.

Object Oriented Programming for Reinforced Concrete
Design

by
Ajay B. Kulkarni

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute & State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Civil Engineering

Approved:
ol B1C) e
K. B. Rojiani
@[% ?ﬂ(Wiﬁr éQm_Qﬁé/’ V). e
. M. Holzer D. A. Garst
May, 1993

Blacksburg, Virginia

Object Oriented Programming for Reinforced Concrete
Design
by
Ajay B. Kulkarni
Committee Chairman: Prof. Kamal B. Rojiani
Charles E. Via, Jr. Department of Civil Engineering

Virginia Polytechnic Institute and State University

Abstract

The use of the object oriented programming approach in developing applications
for the analysis and design of reinforced concrete structures is discussed. Two object
oriented programming languages, Actor and Borland C++ for Windows were used to
develop several applications. Actor is a pure object oriented programming language while
C++ is a hybrid object oriented programming language. A simple program for computing
the flexural capacity of reinforced concrete tee beams was developed in both languages. A
second program for the analysis and design of reinforced concrete continuous beams was
developed in Actor and C++. This application is representative of a practical structural
engineering application and has both analysis and design components. The procedures and
techniques used in the development of this application can easily be applied to the
development of other structural engineering applications. A third program for the design
of simply supported beams was also developed in Actor. _

The advantages and disadvantages of object oriented programming for structural
engineering application development were studied. It was found that object oriented
programming has significant benefits. However, these benefits can only be utilized if
careful thought is given during the program development stage. There is also some
overhead associated with object oriented programming. A comparative study of the two

programming languages: Actor and Borland C++ was also performed.

Acknowledgments

I wish to express my sincere gratitude to my advisor Dr. Kamal B. Rojiani. His
patience, insight and experience in structural engineering and computing helped me
surmount the uphill task of learning and implementing object oriented programming. I
would like to thank Dr. S. M. Holzer for his enthusiasm and advice from time to time
during the course of my graduate studies and to Prof. D. A. Garst for his willingness to
review the thesis and to serve on the committee. I would also like to thank Dr. T.
Kuppusamy for his advice and help.

Finally, I would like to express deep gratitude for my parents without their support
this Master's study would not have been possible and I am deeply indebted to them. I
would also like to express special thanks to my sister and brother for their constant

encouragement and invaluable moral support.

Acknowledgements iii

Table of Contents

AcknOWIEdZEMENLS...........cccviiiiiiiiiiicciec e iii
List Of FAGUIESooiviiiiiiiieciee ettt ee e e s taeenneesaeeeaeeas vii
List Of TAbIES.........coueoiiiiiiiiiieiceer ettt X
Chapter 1 ...ttt ettt st e e neeeneeeaeeenne e 1
INtrOQUCHION. ..ottt ettt e beeae e e 1
LT INtrodUCtioNco.eiiuieiiiiiiiieie ettt 1
1.2 PUrpose and SCOPE........cccuviiimiieiieiieee ettt et ane 2
1.3 Organization.............ccceerieeuiereereeiieieereieteeeeneeseesieestessseeteesesasesaeesseeseeenna 3
CRapter 2..... ...ttt ettt ettt e et e bt e enteeteeans 4
An Overview of Object Oriented Programming...................occoeiiierienerienieeererieieeenen. 4
2.1 INEPOAUCHION ..ottt et 4
2.2 Programming Methodologies................ccoieiiiieiiiiiiicie e, 4
2.3 Object Oriented Programmingccoeoueiiieniieniireiienieeece e 5
2.4 Elements of Object Oriented Programming.................ccccevrrvieeniieenirenncen. 6
2.4.1 Classes and Inheritanceccccoceeviiieriiniicnc e, 6
24,2 OBJECE ... eeeeeeeeeeee e e eee et e e ee e eeenreeeen 7
2.4.3 Message Passing.............cooviiiiiiieiiiiiiee e 8
2.5 Object Oriented Programming: Why is it needed ?................ccccceviiinieen. 8
2.6 Object Oriented Programming Languages..............ccoecueeiienienniiennnennncenene 11
2.7 Shortcomings of Object Oriented Programming...............cc.cccoocerieennennnnne 12
2.8 Literature ReVIEW.........cccoeouiiiiiiiniiiiiieeeee e 14
CRAPLEr 3ttt et e e e e et e et e e e e e s ba e e esba e e s bbe e e beeeebaeens 18

Table of Contents iv

Overview Of ACtOr and Ct.. ..o, 18

3T INtrOAUCHIONcoeniiiiniiciic ettt 18

3.2 ACLOT .ot e et bttt 18

3.2.1 Actor Programmiingc.ccceeeveevueeereerieeieeiieeeeeeee e eneennes 19

3.2.2 The Actor Environmentcccceveveeivinceneinenreensees e 23

3.2.3 The WhiteWater Resource Toolkit................coceecniiniriininnrennne. 29

3.2.4 Creating A Stand-Alone Application...................cccceoverivnriennnnnn. 32

3 ettt ee e nee e 33

3.3.1 CH-Programmingcccceeevueeiciieieniieeeiie e e eeeeesneeeeneens 33

3.3.2 Borland C++ For Windows Environmentc..ccoooveennenne. 37

3.3.3 The Object Windows Libraryccccooiiiiiiiiiiiiiccee, 39

CRapter d....... ...ttt e et ar e et ee e e et e e sab e e e a e e e rreseraaennee 41
ACtOr APPIICALIONS......cc.eiiiiiiiiiiiiiirtieee ettt tcete et e et e e st e bt e e e steesbaebe e e e sneeneeas 41
4.1 INtrOdUCHION ..ottt et 41

4.2 Flexural Capacity of Teebeam................occooiiiiiiiiiiiie, 42

4.2.1 Overview of the Tee Beam Application................cccoceeveeverrnennn. 42

4.2.2 Class StIUCLUTEcoerieiiieieiiientcee ettt e 46

4.3 Design of Simply Supported Beamcoccooiiiiiiiiiniiiiiiic 49

4.3.1 Overview of the Simply Supported Beam Application................... 49

4.3.2 Class SrUCUTEcoviiriiiiiieeieeceee sttt 58

4.4 Analysis and Design of Reinforced Concrete Continuous Beam 62

4.4.1 Overview of the Continuous Beam Design Application 62

4.4.2 Class SLIUCTUTEc.ceeouireiereeiieenieete e 69

CRAPLEE S ...ttt e et st e e s bt e e s eab e et r e eeeereeens 78
CH APPLCALIONS.ocuveiiieeiieeieeieete ettt s ine e e eae 78

Table of Contents v

ST INETOAUCHION <. e e e e e e e e e e e e eens 78

5.2 Flexural Capacity of Tee Beam Application.............ccccccoecveviiriiiieineennne. 78

5.3 Analysis and Design of R. C. Continuous Beam.....................c.occcooeiiinnnn, 83
CRAPLET 6 ...ttt ettt e st e et e e e aa e e estae e e nraeeeaaes 90
RESUILS ...ttt st b e et e e e eesbeenteeensaens 90
6.1 Comparison of Actor and CH+ ..., 90

6.1.1 SYNEAX ..c.ooiiiiiiiiiciie e 90

6.1.2 ENVIFONMENES.ocueeiiiiniiiieiceiienteeieeeeeee et eeeene s s e eeae e 91

6.2 Applicability of Object Oriented Programming in Structural

ENGINEETING........ooiiiiiiiiiiiiecc ettt te e e e et e sr e e esb e e e ae e ranaaas 93
CRAPLET 7 ...t e et e e e aa e e e ea e e et e e ens e e e ab e e snaeennbbeeenseenanee 98
Summary and CONCIUSIONSooiiiiiiiiiiie ettt e eeiaee e 98

7.1 SUIMIMAIY ...ttt e e eeee e tar e e s e e sestnraeeeeeseensssennaeaeeeessnnneneeeas 98

T2 CONCIUSIONS.........oviiiieiieiiiiee et ee ettt e e e e e eeaeee e snnraaeaeseeennsnnnes 98
REfCIEICES ...ttt e st et st st e e e e e 100
APPENAIX A e ettt aa e 103
APPERAIX B ...t e 115

Table of Contents vi

List of Figures

Figure 3.1 Action Method 'setCaption'.................ccovviviiiiiiiiiieiieee e 20
Figure 3.2 Method 'SECHIONS'...........c.ocoiiiiiriiiiieieeieee e e 21
Figure 3.3 Start of an Actor SeSSIONcocveiieviieeerineecee e 24
Figure 3.4 Actor Display and Actor Workplace..............cc.ocoieevieiiiiiiiiicccccceee 25
Figure 3.5 Actor Class BrOWSETcc.ocouiiouiieiieitieeeeeee ettt 27
Figure 3.6 Actor Attribute BrOWSErcoviivuiiiiiieiieiecee et 28
Figure 3.7 Actor INSPECLOT.coviiiiiiiiiieeeeee et 30
Figure 3.8 Attribute Definition for a simple Window...............ccoooveviniiiiiiniciiie, 31
Figure 3.9 Class definition for class 'teeBeam’c...occcoeeiieiiiviiiiiiieiee e, 34
Figure 3.10 Class definition for class 'teeBeam'ccccoooeeiiiiieiiiciic e 35
Figure 3.11 Member function 'Input'coooeiiiiiniiiniieie e 35
Figure 3.12 Class definitions for 'mainClass' and 'subClass'.................ccoocoeviivieieeennnn. 37
Figure 3.13 Borland C++ for Windows Integrated Environment...................ccccccoeeeni. 38
Figure 4.1 Main Menu: Flexural Capacity of Tee Beam.............................cocooiii. 42
Figure 4.2 Flexural Capacity of Tee Beam: Material Properties Dialog.......................... 43
Figure 4.3 Flexural Capacity of Tee Beam: Invalid data message box........................... 44
Figure 4.4 Flexural Capacity of Tee Beam: Output Screen.................ccccoeeveiiieveiineennnen. 45
Figure 4.5 Flexural Capacity of Tee Beam: Section properties dialog box.................... 45
Figure 4.6 Class Structure for Tee Beam Application...............ccccoovveeiiicieeiiinie e 47
Figure 4.7 Design of Simple Beam: Main Windowc...ccoocceniiiniiiiiniiicee, 50
Figure 4.8 Design of Simple Beam: Geometric Properties...............ccccccoeovieiiiiiiennnnne 50
Figure 4.9 Design of Simple Beam: Material Properties...............ccccovveeriieniinncennenne 51
Figure 4.10 Design of Simple Beam: Load Casesccccccciiiiiiiiiriniiiceiniccens 51
Figure 4.11 Design of Simple Beam: Distributed Load Dialog Boxccccoeeeieee 52
Figure 4.12 Design of Simple Beam: Partially Distributed Load Dialog Box................. 53

List of Figures vii

Figure 4.13 Design of Simple Beam: Concentrated Load Dialog Box........................... 53

Figure 4.14 Design of Simple Beam: Left Support Moment Dialog Box...................... 54
Figure 4.15 Design of Simple Beam: Right Support Moment Dialog Box.................... 54
Figure 4.16 Design of Simple Beam: Load Combination Dialog Box........................... 55
Figure 4.17 Design of Simple Beam: Recommended Section.....................cc.ccoeeienii. 56
Figure 4.18 Design of Simple Beam: Flexural Steel Dialog BoXc.ccoeeevienn.n. 57
Figure 4.19 Design of Simple Beam: Stirrup Bar Dialog BoXcc.cocooooviiiiieiennnn. 57
Figure 4.20 Design of Simple Beam: Results................ccoccovviiiiiiiiiiii e 58
Figure 4.21 Class Structure for Simple Beam Applicationcc..cocooieiiiien. 59
Figure 4.22 Flow-Chart of object 'SimpObject'..............cccoeiiiiiiieiiieriieii e 61
Figure 4.23 Design of Continuous Beam: Main Window...............c..cccoociiiiiiiniiennn, 63
Figure 4.24 Design of Continuous Beam: Geometric Properties.............c...ccc.coeneenenn. 63
Figure 4.25 Design of Continuous Beam: Material Properties Dialog Box.................... 64
Figure 4.26 Design of Continuous Beam: Load Combinations................ccccccoveenenne. 65
Figure 4.27 Design of Continuous Beam : Distributed Load...................c.cooiee. 66
Figure 4.28 Design of Continuous Beam: Given Section Properties.............................. 66
Figure 4.29 Design of Contnuous Beam: Design Steel Ratio Dialog Box..................... 67
Figure 4.30 Design of Continuous Beam: Design Section..............c..ccoecvviiiireiieniinenne 68
Figure 4.31 Design of Continuous Beam: Results................ccccoooieiiiiiiiieninicini 69
Figure 4.32 Class Structure for Contnuous Beam Application...............ccccooeeeniennnn. 70
Figure 4.33 "Geometry.wdl" fileccoooiiiiiiiii e 72
Figure 4.34 Method "MextSpan’............cccoooviiiiiiiiiieiii et 73
Figure 4.35 Flow Chart of Object 'Analyze'..............ccoooiiiiiiiniiiiecc 75
Figure 4.36 Flow Chart of Object 'design'..............ccooiviiiiiiiiieiiiee e 77
Figure 5.1 Class Structure for the Tee Beam Applicationccccoceeveiierinieennenn 80
Figure 5.2 Class Definition for "TTeeWindow' class............cccccooviiniiiiiiiniiiniiienc 81
Figure 5.3 Class Structure for the Continuous Beam Application 84

List of Figures viii

Figure 5.4 Class definition for the class 'TCaseDlg'

List of Figures

...

ix

List of Tables

Table 6.1 Comparison of Actorand CH+c...ooooiiiiiiiiiiieccceceececee e 94

Table B.1 Comparison of Subroutines in Holzer's Frame Analysis Program and Functions
in the 'Analysis' class of the Continuous Beam Application............................. 116

List of Tables X

Chapter 1

Introduction

1.1 Introduction

The computer industry has experienced profound advances in computer hardware.
Although there have been significant improvements in software technology, these changes
have always fallen behind those in hardware with the result that there is, typically a three
to five year lag between the introduction of new hardware and the development of
software to support the hardware. Until recently, most computer programs were being
developed using the structured programming approach developed in the 1970's. However,
in the last few years many new approaches have been introduced. These approaches, such
as object oriented programming and neural networks are currently being tried and tested.

