0.5d0*x1

c do i = 1 , nele

c if (isurf(i).eq.1) then

c n1 = 6*no1(i)-3

c n2 = 6*no2(i)-3

c n3 = 6*no3(i)-3

c fn(n1) = fn(n1) + x2

c fn(n2) = fn(n2) + x2

c fn(n3) = fn(n3) + x2

c end if

c end do

do i = 1 , tdof

do j = 1 , tdof+1

kzt(i,j) = 0.0d0

end do

end do

write(*,*) ’tot ’, tot

do i = 1, tot

kz(i) = 0.0d0

mz(i) = 0.0d0

end do

c Call CONNECT to calculate the connectivity matrix

call connect(nopel,no1,no2,no3)

j = 0

do i = node+1 , tdof , nproc

j = j + 1

if (i.eq.node+1) then

colposp(j) = 1

mk(j) = mm(i)

else

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 130

colposp(j) = colposp(j-1) + (io-mm(io)+1)

mk(j) = mm(i)

endif

io = i

end do

colposp(j+1) = colposp(j) + (io-mm(io)+1)

ncolpn = j

do i = 1 , tdof

dap(i) = 100

end do

c Calculate the stiffness matrix for each element

band = 0

do 60 i = 1 , nele

n1 = no1(i)

n2 = no2(i)

n3 = no3(i)

c Calculate Bandwidth

q1 = max0(n1,n2,n3)

q2 = min0(n1,n2,n3)

if (q2.eq.0) q2=min0(n1,n2)

q1=6*q1

q2=6*q2-5

band=max0(band,q1-q2)

t11 = t1(i)

t22 = t2(i)

t33 = t3(i)

x1 = x(n1)

x2 = x(n2)

y1 = y(n1)

y2 = y(n2)

z1 = z(n1)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 131

z2 = z(n2)

if (n3.ne.0) then

x3=x(n3)

y3=y(n3)

z3=z(n3)

else

x3 = 0.0d0

y3 = 0.0d0

z3 = 0.0d0

end if

mpp = mat(i)

m = abs(mpp)

c if nodes per element is 3 then call membrane element routines

if (nopel(i).eq.3) then

call stiff(e(m),nu(m),x1,y1,z1,x2,y2,z2,x3,y3,z3,

* t11,t22,t33,ke)

c call mmat(rho(m),x1,x2,x3,y1,y2,y3,z1,z2,z3,t11,t22,t33,me)

call mlump(rho(m),x1,x2,x3,y1,y2,y3,z1,z2,z3,t11,t22,t33,me)

endif

c If nodes per element is 2 then call axial bar routines

if (nopel(i).eq.2) then

lx = x2 - x1

ly = y2 - y1

lz = z2 - z1

ln = (lx**2 + ly**2 + lz**2)**0.5

c Area = t11

call axstiff(e(m),t11,ln,lx,ly,lz,ke)

call axmass(rho(m),t11,ln,lx,ly,lz,me)

endif

c Calculate Global Stiffness matrix using connectivity info.

do 70 j = 1 , nopel(i)*dof1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 132

do 80 k = 1 , j

rowg = con(i,k)

colg = con(i,j)

if (rowg.gt.colg) then

tie = rowg

rowg = colg

colg = tie

endif

if (mod(colg-1,nproc).eq.node) then

do jj = 1 , nodn

if (rowg.eq.dd(jj).or.colg.eq.dd(jj)) then

me(k,j) = 0.0d0

ke(k,j) = 0.0d0

ke(j,k) = 0.0d0

me(j,k) = 0.0d0

endif

if (rowg.eq.colg.and.rowg.eq.dd(jj).and.

* dap(jj).ne.0) then

me(k,j) = 1.0d0

ke(k,j) = 1.0d0

dap(jj) = 0

endif

end do

add = 0

if (mod(colg,nproc).ne.0) add = 1

colgp = int(colg/nproc) + add

rowgp = rowg

c Membrane element assembly

if (nopel(i).eq.3) then

mz(colposp(colgp)+rowgp-mk(colgp)) = me(k,j) +

* mz(colposp(colgp)+rowgp-mk(colgp))

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 133

kz(colposp(colgp)+rowgp-mk(colgp)) = ke(k,j) +

* kz(colposp(colgp)+rowgp-mk(colgp))

endif

c Axial Bar assembly

if (nopel(i).eq.2) then

mz(colposp(colgp)+rowgp-mk(colgp)) = me(k,j) +

* mz(colposp(colgp)+rowgp-mk(colgp))

kz(colposp(colgp)+rowgp-mk(colgp)) = ke(k,j) +

* kz(colposp(colgp)+rowgp-mk(colgp))

endif

endif

80 continue

70 continue

do j = 1 , nopel(i)*dof1

do k = 1 , nopel(i)*dof1

rowg = con(i,j)

colg = con(i,k)

kzt(rowg,colg) = kzt(rowg,colg) + ke(j,k)

end do

end do

60 continue

c Eliminate any columns that are all zeroes

c Use Known Displacements to eliminate columns and rows

c call reduce(nodn,kz,mz,dd,kzp,mzp,mp,colposp,mk)

c if (static.ne.0) then

c len = colposp(ncolpn+1)-1

c call dysetup(deltat,method,alpha,gamma,a1,a2,a3,a4,a5)

c call khat(len,a3,kz,mz)

c endif

write(*,*) ’band =’,band

c Begin Active Column Solver

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 134

do i = 1 , nodn

fn(dd(i)) = 0.0d0

end do

write(*,*) ’Here we go’

c call gauss1(tdof,band,kzt,u,fn,err)

write(*,*) ’we are out’

write(*,*) (mk(i),i=1,4)

do i = 1 , tdof

count = 0

do j = colpos(i),colpos(i+1)-1

k = mk(i)+(j-colpos(i))

if (kzt(i,k).eq.0) count = count + 1

end do

if (count.eq.colpos(i+1)-colpos(i)) write(*,*) ’yep’,i

end do

c goto 1234

do i = 1 , nofn

fp(i) = fn(df(i))

end do

c Remember the RHS for dynamic purposes

do i = 1 , nofn

fo(i) = fp(i)

end do

do i = 1 , ncolpn

coltip(i) = mk(i)

end do

do i = 2 , ncolpn+1

mk(i-1) = colposp(i) - colposp(i-1) - 1

end do

j = 0

do i = node+1 , nofn , nproc

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 135

j = j + 1

subfor(j) = fp(i)

end do

c call zerocol(nodn,nofn,dd,df,kz,mz,mm)

c call zerocol(ncolpn,colposp,subfor,kz)

if (node.eq.0) write(*,*) ’Made it’

c Decompose the global stiffness matrix equally among the

c different processes.

c call prepare(node,nproc,nwksub,ncolpn,colval,colvalm,colpos1,

c * coltip,subfor,nofn,maxa,mk,kzp,mzp,fp)

c Factor the portion assigned to this process using L D L-transpose.

call factor(kz,colposp,coltip,diagon,work,nofn,nproc,

* ncolpn,node,tids)

c Load Restart Files if needed

nlep = indtip - kroot1 + 1

c if (irestart.eq.1.and.node.eq.0) call loares(nstart,nlep,ug,phig)

if (node.eq.0) write(*,*) ’3’

c Perform Forward Substitution

do iii = nstart , nstop

write(*,*) ’ready’

open(1,file=’stiff.dat’)

write(1,*) nofn,nproc,ncolpn,node

do i = 1 , ncolpn

write(1,*) colposp(i),coltip(i)

end do

write(1,*) colposp(ncolpn+1)

do i = 1 , colposp(nofn+1)

write(1,*) kz(i)

end do

close(1)

13 continue

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 136

write(*,*) ’go’

call forsub(nofn,nproc,ncolpn,node,

* kz,colposp,coltip,subfor,tids)

c Perform Backward Substitution

write(*,*) (subfor(i),i=50,55)

call bacsub(nofn,nproc,ncolpn,node,kz,colposp,

* subfor,work,tids)

write(*,*) (subfor(i),i=50,55)

c When ready, need to assemble global solution vector

if (node.eq.0) then

do i = 1 , nofn

sol(i) = 0.0d0

end do

c Assemble the solution of node 0.

do i = 1 , ncolpn

k = 1+(nproc*(i-1))

sol(k) = subfor(i)

end do

c Receive the rest of the solutions from the other processes

c and assemble the displacement solution.

if (nproc.gt.1) then

do i = 1 , nproc-1

k = 1000

mess = 3*(i-1)

c Receive solutions from other processes

c and assemble global solution vector

call crecv(1000+mess,who,4)

call crecv(1001+mess,j,4)

call crecv(1002+mess,sol1,8*j)

do ii = 1 , j

k = who+1+(nproc*(ii-1))

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 137

sol(k) = sol1(ii)

end do

end do

endif

else

c if not node 0 send the portion of the solutions this process

c has calculated.

mess = 3*(node-1)

call csend(1000+mess,node,4,0,0)

call csend(1001+mess,ncolpn,4,0,0)

call csend(1002+mess,subfor,8*ncolpn,0,0)

endif

c Arrange total solution vector for displacments.

if (node.eq.0) then

do i = 1 , nofn

u(df(i)) = sol(i)

end do

c First Calculate L.E. Pitch and Displacement then

c send to Fluids Cube while receving Cp’s

if (irestart.eq.1.and.iii.eq.nstart) then

i = 1

else

c call pad(phylen,ile,ite,jroot,jroot1,jtip,nxt,nyt,x,y,z,

c * xg,yg,zg,u,ug,phig)

endif

c call fscp(node,nproc,jroot,jtip,phylen,cp,ug,phig)

c Given CP’s calculate loads on structural nodes

c call nodload(iii,tdof,ile,ite,jroot,jtip,jroot1,dynfre,

c * no1,no2,no3,ele,cp,area,fn,x,y,z,xg,yg,zg)

do j = 1 , nofn

fp(j) = fn(df(j))