The object oriented programming (OOP) approach has recently received wide
attention. Many of the new programs developed in the last few years are based on the
Object Oriented Programming approach. It is anticipated that object oriented
programming will revolutionize the software industry and change the way that
programmers look at program development. The reasons for this has to do with many
advantages that object oriented programming has over conventional procedural
programming technique. Some of the advantages include: a) ease of software
development, b) ease of maintenance, and c) reusability.

The computerization of the structural analysis and design process has made it
necessary for structural engineers to have some knowledge of programming. It has also
opened another field for structural engineers: structural engineering software
development. However, structural engineering software developers are still using the old
structured programming approach. Very few examples could be found in the structural

engineering journals of work related to the use of object oriented programming in

Introduction 1

structural engineering. The need for this research was motivated by the fact that few
attempts have been made by structural engineers to use the object oriented programming

approach for the development of structural engineering applications.

1.2 Purpose and Scope

In this study the use of object oriented programming for developing structural
engineering applications in the Microsoft Windows graphical user environment is studied.
The primary objective of the research work was to study the use of object oriented
programming technique for developing structural engineering applications. Two very
different object oriented programming languages, Actor and C++, were considered in this
study. Actor was selected because it is a pure object oriented programming environment.
The selection of C++, which is a hybrid language, was based on the fact that it is currently
the most popular object oriented programming language.

A simple program to compute the flexural capacity of reinforced concrete tee beam
was developed in both languages in order to develop an understanding of the object
oriented techniques involved. After developing the tee beam application in Actor, a
program for the design of simply supported reinforced concrete beams was developed.
The two languages, Actor and C++ were used to develop a program for the analysis and
design of reinforced concrete continuous beams. This application is representative of a
typical real world structural engineering application and has both analysis and design
components. The procedures and techniques in the development of this application can
easily be applied to the development of other structural engineering applications, such as
for example, a program for the analysis and design of two or three dimensional trusses and
frames.

The scope of the work involved study of object oriented programming techniques
for structural engineering applications. During the course of the development, some of the

important features of object oriented programming such as encapsulation, abstraction,

Introduction 2

inheritance, and reusability were studied. The study presents a comparison of the two
languages and discusses some of the advantages and disadvantages of using object

oriented programming in structural engineering.

1.3 Organization

An introduction to object oriented programming is given in Chapter 2. A review
of the literature on object oriented programming and its application in structural
programming is also presented in Chapter 2. Chapter 3 contains a discussion of object
oriented programming languages, Actor and C++. Chapter 4 presents a detailed
description of the three applications developed in Actor. The class structure and hierarchy
is also presented. Chapter 5 describes the two applications developed in C++. Chapter 6
presents a comparison of Actor and C++. This chapter also contains a discussion of the
advantages and disadvantages of using object oriented programming in structural

engineering. A summary of the study and its major conclusions are given in Chapter 7.

Introduction 3

Chapter 2

An Overview of Object Oriented Programming

2.1 Introduction

In this chapter an overview of the basic concepts of object oriented programming
is presented. Since object oriented programming is in an evolutionary stage, few
structural engineers are fully aware of the basic concepts of object oriented technology. A
discussion of existing programming methodologies is presented, followed by a description
of the basic concepts of object oriented programming. Some of the advantages and
disadvantages of object oriented programming when compared to procedural
programming are discussed and the object oriented languages are described. This chapter
also discusses the application of object oriented technology in structural engineering and
presents a review of some existing structural engineering applications that were developed

using this technology.

2.2 Programming Methodologies

A programming paradigm is the method of approaching a programming problem.
There are a number of ways in which a programming problem can be handled. These
include: conventional modular programming, rule based programming, serial programming
and parallel programming. In conventional modular programming, the problem is divided
into a number of smaller problems. These small parts are further subdivided into smaller
parts. This process is continued until an individual part becomes easily manageable. In
rule based programming the program consists of a series of rules which operate on the
data. In serial programming, only one arithmetical or logical operation is executed at a
time. Conventional procedural programming follows the serial programming model in that

a function calls to execute the next function and only one function is executed at any time.

An Overview of Object Oriented Programming 4

In parallel programming, concurrent operations are performed simultaneously. Although
there are many programming techniques, the most commonly used approach is
conventional modular programming. So whenever a new programming technique is

developed, it is compared with the conventional procedural programming technique.

2.3 Object Oriented Programming

The fundamental idea behind object oriented programming is to combine into a
single unit both data and functions (or methods) that operate on the data. In object
oriented programming, classes are defined which combine data with functions. Classes are
the passive part of object oriented programming and define the behavior of objects.
Objects, which are derived from classes, thus have access to both the data and the
functions that operate on the data. Object oriented technology reserves computer memory
for different objects. This allows each object to act independently of the others. The
programmer utilizes this independence to use the object at any location without
duplication. This eliminates the possibility of overwriting memory locations.

The partitioning of memory protects the data of the object from being accessed by
other objects. The data of an object can only be accessed by the functions that have been
defined for that object. Other objects can not access this data although other objects can
make a request to a particular object to access its own data and pass it to them. The result
of this is that each object is independent and changes in an object do not affect the
behavior of other objects in the program. This feature is called as encapsulation of data
and it provides increased modularity in object oriented programming. Since object
technology revolves around objects, it is necessary for the objects to be able to interact
with each other. To facilitate this interaction, functions declared for an object are
generally made known to other objects. This interface feature is called object abstraction.

It allows the object to make its behavior known to other objects.

An Overview of Object Oriented Programming 5

A class can be used to create more than one object of that class. Each object acts
independently of the others and has its own set of data members. This capability of
creating number of objects from a single definition of a class, saves considerable
programming effort. Also subclasses can be derived from the base class to add
functionality to a class. An object derived from a sub class can be used to provide
additional functionality that may not be available in an object derived from the base class.
This feature is called inheritance and allows the programmer to derive new classes from an
existing class to suit the requirements of the application under development.

Another way of using inheritance is to redefine functions in the base class so that
the corresponding function in the inherited class does some other task that is more
appropriate for the inherited class. This feature of changing the behavior of a function in
an inherited or derived class that has the same function name as the function in the base
class is called as polymorphism. Thus, the same function call in a program will result in

different behavior of an object depending upon the class of the object.

2.4 Elements of Object Oriented Programming

The key elements of object oriented programming are the following :

2.4.1 Classes and Inheritance

A class is a data structure that combines data elements with functions for
manipulating the data elements. In a pure object oriented programming language, like
Actor, classes are also objects, but with very limited capabilities. A class defines the
behavior of objects. It provides a template from which objects can be created and used.
The definition of a class does not allocate memory for its data members. A class also
provides a way to hide data which is an essential part of object oriented programming.

The class definition controls the access to data and the functions (or methods) defined in

An Overview of Object Oriented Programming 6

the class. For example, in C++ access is controlled by using the keywords 'private’,
'public' and 'protected' as discussed later in Chapter 3.

Another important feature of object oriented programming is inheritance. When a
class is defined and provided with data and methods, it can be used to create new classes
that are derived from the original or base class. These new classes inherit both the data
and the methods that were defined for the base class. Also, new data and methods can be
added to the new class. So the inherited class will have the features inheriteu from its
parent class as well as any new features defined for the class. This allows the opportunity
to use all of the features provided in the parent class and provides additional functionality
as needed. Many object oriented programming languages allow what is known as multiple
inheritance. In multiple inheritance, a class can be derived from more than one class. The
new class inherits functions of all parent classes. It contains both the data elements and
the functions contained in the parent classes. Multiple inheritance is a tool which needs
serious thought before its use. It adds to the complexity of the program a!:l?" }_hi memory
storage requirement. Although it is a useful feature, it should be used sp/af;ﬁgly. It is
usually possible to fine tune an existing class to perform the required task without having

to use multiple inheritance.

2.4.2 Object

An object is the most important element of object oriented programming. An
object is an independent identity which has its own data as well as functions that can
operate on the data. The behavior of an object is based on its class definition. When an
object is created from a class, memory is allocated for the data elements of the object.
When an object needs to perform a given task it calls the corresponding function to
operate upon its own data. For example, if the program needs to print a string, a message
is sent to a string object to print itself. The string object has functions that know how to

print itself. It also has as one of its data elements the string to be printed. The

An Overview of Object Oriented Programming 7

programmer just sends a message to the object to perform the desired task and doesn't
have to worry about the details of how the task is implemented since these details are
taken care of by the object. Thus, an object is an active entity which knows about the data
and also knows how to operate upon the data. This technique of encapsulation is a vital
element of object oriented technology. In object oriented programming, data and
procedures of any object are invisible from outside while the interface to the object is very
well defined. This ensures that if changes are required in the behavior of any object, the

changes can be made internally without changing the interface.

2.4.3 Message Passing

Message passing is similar to calling a function in a procedural language. An
object communicates with other objects by sending messages. The body of the message
contains the name of the message, name of the object to which it is passed and any
arguments such as variables, known to the message sending object and which the server
object might need. Generally an object accepts messages it knows and ignores all other
messages. This feature is used further in C++ where depending upon the number of
arguments in a message, the message goes to a different object which makes it possible to
have the same message name but with a different number of arguments. This is called
operator overloading. Message passing is very important in object oriented technology. It

preserves the autonomy of each object.

2.5 Object Oriented Programming : Why is it needed ?

The need for object oriented programming is best explained by examining the
shortcomings of conventional procedural programming and the corresponding advantages
of object oriented programming. Procedural programs contain data and instructions to the

computer for operating on the data. When the problem size becomes large, this list of

An Overview of Object Oriented Programming 8

instructions is broken down into small modules. This makes program development easier
and reduces the complexity of the problem. Dividing a program into functions and
modules is one of the essential elements of structured programming. However, as the
program size increases, using the procedural programming approach becomes increasingly
difficult. One of the basic disadvantages of the procedural programming paradigm for
has to <o wiit

large complex programs Kd the role played by the data [25]. In procedural programming,
the primary emphasis is on functions rather than on the data even though these functions
act on the data.

In procedural programming, functions and data are treated as separate entities.
The functions perform various operations on data. If many functions need access to the
same data then the data are stored as global variables. The use of global variables greatly
increases the chances of the data being accidentally corrupted by a function. Another
problem is that, when the data structure is modified, for example, if new data items are
added, it becomes necessary to modify all of the functions that access the data. This can
be very troublesome in a large program with many functions. Since in most large
programs a function has to access data that are outside the body of the function, the
function is not self sufficient. When writing new functions it is easy to corrupt data in
other parts of the program. Another problem associated with structured programming is
the lack of relationship between the elements of the program and the real world. When
studying a procedural program it is not always obvious what the program modules and the
data represent. It is also difficult to determine what functions are needed for program
development unless the programmer actually begins to write some functions which then
provide clues for the next functions [29].

One more short coming of procedural programming is the inability to support new
data types. Many conventional programming languages do not have provisions for
defining new data types. These languages provide several fixed data types such as integer,

real or float, and character but do not have the capability for defining new data types such

An Overview of Object Oriented Programming 9

as, for example, data type for representing dates or points with x, y, z co-ordinates. In a
conventional programming language, that does not support derived data types, it becomes
necessary to handle each element of each new data type separately. With object oriented
programming it is very easy to create new data types.

One of the most important feature of object oriented programming is that in an
object oriented programming language both the data and the functions that operate on the
data are combined in one object. Thus, every object has its own data and functions. If an
cutside function wants to access the data of another object it has to make a request to the
object of that class to access the data. In this way the integrity of each object is
maintained and the data is secured. Also, if at a later date it becomes necessary to alter
the data structure it is only necessary to make sure that only the functions that are a part
of the object itself work with the new data. It isn't necessary to modify functions in other
objects. This enhances program maintainability [25].

The integrity of each object makes it easier for functions to be written separately.
Thus, a large problem can be divided into smaller parts, with each part having its own data
and functions. This makes it easier for different programmers to work on different parts
of a large project independently and makes software development very efficient. Another
advantage of object technology is code reusability. Once a class is created and completely
tested it can be reused in several places. The feature of inheritance (Section 2.4.1) allows
the programmer to define new classes from previously tested classes [7].

In object oriented programming, there is a hierarchy of classes that looks similar to
the real world since there are parallels between objects in object oriented programming
and objects in the real world. Thus, object oriented programs resemble real world
situations more closely and are easier to understand. For example, a program that does
frame analysis, would have objects of loads, and members which would prototype objects

in the real structure [7].

An Overview of Object Oriented Programming 10

Another important asset of object oriented programming is extensibility. New data
types and the functions that operate on these data can easily be created. This makes it
possible to enhance the capabilities of the language. For example, to create a new data
type called 'date’, all that is necessary is to create a class called 'date' with data elements of
'day', 'month’, and 'year' and functions (or methods) to read the date, store the date and
any additional functions, such as, a function to determine the number of days between any
two dates. Once this is done it is possible to define any number of objects of the class

'date’, each with its own data elements for day, month and year [25].

2.6 Object Oriented Programming Languages

There are now a number of object oriented programming languages. Examples of
these languages include C++, ACTOR, Smalltalk, Trellis, Objective C, Object Pascal and
Flavors. Of these only a handful are enjoying commercial success. The three most
successful object oriented programming languages are C++, Objective C and Smalltalk
[29].

~ Smalltalk is the oldest object oriented language and it has come a long way from

its ancestor, Simula. It is a "pure" object oriented programming language as opposed to
C++ or Objective C which are "hybrid" object oriented programming languages. Both
C++ and Objective C are extensions to the conventional C programming language. C++
was developed at Bell Labs by AT & T and is rapidly emerging as the standard for object
oriented programming languages. Objective C was used for developing the object
oriented programming applications in the NextStep operating system. Digital Equipment
Corporation has its own object oriented programming language called Trellis [2].