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 138

end do

do j = 1 , nodn

fp(dd(j)) = 0.0d0

end do

endif

c call gsync()

c If doing a dynamic analysis then calculate the new

c force vector, Fhat, and do the backward sub. and forward

c sub. again until time limit is met.

count = count + 1

time = time + deltat

c if (time.gt.limit) goto 321

c Calculate new velocites and accelerations

c and calculate the augmented (?) force vector

c for dynamic analysis.

c if (static.ne.0.and.node.eq.0) then

c call dynamic(nofn,a1,a2,a3,a4,a5,uold,sol,

c * velo,veln,acco,accn)

c call fhats(nofn,a3,a4,a5,uold,velo,acco,mz,fo,fp,

c * mp,colposp)

c endif

c Pass global force vector to all if node 0, if

c not node 0, receive global force vector.

if (node.eq.0) then

if (nproc.gt.1) then

call csend(1500,fp,8*nofn,-1,0)

endif

else

call crecv(1500,fp,8*nofn)

endif

c Calculate RHS needed for this process to be used

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 139

c in LDL solver.

icol = node + 1

do i = 1 , ncolpn

subfor(i) = fp(icol)

icol = icol + nproc

end do

c Save Restart Files

c if (mod(iii-1,nrsrt).eq.0.and.node.eq.0)

c * call savres(iii,nlep,ug,phig)

c This end do goes with nstart , nstop loop

end do

c if (static.ne.0) goto 323

1234 continue

321 if (node.eq.0) then

call postit(tn,nele,nxt,nyt,phylen,no1,no2,no3,

* isurf,mat,x,y,z,u,nu,e)

do i = 1 , tn

x(i) = x(i) + u(6*i-5)

y(i) = y(i) + u(6*i-4)

z(i) = z(i) + u(6*i-3)

end do

call mesh1(tn,nax,nrib+nspar+nmem,nele,nopel,no1,no2,no3,isurf,

* x,y,z)

open(1,file=’solution.dat’)

do i = 1 , tn

write(1,*) u(6*i-3)

end do

close(1)

endif

stop

end

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 140

subroutine arw2wing(x,y,z)

c This program reads in the data from data.file

c which contains the joint numbers of the wing.

implicit none

integer i , j , index

real xx , yy , zz

real*8 x(1) , y(1) , z(1)

open(1,file=’arw2.dat’)

index = 0

do j = 1 , 17

do i = 1 , 24

read(1,*) xx,yy,zz

if (j.ne.3.and.j.ne.5.and.j.ne.13.and.j.ne.15) then

index = index + 1

x(index) = dble(xx)

y(index) = dble(yy)

z(index) = dble(zz)

end if

end do

end do

close(1)

open(1,file=’fsparinfo.dat’)

do i = 8 , 296 , 24

write(1,*) y(i),z(i)

end do

close(1)

open(1,file=’rsparinfo.dat’)

do i = 16 , 304 , 24

write(1,*) y(i),z(i)

end do

close(1)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 141

return

end

c Calculate Stiffness in Global System

subroutine axmass(rho , a , l , lx , ly , lz , mat1)

implicit none

integer i , j

real*8 a , l , mat(6,6) , k(3,3) , lx , ly , lz , thx ,

* thy , thz , dir(3,3) , rho , mat1(18,18)

c Angles of rotation about x,y,z

thx = 0.0d0

thy = atan2(lz,dsqrt(lx**2+ly**2))

thz = atan2(ly,lx)

c Corresponding transformation matrix

c These are the direction cosines for a 3-d rotation.?

dir(1,1) = lx/l

dir(1,2) = ly/l

dir(1,3) = lz/l

dir(2,1) = sin(thz)*cos(thy)

dir(2,2) = sin(thz)*sin(thy)*sin(thx)+cos(thz)*cos(thx)

dir(2,3) = -sin(thz)*sin(thy)*cos(thx)+cos(thz)*sin(thx)

dir(3,1) = sin(thy)

dir(3,2) = -cos(thy)*sin(thx)

dir(3,3) = cos(thy)*cos(thx)

c Calculate stiffness matrix

c specially for axial bar case

k(1,1) = dir(1,1)**2

k(1,2) = dir(1,1)*dir(1,2)

k(1,3) = dir(1,1)*dir(1,3)

k(2,1) = k(1,2)

k(2,2) = dir(1,2)**2

k(2,3) = dir(1,2)*dir(1,3)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 142

k(3,1) = k(1,3)

k(3,2) = k(2,3)

k(3,3) = dir(1,3)**2

do 10 i = 1 , 3

do 20 j = 1 , 3

mat(i,j) = 2.0d0*k(i,j)*rho*a*l/6.0d0

mat(i+3,j+3) = 2.0d0*k(i,j)*rho*a*l/6.0d0

mat(i+3,j) = k(i,j)*rho*a*l/6.0d0

mat(i,j+3) = k(i,j)*rho*a*l/6.0d0

20 continue

10 continue

c This is to change to global matrix

do i = 1 , 3

do j = 1 , 3

mat1(i,j) = mat(i,j)

mat1(i,j+3) = 0.0d0

mat1(i+3,j) = 0.0d0

mat1(i+3,j+3) = 0.0d0

mat1(i,j+6) = mat(i,j+3)

mat1(i,j+9) = 0.0d0

mat1(i+3,j+6) = 0.0d0

mat1(i+3,j+9) = 0.0d0

mat1(i+6,j) = mat(i+3,j)

mat1(i+6,j+3) = 0.0d0

mat1(i+9,j) = 0.0d0

mat1(i+9,j+3) = 0.0d0

mat1(i+6,j+6) = mat(i+3,j+3)

mat1(i+6,j+9) = 0.0d0

mat1(i+9,j+6) = 0.0d0

mat1(i+9,j+9) = 0.0d0

end do

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 143

end do

return

end

c Calculate Stiffness in Global System

subroutine axstiff(e , a , l , lx , ly , lz , mat1)

implicit none

integer i , j

real*8 e , a , l , mat(6,6) , k(3,3) , lx , ly , lz ,

* thx , thy , thz , dir(3,3) , mat1(18,18)

c Angles of rotation about x,y,z

thx = 0.0d0

thy = atan2(lz,dsqrt(lx**2+ly**2))

thz = atan2(ly,lx)

c Corresponding transformation matrix

c These are the direction cosines for a 3-d rotation.?

dir(1,1) = lx/l

dir(1,2) = ly/l

dir(1,3) = lz/l

dir(2,1) = sin(thz)*cos(thy)

dir(2,2) = sin(thz)*sin(thy)*sin(thx)+cos(thz)*cos(thx)

dir(2,3) = -sin(thz)*sin(thy)*cos(thx)+cos(thz)*sin(thx)

dir(3,1) = sin(thy)

dir(3,2) = -cos(thy)*sin(thx)

dir(3,3) = cos(thy)*cos(thx)

c Calculate stiffness matrix

c specially for axial bar case

k(1,1) = dir(1,1)**2

k(1,2) = dir(1,1)*dir(1,2)

k(1,3) = dir(1,1)*dir(1,3)

k(2,1) = k(1,2)

k(2,2) = dir(1,2)**2

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 144

k(2,3) = dir(1,2)*dir(1,3)

k(3,1) = k(1,3)

k(3,2) = k(2,3)

k(3,3) = dir(1,3)**2

do 10 i = 1 , 3

do 20 j = 1 , 3

mat(i,j) = k(i,j)*e*a/l

mat(i+3,j+3) = k(i,j)*e*a/l

mat(i+3,j) = -k(i,j)*e*a/l

mat(i,j+3) = -k(i,j)*e*a/l

20 continue

10 continue

c This is to change to global matrix

do i = 1 , 3

do j = 1 , 3

mat1(i,j) = mat(i,j)

mat1(i,j+3) = 0.0d0

mat1(i+3,j) = 0.0d0

mat1(i+3,j+3) = 0.0d0

mat1(i,j+6) = mat(i,j+3)

mat1(i,j+9) = 0.0d0

mat1(i+3,j+6) = 0.0d0

mat1(i+3,j+9) = 0.0d0

mat1(i+6,j) = mat(i+3,j)

mat1(i+6,j+3) = 0.0d0

mat1(i+9,j) = 0.0d0

mat1(i+9,j+3) = 0.0d0

mat1(i+6,j+6) = mat(i+3,j+3)

mat1(i+6,j+9) = 0.0d0

mat1(i+9,j+6) = 0.0d0

mat1(i+9,j+9) = 0.0d0

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 145

end do

end do

return

end

c This routine calculates the integration of B matrix

subroutine bmat(b,x1,x2,x3,y1,y2,y3,e,nu,t1,t12,t13)

implicit none

real*8 b(18,18) , x1 , x2 , x3 , y1 , y2 , y3 , x12 ,

* x13 , x23 , y12 , y13 , y23 , area , ix ,

* iy , ixy , ix2y , ixy2 , ix3 , iy3 , ix2 , iy2 ,

* alpha , beta , gamma , aa , bb , cc , e , nu ,

* t12 , t13 , t1 , fud

x12 = x1 - x2

x13 = x1 - x3

x23 = x2 - x3

y12 = y1 - y2

y13 = y1 - y3

y23 = y2 - y3

aa = e/(1.0d0-(nu**2))

bb = aa*nu

cc = aa*(1.0d0-nu)*0.5d0

fud = 1.0d0

aa = aa*fud

bb = bb*fud

beta = (t12*y13-y12*t13)/(x12*y13-y12*x13)

if (y12.eq.0.) then

gamma = (-1.0d0*t13+beta*x13)/(-1.0d0*y13)

else

gamma = (-1.0d0*t12 + beta*x12)/(-1.0d0*y12)

endif

alpha = t1 - beta*x1 - gamma*y1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 146

area = 0.5d0*(x2*y3 - x3*y2 + x3*y1 - x1*y3 + x1*y2 - x2*y1)

if (area.lt.0) then

write(*,*) ’Messed up bmat’

stop

endif

ix = (x1+x2+x3)*area/3.0d0

iy = (y1+y2+y3)*area/3.0d0

ixy = (x1*y1 + x2*y2 + x3*y3)*(area/6.0) + (x1*y2 + x1*y3 +

1 x2*y1 + x2*y3 + x3*y1 + x3*y2)*(area/12.0)

ix2 = (x1**2 + x2**2 + x3**2 + x1*x2 + x1*x3 + x2*x3)