Object oriented programming languages can be divided into two categories :

1. Pure object oriented programming languages,

2. Hybnd object oriented programming languages.

An Overview of Object Oriented Programming 11

In a pure object oriented programming language all programs contain objects, class
messages, and functions. Even the class 'class’ is an object from which subclasses can be
derived. Examples of pure object oriented programming languages are Smalltalk and
ACTOR. Since everything is object in these languages whatever is done has to follow the
ground rules of object technology [30].

Hybrid languages are extensions to conventional procedural programming
languages. Examples of hybrid object oriented languages are C++, Objective C, and
Object Pascal. Since these languages are extensions to conventional procedural
programming languages, many programmers, who are familiar with conventional
programming language, prefer hybrid object oriented programming languages to pure
object oriented programming languages. The hybrid languages give the programmer the
freedom to use as little or as much of the object oriented programming feature of the
language as needed. It also allows programmer to make use of previously written code.
This increased flexibility is an important reason for the success of the hybrid object
oriented programming languages [2].

The two object oriented programming languages that are currently dominating the
market are C++ and Smalltalk. C++ is a widely accepted object oriented programming
language. The reason for its popularity is primarily due to the fact that it is an extension
of the C programming language which has a very wide market. Among the pure object
oriented programming languages, Smalltalk is the most successful. Actor and Eiffel have

minor market shares [29].

2.7 Shortcomings of Object Oriented Programming
While object oriented programming has many advantages it also has a few
disadvantages. One of these is the additional responsibility that is placed on the

programmer. Although object technology provides increased program modularity, a

An Overview of Object Oriented Programming 12

considerable amount of additional effort is required in planning the program modules. It is
also necessary to have a good understanding of the problem domain. The entire software
development project has to be carefully planned in advance to get the maximum benefit of
the modularity provided by object oriented programming [12].

To take advantage of reusability of objects it is important to keep objects and
classes as generic as possible. Most of the object oriented programming languages
provide class libraries and it is important to become thoroughly familiar with these class
libraries in order to reduce the unnecessary creation of classes. Although using object
oriented programming technology can be somewhat demanding initially, with experience
the programmer can take advantage of the many predefined objects provided in the class
library and can significantly reduce the time and effort required in developing an
application [12].

Another disadvantage is the overhead associated with object oriented
programming. Object oriented programs require more resources in terms of memory and
execution time when compared to conventional procedural programming. This is partly
due to message passing and runtime binding. Runtime binding (also called late or dynamic
binding) refers to the execution of a particular function depending upon the class of the
object. However this binding time can be reduced by type casting. Although this
shortcoming is legitimate, it is not very important. The object oriented approach generally
results in a better user interface. The increase in the user efficiency results from a user
friendly interface and this compensates for any inefficiencies in computations resulting
from the use of object oriented technology [12].

Thus, to summarize it can be said that the shortcomings of object oriented
programming are outweighed by the advantages associates with it. Already a large
proportion of the software industry is using object oriented programming for the new

projects.

An Overview of Object Oriented Programming 13

2.8 Literature Review

In this section a brief review of the literature on object oriented programming is
presented. The review begins with some studies about objec.t oriented programming
initially used to understand the concepts of object oriented programming. This is followed
by a review of published literature on the application of object oriented programming in
civil engineering and structural engineering.

E. H. Tyugu [1] described the basic concepts of object oriented programming.
The article covered the classes, objects, methods and the message passing in object
oriented programming. The article provided a basic ground for understanding object
programming and also illustrated the possibility of concurrent object oriented
programming.

A comparison between different object oriented programming languages was the
topic of discussion in a paper by W. Schubert and H. Jungklaussen [2]. The discussion
focused on the semblance of programming languages to the human thoughts and dialects.
The object oriented programming languages were discussed and their relationship with the
natural languages was studied. A similar study of object oriented programming languages
was done by J. Micallef [3]. The study covered C++, Objective C, Smalltalk, and Trellis.
A comparison of these languages with respect to the main criteria of object technology,
encapsulation, reusability and extensibility, was presented. The feature of extensibility in
object oriented programming was compared with the type abstraction technique by
William R. Cook [4]. The study focused on the difference between data abstraction
achieved through object oriented programming and conventional programming. The
abstract data types depends on the type abstraction while object technology supports it by
procedural abstraction. According to Cook, object programming supports both
techniques. J. W. Hopkins [5] presented a comparison of Objective C and C++. The
paper contained an introduction to object oriented programming and then went on to

compare Objective C and C++.

An Overview of Object Oriented Programming 14

The most important advantage of object oriented programming is the increased
maintainability of the code. John Lewis [6] studied the increased maintainability feature of
object technology. The study found that object technology provided significantly
improved maintainability of a large program compared to the same program developed in
a conventional programming style. The study based its conclusions on the maintenance
time, error counts and programmer's impression.

The review of current journal papers dealing with object technology in structural
engineering can be best started with G. R. Miller [7]. He studied the use of object
technology for structural engineering applications. Miller illustrated the basics of object
oriented programming. Miller also discussed the object oriented technology and the
structural engineering applications. He also realized the limitations of object oriented
programming such as the complexity of reckoning the objects and their relationship. The
study acknowledged a definite shift towards object oriented programming for structural
engineering application development. To prove his point Miller developed a LISP based
data base management study [DBMS] [9][10], using object oriented concepts. The
articles covered two example programs developed using LISP. The first example
described a general matrix inversion algorithm using object technology. The second
example is of a frame analysis program for incrementally developing the frame model.
Miller also addressed the issue of concurrent programming in structural engineering
through object oriented programming [11]. He used Common LISP language to develop
a structural analysis program. He created a object database and used the presence of
multiple objects from this database to attain limited concurrency in the analysis.

Watson and Chan [8] developed a PROLOG based database management system
[PBASE], using an object oriented extension of PROLOG. The DBMS was developed
for use in engineering application with special consideration to structural engineering
applications. PBASE supports design evolution and allows changes in the data during the

evolution.

An Overview of Object Oriented Programming 15

G. H. Powell developed structural engineering database systems and frame analysis
programs using object technology [12]. Powell presented the concepts of object oriented
programming and shortcomings of object oriented technology for engineering databases.
Powell inferred that while the planning involved in object oriented design of data bases
was quite demanding, encapsulation and inheritance made it a better choice for
engineering programs. One of the articles by Powell et. al.[13] described the use of object
oriented technology for developing a data base system for structural modeling of frames.
He proposed an object oriented data base because it proved to be the best solution for the
needs of structural engineering. Powell et. al. [21] also addressed the use of object
oriented programming in the management of a central database for a structural engineering
design program. The study basically dealt with the interaction between the application
program and the central database. A database management system using objects was
presented as an interface between the application program and the central database.
Powell et. al.[14] also used an object oriented programming algorithm for stiffness
modeling of a frame structure. He described the concepts of object technology and then
illustrated the algorithm. The algorithm can be used to create the frame model from a data
base, create the stiffness model, and reverse the node model into connections and
components while presenting the results. Powell et. al.[15] developed a reinforced
concrete frame design program. The object oriented extension to C, C++, was used with
the InterView library of classes. Another example of structural engineering application
that uses object oriented programming is a program developed by H. Adeli and George
Yu [16] to design a steel girder. C++ was used for the program development. The
program had individual objects for the design of the various components of the girder such
as the flange, web, and welds. Garrett [20] used object oriented technology to create a
database for design standards. He used encapsulation in the objects to test if a particular
check in the design standards is satisfied or not. Every object had the value to be checked,

as its data, and the code requirements, as its functions which operated upon the data. This

An Overview of Object Oriented Programming 16

way each object had one of the three results : check "satisfied" or "violated" or "not
applicable".

Several other studies have been conducted on the use of object technology in civil
engineering. Philippe Remy et. al. [17] used object oriented philosophy to develop a fully
interactive user interface for a finite element program. The program can be run on
Macintosh, MS-Windows, and OSF/Motif. Michael Rice developed a freeway analysis
and design program using object oriented programming [18]. Another attempt at
modeling civil engineering applications was done by Amir A. Oloufa [19]. The program
modeled a customer-server scheme for an earth moving project using a new object
oriented programming language MODSIM. The program was compared with a
conventional program called SIAMAN.

In this chapter an overview of object oriented programming was presented. A
brief discussion of programming methodologies was presented in the beginning followed
by a discussion of classes, methods and objects. The advantages of object oriented
programming were discussed followed by a discussion of object programming languages.
The shortcomings of the object oriented programming were also illustrated. The last
section in the chapter presented a brief literature review. In the next chapter the object

oriented programming languages Actor and C++ are discussed.

An Overview of Object Oriented Programming 17

Chapter 3

Overview of Actor and C++

3.1 Introduction

This chapter describes the two object-oriented programming languages considered
in this study - Actor and C++. Actor is a pure object oriented language while C++ is a
hybrid object oriented language. The main features of the two languages and some of the
main differences between them are discussed. Additional information about the syntax of
programming is available in the programming manuals [Ref. 30, 31] and related books
[Ref. 22-26, 28, 29, 32].

The Actor programming language is discussed first, followed by a description of
the Actor environment. Since Actor is an extensible language, the process of creating an
executable file in Actor is somewhat different from the usual process of compiling and
linking. This is discussed in the section on creating a stand-alone application. The
discussion on C++ focuses primarily on the Borland C++ compiler. First, a brief
description of the important terms associated with C++ is presented. Then the Borland
C++ environment for Windows is described. The chapter concludes with a brief
description of the Borland C++ Object Windows Library which was used for developing

the C++ Windows applications.

3.2 Actor

Actor, developed by WhiteWater Group, is one of the few pure object oriented
programming environments for developing Microsoft Windows applications. In Actor,
classes are also objects. The topmost class 'Object’ in Actor, serves as the root class. All
other classes, either provided with Actor or developed by the user, are derived from
'Object’ either directly or through a chain of inheritance. Although the class '‘Object’ is the

meta class, it has very few capabilities.

Overview of Actor and C++ 18

Actor is an extensible environment. This means the application program
developed by the user becomes part of the Actor class library. The advantage of this is
that user defined classes are easily available for future applications. The availability of
user defined classes from within Actor allows the programmer to take maximum

advantage of the inheritance feature of object oriented programming.

3.2.1 Actor Programming

In this section a brief description of the basics of Actor programming is presented.
Since Actor is a pure object oriented programming language, the programming involves
developing classes that can do specific tasks. A brief description of classes and objects is
presented, followed by a description of methods. Since variables are the data members of

the objects on which the methods act, they are presented at the end.

Classes and Objects

All Actor applications contain classes that provide definition of objects. Classes
define the data variables and the methods and are the basic framework from which objects
can be developed. The objects which know the data and the behavior are the tools that
actually do the work in an application. It is the creation of an object and not the definition
of a class that sets aside computer memory. When developing application programs in
Actor, objects of server class have to be created.

In order to create an object, a creation message is passed to the class. This causes
the class to create an object of itself. This object has the behavior defined by the class and
contains all the data elements defined for the class. When an object is created, memory is
allocated for the object. An example of an object creation message is the following.

trial := new(design);

Overview of Actor and C++ 19

Here a new object ' trial ' is created from the class 'design'. The object ' trial ' can then be
operated upon to do the necessary design. Some classes, like the class 'Array’, accept an
argument for the object definition. For example, the statement

trial := new(Array,10);
creates an object 'trial' with ten elements of the class Array.

Number classes such as Real and Integer do not need a formal object definition.
Assigning a number or a string value to a variable automatically assigns the variable as an
object of the particular class. For example, in the statement

a = 3;
the object 'a' will be an object of class Integer having a value of 3. Here the class of the
object 'a' is not fixed till the value '3' is assigned to it. So 'a’' can be assigned to any class

such as a real 3.0, an integer 3, or a string "3.0".

Methods

Methods in Actor are somewhat similar to functions in C. Methods define the
behavior of the objects. Methods operate upon data, perform computations, transfer
information to and from other objects and can also transfer control to another methods. A
method can also be written to return a value. This returned value can be used to
determine the subsequent flow of the program.

There are two types of methods in Actor : Action Method and Method. An
Action method is executed as a consequence of an event. The event can be the click of a
mouse button, selection of a button, selection of a menu item or simply the creation of a
window. The Action method specifies the action which will cause execution of the
method. For example, consider the method 'setCaption' shown in Figure 3.1.

Action setCaption (self,msqg) #[#created]

{

setTitle(self,"Design of Continuous Beam");

}
Figure 3.1 Action Method 'setCaption’

Overview of Actor and C++ 20

In the example shown in Figure 3.1, the 'Action’ keyword in the first statement defines the
method 'setCaption’' as an Action method. The method will be executed each time an
object of the class is 'created’. The list in parentheses following the name of the method
contains two variables: the object name, in this case the same object (called self), and the
message. The parameters in parentheses can be used to pass arguments to methods. The
argument passing technique can be used only for methods but not for Action methods.
Since all methods have access to instance variables and class variables, it is not always
necessary to pass variables as arguments.

A Method' performs a task when asked to, by any other method or object. It is
similar to a sub-routine in a procedural language. Since methods are defined for a class
they have access to class data. This ensures encapsulation of data within objects. An

example of a method is given in Figure 3.2.

Def sections(self,kl|j)

{
ok ok Tkhhdhkkddddkkhhkhkhkkdkdddkkkkkkhhkhkokk
/ IMPORTANT VARIABLES

X = distance of the section from the left support
k = span number
j = counter
*'k**************************************i************************/
X := new (Array, 31); /* Defining x as an object of 'Array'
with 31 elements */
j = 0;
loop
while j < 31
begin
x[j] := span[k] / 30.0 * j ;
j =3 + 1;
endLoop;

}

Figure 3.2 Method 'sections'

In the method shown in Figure 3.2, the first statement defines the method 'sections'. The
variable 'k' is passed to the method as an argument. This variable 'k' represents the span

number in the continuous beam design program. The variable ‘', which is used as a local

Overview of Actor and C++ 21

variable is also defined in the same statement. As the method is part of the class 'design’,
used in the continuous beam design program, it has access to the instance variable 'span'.

The code for the entire method is enclosed in braces.

Variables

All Actor applications contain variables of different types. These include local
variakles, instance variables, class variables and global variables. Local variables are local
to the method and can not be accessed from any other method. Local variables exist for
the duration of time that the method is executing and are destroyed immediately after the
method has completed execution.