1 *area/6.0

iy2 = (y1**2 + y2**2 + y3**2 + y1*y2 + y2*y3 + y1*y3)*area/6.0

ix2y = ((x1**2)*y1 + (x2**2)*y2 + (x3**2)*y3)*(area/10.0) +

1 ((x2**2)*y1 + (x3**2)*y1 + (x1**2)*y2 + (x3**2)*y2 +

2 (x1**2)*y3 + (x2**2)*y3)*(area/30.0) + (x1*x2*y1 +

3 x1*x3*y1 + x1*x2*y2 + x2*x3*y2 + x1*x3*y3 + x2*x3*y3)*

4 (area/15.0) + (x2*x3*y1 + x1*x3*y2 + x1*x2*y3)*(area/30.0)

ixy2 = ((y1**2)*x1 + (y2**2)*x2 + (y3**2)*x3)*(area/10.0) +

1 ((y2**2)*x1 + (y3**2)*x1 + (y1**2)*x2 + (y3**2)*x2 +

2 (y1**2)*x3 + (y2**2)*x3)*(area/30.0) + (y1*y2*x1 +

3 y1*y3*x1 + y1*y2*x2 + y2*y3*x2 + y1*y3*x3 + y2*y3*x3)*

4 (area/15.0) + (y2*y3*x1 + y1*y3*x2 + y1*y2*x3)*(area/30.0)

ix3 = ((x1**3) + (x2**3) + (x3**3) + x1*(x2**2) + x1*(x3**2) +

1 (x1**2)*x2 + x2*(x3**2) + (x1**2)*x3 + (x2**2)*x3 +

2 x1*x2*x3)*(area/10.0)

iy3 = ((y1**3) + (y2**3) + (y3**3) + y1*(y2**2) + y1*(y3**2) +

1 (y1**2)*y2 + y2*(y3**2) + (y1**2)*y3 + (y2**2)*y3 +

2 y1*y2*y3)*(area/10.0)

call clr(b)

b(1,1) = aa*alpha*area + aa*beta*ix + aa*gamma*iy

b(1,2) = aa*alpha*iy + aa*beta*ixy + aa*gamma*iy2

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 147

b(1,3) = bb*alpha*area + bb*beta*ix + bb*gamma*iy

b(1,4) = bb*alpha*ix + bb*beta*ix2 + bb*gamma*ixy

b(1,5) = 0.0d0

b(2,1) = b(1,2)

b(2,2) = aa*alpha*iy2 + aa*beta*ixy2 + aa*gamma*iy3 +

* cc*alpha*ix2 + cc*beta*ix3 + cc*gamma*ix2y

b(2,3) = bb*alpha*iy + bb*beta*ixy + bb*gamma*iy2

b(2,4) = (bb+cc)*(alpha*ixy + beta*ix2y + gamma*ixy2)

b(2,5) = -cc*alpha*ix - cc*beta*ix2 - cc*gamma*ixy

b(3,1) = b(1,3)

b(3,2) = b(2,3)

b(3,3) = aa*alpha*area + aa*beta*ix + aa*gamma*iy

b(3,4) = aa*alpha*ix + aa*beta*ix2 + aa*gamma*ixy

b(3,5) = 0.0d0

b(4,1) = b(1,4)

b(4,2) = b(2,4)

b(4,3) = b(3,4)

b(4,4) = aa*alpha*ix2 + aa*beta*ix3 + aa*gamma*ix2y +

* cc*alpha*iy2 + cc*beta*ixy2 + cc*gamma*iy3

b(4,5) = -cc*alpha*iy - cc*beta*ixy - cc*gamma*iy2

b(5,1) = b(1,5)

b(5,2) = b(2,5)

b(5,3) = b(3,5)

b(5,4) = b(4,5)

b(5,5) = cc*alpha*area + cc*beta*ix + cc*gamma*iy

return

end

subroutine bound(nodn,nofn,dd,df,u,fn)

include ’wboxbc.f’

c This routine calculates the boundary conditions

c on the wing box structure

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 148

integer i , j , nodn , nofn , dd(1) , df(1) , n1 ,

* n2 , n3 , ma(18) , count

real*8 u(1) , fn(1) , fs(6) , fe(9) ,

* t(18,18) , x1 , x2 , x3 , len , dx ,

* y1 , y2 , y3 , z1 , z2 , z3 , x3p , x2p , y3p , y2p ,

* dum(18) , tt(18,18) , x1p , y1p

do i = 1 , tdof

u(i) = 0.0d0

fn(i) = 0.0d0

end do

c Calculate number of forces known and displacements known

nodn = dof1*2*(nxx+2)

j = 0

do i = 1 , 2*(nxx+2)

do k = 6*i-5,6*i

j = j + 1

dd(j) = k

end do

end do

nofn = tdof

do i = 1 , tdof

df(i) = i

end do

c Tip Load

c do i = 2*(nxx+2)*(nyy+1)+1, tn-1, 2

c fn(6*i-3) = 100.0d0

c end do

i = 303

fn(6*i-3) = -100.0d0

c i = (nxx+2)*2*(nyy+1) + 7

c i = (nxx+2)*2*(nyy) + 7

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 149

c Twist l.e. up

c fn(6*i-3) = 1.0d0

c fn(6*(i+9)-3) = -1.0d0

c Twist l.e. down

c fn(6*(i+1)-3) = -1.0d0

c fn(6*(i+8)-3) = 1.0d0

return

end

c This routine clears a matrix

subroutine clr(a)

implicit none

integer i , j

real*8 a(18,18)

do 10 i = 1 , 18

do 20 j = 1 , 18

a(i,j) = 0.0d0

20 continue

10 continue

return

end

c This routine calculates a c matrix

subroutine cmat(c,x1,x2,x3,y1,y2,y3)

implicit none

integer i , j

real*8 c(18,18) , x1 , x2 , x3 , y1 , y2 , y3 ,

* x12 , x13 , x23 , y12 , y13 , y23 , area

area = 0.5d0*(x2*y3 - x3*y2 + x3*y1 - x1*y3 + x1*y2 - x2*y1)

if (area.lt.0) write(*,*) ’wo baby’

x12 = x1 - x2

x13 = x1 - x3

x23 = x2 - x3

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 150

y12 = y1 - y2

y13 = y1 - y3

y23 = y2 - y3

c(1,1) = y23

c(1,2) = 0.0d0

c(1,3) = 0.5d0*y1*y23

c(1,4) = -y13

c(1,5) = 0.0d0

c(1,6) = -0.5d0*y2*y13

c(1,7) = y12

c(1,8) = 0.0d0

c(1,9) = 0.5d0*y3*y12

c(2,1) = 0.0d0

c(2,2) = 0.0d0

c(2,3) = -0.5d0*y23

c(2,4) = 0.0d0

c(2,5) = 0.0d0

c(2,6) = 0.5d0*y13

c(2,7) = 0.0d0

c(2,8) = 0.0d0

c(2,9) = -0.5d0*y12

c(3,1) = 0.0d0

c(3,2) = -x23

c(3,3) = 0.5d0*x1*x23

c(3,4) = 0.0d0

c(3,5) = x13

c(3,6) = -0.5d0*x2*x13

c(3,7) = 0.0d0

c(3,8) = -x12

c(3,9) = 0.5d0*x3*x12

c(4,1) = 0.0d0

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 151

c(4,2) = 0.0d0

c(4,3) = -0.5d0*x23

c(4,4) = 0.0d0

c(4,5) = 0.0d0

c(4,6) = 0.5d0*x13

c(4,7) = 0.0d0

c(4,8) = 0.0d0

c(4,9) = -0.5d0*x12

c(5,1) = -x23

c(5,2) = y23

c(5,3) = 0.5d0*(-x1*y23 - y1*x23)

c(5,4) = x13

c(5,5) = -y13

c(5,6) = 0.5d0*(x2*y13 + y2*x13)

c(5,7) = -x12

c(5,8) = y12

c(5,9) = 0.5d0*(-x3*y12 - y3*x12)

do 80 i = 1 , 5

do 90 j = 1 , 9

c(i,j) = 0.5d0*c(i,j)/(area)

90 continue

80 continue

return

end

c routine calculated a connectivity matrix used to

c determine colpos and m. Where colpos determines the

c column position in a one-dimensional array storage of

c a symmetric matrix and m is the column heights. This

c routine assume there are 6 d.o.f. per node.

subroutine connect(nopel,no1,no2,no3)

include ’wboxbc.f’

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 152

integer nopel(1) , no1(1) , no2(1) , no3(1) ,

* n(5) , i , j , k , mk(tdof) ,

* mini , mini1 , aa ,

* con , colpos , m

common /soup/ con(nele,dof) , colpos(tdof+1) , m(tdof)

c Need tdof , nele , dof1

c nopel(i): nodes per element i

c no1(i), no2(i), no3(i), no4(i): nodes 1,2,3,and 4 of element i

do i = 1 , tdof

m(i) = tdof+1

colpos(i) = 0

end do

do i = 1 , nele

n(1) = no1(i)

n(2) = no2(i)

n(3) = no3(i)

mini1 = tdof+1

aa = 0

do j = 1 , nopel(i)

do k = dof1*n(j)-(dof1-1) , dof1*n(j)

aa = aa + 1

con(i,aa) = k

mini = min0(con(i,aa),mini1)

mini1 = mini

end do

end do

do j = 1 , nopel(i)*dof1

if (m(con(i,j)).gt.mini) m(con(i,j)) = mini

end do

end do

colpos(1) = 1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 153

do i = 2 , tdof+1

mk(i-1) = (i-1) - m(i-1)

colpos(i) = colpos(i-1) + mk(i-1) + 1

end do

return

end

subroutine crecv(a,b,c)

integer a , c

real*8 b(1)

return

end

subroutine cross(a,b,c)

c This routine calculates the cross product of a x b and puts the

c result in c.

implicit none

real*8 a(3) , b(3) , c(3)

c(1) = a(2)*b(3)-a(3)*b(2)

c(2) = a(3)*b(1)-a(1)*b(3)

c(3) = a(1)*b(2)-a(2)*b(1)

return

end

subroutine csend(a,b,c,d,e)

integer a , c , d , e

real*8 b(1)

return

end

subroutine extract(x,y,x1,y1,tot,k,l,nx,ny)

implicit none

integer i, k , tot , nx , ny , l , j , d1 , d2 , nyy , kk

real*8 x1(1) , y1(1) , x(1) , y(1)

c if l = 0 means it’s the first partition

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 154

nyy = 0

if (l.eq.0) nyy = ny+2

j = 1

kk = tot

do i = tot+1 , tot+k

d1 = (j-1)*(nx+2) + 1

d2 = j*(nx+2)

if (l.eq.0) goto 10

if (i-tot.eq.d1.or.i-tot.eq.d2) goto 20

10 kk = kk + 1

x1(kk) = x(i-tot)

y1(kk) = y(i-tot)

20 if (real(i-tot)/real(nx+2).eq.int(real(i-tot)/real(nx+2)))

* j = j + 1

end do

tot = tot + k - 2*(ny+2-nyy)

return

end

subroutine mesh(tn,nax,ntrian,nele,nopel,no1,no2,no3,isurf,

* x,y,z)

implicit none

integer tn , ntrian , nele , nopel(1) , no1(1) , index ,

* no2(1) , no3(1) , isurf(1) , i , nax , nsp , j

real*8 x(1) , y(1) , z(1) ,

* dx , dy ,dz , dx1 , dy1, dz1 , ddx , ddy , ddz

ddx = 49.4684d0-x(119)

ddy = 49.0002d0 - y(119)

ddz = -0.0555252d0 - z(119)

write(*,*) ’ddz ’,ddz,ddy,ddx

c dx1 = 74.0921d0 - x(311)

c dy1 = 111.19d0 - y(311)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 155

c dz1 = 0.0870121d0 - (z(311)+ddz)

c dy = y(311)-y(119)

open(unit=1,file=’mesh.rigid.data’)

write(*,*) ntrian , nele-nax

write(1,*) tn , ntrian , 0

do i = 1 , tn

if (i.le.120) then

x(i) = x(i)+ddx

y(i) = y(i)+ddy

z(i) = z(i)+ddz

else

x(i) = x(i)+ddx

y(i) = y(i)+ddy

z(i) = z(i)+ddz

c z(i) = z(i)+ddz+(((y(int((i-1)/24)*24+23)-y(119))/dy)*dz1)

end if

end do

write(1,*) (x(i),i=1,tn),

* (y(i),i=1,tn),

* (z(i),i=1,tn),

* (no1(i),no2(i),no3(i),i=nax+1,nele),

* (isurf(i)+2,i=nax+1,nele)

c write(1,*) (x(i)+ddx,i=1,120),(x(i)+ddx,i=121,tn),

c * (y(i)+ddy,i=1,120),(y(i)+ddy,i=121,tn),

c * (z(i)+ddz,i=1,120),

c * (z(i)+ddz+(((y(int((i-1)/24)*24+23)-y(119))/dy)*dz1),i=121,tn),

c * (no1(i),no2(i),no3(i),i=nax+1,nele),

c * (isurf(i)+2,i=nax+1,nele)

close(unit=1)

open(1,file=’spline.pts’)

open(2,file=’splinepts.map’)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 156

nsp = 42

write(1,*) nsp

write(2,*) nsp

do j = 1 , 13 , 2

do i = 1 , 23 , 2

if (i.ne.3.and.i.ne.7.and.i.ne.11.and.i.ne.13.and.

* i.ne.17.and.i.ne.21) then

index = (j-1)*24 + i

write(1,*) x(index) , y(index)

write(2,*) 6*index-3

end if

end do

end do

close(2)

close(1)

open(1,file=’struc.grid’)

write(1,*) tn

do i = 1 , tn

write(1,*) i,x(i),y(i),z(i)

end do

close(1)

return

end

subroutine mesh1(tn,nax,ntrian,nele,nopel,no1,no2,no3,isurf,

* x,y,z)

implicit none

integer tn , ntrian , nele , nopel(1) , no1(1) ,

* no2(1) , no3(1) , isurf(1) , i , nax

real*8 x(1) , y(1) , z(1)

open(unit=1,file=’mesh.flex.data’)

write(*,*) ntrian , nele-nax

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 157

write(1,*) tn , ntrian , 0

write(1,*) (x(i),i=1,tn),(y(i),i=1,tn),(z(i),i=1,tn),

* (no1(i),no2(i),no3(i),i=nax+1,nele),

* (isurf(i)+2,i=nax+1,nele)

close(unit=1)

return

end

subroutine mlump(rho,x1p,x2p,x3p,y1p,y2p,y3p,z1p,z2p,z3p,

* t1,t2,t3,m)

implicit none

integer i , j , k

real*8 x1 , x2 , x3 , y1 , y2 , y3 , t1 ,t2 , t3 ,

* m(18,18) , g12 , g23 , g31 , h12 , h23 , h31 ,

* area , rho , a1 , a2 , a3 , a4 , a5 , a6 ,

* a7 , a8 , a9 , x1p , x2p , x3p , y1p , y2p , y3p ,

* z1p , z2p , z3p , tr(18,18) , trt(18,18) ,

* tmat(18,18)

c Change 3-d coordinates to 2-d coordinates

call trans(x1p,x2p,x3p,y1p,y2p,y3p,z1p,z2p,z3p,x1,x2,x3,

* y1,y2,y3)

area = 0.5d0*(x2*y3-x3*y2+x3*y1-x1*y3+x1*y2-x2*y1)

call clr(m)

do i = 1 , 18

if (mod(i,6).le.3) m(i,i) = rho*area*t1*0.333333333d0

end do

return

end

subroutine multi(a,b,c,l,m,n)

implicit none

integer i , j , k , l , m , n

real*8 a(18,18) , b(18,18) , c(18,18)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 158

do i = 1 , l

do j = 1 , n

c(i,j) = 0.0d0

do k = 1 , m

c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do

end do

end do

return

end

subroutine part(nx,ny,xlr,xlt,xtr,xtt,ylr,ylt,ytr,ytt,x,y,

*kt)

c This subroutine takes a planform wing and divides it

c equally into several parts for finite element wing

c box modeling

implicit none

integer i , j , k , kk , nx , ny , kt

real*8 xlr , xlt , xtr , xtt , ylr , ylt , ytr , ytt ,

* x(1) , y(1) , xl , xt , yl , yt , d1 , d2 ,

* d3 , d4 , d5 , d6 , r1 , r2 , r3 , r4 , r5 , r6 ,

* sx , sy , s1 , s2 , s3 , s4 , s5 , s6 , alpha ,

* beta , m , xlrp , xtrp , xttp , xltp , ylrp ,

* yltp , ytrp , yttp

c Use these coefficients to determine the reduction in

c chord(alpha) and spanwise(beta) directions from the

c original wing planform to wing box planform. Also

c gamma is for tip .