Instance variables are the most important variables in an Actor application.
Instance variables are associated with objects. Each object of a class, has its own set of
instance variables. This also means that an object's instance variables can be accessed only
by that object. This ensures encapsulation of the data and procedures to its highest level.
If an object needs to access another object's data it has to make a request to the object to
pass the data. This can be accomplished by writing methods that return data.

Global variables can be accessed by any object of any class in the program. These
variables offer the least security against data corruption, and hence should be used
sparingly. Global variables in an Actor program are used in the initialization of the main
application window. A class variable is accessible to all objects of a class or its sub class
but are not accessible to objects of other classes. Thus, in this case all objects of a class
share the same set of variables defined for the class. Class variables can be useful when all
objects share the same data. It is common practice in Actor programming to use a '$'
character as the first letter of the variable name. For example, $Ast, is a class variable that

represents the area of tension steel.

Overview of Actor and C++ 22

Of the above four variable types, Instance variables and local variables are the
most effective for preserving object modularity and for data hiding.‘ Hence when defining

a class it is very important to differentiate between instance variables and local variables.

3.2.2 The Actor Environment

Actor is an application that runs under Microsoft Windows. When the first Actor
session is started it opens with two basic windows the 'Actor Workspace' and the 'Actor
Display' (see Figure 3.3). The Actor Workspace is like the command line in DOS while
the Actor Display is an information window. The menus in the Workspacé (see Figure
3.4) can be used to load a source file, inspect a class or create a new object or execute a
command. The Actor Workspace can also be used to start the main window of an
application under development. This makes the development and testing of the
application a simultaneous process. Any ‘'method' defined for a class is compiled and
saved immediately and hence is available for testing. The Actor Display window displays
error messages while commands from the workspace are being executed. The Display
window also shows the amount of memory utilized to compile a class. The Display also
has a very important menu called 'Seal Off which is used for creating stand-alone
applications. This is described later in this chapter.

The Actor Workspace and the Actor Display windows are just the two basic
windows in the Actor environment. Although the Actor Workspace executes commands
it is not the tool for writing application programs. This is accomplished by the Browser'.
A Browser window can be opened to define new classes, or to modify an existing class.
When a Browser window is opened it contains a list of all available classes with a list of
their methods. By default all classes are listed in a hierarchical manner making it easy to
see sub classes and inherited methods. Although this can be changed, for example, as the

classes can be displayed in alphabetical order, it is not useful to do so.

Overview of Actor and C++ 23

Actor Displ

Windows Actor Workspace

| File Edit Search Duitl [nspect! Browse CrassRefs
Templates Show Room! Cleanup! WDL

Figure 3.3 Start of an Actor Session

Overview of Actor and C++ 24

Actor Display
Windows Seal-Off... Clear

. Actor Workspace
Flle Edit Search Doit! |nspect Browse CrossBefs
Templates Show Room! Cleanupl WDL

|

Figure 3.4 Actor Display and Actor Workplace

Overview of Actor and C++ 25

When an Actor session is started for the first time, all classes in the Browser are
the original classes that were provided with Actor. These classes are of a very general
nature and provide methods for performing many of the basic operations needed for
creating windows applications, such as window creation methods, printer methods,
graphics methods, and file management methods. Most new applications make use of
these classes. The class list increases as new classes are defined for the application.

In the Class Browser window (see Figure 3.5), a sub class can be defined by
selecting the "Make Descendant " sub menu of the "Class" menu. The name of the class is
defined in the dialog box. The instance variables are also defined in the same dialog box.
A sibling class, parallel in the class structure, can be made in the same way by selecting the
"Make Sibling" sub menu. The Browser also lists all the methods defined for each class.
By selecting a class from the list of classes, the methods defined for that class appear in
the list box. Any method can be viewed and edited by simply selecting it.

Another type of Browser is the Attribute Browser (see Figure 3.6). The Attribute
Browser contains the attribute definitions of the dialog boxes used in the program. The
attribute definition specifies the creation attributes such as the style and position of the
dialog box. The attribute browser also allows the programmer to correlate the resources
defined in the resource files to the application. The attribute definition assigns a unique ID
number or name to each control in the dialog boxes. These ID numbers or names can be
used in the application methods to refer to each control. The attribute definition can also
be used to define any data for a control. This feature is useful for assigning initial values
to a control before the dialog is displayed.

The Actor Workspace, Actor Display, Actor Browser, and the Attribute Browser
are the basic features of the Actor Development environment. Another important tool is
the 'Actor Debugger’. The debugger is a valuable tool for debugging applications. As the
program grows in size, it becomes very difficult to trace small mistakes. The Actor

Debugger gives a list of executed methods up to the method which caused the error. It is

Overview of Actor and C++ 26

Browser:created[r.p1):TextWindaw ACTIO...
Complie! Edit Search Doit! [nspect! Browse CrossBefs
Templates Class Method

charin{r.p1.p2}): TextWindow
ad cls[r): TextWindow
ﬁ created(s.pl1] TextwWmdow ALCTIUN: created
/# Initialize a TextWindow. Load the font data into
textMetrics, set the text width and height instance
variables, and home the caret. =/
Rction created({self, msg) N[%created]
{ initTextMetrics(self);
if not(workText)
then initWorkText(self);
home({self);
endif;

Fig. 3.5 Actor Class Browser

Overview of Actor and C++ 27

A bute Bro er:ddactord\res\abo d
Elle Edit Search |[nspect Prowse Jest! ModalTest!
Help

Chid

ChidT emplate
Owned
OwnedTemplate

Window aboutBox
class: AboutWindow
ownership: popup
border: dialoeg
keyboard: true
focus: ok
Child ok
class:
title:
id: 1
style: (defPush)
left: (left £ 2)
right: (self left f 58)
bottom: (bottom f -2)
a £ -38)

Fig. 3.6 Actor Attribute Browser

Overview of Actor and C++

28

possible to move backwards down the list of methods to trace the source of the error.
The Actor Debugger, also has a list box which displays the names of variables and the
values of local variables for each method at the time of the error. This tool makes
backward tracing very easy. Once the error is found and corrected, the application can be
resumed from the method that caused the error. This can save considerable time that
otherwise would be wasted in having to run the application from the beginning.

The description of the Actor environment would be incomplete without
mentioning the 'Inspector’ (see Figure 3.7). The Inspector provides information regarding
the current status of an object at any time. The Inspector shows the instance variables of
an object in a list box. Selecting one of the instance variables makes that instance variable
active and its value is displayed in the main window of the Inspector. Since Actor is a
pure object oriented programming language, it is possible to view a class in the Inspector.
The Inspector shows the class variables and the instance variables associated with the class
in the same way. The values of these variables can be checked. This can be very useful

when debugging classes.

3.2.3 The WhiteWater Resource Toolkit

All Windows programs make use of resources. Resources include menus, dialog
boxes, icons, bitmaps and acceleration tables. Resources are stored in an executable file
when the file is linked. The resources can be modified and again included in the
executable application. The WhiteWater Resource Toolkit is not an integral part of Actor.
However, it is a valuable tool for creating the resources required by an application. The
toolkit provides an interactive approach for creating resources. Dialog boxes, icons,
menus, bitmaps and other resources can be developed and tested in the toolkit prior to

their inclusion in the application. The resource toolkit provides a series of tools for

Overview of Actor and C++ 29

Inspectar:TextCallectionClass, limit=0
Edit Search Doitt Inspect Browse CrossRef JTemplates

MethodDictionary(SwordLimits SinsertText #insertString
sadjCommentLen 8advance SsubJext SmakeString
SdeleteChar S$isEmpty %asClipText SdeleteText #asString

#findString)

Figure 3.7 Actor Inspector

Overview of Actor and C++ 30

creating resources. It also has tools for creating various controls such as edit boxes, radio
buttons, push buttons, and static text. An important advantage of keeping resources
separate from the program code is that this makes it possible to modify these resources
without having to rewrite the entire application. For example, it is possible to create two
versions of the same application in two different languages such as English and French, by
simply creating the resources.

Each dialog box, and the control within a dialog box has a unique ID. This ID
allows the application program to access the control. In the program code it is the ID that
enables the programmer to reach individual controls of the dialog. In Actor, dialog boxes
are linked with the resource definition by using the Windows Description Language
(WDL). The WDL file sets the creation attributes for all windows used in the application.
This includes the dialog boxes and the main window.

In the example shown in Figure 3.8, an attribute definition for a simple window is
illustrated.

Window Trial

class : Window

Resource : "Trial Resource"
Child Childl

class : Button

id : 101

Figure 3.8 Attribute Definition for a simple window

In the Figure 3.8 the first statement assigns a name to the dialog box defined in the
resource 'Trial Resource'. The 'class' statement assigns the class 'Window' to the Window
"Trial'. This allows Trial' to respond to the methods defined for the class 'Window'. The
'Child' statement defines the Child window of the control class Button'. The position and
style for the 'Child1' button are defined in the resource file with an ID of 101. This button

can be accessed in the source code by referring to its ID or to the name 'Child1".

Overview of Actor and C++ 31

3.2.4 Creating A Stand-Alone Application

In most programming languages, an application can not be tested until an
executable file is created. However, Actor allows testing of an application during its
development. This makes testing of the program much easier. However, the application
must be tested within the Actor environment. After the program has been developed and
tested, several additional steps have to be performed in order to create a stand-alone
executable application.

Since Actor is an extensible programming environment, all user defined classes and
methods become part of the Actor Class library. Thus, when the application classes are
completely debugged they become part of the library. The procedure of 'Sealing OfF, as is
called in Actor, removes extra classes from the application. The sealing off procedure also
deletes global variables and attaches them to the application.

To start the sealing off process, a new sub class of the 'Application’ class is
created. This Application class handles the Main Window of the application. It is
necessary to create an application class for each application. This class generally has only
one method 'initMainWindow' which opens the main window of the application. The
sealing off procedure creates an image file, having an extension of .ima, containing the
necessary part of the Actor environment. Also, Dynamic and Static memory requirements
for the application can be set at the time of sealing off.

Once an image file is created, the application can be tested in the Actor
environment with the application image file. This provides an opportunity to check for
unexpected errors in the application such as reference to global variables instead of
instance variables. Although an image file can be used to run an application independently
of the Actor environment it uses Actor's executable file. This means that the image file
can't be run without the executable Actor file. An executable file of the application would

run in any Windows environment as a stand alone application. This application executable

Overview of Actor and C++ 32

file will contain only those resources that are needed for the application. The application's
resources can be compiled using the Microsoft Resource Compiler and the compiled
resource file can then be linked to the application's executable file. This completes the
procedure of creating the stand alone application. It should be noted that both the
executable file, 'application.exe' and the image file, 'application.ima' are necessary for

running the stand alone application in the Windows environment.

3.3 C++

C++ is an extension to the popular C programming language and is the most
popular object oriented programming language. The extensions to C provide support for
object oriented programming. Since the language and the syntax of C++ is similar to C, it
is very popular among C programmers. C++ allows the use of previously developed C
functions and it is possible to write a C++ program that does n?t use any of the object
oriented programming features of the language. This provides C programmers the
opportunity to use as much, (or as little) of the object oriented programming features and
enables a gradual transition from C to C++. In the sections that follow, a brief description

of the object-oriented features of the C++ language is presented.

3.3.1 C++ Programming

Class Definition

A class definition provides the template for an object of the class. In C++ the
member variables and member functions are declared in the class definition. It should be
noted here that, all the class member variables and class member functions must be
declared in the class definition. The member functions can be defined in the class
definition or can be defined separately outside the class definition. A class definition for
the class 'teeBeam' with the necessary data members and functions may look like the one

shown in Figure 3.9.

Overview of Actor and C++ 33

class teeBeam

{
protected :
float fc,fy,b,bw,Ast,d,phiMn;
public :
teeBeam : teeBeam():;
void Input();
void showOut():;
int ductCheck():;
void mmtCapacity():;
}:

Figure 3.9 Class de”inition for class 'teeBeam'

The first statement in Figure 3.9 defines the name of the class 'teeBeam'. The data and
function definition for the class is enclosed in braces{}. The keyword 'protected' and
‘public’ define the subsequent data and functions as protected and public respectively. The
semicolon after the closing curly brace is necessary to mark completion of the class
definition. The class teeBeam contains protected data variables such as fc, fy, b, bw, Ast,
d, phiMn. All these variables are declared to be of type float. The class also contains
public functions such as Input(), showOut(), ductCheck(), and mmtCapacity().

An object of class 'teeBeam' is created by the following statement:

teeBeam beaml; // Object beaml created of class teeBeam

After the above statement is executed an object ‘beam1' of class 'teeBeam' is created. Also
memory is allocated for the data elements of the class when the object is created. Each
object of the class ‘teeBeam' will have its own copy of the instance variables declared in

the class definition such as the variables fc, fy, b, bw, Ast, d and phiMn.

Member Functions

The member functions of a class define the behavior of objects of the class and
operate upon data. While the 'main' function of a program defines the general flow of the
program, the class functions shape the interaction of objects. Class functions are similar to

sub-routines in conventional programs.

Overview of Actor and C++ 34

A class function can be defined either as private, public or protected. The class
functions can be declared and defined in the class definition or can be defined separately.

The following example shows how a class function can be declared and defined in the

class definition.

class teeBeam
{
protected :
float fc,fy,b,bw,Ast,d,phiMn;
public :
teeBeam : teeBeam() { fc=fy=b=d=Ast=phiMn= 0;};
void Input();
void showOut () ;
int ductCheck();
void mmtCapacity():;
}s

Figure 3.10 Class definition for class ‘teeBeam'

Here the function 'teeBeam' is declared and defined in the same line. The function
that has the same name as name of the class is called the 'constructor'. The constructor is
typir.:_ally used to initialize class variables. The constructor is called each time an object of
the class is created.