alpha = 0.0d0

beta = 0.0d0

c alpha = 0.20d0

c beta = 0.10d0

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 159

c Reduction based on beta

m = (xlr-xlt)/(ylr-ylt)

d1 = ylt - ytr

r1 = (1.0d0-beta)*d1

ylt = ylr + r1

xlt = m*(ylt-ylr) + xlr

m = (xtt-xtr)/(ytt-ytr)

d2 = ytt - ytr

r2 = (1.0d0-beta)*d2

ytt = ytr + r2

xtt = m*(ytt-ytr) + xtr

c Reduction based on alpha

m = (ylt-ytt)/(xlt-xtt)

d3 = xtt - xlt

r3 = alpha * d3 * 0.5d0

xltp = xlt + r3

xttp = xtt - r3

yltp = m*(xltp-xlt) + ylt

yttp = m*(xttp-xlt) + ylt

m = (ylr-ytr)/(xlr-xtr)

d4 = xtr - xlr

r4 = alpha*d4*0.5d0

xtrp = xtr - r4

xlrp = xlr + r4

ytrp = m*(xtrp-xlr) + ylr

ylrp = m*(xlrp-xlr) + ylr

xlt = xltp

xtt = xttp

ylt = yltp

ytt = yttp

xtr = xtrp

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 160

xlr = xlrp

ytr = ytrp

ylr = ylrp

c Calculate Step Size in x and y directions

sx = 1.0d0/dfloat(1+nx)

sy = 1.0d0/dfloat(1+ny)

d1 = ylt - ylr

d2 = xlt - xlr

d3 = ytt - ytr

d4 = xtt - xtr

s1 = sy * d1

s2 = sy * d2

s3 = sy * d3

s4 = sy * d4

c Start with leading edge root, progress toward the trailing

c edge and repeat from new leading edge root coordinate.

xl = xlr

xt = xtr

yl = ylr

yt = ytr

xl = xl - s2

xt = xt - s4

yl = yl - s1

yt = yt - s3

do i = 1 , ny+2

k = (nx+2)*(i-1) + 1

yl = yl + s1

xl = xl + s2

yt = yt + s3

xt = xt + s4

x(k) = xl

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 161

y(k) = yl

x(k+nx+1) = xt

y(k+nx+1) = yt

kk = k

do j = 1 , nx

kk = kk + 1

d5 = yt - yl

d6 = xt - xl

s5 = sx * d5

s6 = sx * d6

x(kk) = x(kk-1) + s6

y(kk) = y(kk-1) + s5

end do

end do

kt = (nx+2)*(ny+2)

return

end

subroutine postit(tn,nele,nx,ny,phylen,no1,no2,no3,isurf,mat,xx,

* yy,zz,u,nu,e)

implicit none

integer i , j , k , l , no1(1) , no2(1) , tn ,

* no3(1) , isurf(1) , nele , mat(1) ,

* nx , ny , ii

real*8 xx(1) , yy(1) , zz(1) , u(1) , phylen ,

* nu(1) , e(1) , ddz , ddy ,ddx , xl(400) ,

* yl(400), zl(400)

character*132 msgline

open(unit=1,file=’strinfo.dat’)

write(1,90) nx , ny , tn

90 format(2x,i3,2x,i3,2x,i4)

c call cwrite(1,msgline,17)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 162

write(1,100) nele

c call cwrite(1,msgline,11)

100 format(2x,i8)

write(1,110) phylen

110 format(2x,f20.15)

c call cwrite(1,msgline,23)

do i = 1 , nele

write(1,120) no1(i),no2(i),no3(i),isurf(i),mat(i)

120 format(2x,i3,2x,i3,2x,i3,2x,i2,2x,i2)

c call cwrite(1,msgline,24)

end do

do i = 1 , tn

write(1,130) xx(i) , yy(i) , zz(i)

130 format(3(f20.15,2x))

c call cwrite(1,msgline,67)

end do

do i = 1 , 6*tn

write(1,140) u(i)

140 format(f20.15)

c call cwrite(1,msgline,21)

end do

do i = 1 , 4

write(1,150) nu(i) , e(i)

150 format(f20.15,2x,f20.10)

c call cwrite(1,msgline,43)

end do

close(unit=1)

ddz = -58.65872420512695d0

ddy = -1.420301708984375d0

ddx = -233.2096090332031d0

c Read Lloyd’s files

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 163

open(1,file=’eldred.data’)

do i = 1 , 312

read(1,*) ii,xl(i),yl(i),zl(i),j

end do

close(1)

open(1,file=’def1.dat’)

write(1,*) ’Zone T="Front Spar" I=13 F=Point’

do i = 7 , 295 , 24

c write(1,*) yy(i)-ddy,u(6*i-3),zl(i)

write(1,*) yy(i)-ddy,u(6*i-3)

end do

write(1,*) ’Zone T="Rear Spar" I=13 F=Point’

do i = 15 , 303 , 24

c write(1,*) yy(i)-ddy,u(6*i-3),zl(i)

write(1,*) yy(i)-ddy,u(6*i-3)

end do

write(1,*) ’Zone T="Auxi Spar" I=13 F=Point’

do i = 19 , 307 , 24

c write(1,*) yy(i)-ddy,u(6*i-3),zl(i)

write(1,*) yy(i)-ddy,u(6*i-3)

end do

close(1)

open(1,file=’twist.dat’)

write(1,*) ’Zone T="Twist" I=13 F=Point’

do i = 7 , 295 , 24

j = i + 8

write(*,*) i , xx(i)-xx(j)

write(1,*) yy(i)-ddy,datan2(u(6*i-3)-u(6*j-3),

* dabs(xx(i)-xx(j)))

end do

close(1)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 164

return

end

c This subroutine sorts an array of length k

c where nx and ny represent TOTAL grid size

subroutine sort(x,y,k,nx,ny)

implicit none

integer i , j , k , l , m , s , nx , ny

real*8 x(1) , y(1) , temp , temp1

do i = 1 , k

do j = i , k

if (y(i).gt.y(j)) then

temp = x(i)

temp1 = y(i)

x(i) = x(j)

y(i) = y(j)

x(j) = temp

y(j) = temp1

endif

end do

end do

do i = 1 , ny+2

s = (i-1)*(nx+2) + 1

do j = s , s+nx+1

do l = j , s+nx+1

if (x(j).gt.x(l)) then

temp = x(j)

temp1 = y(j)

x(j) = x(l)

y(j) = y(l)

x(l) = temp

y(l) = temp1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 165

endif

end do

end do

end do

return

end

c This subroutine calculates the stiffness matrix of

c a membrane element with drilling degrees of freedom

subroutine stiff(e,nu,x1p,y1p,z1p,x2p,y2p,z2p,x3p,y3p,z3p,

* t1,t2,t3,kr)

implicit none

integer i , j , k

real*8 e , nu , x1 , y1 , x2 , y2 , x3 , y3 , t1 , t2 ,

* t3 , kr(18,18) , c(18,18) , ct(18,18) ,

* b(18,18) , tmat(18,18) , lx , ly , x1p , x2p , x3p ,

* y1p , y2p , y3p , z1p , z2p , z3p , tr(18,18) ,

* trt(18,18) , t12 , t13 , ee

t12 = t1 - t2

t13 = t1 - t3

ee = e

if (e.lt.0) e = -e

c Change 3-d coordinates to 2-d coordinates

call trans(x1p,x2p,x3p,y1p,y2p,y3p,z1p,z2p,z3p,x1,x2,x3,

* y1,y2,y3)

call clr(kr)

call clr(b)

call clr(c)

call clr(ct)

call clr(tmat)

if (x1.lt.x2.and.x1.lt.x3) then

lx = x1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 166

else if (x2.lt.x3) then

lx = x2

else

lx = x3

endif

if (y1.lt.y2.and.y1.lt.y3) then

ly = y1

else if (y2.lt.y3) then

ly = y2

else

ly = y3

endif

x1 = x1 - lx

x2 = x2 - lx

x3 = x3 - lx

y1 = y1 - ly

y2 = y2 - ly

y3 = y3 - ly

call bmat(b,x1,x2,x3,y1,y2,y3,e,nu,t1,t12,t13)

call cmat(c,x1,x2,x3,y1,y2,y3)

call transpose(c,ct,5,9)

call multi(b,c,tmat,5,5,9)

call multi(ct,tmat,kr,9,5,9)

if (ee.eq.0) then

do i = 1 , 9

do j = 1 , 9

if (mod(i,3).ne.0.and.mod(j,3).ne.0) then

kr(i,j) = 0.0d0

end if

end do

end do

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 167

end if

c Now calculate global stifness matrix, and first

c calculate the transformation matrix, tr

call tmax(x1p,x2p,x3p,y1p,y2p,y3p,z1p,z2p,z3p,tr)

call transpose(tr,trt,9,18)

call multi(kr,tr,tmat,9,9,18)

call multi(trt,tmat,kr,18,9,18)

return

end

subroutine tmax(x1,x2,x3,y1,y2,y3,z1,z2,z3,tr)

implicit none

integer i , j , k

real*8 x1 , x2 , x3 , y1 , y2 , y3 , z1 , z2 , z3 ,

* tr(18,18) , l(3) , m(3) , n(3) , xb(3) , rb(3) ,

* yb(3) , zb(3) , d12 , d13 , sum , sum1

xb(1) = x2 - x1

xb(2) = y2 - y1

xb(3) = z2 - z1

rb(1) = x3 - x1

rb(2) = y3 - y1

rb(3) = z3 - z1

d12 = dsqrt(xb(1)**2 + xb(2)**2 + xb(3)**2)

d13 = dsqrt(rb(1)**2 + rb(2)**2 + rb(3)**2)

call cross(xb,rb,zb)

sum = dsqrt(zb(1)**2 + zb(2)**2 + zb(3)**2)

call cross(zb,xb,yb)

sum1 = dsqrt(yb(1)**2 + yb(2)**2 + yb(3)**2)

do i = 1 , 3

xb(i) = xb(i)/d12

rb(i) = rb(i)/d13

zb(i) = zb(i)/sum

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 168

yb(i) = yb(i)/sum1

end do

c The above has calculated unit vectors in local coordiantes

c xb , yb , zb. Now calculate the direction cosines l, m, n

c as discussed in Yang’s F.E. Structural Analysis (pg. 81)

l(1) = xb(1)

m(1) = xb(2)

n(1) = xb(3)

l(2) = yb(1)

m(2) = yb(2)

n(2) = yb(3)

l(3) = zb(1)

m(3) = zb(2)

n(3) = zb(3)

do i = 1 , 9

do j = 1 , 18

tr(i,j) = 0.0d0

end do

end do

tr(1,1) = l(1)

tr(1,2) = m(1)

tr(1,3) = n(1)

tr(2,1) = l(2)

tr(2,2) = m(2)

tr(2,3) = n(2)

tr(3,4) = l(3)

tr(3,5) = m(3)

tr(3,6) = n(3)

do i = 1 , 3

do j = 1 , 6

tr(i+3,j+6) = tr(i,j)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 169

tr(i+6,j+12) = tr(i,j)

end do

end do

return

end

subroutine trans(x1,x2,x3,y1,y2,y3,z1,z2,z3,x1p,x2p,x3p,

* y1p,y2p,y3p)

c this routine transforms a triangle in the 3-d plane to

c an equivalent triangle in the x-y plane.

implicit none

integer i

real*8 x1 , x2 , x3 , y1 , y2 , y3 , z1 , z2 , z3 ,

1 d12 , d13 , theta , l12(3) , l13(3) , sum , sum1 ,

2 sum2 , x1p , x2p , x3p , y1p , y2p , y3p ,

3 tr(18,18) , trt(18,18) , res(9)

l12(1) = x2 - x1

l12(2) = y2 - y1

l12(3) = z2 - z1

l13(1) = x3 - x1

l13(2) = y3 - y1

l13(3) = z3 - z1

sum = 0.0d0

sum1 = 0.0d0

sum2 = 0.0d0

do i = 1 , 3

sum = sum + l12(i)**2

sum1 = sum1 + l13(i)**2

sum2 = sum2 + l12(i)*l13(i)

end do

d12 = dsqrt(sum)

d13 = dsqrt(sum1)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 170

theta = dacos(sum2/(d12*d13))

x1p = 0.0d0

x2p = d12

x3p = d13*dcos(theta)

y1p = 0.0d0

y2p = 0.0d0

y3p = d13*dsin(theta)

return

end

c This routine calculates the transpose, t12it,

c of a given matrix, t12i

SUBROUTINE transpose(t12i , t12it, m , n)

implicit none

integer i , j , m , n

real*8 t12i(18,18) , t12it(18,18)

do 20 i = 1 , n

do 30 j = 1 , m

t12it(i,j) = t12i(j,i)

30 continue

20 continue

return

end

c This is the include file wboxbc.f.

c FILE INCLUDED AT BEGINNING DESCRIBING WING PARTITIONING

c Set nxx and nyy, make sure it has same values as nxt and

c nyt in wing.f, i.e., nxx and nyy should be the total number

c of divisions in the x and y direction respectively.

integer nxx , nyy , tn , nax , nmem , nrib , nspar ,

* nele , tdof , nmat , dof , nodcube , dof1 , nogn ,

* noddn , sloc , rloc , naxchord

real*8 phylen , dynfre

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 171

c Partitions of Rectangular wing in x direction (nxx) and

c y-direction (nyy), keep nxx oddd due to middle spar.

parameter (nxx = 10)

parameter (nyy = 11)

c Total Nodes

parameter (tn = 2*(nxx+2)*(nyy+2))

c Total number of axial bars (nax), spars (nspar),

c ribs (nrib), membrane elements (nmem) which make

c up the upper and lower surface.

parameter (nax = 2*(2)*(nyy+1) + 2*4)

parameter (nspar = (nyy+1)*2*(2) + 4*2 + 2*(nyy+1)*2)

parameter (nrib = (nxx+1)*2*12)

parameter (naxchord = 0)

parameter (nmem = (nxx+1)*(nyy+1)*2*2)

c Total number of elements (nele)

parameter (nele = nax + nspar + nrib + nmem + naxchord)

c Total d.o.f. (tdof), number of forces known (nogn),

c total possible materials used (nmat) ,

c total d.o.f. per Allman’s element (dof),

c total d.o.f. per axial bar (dof1).

parameter (tdof = 6*tn)

parameter (nogn = tdof)

parameter (nmat = 4)

parameter (dof = 18)

parameter (dof1 = 6)

c If using multiple processors, how many (nodcube),

c and the total number of displacmenets to be solved for (noddn)

parameter (nodcube = 1)

parameter (noddn = tdof - nogn)

c The physical length (phylen) by which coordinates

c have been scaled, and the dynamic free stream

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 172

c dynamic pressure (dynfre).

c parameter (phylen = 200.0d0)

parameter (phylen = 1.0d0)

parameter (dynfre = 0.5d0)

subroutine wingp(nxt,nyt,nnodes,n1,n2,n3,mat,xc,yc,zc,

* t1,t2,t3,e,nu,rho,isurf)

c when partioning a wing more than once, either nx or

c ny must remain constant during the entire process or

c there will be discontinuties in the domain.

c i,j,k = dummy counters

c tot = 1/2 the total number of nodes after

c partitioning

c nx = number of partitions in x-direction

c ny = number of partitions in y-direction

c nxt = total partitions in x-direction

c nyt = total partitions in y-direction

c st = 1 less than the total number of times a wing

c has been partitioned.

c isurf = 0 if not upper or lower surface

c 1 if upper surface

c -1 if lower surface

c Wing is assumed as follows:

c Wing is viewed from above.

c Leading edge is on top.

c Trailing edge in on bottom.

c Root is on left.

c Tip is on right.

c x1 = x coordinate of top left point of wing

c x2 = x coordinate of top right point of wing

c x3 = x coordinate of bottom left point of wing

c x4 = x coordinate of bottom right point of wing

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 173

c y1..y4 = y coordinates (same as x)

c These coordinate do not necessarily define the wing. They define

c the portions of which one wishes to partion the wing. So a wing

c can be divided in 9 parts by setting nx = ny = 3. And if more

c divisions are needed around quater chord of the wing, new

c coordinates may be chosen as to divide the wing even further.

c To avoid discontinuities in the structure, either nx or ny

c must be held constant during the entire process.

c x(500) = x coordinates of nodes of partitioned wing

c y(500) = y coordinates of nodes of partitioned wing

c xx(500) = x coordinates of nodes of global wing after part.

c yy(500) = y coordinates of nodes of global wing after part.

c fr = fraction of chord where more lines are needed

c in the spanwise direction

c zu(500) = upper surface z coordinates after partitioning

c zl(500) = lower surface z coordinates after partitioning

c The numbering scheme of the nodes of the wing box is a follows.

c Node 1 is the top left and all the nodes on the upper

c surface of the wing box are odd numbered. So the numbering

c progresses down into neg. z-direction first which is into

c the paper, than down the paper which is in + x-direction

c and then in y-direction.

c *------> y-direction

c |

c |

c V x-direction

c xc(i), yc(i) , zc(i) = global nodal coordinates

c where the the numbering

c scheme goes from 1 to tn.

c tn = total nodes

c nele = total number of elements

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 174

c nnodes(i) = nodes per element i

c n1(i)... = node 1...3 of element i

c t1(i)... = thickness of element at node i

c or cross-sectional

c area of axial bar

c e = Young’s modulus

c nu = Poisson’s Ratio

c rho = density of material

c mat = material of element i

c To keep 3 spars in wing box model, try to keep nx = odd number so

c that the spars may be equally divided. One is l.e. and one is the

c t.e. and on in middle of t.e. and l.e.

implicit none

include ’wboxbc.f’

integer i , j , k , tot , nx , ny , nxt , nyt , st , ei ,

* krem , count , it , ii , no1 , no2 , no3 , isp ,

* ribloc(12) , l , m , ifs , irsu , irsl, iasu , iasl ,

* n1(1) , n2(1) , n3(1) , mat(1) , nnodes(1) , isurf(1)

real*8 x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4 , x(tn) , y(tn) ,

* xx(tn) , yy(tn) , fr , zu(tn) , zl(tn) , mid , fu ,

* t11,t11p,areas(100) ,rarea, lethick(100) ,

* xc(1) , yc(1) , zc(1) , t1(1) , t2(1) , t3(1) ,

* e(1) , nu(1) , rho(1) , fud , tx , tx1 , yr , yt

data ribloc / 25 , 49 , 73 , 97 , 121 , 145 , 169 , 193 , 217 ,

* 241 , 265 , 289 /

nxt = nxx

nyt = nyy

count = 0

c Get rod areas

open(1,file=’rodareas.dat’)

do j = 1 , 100

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 175

areas(j)=0.0d0

end do

i = 0

13 i = i + 1

read(1,*,end=19) j , rarea

areas(j) = rarea

goto 13

19 close(1)

c Get ARW-2 Wing Coordinates

call arw2wing(xc,yc,zc)

c Calculate Axial Bar Properties for Spars

ifs = 44-1

irsu = 1-1

irsl = 17-1

iasu = 71-1

iasl = 76-1

do m = 1 , tn - 2*(nxt+2) , 2*(nxt+2)

i = m+6

j = i+8

k = i+12

count = count + 4

do ii = 0 , 3

if (ii.eq.0) then

ifs = ifs + 1

if (ifs.gt.58) ifs=58

isp = ifs

it = i

else if (ii.eq.1) then

it = i+1

ifs = ifs

if (ifs.gt.58) ifs=58

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 176

isp = ifs

else if (ii.eq.2) then

it = j

irsu = irsu + 1

if (irsu.gt.15) irsu=15

isp = irsu

else if (ii.eq.3) then

it = j+1

irsl = irsl + 1

if (irsl.gt.31) irsl=31

isp = irsl

end if

nnodes(count-ii) = 2

if (areas(isp).eq.0) then

rarea=areas(isp-1)