The function 'Input' is declared but not defined in the class definition. The function
can then be defined later as shown below:

void teeBeam :: Input ()

{

Input inputDialog; // Declare object for input dialog
inputDialog -> ExecDialog(this, "input_dlg");

}

Figure 3.11 Member function 'Input’

In the example shown in Figure 3.11, the function 'Input’, as defined in the class ‘teeBeam|,

does not have a return value. The function calls a function of the class 'Input’ to execute

Overview of Actor and C++ 35

an input dialog box. The function is declared to be of class 'teeBeam' in the first statement:
void teeBeam :: Input()
This method of defining classes and functions can be continued to complete the

application development.

Public, Private and Protected Variables and Functions

The class variables and functions defined in a class definition can be Public, Private
or Protected. Public variables and functions are visible to any function of any class from
anywhere in the program. Since in object oriented programming the emphasis is on data
hiding, Public variables are generally avoided. However, functions are usually defined as
Public so that the objects can be operated upon from any part of the program. Thus,
public functions facilitate object abstraction while private data ensure data hiding. Private
variables and functions are accessible from the methods declared for that particular class.
This is the best method of hiding the data. However, this method also makes inheritance
difficult, since sub classes can not access private functions and data variables of the parent
class. Protected variables and functions offer greater functionality along with data hiding
of the private methods and functions. Protected variables and functions defined for a class
are also accessible to derived classes. Thus, a derived class inherits all the protected
functions and variables defined for the base class. To illustrate the types of variables
consider the class definition shown in Figure 3.12.

In the example shown in Figure 3.12, there are two classes, ‘mainClass' and
'subClass’. The class 'subClass' is derived from the 'mainClass’. The definition of
'mainClass' contains a private data member called 'privateData' of type integer and a
protected data member 'protectedData’. The private data 'privateData’ is not available to
the sub class 'subClass' but 'subClass' is able to access the protected data 'protectedData’.
The public functions 'addData()', defined in the 'mainClass' and 'addX()', defined in the

'subClass' are accessible from any part of the program.

Overview of Actor and C++ 36

class mainClass
{
private :
int privateData;
protected :
int protectedData;
public :
void addData();
}:
class subClass : public mainClass

{
private :

int x;
public :

void addX();
|8

Figure 3.12 Class definitions for ‘'mainClass’' and 'subClass'

3.3.2 Borland C++ For Windows Environment

The applications in this study were developed using the Borland C++ compiler and
the Borland C++ Object Windows Library (OWL). Borland C++ for Windows is an
Integrated Development Environment (IDE) and consists of a text editor, compiler, linker,
make utility and a debugger all under one window (see Figure 3.13). This makes it
possible to perform all application development tasks from editing the source code to
creating the executable program from within the same application.

In Borland C++ for Windows, a new project is started by selecting the menu '‘Open
Project'. A typical project in Borland C++ consists of C++ source code files, a module
definition file and a resource file. The Project menu has menu choices for adding these
files in a project. For large projects more than one C++ source code file can also be
added. The module definition file specifies information about the application's code and
data segments, the size of the local heap, and the size of the application's program stack.

The resource file defines the resources such as dialog boxes, menus, bitmaps, icons and

Overview of Actor and C++ 37

k " Borland CH lc‘\;aw.t'xcrd 2.cppl ﬁ
Eile Edit Search P'n Compile Project Browse QOptions windmw Help

PR Ol R R P D R

//exerd 2.cpp
! Rinciude <iasnrean.ie
| #ivciude <Conao. o

float fahren, cel;
void main{)
{
cout << '"Enter 1 to convert Fahrenhit To celsfus 7 << endl
<< ” 2 to coavert celsius to fahremhit:
type = getche(),
switch(type)
(
case 'l':
cout << endl <<"Enter teaprature in fehrenhiv: ” ,
cin >> fahren;
cel = (fahren - 32) * 5 /7 % ,
cout << "In celsiue that\‘s " << cel ;
break;

Figure 3.13 Borland C++ for Windows Integrated Environment

Overview of Actor and C++

38

accelerator tables. The resource file can be created by using the Whitewater Resource
Toolkit or the Resource Workshop.

The IDE also has menu choices for compiling and linking the application. All files
in the project are compiled and linked to make an executable file. The executable file can
then be executed to run the application independently in Windows environment. The
Browser menu invokes a dialog box which displays the hierarchy of classes and methods.
The methods can be browsed for debugging.

Another important utility in the IDE is the debugger. The debugger allows the
execution of the program in steps. It also shows values of the variables during execution.
This can be of immense help while debugging a program. By setting "Watch' points, steps
can be specified in the program execution. The debugger then executes the program in
steps and the variables values can be checked at each step. The values can be modified
and the program can be checked for the modified values.

Thus the Borland C++ IDE provides all the necessary tools for creating an
executable file of a project. This is far superior to the Actor environment where the

creation of an stand-alone application involves rigorous process.

3.3.3 The Object Windows Library

The Object Windows Library (OWL), available separately for Borland C++ for
Windows, is a class library for developing Windows applications. The OWL contains a
large variety of classes that correspond to interface objects in Windows. Some of the
classes in OWL include classes for Windows, dialog boxes, buttons, scroll bars, combo
boxes, bitmaps. Many of these classes respond to the Windows messages. These classes
can be used directly or new classes can be derived from the these classes to create
Windows applications. This saves a lot of efforts on the programmer's part. A derived

class, defined in the application can be modified to respond to other Windows messages.

Overview of Actor and C++ 39

This gives the programmer an opportunity to improve the behavior of the Windows
elements to suit the requirements of a specific application.

In the Object Windows Library, all window elements are considered as objects.
The Object Windows Library provides encapsulation of window's information. This
encapsulation makes it possible for each window object to encapsulate its data regarding
the behavior and the attributes. The Object Windows Library also provides abstraction of
most of the Windows API functions. This allows the programmer to use the object
windows functions, instead of the Windows API functions. However, it is also possible to
make direct calls to Windows API functions if required. The parameters required for
making Windows function calls are encapsulated in the objects as data. Another feature of
Object Windows Library classes is the automatic message response architecture which
allows the programmer to write the functions in response to a particular Windows
message. When a window object receives a message, a defined member function is called
automatically. Thus the Object Windows Library allows the programmer to develop
Windows application using object oriented techniques without having to know the details
of many of the Windows API functions.

In this chapter, both the Actor and C++ programming languages were discussed.
The main features of Actor programming include the Actor environment, the classes,
objects and methods were presented. As Actor is not an integrated development
environment the creation of an executable file has been separately presented in the section
of 'Creating a Stand-alone Application’. Windows resources and WhiteWater Resource
Toolkit were also discussed. The main features of C++ programming were presented
taking into consideration classes, objects and methods. The Borland C++ integrated
environment was presented followed by an overview of Borland C++ Object Windows
Library. In the next two chapters the applications developed using Actor and C++ will be
discussed.

Overview of Actor and C++ 40

Chapter 4

Actor Applications

4.1 Introduction

This chapter describes the applications developed using Actor. The programs
developed using Actor were: a) Flexural Capacity of Tee Beam, b} Design of Simply
Supported Reinforced Concrete Beams, and c) Design of Continuous Reinforced Concrete
Beams.

The first two application programs, Flexural Capacity of Tee Beams and Design of
Simply Supported Reinforced Concrete Beams, are relatively simple applications. The
primary purpose of writing these applications was to develop an understanding of the use
of object oriented programming concepts in structural engineering. It is interesting to
note that it took approximately the same amount of time to develop the Tee Beam
application as it did the Continuous Beam program. This is directly attributable to the fact
that by the time the continuous beam program was developed, the author had developed
considerable experience and insight in the application of object oriented technology to
structural engineering.

In the sections that follow a detailed description of the three programs is
presented. An overview of each application is presented first. This is followed by a
description of the main classes and functions. Then the class structure of each application
is presented. For the continuous beam application, the flow chart for each class is also

presented.

Actor Applications 41

4.2 Flexural Capacity of Tee beam
4.2.1 Overview of the Tee Beam Application
This program computes the flexural capacity of a tee beam in accordance with the
ACI 318-89 specifications [33]. The input to the program consists of section properties of
the beam, the area of reinforcing steel, and material properties such as, concrete
compressive strength and yield strength of the reinforcing steel. The program computes
the flexural capacity of the section and displays the results and input data on the screeu.
The main menu of the application window consists of three menu items as shown

in Figure 4.1.

Flexural Capacity of Tee Beam - Main Window
File Propertics Help

About Program

Flexural Capacity of Tee Beam

Developed by Ajay B. Kulkarni

Fig. 4.1 Main Menu: Flexural Capacity of Tee Beam

Actor Applications 42

The menu items are: 'File', 'Properties' and 'Help'. The 'File' menu has three choices: New',
Print', 'Exit’. The 'New' sub menu if selected, creates a new data file. All data are
initialized to zero and the main window is updated by calling the 'write' method. The
Print' sub menu can be selected to print the current data. The 'Exit' menu terminates the
application.

The data for the program are entered by selecting the Properties’ menu. The
'Properties’ menu has two sub menus: 'Material' and 'Section’. The selection of the sub

menu '‘Material' opens the material properties dialog box as shown in Figure 4.2.

MATERIAL PROPERTIES

Characteristic strength of Concrete (fc') :

Yield stength of steel (fy] :

Units : Ib, inch

Fig. 4.2 Flexural Capacity of Tee Beam : Material Properties Dialog

The material properties dialog box is an object of the class 'AjTee'. The dialog box has
two edit boxes one for the concrete strength and the other for the yield stress of steel (Fig.
4.2). The material properties data box is closed when either the 'OK' or the 'Cancel
button is pressed. When the user enters the data and presses the 'OK' button, the method
'okPressed' of the class 'AjTee' is called. This method in turn calls the method ‘matIn’.
The 'matIn' method checks if the values entered by the user are positive real numbers. If
the values entered are incorrect then a message box pops up and the dialog box is not

closed. Fig. 4.3 shows a typical message for invalid data.

Actor Applications 43

Invalid data !

Please check and modify data.

Fig. 4.3 Flexural Capacity of Tee Beam: Invalid data message box

If the material data input is correct then the values entered are assigned to the class
variables $fc and $fy of the main window. The B value as defined in Section 10.2.7.1 of
the ACI 318-89 [33], is computed by the method 'betaCal' of the class 'AjTee’. If
geometric data is also available, then the 'matIn' method calls the ‘balBlock' method. The
'balBlock' method computes the depth of the neutral axis for the given section for the
balanced condition. Then the 'balBlock' method calls the method 'balStrength' to check
the section for ductility. The ductility check is carried out by the method 'balStrength'
along with the method 'ductCheck’. The 'ductCheck' method calls the 'mmtCap’ method to
compute the flexural strength of the given section. The main window is updated to show
the computed moment capacity. Thus, each time any data, either material properties or
geometric properties, are modified, the main window updates the screen and displays the
new moment capacity (Fig. 4.4).

Section properties of the section can be entered by selecting the 'Geometry' sub
menu of the Properties' menu. A dialog box, as shown in Fig. 4.5 is displayed. The
dialog box object called 'sectWindow', is an object of the class 'AjTee'. The data for the
width of the flange, width of the web, effective depth, depth of flange and area of tension
steel is entered in units of Ib and inches. When the 'OK' button is selected the 'okPressed'
method of the 'AjTee' class calls the method 'sectIn'. The 'sectIn' method checks the data.
The method then updates the main window. If the material properties are also available

then the moment capacity of the section is computed. If the user presses the 'Cancel'

Actor Applications 44

Flexural Capacity of Tee Beam - Main Window
File Properties Help

Charactristic strength of concrete [fc']:
Yield stength of steel [fy] :

Width of flange [b] :

Width of the web [bw] :

Effective depth of the beam [d] :

Depth of the flange [Hf] :

Area of tension steel [As]

Moment Capacity of the section [phiMn] :

Units: kip,inch

Fig. 4.4 Flexural Capacity of Tee Beam: Output Screen

SECTIONAL PROPERTIES

VWidth of flange [b) :
Width of web [bw] :

Effective depth (d):
Depth of flange [hf) :

Area of tension steel [As] :

Units : Ib, inch

Fig. 4.5 Flexural Capacity of Tee Beam: Section properties dialog box

Actor Applications 45

button at any time during data entry, the dialog box is closed without updating the data.

4.2.2 Class Structure

Only two classes are created for the Tee Beam Application program: class 'AjTee'
and class 'TeeApp' (Fig. 4.6). The class 'TeeApp' is derived from the Actor class
'Application’. The method 'initMainWindow' creates the main window object of the class
'AjTee'. The listing of the 'initMainWindow' method is shown below.

/* Flexural capacity of tee beam - application initialization */

Def initMainWIndow(self)
{

mainWindow := loadTopFrom(AjTee, "maintee");

setIcon (mainWIndow,IDI_APPLICATION) ;

reorientMain (mainWindow) ;

}

The ‘'initMainWindow' method creates the main window object as defined in the
"maintee.wdl" attribute definition file. The attribute definition file attaches the menu
attributes to the main window. The menu is created using the Actor Resource Toolkit.
The main window is an object of the class 'AjTee’. The last statement of the
'initMainWindow' method calls the 'reorientMain' method of the object 'mainWindow'.
This 'reorientMain' method is defined in the class 'AjTee' and defines the location of the
main window.

The class 'AjTee' was a sub class of the library class 'TextWindow'. Fig. 4.6 shows
the data variables declared for this class. The 'TextWindow' class was used as the base
class since it provided methods to display the data on the main window. The main
window and the dialog box objects were developed from this class. This ensured the
availability of the data members of the application to all the dialog boxes and the main
window. Since this is a small application only three dialog boxes are required: the About

dialog box, the Material Properties dialog box, and the Section Properties dialog box. The

"About' dialog box, displays information about the application. It is activated by selecting

Actor Applications 46

Application TextWindow

TeeApp AjTee
Variables :
mainWindow b, bw, d, hf, As, fc, fy
Nc, phiMn, Beta,
maxWidth, maxHeight

Fig. 4.6 Class Structure for Tee Beam Application

Actor Applications

the 'About' menu item from the Help' menu. The material properties dialog box and the
section properties dialog box obtain user input. The main window object computes the
capacity of the section each time there is a change in material or section properties. The

class 'AjTee' has the following important methods:

balBlock (self) /* Computes the stress block of the
balanced section */

balstrength (sel f) /* Computes the capacity of the balanced
section */

ductCheck (self) /* Performs the ductility check */

betaCal (self) /* Computes P for given material */

mmtCap (self) /* Computes the moment capacity of the
given section */

write(self) /* Updates the data in main window */

The 'mmtCap' method also calls the method 'write' that modifies the main window which
displays the input data and the moment capacity of the section.