if (rarea.eq.0) rarea=areas(isp+1)

else

rarea=areas(isp)

end if

if (rarea.eq.0) then

write(*,*) ’errror in rarea’,rarea,isp

stop

end if

t1(count-ii) = rarea

t2(count-ii) = 0.0d0

t3(count-ii) = 0.0d0

n1(count-ii) = it

n2(count-ii) = it + 2*(nxt+2)

n3(count-ii) = 0

mat(count-ii) = 1

isurf(count-ii) = 0

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 177

end do

if (k.lt.115) then

count = count + 2

do ii = 0 , 1

if (ii.eq.0) then

it = k

iasu = iasu + 1

if (iasu.gt.75) iasu=75

isp = iasu

else if (ii.eq.1) then

it = k+1

iasl = iasl + 1

if (iasl.gt.80) iasl=80

isp = iasl

end if

nnodes(count-ii) = 2

if (areas(isp).eq.0) then

rarea=areas(isp-1)

if (rarea.eq.0) rarea=areas(isp+1)

else

rarea=areas(isp)

end if

if (rarea.eq.0) then

write(*,*) ’errror in rarea’,rarea,isp

stop

end if

t1(count-ii) = rarea

t2(count-ii) = 0.0d0

t3(count-ii) = 0.0d0

n1(count-ii) = it

n2(count-ii) = it + 2*(nxt+2)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 178

n3(count-ii) = 0

mat(count-ii) = 1

isurf(count-ii) = 0

end do

end if

end do

write(*,*) count , nax

c Calculate global node numbers of ribs, number of nodes,

c material #, and thickness of element at each node

do i = 1 , 12

do j = ribloc(i) , ribloc(i)+20 , 2

count = count + 2

nnodes(count) = 3

nnodes(count-1) = 3

if (j.ge.31.and.j.le.39) then

t1(count) = 0.11d0

t2(count) = 0.11d0

t3(count) = 0.11d0

t1(count-1) = 0.11d0

t2(count-1) = 0.11d0

t3(count-1) = 0.11d0

else

t1(count) = 0.04d0

t2(count) = 0.04d0

t3(count) = 0.04d0

t1(count-1) = 0.04d0

t2(count-1) = 0.04d0

t3(count-1) = 0.04d0

end if

n1(count) = j

n2(count) = j + 1

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 179

n3(count) = j + 3

n1(count-1) = j + 3

n2(count-1) = j + 2

n3(count-1) = j

isurf(count) = 0

isurf(count-1) = 0

mat(count) = 2

mat(count-1) = 2

end do

end do

write(*,*) count-nax , nrib

c Calculate global node numbers of triangular skins,

c number of nodes, thickness of element at each node,

c material #. (membrane elements)

open(1,file=’thickness.dat’)

read(1,*)

read(1,*) t11p

ei = 0

do i = 1 , tn-2*(nxt+2) , 2

if (mod(i+1,2*(nxt+2)).ne.0) then

count = count + 4

read(1,*) k,t11

if (t11.lt.0) t11=t11p

if (mod(i-1,24).eq.0) then

ei = ei + 1

lethick(ei) = t11

end if

do j = 0 , 3

nnodes(count-j) = 3

t1(count-j) = t11

t2(count-j) = t11

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 180

t3(count-j) = t11

mat(count-j) = 3

end do

c Upper surface

n1(count) = i

n2(count) = i+2

n3(count) = i+2*(nxt+2)

n1(count-1) = i+2

n2(count-1) = i+2+2*(nxt+2)

n3(count-1) = i+2*(nxt+2)

isurf(count) = 1

isurf(count-1) = 1

c Lower surface

n1(count-2) = i+1

n2(count-2) = i+3

c n3(count-2) = i+3+2*(nxt+2)

n3(count-2) = i+1+2*(nxt+2)

c n1(count-3) = i+1

n1(count-3) = i+3

n2(count-3) = i+3+2*(nxt+2)

n3(count-3) = i+1+2*(nxt+2)

isurf(count-2) = -1

isurf(count-3) = -1

endif

end do

close(1)

write(*,*) count-nrib-nax , nmem

c Calculate global node numbers of spars, the thicknesses of the

c element at node i,material #, and number of nodes.

c i index is for leading edge while j is for trailing edge

c while k is index for the middle spar. Remember we are

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 181

c assuming 3 constant spars.

open(1,file=’spars.dat’)

do i = 1 , 100

areas(i) = 0.0d0

end do

10 read(1,*,end=20) i , rarea

areas(i) = rarea

goto 10

20 close(1)

ifs = 61-1

irsu = 37-1

iasu = 69-1

ei = 0

do i = 1 , tn - 2*(nxt+2) , 2*(nxt+2)

ei = ei + 1

j = i+6

k = i+14

l = i+18

m = i+22

do ii = 0 , 3

fud = 1.0d0

if (ii.eq.0) then

it=i

isp = -37

else if (ii.eq.1) then

it=j

c Added this fud

fud = 0.80d0

ifs = ifs + 1

if (ifs.gt.63) ifs=63

isp = ifs

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 182

else if (ii.eq.2) then

it=k

irsu = irsu + 1

isp = irsu

else if (ii.eq.3) then

it=m

isp = -37

end if

count = count + 2

nnodes(count) = 3

nnodes(count-1) = 3

if (isp.ne.-37) then

rarea=areas(isp)

else

rarea=lethick(ei)

end if

if (rarea.eq.0) then

write(*,*) ’error’,isp,rarea

stop

end if

t1(count) = rarea*fud

t2(count) = rarea*fud

t3(count) = rarea*fud

n1(count) = it

n2(count) = it+1

n3(count) = it+1+2*(nxt+2)

t1(count-1) = rarea

t2(count-1) = rarea

t3(count-1) = rarea

n1(count-1) = it+1+2*(nxt+2)

n2(count-1) = it+2*(nxt+2)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 183

n3(count-1) = it

if (isp.ne.-37) then

isurf(count) = 0

mat(count) = 4

isurf(count-1) = 0

mat(count-1) = 4

else

isurf(count) = 1

mat(count) = 3

isurf(count-1) = 1

mat(count-1) = 3

end if

end do

if (l.lt.115) then

it = l

iasu = iasu + 1

isp = iasu

count = count + 2

nnodes(count) = 3

nnodes(count-1) = 3

rarea=areas(isp)

if (rarea.eq.0) then

write(*,*) ’error’,isp,rarea

stop

end if

t1(count) = rarea

t2(count) = rarea

t3(count) = rarea

t1(count-1) = rarea

t2(count-1) = rarea

t3(count-1) = rarea

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 184

n1(count) = it

n2(count) = it+1

n3(count) = it+1+2*(nxt+2)

n1(count-1) = it+1+2*(nxt+2)

n2(count-1) = it+2*(nxt+2)

n3(count-1) = it

isurf(count) = 0

mat(count) = 4

isurf(count-1) = 0

mat(count-1) = 4

end if

end do

write(*,*) count-nax-nrib-nmem , nspar

c Now define the various material properties

c Axial Bar: mat# 1

c Ribs: mat# 2

c Skins: mat# 3

c Spars: mat# 4

c The following are properties for Aluminum wing

c Young’s Modulus of Elasticity (Redundant, ain’t it)

e(1) = 10.30d6

e(2) = 10.30d6

e(3) = 10.68d6

e(4) = 10.30d6

c Poisson’s Ratio

nu(1) = 0.3205d0

nu(2) = 0.3205d0

nu(3) = 0.3d0

nu(4) = 0.3205d0

c Density of Material

rho(1) = 0.1d0

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 185

rho(2) = 0.1d0

rho(3) = 0.101d0

rho(4) = 0.1d0

fu = 10.0d0*0.1d0

do i = 1 , nele

c 1 axial, 2 rib, 3 skin, 4 spar

if (mat(i).eq.1) then

c changed from 0.5

t1(i) = t1(i)*0.35d0

continue

else if (mat(i).eq.2) then

c changed from 1.0 to

t1(i) = t1(i)*1.0d0

t2(i) = t2(i)*1.0d0

t3(i) = t3(i)*1.0d0

continue

else if (mat(i).eq.3) then

c changed from 0.7

t1(i) = t1(i)*0.92d0

t2(i) = t2(i)*0.92d0

t3(i) = t3(i)*0.92d0

continue

else

c changed from 0.7

t1(i) = t1(i)*0.625d0

t2(i) = t2(i)*0.625d0

t3(i) = t3(i)*0.625d0

continue

end if

end do

do i = 1 , tn

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 186

xc(i) = xc(i)*phylen

yc(i) = yc(i)*phylen

zc(i) = zc(i)*phylen

end do

if (count.ne.nele) then

write(*,*) ’OOPS! Elements not equal!’

write(*,*) count , nele

stop

endif

write(*,*) count , nele

c Write file for Lloyd

open(1,file=’input.deck’)

write(1,*) ’Total nodes: ’,tn

write(1,*) ’Total elements: ’,nele

do i = 1 , tn

write(1,*) ’Grid’,i,real(xc(i)),real(yc(i)),real(zc(i))

end do

write(1,*) ’element information:’

write(1,*) ’crod node 1 node 2 area material#’

write(1,*) ’mem node 1 node 2 node 3 thickness

* material#’

do i = 1 , nele

if (mat(i).eq.1) then

write(1,*) ’crod’,n1(i),n2(i),t1(i),mat(i)

else

write(1,*) ’mem’,n1(i),n2(i),n3(i),t1(i),mat(i)

end if

end do

write(1,*) ’Material # Young s Modulus Poisson s Ratio’

do i = 1 , nmat

write(1,*) i,e(i),nu(i)

APPENDIX A. FINITE ELEMENT WING-BOX SOURCE CODE 187

end do

close(1)

write(*,*) ’Done file for Lloyd’

c Write output to be used by FAST

c write(8,*) nxt+2,nyt+2,2

c write(8,*) (xc(i),i=1,2*tot,2),(xc(i),i=2,tn,2)

c write(8,*) (yc(i),i=1,2*tot,2),(yc(i),i=2,tn,2)

c write(8,*) (zc(i),i=1,2*tot,2),(zc(i),i=2,tn,2)

return

end

Appendix B

Aeroelastic Coupling Procedure

Source Code

This is the source code used to create the interface mappings to perform static aeroe-

lastic analysis. The source code below is the major part of the pressure to force

mapping process. It takes data from a CFD and CSD grid, and creates the necessary

mapping of CFD point to the CSD triangle. In order to use this, the forces on the

CSD points need to be obtained, and that can be done in any manner one wishes.