This program is a very useful tool for computing the flexural capacity of tee
sections. The ability to modify the section capacity each time the section or material
properties are changed is a valuable asset. This program was fairly simple to develop
using object oriented programming techniques. However, it proved to be a very good
starting application for understanding object oriented programming concepts. The
application was useful for learning the techniques required for creating objects for
representing dialog boxes. This knowledge was useful in the development of the other

applications.

Actor Applications 48

4.3 Design of Simply Supported Beam
4.3.1 Overview of the Simply Supported Beam Application
This program designs a simply supported reinforced concrete beam subjected to as

many as ten load combinations and ten load cases. The program can handle the following
loads :

1. Uniformly distributed loads over entire span;

2. Partially distributed loads;

3. Concentrated loads;

4. Linearly varying loads;

5. Moments applied at the supports.
The program can handle up to five loads of each type except for concentrated loads. A
maximum of ten concentrated loads are allowed. The data for the program can be entered
by selecting the appropriate menu items from the main window of the application. The
selection of each sub menu from the main menu causes the creation of the corresponding
dialog box for data entry. The 'File' menu of the main window of the application (Fig. 4.7)

consists of following sub menu items :

File - New - Selected to start a new data file.
Open- Open an existing data file.
Save- Save the current data file.
Save As- Save the current data in a file.
Print- Prints the file on a connected printer.
Exit- Exits the application.

The sub menu 'Geometry' of the Properties' menu opens a dialog box as shown in
Fig. 4.8. The span can be entered in feet, in the edit control of the span dialog box. The
beam can be designed either for external exposure or for internal exposure as per ACI
318-89 specifications [33]. The exposure condition can be selected from the list box in

the dialog box.

Actor Applications 49

Design of Simply Supp;med Beam.
¢ Properties Loading Compute Help

Fig. 4.7 Design of Simple Beam: Main Window

Geoemetry
Exposure :

‘Extemal '

Fig. 4.8 Design of Simple Beam: Geometric Properties

Actor Applications 50

The sub menu 'Material' of the Properties' menu opens a dialog box as shown in
Fig. 49. The data consist of the compressive strength of concrete (fc') and the yield

strength of the reinforcing steel (fy). The values are entered in psi.

MATERIALS

Concrete, fc' |4l1l]l].

Steel. ty |g0p000.

Units: Ib, inch

Fig. 4.9 Design of Simple Beam: Material Properties

The load data for the beam are entered thiough the sub menus of the Loading'
menu. The Load Case descriptions, such as Dead Load, Live Load, Wind Load, etc. are
entered by selecting the 'Load Cases' sub menu. The dialog box for entering load cases

descriptions is shown in Figure 4.10.

- LOAD CASES WITH LOAD FACTORS

Load Case & 1 Maximum Load Cases = 10.

Description :

[iead load

Fig. 4.10 Design of Simple Beam: Load Cases

Actor Applications 51

Up to ten load cases can be handled by the program. The Next' and 'Previous' buttons in
the dialog box can be used to move from one load case to another. The Load Cases
dialog box specifies the names of the load cases used in the program (Fig. 4.10).

Various loads acting on the beam are entered by selecting the appropriate sub
menu from the 'Load Type' menu. Figure 4.11 shows the dialog box for distributed load

over the entire span.

Distributed Load
Positive Downward

Intensity (w] in kipfit =

Select load case :

dead load

live load

Fig. 4.11 Design of Simple Beam: Distributed Load Dialog Box

The load intensity is entered in kip/ft in the edit box. The load case list box
contains the list of all the load cases specified by the user and a load case can be selected
from the list. Since the load intensity data requires information such as Load Cases and
span, load data cannot be entered before entering span data and load case data. The user
is required to enter data in the order given by the menus in the main window. Thus,
before entering loads, beam geometry, material properties and load case descriptions have
to be entered. The load data entry format is kept similar for all of the load types.
Depending upon the type of load additional data may be required (see Figures 4.11 -

4.15). The 'Next' and Previous' buttons in the dialog boxes can be used to move from one

Actor Applications 52

. Partial Distributed Load.
Positive Downward

Load Intensity ,w, [kip/fY
Distance, a, from left support [ft]
Spread, c, of the load [f{)

Select load case :

dead load |*
live load

Fig. 4.12 Design of Simple Beam: Partially Distributed Load Dialog Box

Concentrated Lead
Positive Downward

Concentrated Load, P, (kip)
Distance, a, from left support [ft] El

Select load case :

dead load
live load

Fig. 4.13 Design of Simple Beam: Concentrated Load Dialog Box

Actor Applications 53

Moment at left support

Positive Clockwise
Moment, M, (kip-fi)
Select load case

dead load &&
live load
test 3

Fig. 4.14 Design of Simple Beam: Left Support Moment Dialog Box

Moment at right support

Positive Counter-Clockwise

Moment, M. [kipt)

Select load case :

dead load £2
live load |
test

Fig. 4.15 Design of Simple Beam: Right Support Moment Dialog Box

Actor Applications 54

load to another (Fig. 4.11 - 4.15). The selection of the 'Cancel' button abandons the data
entry and closes the dialog box.
The load combination dialog box shown in Figure 4.16 below allows the user to

enter load factors for each load case in the load combination.

L OAD FACTORS

Load Combination Name :

Load Case : test Load Factor IZ’

dead load
live load

~Load Combination

Fig. 4.16 Design of Simple Beam: Load Combination Dialog Box

Up to ten different load combinations can be entered. For example, as shown in Fig. 4.16,
a load case 'test' can be given a load factor of 1.0 in the Load Combination dialog box.
The 'Save Factor' button saves the load factor. The program can handle up to ten different
load combinations. The program computes the worst load combination corresponding to
the given load factors.

The design process can be started by selecting the Flexural Design' sub menu from
the 'Compute' menu. The program computes the worst load combination effect and
designs the beam section for the absolute maximum applied moment. Shear and moment

computations are performed at seven sections along the span. The maximum moment for

Actor Applications 55

each of these sections is computed. The beam dimensions are computed based on the
absolute maximum moment. The program displays a list of acceptable sections based on
these computations. The recommended sections are such that they all have a depth to
width ratio in the range of 1.4 to 2.00. Figure 4.17 shows the section selection dialog box

with the recommended sections.

Select Section

b=16.50 d= 23.50

b= 16.50 d= 23.50
b= 16.00 d= 24.00
b= 15.00 d= 24.00
b= 14.50 d= 25.00

b= 14.00 d= 25.50

Fig. 4.17 Design of Simple Beam: Recommended Section
The flexural steel requirements for the selected section are computed and the

recommended values of bar sizes and bar numbers are displayed. Fig. 4.18 is a typical

dialog box displaying the recommended tension steel reinforcement.

Actor Applications 56

Steel in the Span
Steel Rqd =3.051 sq inches at the bottom.

Aof#Bin1 rows =3.16

16 of# 4in 2 rows = 3.20
100f 25 in 2 rows = 3.10
Tof#6in 1 rows = 3.08
6of 87 in 1 rows = 3.60
Aof# 8in 1 rows = 3.16
4of29in1rows = 4.00
Jof#10in1 rows = 3.81
2of#11in1rows = 3.12
2of#14in 1 rows = 4.50

Fig. 4.18 Design of Simple Beam: Flexural Steel Dialog Box

The shear design begins with the user's choice of bar size as shown in Figure 4.19.

Stisrup Bar Number

Stirrup #

Fig. 4.19 Design of Simple Beam: Stirrup Bar Dialog Box

The Stirrup spacing is computed at all the seven sections and the results are displayed on

the screen as shown in Fig. 4.20.

Actor Applications 57

Design Width : 16.58 inches & Design Depth= 25.50 inches

STEEL :
Steel in the span :
4 28 in 1 row(s) at bottom

Stirrups: # 3

18 4.0 inches, 3 @ 8 inches,
5 @ 8 inches

S @ 8 inches

From Right Support : 1 @ 4.8 inches, 3 @ 8 inches,
S inches

1

From Left Support :

es
8 8 inches

Fig. 4.20 Design of Simple Beam: Results

4.3.2 Class Structure

The class structure for the Simple Beam application is shown in Fig. 4.21. The
class structure shows the application class 'SimpleApp’, which is derived from the Actor
'Application' class. This class initiates the application by creating the main window of the
application and then calls the 'reorientMainWindow' method which positions the main
application window at the center of the screen.

The class Load', a sub class of the Actor library class 'TextWindow', serves as the
class for the main window object. All the data members required for the design are
declared as class variables within the 'Load' class. Fig. 4.21 also lists the data variables for
each class. The main window object basically obtains input from the user through several

dialog boxes. These dialog boxes are objects of the class Load' and therefore have the

Actor Applications 58

Application

SimpleApp

Actor Applications

Variables :

mainWindow

FileDialog

sbmFileDlg

TextWindow
Load Simple
w, partW, partA maxMmt, maxV
partC, point, pointA fc,fy, b, d,
leftMmt, rightMmt barNo, barDia
ctPartial, ctPoint barArea, rows
pointType, partType number,AsRqd
mmt, span, X, V span, Beta, trialB
maxMmt, fc, fy trialD, count
fileName, udlType designBar, designAs
leftMmtType, designNo, designRows

factor, loadCase, maxV
combName, Exposure
rightMmtType

shearBar, s, Av
stNumber, Exposure

SaveAsDialog

sbmSaveAs

Fig. 4.21 Class Structure for Simple Beam Application

59

same data members.

The selection of the 'Flexural Design' menu creates an object 'simpObject' of the
class 'Simple'. Data is transferred to the 'simpObject' object and then the methods for
performing the design computations in 'simpObject' are called. Fig. 4.22 shows the
flowchart for the object 'simpObject’ and the design procedure.

The Simple Beam application described in this section had several limitations.
First, the design process divides the beam span in only seven sections for moment and
shear computations. It is quite possible that the computed maximum moment or shear
section may not be accurate since the maximum moment or shear may lie between the
points at which the shear and moment values are computed. Another limitation is that the
section dimensions have to be selected from the list of sections provided by the program.
There is no option for selecting a section other than the ones listed. The same is true of
reinforcement. The reinforcement has to be selected from the values given in the table.
These limitations can be overcome by modifying the program. The continuous beam
application does not have these limitations and provides considerable flexibility in the
selection of section dimensions and reinforcement.

Despite these limitations, this application is valuable in illustrating the basic
concepts of the application of object oriented programming to concrete design. It also
provided the class 'Simple' which was used with some modifications, in the development

of the program for the analysis and design of reinforced concrete continuous beams.

Actor Applications 60

Design for maximum moment

Given section

betaCal

'

absMaxMmt

¥

'Read steel ratio

Y

section

'

Final Design

p| chkCap |-

Actor Applications

'

Design for flexure & shear

Y

Display Results

'

Write output file

Fig. 4.22 Flow-Chart of object 'simpObject'

61

4.4 Analysis and Design of Reinforced Concrete Continuous Beam
4.4.1 Overview of the Continuous Beam Design Application

The third application developed was a program to design reinforced concrete
continuous beams. This program was developed with the intention of applying object
oriented programming techniques and testing the advantages of this techniques in a real
world situation. The program performs the analysis and design of a continuous beam
having a maximum of 12 spans, subjected to a maximum of ten load cases, ana ten load
combinations. The program can handle the following types of loads :

1. Uniformly distributed load over the entire span;

2. Partially distributed load;

3. Concentrated load,;

4. Linearly varying load.
The program can handle up to ten concentrated loads and five of each of the other types
of loads, for each span. The program can also handle settlement of the supports.

Data for the continuous beam can be given by selecting the sub menus~ in the main
window. Fig. 4.23 shows the main window of the application along with the About dialog
box. The About dialog box tells the user about the program and can be opened by
selecting the 'About’ sub menu in the 'Help' menu.

The data for the program is divided into two distinct types, properties and loading.
The Properties' menu of the main window handles the data entry of geometric data and
material properties. The Geometric Data dialog box is shown in Fig. 4.24. This dialog
box is similar to the corresponding dialog box in the simply supported beam design
program (Fig. 4.8) except that it also has Next' and Previous' buttons for entering data for
consecutive spans. The moment of inertia is used in the analysis of the continuous beam.

The Done' button closes the dialog box and transfers the data to the main window object.

Actor Applications 62

Design of Reinfarced Concrete Continuous Beam
Eile Properties Loading Analysis Degign View Help:

Span % 1: B =10. in D =17. in
Stirrups: #3 Max. Perm. Rs =3.85 sqin Min. Perm. As =8.56 sqin

x(ft) Steel (sqin.) Stirrups R(Ft) Steel (sqin.) Stirrups
Top Bottom space(in) Top Bottom space(in)

0.00 None 0.66 0.22
1.33 8.43 2.88 0.63
2.66 8.82 3.33 1.00
k.BO 1.16 4.66 1.31
5.33 1.45 6.00 1.56

6.66 1.67 7.838 1.75
.00 1.61 8.66 1.686
92.33 1.89 16.0 1.90
18.6 1.89 11.3 1.86
12.0 1.81 12.6 1.75
13.3 1.67 4.0 1.58
14.6 1.4 15.3 1.31
16.8 1.16 16.6 1.00
17.3 0.82 18.0 0.63
18.6 ©.43 19.3 0.22
20.0 HNone

Fig. 4.23 Design of Continuous Beam: Main Window

 SPANDATA
Maximum Number of Spans = 12

Span ¥1 (fg: 20.

Moment of Inertia (in“* 4] :

Fig. 4.24 Design of Continuous Beam: Geometric Properties

Actor Applications 63

The Material Properties dialog box as shown below can be opened by selecting the

‘Material' sub menu of the Properties' menu.

MATERIAL PROPERTIES

Concrete , fc', [ksi)

Steel, fy, (ksi)

Modulus of Elasticity, E, [ksi)

Fig. 4.25 Design of Continuous Beam: Material Properties Dialog Box

The dialog box is used to input the compressive strength of the concrete and the yield
stress for steel. The modulus of elasticity in this dialog is used in the analysis of the beam.
The units are inch and kip.

The Load Cases dialog box, which is similar to the corresponding dialog box for
the simple beam design application shown in Fig. 4.10, is used to specify load cases. A
maximum of ten load cases can be specified for a continuous beam. A load case name can
be any combination of alphabets and numbers. These load cases are used to specify the
load factors in the Load Combination dialog box (Fig. 4.26).

The Load Combination dialog box is shown in Figure 4.26. The 'Add Case' and
Delete Case' buttons are used to specify load factors. The load factor for a given load
case can be entered in the 'Load Factor' edit box. This load factor corresponds to the load
case selected in the list box. By selecting a load case from the list box and entering the
load factor, the user can specify load factors for all load cases in a particular load

combination. The user can move from one load combination to another by using the

Actor Applications 64

Next' and Previous' buttons (Fig. 4.26). The Done' button closes the dialog box and

transfers the data from the dialog box to the main window.

LOAD FACTORS

Load Combination :

comb 1 ~Load Combination

Load Case : Load Factor :

live load

live load

Fig. 4.26 Design of Continuous Beam: Load Combinations

Loads can be entered by selecting from the ‘Load Type' menu. Figure 4.27 shows
a typical dialog box for entering distributed load. The intensity of the distributed load
over the entire span can be entered in the edit box. The load case for the load and the
span can be selected from the list boxes provided for this purpose. This facilitates entering
loads for any span. The 'Next' and 'Previous' button permit forward and backward

movement in the load data table for the selected span.

Actor Applications 65

Distributed Load
Positive Upward

Intensity [w) in kipfft = IE‘

Load case: Span:

dead load D
Span #2

Fig. 4.27 Design of Continuous Beam : Distributed Load

There are three steps in the design of the beam. The first step is the analysis of the
beam for the given loads and span. The analysis of the continuous beam is performed
using the matrix method and Holzer's approach [27]. After the analysis is completed the
design is started by choosing the Preliminary Design' menu. During the preliminary design
several trial sections are determined. The preliminary design has two menu choices :

1. From the 'Given Section' menu, it is possible to specify the beam
section. The dialog box for entering section dimensions is shown in Figure

4.28.

SECTIONAL PROPERTIES |

Width [inches)

Effective Depth [inches)

Fig. 4.28 Design of Continuous Beam: Given Section Properties

Actor Applications 66

This option makes it possible to limit the size of the section, for example,
in situations where it may be necessary to limit the depth of the beam for
architectural reasons. This option can also be used when the cross
sectional dimension,s are known in advance, from previous experience, or
from an earlier design done using the 'Design for Maximum Moment'
option.

2. When the Design for Maximum Moment' menu option is
selected, the program determines the required sections for a given steel
ratio. The steel ratio can be entered in the Steel Ratio dialog box shown in
Fig. 4.30. The dialog box shows the minimum and maximum possible steel
ratios for given material properties according to the ACI 318-89
specifications [33]. The dialog box also shows the recommended value of
the steel ratio which is an average of the minimum and maximum steel

ratios.

Steel Ratio

rho Max. : 0.027529

rho Min. : 0.004000

Design Ratio [rho] : ([D.015764

Fig. 4.29 Design of Contnuous Beam: Design Steel Ratio Dialog Box

After the steel ratio is entered, the program computes the required section
dimensions for the worst load combination. For the moment and shear computations,

each span is divided into thirty equal sections and the maximum moment in each span is

Actor Applications 67

computed. The moment computations are repeated for all load combinations. The
maximum moment at each section (from all load combinations) is computed. The
maximum moments for each span are compared to determine the maximum moment along
the entire continuous beam. The required section is then determined for this absolute
maximum moment using the ACI 318-89 specifications. A range of sections is determined
such that the ratio of depth to width for these sections lies between 1.40 and 2.0. The
dialog box as shown in Fig. 4.30 displays the possible beam sections. It is possible to
choose a section from the list of recommended sections or to enter the dimensions of any

other section.

SECTIONAL PROPERTIES

Recommended All Dimensions in
Section : inches

Width g5
10.0, 14.0
Q) A
9.00, 15.5
8.50, 15.5

Depth

Fig. 4.30 Design of Continuous Beam: Design Section

The steel requirements and stirrup spacing requirements are then computed for this
section at thirty-one equally spaced points along each span. The results are displayed as
shown in the Fig. 4.31. The menu choices of 'Next Span' and Previous Span' from the
'View' menu can be used to view design results for each span. The output consists of the
sectional dimensions, required area of flexural steel, and bar sizes and stirrup spacing at

thirty one sections along the span (inclusive of supports). Once the dimensions of the

Actor Applications 68

beam have been finalized, the 'Final Design' menu item can be chosen. When this option is
selected, the program performs the flexural and shear design for the selected beam section.
Again each span is divided and the design is performed at 31 sections. An output file is
created and the data and the results are written to this output file. It should be noted here,
that the sections may be doubly reinforced. The program computes appropriate area of

tension and compression steel depending upon the type of section.

Design of Reinforced Concrete Continuous Beam
Fle Properties Loading Analysis Design Yiew Help

DESIGN OF BEAM.

PROGRAM FOR THE DESIGN OF
CONTINUOUS BEAM.

Developed by Ajay Kulkarni.
October 1992.

Fig. 4.31 Design of Continuous Beam: Results
4.4.2 Class Structure

The class structure for the program is shown in the Fig. 4.32. The topmost class in

each branch is a class supplied by Actor. The other classes have been derived from Actor

Actor Applications 69

Application SaveAsDialog FileDialog

ConApp ConSaveAs ConFlgDlg
Variables :
mainWindow
TextWindow

ContBeam

I, NEL, linecarW1,
linearW2

linearWA, linearWC,
linearType, support,
disp, dispJt, maxV,
combName, EMod,
loadFactor

w, partW, combination
maxHeight, maxWidth,
partA, partC, point,
pointA, leftMmt,
rightMmt, pointType,
mmt, span, X, V,
maxMmt, fc, fy,
fileName, udiType

vy

Continuous Analysis

fileName mBand, Q
I, analyze SS, DOF, MAXA
J, design

vy

Design Simple
b,d, 1 rhoMax, rhoMin, rho
simpObject I, count, Beta, k, b, d, s

trialB, trialD, stNumber
Av, Mimt, AsRqd, AslRqd

Fig. 4.32 Class Structure for Contnuous Beam Application

Actor Applications

70

classes for this application. The continuous beam application has eight classes that have
been derived from the class library supplied with Actor.

The class 'ConApp', derived from the class 'Application’ opens the main window of
the application. The main window is an object of the class 'Continuous’. The 'ConApp'
class has only one method, 'initMainWindow', which opens the main window. The
'initMainWindow' method calls the 'reorientMainWindow; method of the main window,
which positions the main window in the center of the screen.

The class 'ConFlgDlg' derived from 'FileDialog' and the class 'ConSaveAs' derived
from 'SaveAsDialog' provide the response methods for the file input/output menu
selection. The required dialog boxes are provided in Actor's library of dialog box attribute
files.

The class 'ContBeam', derived from the class 'TextWindow', is the main class of
the continuous beam application. All the data members, common to the classes
‘Continuous', ‘Design’, 'Analysis' and 'Simple' are declared as instance variables in the
'ContBeam' class (Fig. 4.32). This means that each object of these classes will have a
separate set of these variables, thus preserving data security.

The ContBeam class has only one method, 'warnl'. This method is common to all
the sub classes. This method opens a dialog box, displaying a warning message, if an
attempt is made to quit any data entry dialog box without saving the data.

When the application is started, the main window of the application is opened as
an object of the class 'Continuous'. This class has the data variables inherited from the
class 'ContBeam'. In addition, the class 'Continuous' declares several instance variables
such as, 'fileName', 1, 'analyze'. The variable 'fileName' contains the name of the data file.
The variable 'i' is a counter used to count the number of times data are entered. The
variable 'analyze' is an object of class 'Analysis', and is created when the analysis is started.

There is only one main window open at any given time. The 'mainWindow' object

Actor Applications 71

provides the necessary user interface for entering data via menus and for displaying
results.

The dialog boxes are created using the resources defined in a resource file. The
attributes of the dialog boxes are stored in attribute files. Fig. 4.33 contains the listing of

the attribute file "Geometry.wdl" which is used for the Geometrical Property dialog box.

Window Geometry

class Continuous
resource : "Geometry"
focus : span

Child Span
class : Edit
resource : 103

Child inertia
class: Edit
resource : 109

Child spanName
class : Static
resource : 102
data : "Span #l1 (in ft)"

Child OKButton
class : Button
resource : 110
Child PrevButton
class : Button
resource : 105
Child Done

class : Button
resource : 107

Fig. 4.33 "Geometry.wdl" file

As Fig. 4.33 shows, the dialog box 'Geometry' is built as an object of class '‘Continuous' by
using the resource definition contained in the file 'Geometry.wdl'. The resource file
contains information about the attributes of the dialog box, its size, location and child

controls.

Actor Applications 72

Each child control is linked to the attribute definition by its resource id. Thus, the
child edit control 'span’ in the attribute file is linked to the edit control with id 103 in the
resource file. This child is then referenced in the methods of the class 'Continuous' of the
dialog box 'Geometry', as child 'span’. The method shown in Fig. 4.34 , which is an action
method of the class Continuous, obtains input for the next span when the Next' button is

pressed.

/* Method to obtain span and inertia for next span */
Def nextSpan(self)
{
if asReal (getText (self[#span])) and asReal (getText (self[#inertia]))
then
if asReal(getText(self[#span])) > 0 and
asReal (getText (self[#inertial)) > O
then
span[i] := asReal (getText(self[#span]));
I[i] := asReal(getText{(self[#inertial));
if i < 12
then
i::=1i+1;
setData(self[#spanName], "Span #"+asString(i+1}+" (£ft) :");
setData (self[#span],asString(span(i]));
setData(self[#inertial,asString(I[i]));
else
errorBox ("STOP", "Maximum number of Spans = 12");
endif;
else
errorBox ("STOP", "Negative or Zero data !");
endif;
else
errorBox ("STOP", "Invalid data !'"):
endif;
setFocus (self[#span]);
}

Fig. 4.34 Method 'nextSpan'

In Fig. 4.34, the statement
span[i] := asReal (getText(self[#span]));
reads the text from the child edit control 'span’' and converts it into a real number and

assigns the result to span[i]. Since the dialog box is created as an object of the class

Actor Applications 73

'Continuous' it can respond to the methods declared in the class 'Continuous' and also has
data members inherited from the class 'ContBeam'.

Using a similar approach to that used for entering span data, the main window of
the class 'Continuous' allows the user to enter all the necessary data through dialog boxes.
It should be noted that each dialog box is a separate object of the class 'Continuous’. Thus
each has its own set of the data. This preserves the individual identity of the dialog boxes
and also ensures isolation of the main window from the dialog boxes data hence reducing
the risk of accidental data corruption.

The main window creates an object 'analyze' of the class 'Analysis' when the
'Analysis' menu is selected. The class 'Analysis' is derived from the class 'ContBeam' and
has the basic data inherited from it. In addition to this data, it has data members required
for the analysis. Fig. 4.32 shows the variables declared for the class 'Analysis'.

When the 'Analyze' object is created, the 'send1' and 'send2' methods are called.
These methods, defined for the class 'Analysis’, transfer the data entered by the user and
stored in the mainWindow object, to the object 'analyze'. The analyze object has methods
for assembling the global stiffness matrix, assembling the global load vector and solving
the resulting equations kq = Q [27]. Fig. 4.35 shows the key methods of the class
'Analysis'.

The 'Analyze' object computes the support moments at the left and right supports
in each span for all load combinations. It also creates a 'design' object of the class
"Design’, which performs the design of the beam. The 'design’ class, a sub class of the class
'ContBeam’, has 'simpObject' and 'i' as its data members in addition to the data inherited
from 'ContBeam'. The variable 'i' is a counter while 'simpObject’ is an object of the class
'Simple’'.

The 'design’' object computes the maximum moment and shear at 31 sections along
the span of the beam for each load combination. It analyzes each span of the beam. Each

section is then designed to determine the flexural steel requirements and the shear stirrups

Actor Applications 74

MainWindow

* Data Transfer

Analyze

'

initAnal

'

mCode

'

halfBand

'

assemble

Y

generateQ

y

For eafth element adjustForDisp

'

—P solution

'

Create object ‘design’ and transfer data

Fig. 4.35 Flow Chart of Object 'Analyze'

Actor Applications 75

requirement. Fig. 4.36 shows a schematic diagram of the key methods of the class ‘design’
and their relationship.

The 'design' object creates an object 'simpObject’, of the class 'Simple' and transfers
the data to it. This class 'Simple' is again a sub class of the class 'ContBeam'. Fig. 4.22
shows the flowchart for the object 'simpObject. As shown in the flowchart the
'simpObject' completes the design, displays the results of the final design on the screen,
and writes the results to an output file.

The continuous beam application represents a real world object-oriented structural
engineering application. The program has all of the features that are necessary for a
typical Windows application. All elements of the program were developed using object
oriented programming techniques. The four different objects, the mainWindow, Analyze,
design, and the simpObject are representative of typical engineering applications. These
objects involve elements of both the user interface, such as Windows and the dialog boxes,

and the elements of structural analysis and design.

Actor Applications 76

sections

For each element

Y

mmtUDL

'

mmtPartial

Y

mmtLinear

'

mmtLeft

:

mmtRight

'

maxMmt

'

maxV

For eal

th load combination

'

Create object ‘simpObject’ and transfer data

Actor Applications

Fig. 4.36 Flow Chart of Object 'design’

77

Chapter 5
C++ Applications

5.1 Introduction

In this chapter the applications developed using C++ are discussed. In order to
make a fair comparison of the two object oriente.! languages, C++ and ACTOR, two
applications that were similar in scope and function to those written in Actor were
developed using C++. The first application was a small program to compute the flexural
capacity of a tee beam. The second application was the program to analyze and design a
reinforced concrete continuous beam.