Also, the surface spline routines are not included due to their simplicity.

c--c

c c

c Given a CFD grid and Structural Grid (upper, lower) c

c this routine tries to associate a structural triangle c

c with each CFD grid point. c

c c

c i1,itip,imax,j1,jtip,jmax define the aero. grid c

c xa,ya,za are the aerodynamic grid points coordintates c

c ns is the number of structural points c

c xs,ys,zs are the structural node coordinates c

c map maps structural point to overall positiion c

c in combined structural grid c

188

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 189

c This routine assumes we are not concerned with c

c z coordinate, i.e., the object is in x-y plane c

c c

c--c

subroutine trian(i1,itip,imax,j1,jtip,jmax,nus,nls,

’ xa,ya,za,xus,yus,zus,xls,yls,zls,

’ mapus,mapls,strid,weight)

c--c

implicit none

c--c

c Number of Closest Points to Acquire c

c--c

integer np

parameter (np=35)

c--c

c These are declartions of variables being passed c

c--c

integer i1 , itip , imax , j1 , jtip , jmax , nus , nls ,

’ mapls(nls) , mapus(nus) , strid(3,imax,jmax)

real*8 xa(imax,jmax) , ya(imax,jmax) , za(imax,jmax) ,

’ xus(nus) , yus(nus) , zus(nus) , xls(nls) ,

’ yls(nls) , zls(nls) , weight(3,imax,jmax)

c--c

c These are declarations for variables being used locally c

c--c

integer i , j , cp(np) , nc , pt , m , lou , n , k ,

’ p , tri(3,np*np*np) , che , k1 , m1 , p1 , ntria ,

’ count , pn(3) , ii , trio(3,np*np*np) , temp , iii

real*8 x , y , z , dist , max , meas(np) , xp , yp , zp ,

’ dist1 , dx(4) , dy(4) , de(4) , max1

c--c

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 190

c Begin Program c

c--c

iii = 0

c--c

c Begin Main Loop c

c--c

do i = i1 , imax

do j = j1 , jmax

lou = -1

iii = iii + 1

nc = 0

c lou = 1 (upper surface) lou = -1 (lower surface)

if (i.gt.itip) lou = 1

if (j.gt.jtip) lou = 1

x = xa(i,j)

y = ya(i,j)

z = za(i,j)

c To be used later for acquiring weights

dx(4) = x

dy(4) = y

c--c

c Get np closest points for grid pt. i,j c

c--c

if (lou.eq.1) then

n = nus

else

n = nls

end if

do k = 1 , n

if (lou.eq.1) then

xp = xus(k)

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 191

yp = yus(k)

zp = zus(k)

else

xp = xls(k)

yp = yls(k)

zp = zls(k)

end if

dist1 = dist(x,y,z,xp,yp,zp)

if (nc.lt.np) then

nc = nc + 1

meas(nc) = dist1

cp(nc) = k

else

max = 0.0d0

do m = 1 , np

if (max.lt.meas(m)) then

max = meas(m)

pt = m

end if

end do

if (dist1.le.max) then

meas(pt) = dist1

cp(pt) = k

end if

end if

end do

c--c

c Done np closest points, now get all triangle c

c regions possible to get proper triangle c

c--c

if (i.eq.1.and.j.eq.1) then

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 192

ntria = 0

count = 0

do k = 1 , np

do m = 1 , np

if (m.eq.k) goto 10

do p = 1 , np

if (p.eq.m.or.p.eq.k) goto 20

k1 = k

m1 = m

p1 = p

call check(che,np,k1,m1,p1,ntria,tri)

if (che.ne.1) then

ntria = ntria + 1

trio(1,ntria) = k1

trio(2,ntria) = m1

trio(3,ntria) = p1

tri(1,ntria) = k1

tri(2,ntria) = m1

tri(3,ntria) = p1

end if

20 continue

end do

10 continue

end do

end do

c write(*,*) ’Triangles ’,ntria

end if

c--c

c Now Have All Possible Triangles Without Dupes c

c So Check to See If CFD Point Is An Int Point c

c--c

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 193

do k = 1 , ntria

do ii = 1 , 3

tri(ii,k) = trio(ii,k)

end do

end do

count = ntria

do k = 1 , ntria

do ii = 1 , 3

pn(ii) = cp(tri(ii,k))

end do

do m = 1 , 3

if (lou.eq.1) then

dx(m) = xus(pn(m))

dy(m) = yus(pn(m))

else

dx(m) = xls(pn(m))

dy(m) = yls(pn(m))

end if

end do

call getco(dx,dy,de)

c Get rid of triangle if it doesn’t contain point i,j

if (de(1).lt.0.or.de(2).lt.0.or.de(3).lt.0.or.de(4).gt.0) then

count = count - 1

tri(1,k) = 0

tri(2,k) = 0

tri(3,k) = 0

else if (de(1)+de(2)+de(3).lt.0.98) then

count = count - 1

tri(1,k) = 0

tri(2,k) = 0

tri(3,k) = 0

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 194

else if (de(1)+de(2)+de(3).gt.1.02) then

count = count - 1

tri(1,k) = 0

tri(2,k) = 0

tri(3,k) = 0

else if (de(4).lt.0) then

temp = tri(1,k)

tri(1,k) = tri(3,k)

tri(3,k) = temp

end if

end do

c--c

c Now Check Which Triangle Has Smallest Largest c

c Vertex Distance c

c--c

if (count.ne.0) then

max1 = 100000.0d0

do k = 1 , ntria

if (tri(1,k).ne.0) then

max = 0.0d0

do ii = 1 , 3

pn(ii) = cp(tri(ii,k))

end do

do m = 1 , 3

if (lou.eq.1) then

dx(m) = xus(pn(m))

dy(m) = yus(pn(m))

else

dx(m) = xls(pn(m))

dy(m) = yls(pn(m))

end if

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 195

end do

do m = 1 , 3

dist1 = dist(dx(m),dy(m),0.0d0,x,y,0.0d0)

if (max.lt.dist1) max=dist1

end do

c Using max variable to get minimum

if (max1.gt.max) then

max1 = max

pt = k

end if

end if

end do

do ii = 1 , 3

pn(ii) = cp(tri(ii,pt))

end do

do m = 1 , 3

if (lou.eq.1) then

dx(m) = xus(pn(m))

dy(m) = yus(pn(m))

else

dx(m) = xls(pn(m))

dy(m) = yls(pn(m))

end if

end do

call getco(dx,dy,de)

do k = 1 , 3

weight(k,i,j) = de(k)

if (lou.eq.1) then

strid(k,i,j) = mapus(pn(k))

else

strid(k,i,j) = mapls(pn(k))

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 196

end if

end do

else

c--c

c If there are no triangles which contain c

c grid pt. i,j then map it to closest point c

c NOT triangle c

c--c

max = 10000000.0d0

c write(*,*) ’not interior point’

do k = 1 , np

if (max.gt.meas(k)) then

max = meas(k)

pt = cp(k)

end if

end do

do k = 1 , 3

weight(k,i,j) = 0.0d0

if (lou.eq.1) then

strid(k,i,j) = mapus(pt)

else

strid(k,i,j) = mapls(pt)

end if

end do

end if

write(*,100) iii,imax*jmax

100 format(’Done’,2x,i4,’/’,i4)

c write(*,*) i , j

c write(*,*) (strid(k,i,j),k=1,3)

c write(*,*) (weight(k,i,j),k=1,3)

c--c

APPENDIX B. AEROELASTIC COUPLING PROCEDURE SOURCE CODE 197

c Finished Doing Mapping for Grid Point i,j c

c--c

end do

end do

c--c

c End Main Loop c

c--c

return

end

c--c

c This function is used to get distance between 2 points c

c--c

function dist(x1,y1,z1,x2,y2,z2)

implicit none

real*8 x1 , x2 , y1 , y2 , dist , temp , z1 , z2

temp = (x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2

dist = dsqrt(temp)

return

end

Vita

Manoj Kumar Bhardwaj was born in India on November 26, 1969. He moved to the

United States in March 1977. He graduated from James Wood High School in 1988

located in Winchester, Virginia. He then began his second life at Virginia Tech. He

graduated with a B.S. in Aerospace Engineering in 1992. He also received an M.S. in

Aerospace Engineering en route to his Ph.D. Manoj will work in Albuquerque, New

Mexico at Sandia National Laboratories. His permanent address is:

142 Hackberry Drive Stephens City, VA 22655

198