This chapter describes both these programs. It also discusses some of the
similarities as well as some of the differences in these applications, as a result of using two
different programming languages. Both applications were developed using the Borland
C++ compiler (Version 3.0) for Windows with the Borland Object Windows Library of
classes. The Object Windows Library (OWL) provides the necessary classes for

developing Windows applications.

5.2 Flexural Capacity of Tee Beam Application

This program computes the flexural capacity of a tee beam in accordance with the
ACI 318-89 specifications [33]. The input to the program consists of section properties of
tl@ beam, the area of the reinforcing steel and mapefial properties. The program computes
the flexural capacity of the section and displays the results and the input data on the
screen. The display is modified each time the data are modified. An overview of this
application was presented in Section 4.2.

As was the case with Actor, every Windows application written using Borland

Object Windows Library has a sub class of the TApplication library class to start the

C++ Applications 78

application. The TApplication class opens the main window of the application. This
TApplication class has only one member function : 'InitMainWindow'. This function
creates the main window of the application and calls the 'setAttr' method to set the
location attributes of the main window. Fig. 5.1 shows the class structure of the Tee
Beam program.

The main window of the application is defined by a sub class of the
TApplication class, to be an object of the class "TTeeWindow'. The 'TTeeWindow' class is
derived from the OWL 'TWindow' class. The "TWindow' class defines the basic features
of the windows in the application. It can be used to create the main window or pop-up
windows. The class definition of the 'TTeeWindow' class is shown in Fig. 5.2.

As can be seen from the Fig. 5.2, the data members of the class 'TTeeWindow'
are declared as private while the functions are described as public. This is different from
the instance variables used in Actor. In Actor, the instance variables are inherited by the
sub classes, but the private data members of a class can't be inherited by a sub class. The
functions, which are declared as public, can be accessed from any part of the program
using an object of that class.

The 'TTeeWindow' class has two functions for obtaining input (see Fig. 5.2).
The main window, an object of the class 'TTeeWindow', calls the functions 'CMGeometry'
and 'CMMaterial' to obtain the section geometry and the material properties. The dialog
box object 'matDlg' is created from the 'TDIg' class when the menu item for Material
Properties is selected from the main menu. The 'TDIg' class is inherited from the OWL
'TDialog' class, which is a class that is specifically written for handling dialog boxes in
Windows. Upon creation of the dialog object, data from the main windows object is
transferred to the ‘matDIg' object using arguments. The 'matDIg' object is created as an
instance of the class 'TDIg'. This class has only two data members, fc and fy, both
declared as private. When the 'OK' button of the dialog box is selected, the data from the

dialog box is transferred back to the main window object.

C++ Applications 79

TApplication

Y

TTBeamApp

TWindow

Y

TTeeWindow

private variables :
fc, fy, b, bw, hf, As, phiMn, Nc

Y

TDIg

private variables :

fc, fy

TDialog
Y Y
TGeoDlg TAboutDlg

private variables :
b, bw, d, hf, As

Fig. 5.1 Class Structure for the Tee Beam Application

C++ Applications

80

// Main Window class definition
class TTeeWindow : public TWindow
{
private:
float fc, fy, b, bw, d, hf, As, phiMn, Nc;

public
TTeeWindow (PTWindowsObject AParent, LPSTR ATitle);
void setAttr();

virtual void CMNew(RTMessage Msg) = [CM_FIRST + CM_New];

virtual void CMPrint (RTMessage Msg) = [CM_FIRST + CM_Print];
virtual void CMclose (RTMessage Msg) = [CM_FIRST + CM Exit];
virtual void CMGeometry(RTMessage Msg) = [CM_FIRST + CM_Geometry];
virtual void CMMaterial (RTMessage Msg) = [CM_FIRST + CM Materiall;
virtual void CMAbout (RTMessage Msg) = [CM_FIRST + CM_About];

void initiateData();

void checkDuct();

void capacity():;

virtual void Paint (HDC PaintDC, PAINTSTRUCT _FAR & PaintInfo);
}i

Fig. 5.2 Class Definition for 'TTeeWindow' class

C++ Applications 81

The geometric properties for the beam section are entered through an object
'geoDlg' of the class "TGeoDlg'. The "TGeoDlg' is also derived from the OWL 'TDialog'
class. This class has the variables of b, bw, d, hf and As, declared as private data
members. There are no public data members. This class also has member functions for
closing the dialog box when the 'Ok' or 'Cancel' button is pressed. When the dialog box is
closed using the 'OK' button, data is transferred to the main window object. When the
'OK’ button of the dialog box is pressed, each data member is checked. If any of the
values entered are negative, then a message is displayed indicating that values entered are
invalid.

On creation of the dialog object, but before displaying the dialog box, geometric
data from the main window are copied to the 'geoDlg' object. When the geometric data
are entered or modified, these are assigned to the data members of the 'geoDlg' object.
The data are then transferred to the main window object when the 'geoDlg' object is
closed with the 'OK' button.

For the analysis of the section, the main window object uses the functions
'checkDuct' and ‘capacity’. The 'checkDuct' function performs the ductility check on the
section and computes the effective steel area for the section. The 'capacity' function
computes the moment capacity. A windows paint message, 'WM_PAINT' message, is
then sent to the main window to update the results, which are displayed in the main
window. The display is modified each time the data is modified.

This application program is a simple tool for computing the flexural capacity of tee
sections. The best feature of this application is its ability to modify the section capacity
each time the section or material properties are changed. Although this program is
relatively simple to develop using object oriented programming techniques it provides a
good example of using the Borland Object Windows Library to develop Windows

applications.

C++ Applications 82

5.3 Analysis and Design of R. C. Continuous Beam

The second application developed using C++ was a program to analyze and
design a reinforced concrete continuous beam. While developing applications in ACTOR,
a program for the design of a simply supported beam followed the development of the tee
beam application. Although the simply supported beam design application was thought to
be useful, it eventually turned out to be redundant after the development of the continuous
beam design program since the continuous beam program can also handle a one span
simply supported beam. Thus, the program for the design of a simply supported
reinforced concrete beam was not developed in C++.

The continuous beam application can handle up to twelve spans with up to ten
load combinations and ten load cases. The following types of loads can be applied on the
beam:

1. Uniformly distributed load along the entire span

2. Partially distributed load

3. Concentrated loads

4. Linearly varying loads.

Each span can have up to ten concentrated loads, and five each of any other type of load.
The program analyzes the structure for each load combination. The analysis is done using
the stiffness matrix method using Holzer's approach [27]. Each span of the beam is
divided into 30 equal parts for moment and shear computations. After analyzing the
structure for each load combination, the maximum moment and shear is computed at each
section. Then the section requirements are determined. After the section has been
chosen, the flexural steel requirements are determined for all 31 sections along each span.
For the selected stirrup size the spacing for U shaped stirrups is also computed at each
section. The details of this application are given in Section 4.6.

Fig. 5.3 shows the class structure of the continuous beam application. The

subclass 'ConApp' starts the application by creating the MainWindow' as an object of the

C++ Applications 83

TApplication

Y

TTContApp

TWindow

Y

TTContWindow

Y

TFileDlg

TAboutDlg

TSpanDig

TSptDIg

TMatDlg

Analysis

Y

Design

TDialog

TCaseDig

TCombDlg

TUdIDIg

TSettleDig

TPartDlg

TConcDlg

TLineDlg

Ratio

TSectionDlg

TMatDlg

TWarnSectDIg

TStirrupDlg

TGiveSectDlg

Fig. 5.3 Class Structure for the Continuous Beam Application

C++ Applications

class 'TTContWindow'. The 'TTContWindow' class has the necessary data for both the
analysis and design. These data members are declared as protected in the
TTContWindow' class definition. The class definition also includes the declaration of all
functions as public members. The 'TTContWindow' class has functions for obtaining input
data for the analysis and the design. Appendix A shows the class definition for all of the
classes of the continuous beam application.

When the corresponding menu item for entering data is selected from the main
window, a dialog box is created and displayed. For example, when the 'Load Cases ...'
menu item is selected the 'CMCases' function of the "TTContWindow' class is invoked.
This function creates and displays a dialog object of the class 'TCaseDlg'. This dialog box
object has its own set of private data for storing data on load cases. When the dialog box
is first created, load case data from the main window object is transferred to the dialog
box object. The dialog box object copies the contents of the dialog box data buffer into its
private data. Then it allows the user to manipulate this copy of the data. The class
definition of the 'TCaseDlg' dialog class is shown in Fig. 5.4. The 'setCase' function copies
the information on load cases from the dialog data buffer. The 'caseDone' function closes
the dialog box when the Done’ button of the dialog box is selected. It also copies the load
case data to the data buffer. The 'caseNext' and 'casePrev' functions access the next and
the previous load case data when the Next' and Previous' buttons of the dialog box are
clicked. When the dialog box is closed, the data from the data buffer is copied to the main
window's data. The dialog box object, and its data buffer, exists only during the execution
of the function 'loadCase' of the "'TTContWindow' class.

The 'Analysis' class, a sub class of the 'TWindow' class, performs the stiffness
analysis of the structure. When the 'Analyze' menu of the main window is selected, an
object 'analyze' of the class 'Analysis' is created. This class has protected data members for
all the loads, spans and the material properties. In addition to this protected data it also

has private data for the global stiffness matrix and the moments. Appendix A shows the

C++ Applications 85

_CLASSDEF (TCaseDlg)

// class definition for the load case dialog

class TCaseDlg :

{

public TDialog

private :

TEdit *Editl; //Edit box for load case
TStatic *Staticl; // static control for name
char loadCase[10][70];

int count, NEL;

public :
TCaseDlg (PTWindows Object, LPSTR ATitle);

virtual void WMInitDialog(RTMessage Msg)

void
void
void
void

}i

[WM_FIRST
+ WM_INITDIALOG] ;

setCase();

caseDone (RTMessage Msg)
caseNext (RTMessage Msg)
casePrev(RTMessage Msg) = [ID_FIRST + ID_Prev];

[ID_FIRST + ID_Cancell;
[ID_FIRST + ID Next];

Fig. 5.4 Class definition for the class 'TCaseDlg'

C++ Applications

86

class definition for this class. The protected data members are inherited by the subclass
Design’. The private data members are only available to the functions of the class
'Analysis'.

The 'analyze' object, when first created, uses the setData family of member
functions to get the data from the main window which is an object of the TTContWindow
class, via the data buffer. Once the data is transferred, the 'analyze' object starts the
analysis process by executing the function 'mCode’. This function, along with the
‘oneEleMCode' and 'mCode2' functions, computes the M code matrix for the given beam
configuration. The M code matrix defines the compatibility conditions for the beam
configuration [27]. Once the M code matrix is generated, the half band width of the
global stiffness matrix is determined. Function 'halfBand' does this computation. Then the
function 'assemble' assembles the global stiffness matrix. The global stiffness matrix is
stored using skyline storage approach [34]. The 'generateQ' function computes the joint
load vector for each load combination. The stiffness matrix is then modified for the
prescribed displacements by the 'adjustForDisp' function. This function precedes the
solution of the equation kq = Q [27]. The Gaussian Elemination procedure starts with the
conversion of the stiffness matrix to an upper triangular matrix [34]. The joint
displacements are computed by back substitution of the upper triangular stiffness matrix.
The support moments are computed by the 'eleF' function. The 'solution' function creates
a 'design' object from the class 'Design'. The data and the results of the analysis are
transferred to this 'design' object through the data buffer.

The Design' class is a subclass of the 'Analysis' class. Thus, the 'Design' class
inherits all of the protected data members of the 'Analysis' class. The Design' class also
has the section properties and stirrup information stored as its private data members. All
of the functions are declared as public. These functions compute the flexural and shear

reinforcement requirements. The design starts with one of three choices :

C++ Applications 87

1. Design for Given Section
2. Design for Maximum Moment
3. Final Design.

If the Design for maximum moment' option is selected, the design procedure
begins by determining the maximum moment in each span of the beam. The function
'maxMmt' performs this computation. Then the user is prompted for the steel ratio to be
used in the design. A dialog box of the class 'Ratio' obtains the user input for the steel
ratio. A range of sections is then determined for the given steel ratio and the computed
maximum moment that satisfy the requirements for flexure. The function 'trialSection’
computes the required section and obtains the user's choice of the section through a dialog
box of the class 'TSectionDlg'. This section is then checked for adequate flexural capacity
through the 'chkCap' function. The 'chkCap' function uses the 'ductCheck' function for the
ductility check. A message is displayed if the section needs to be doubly reinforced. After
the capacity check, the flexural steel requirement is computed by the 'afterChkCap'
function. The user is then asked for the stirrup bar number. The required stirrup spacing
for the trial section is then determined. The results are displayed in the main window by
sending a 'WM_PAINT' message to the main window object.

The '‘Design for Given Section' option performs the flexural and shear design for a
section given by the user. Since the section dimensions are known, only the functions for
the flexural and shear design are executed.

The 'Final Design' can only be executed after the beam section has been selected.
The section is designed in a manner similar to the ‘Design for Given Section' option. After
the final design has been done, an object of the class 'readData’ is created and the output
data file is written.

The 'readData' class is derived exclusively for dealing with the file handling

functions. It has two distinct types of functions : one for reading a data file, and the other

C++ Applications 88

for writing the output file. Private data members of the class are used to store the data
from the main window.

This chapter described the application programs developed using C++. The Tee
beam program was a small but useful application. It provides a tool similar to a spread
sheet for computing the flexure capacity of a tee beam with given dimensions and
reinforcement. The continuous beam design application program is a good example of a
practical situation analysis and design application and provides a basis for comparison with
a similar application developed using Actor. The program can easily be modified to
perform the analysis and design of plane frames. In the next chapter results of this study

are presented.

C++ Applications 89

Chapter 6

Results

In this chapter a comparison of the Actor and C++ programming languages is
presented. Issues that are important for developing structural engineering applications,

using object orient=d programming are also addressed.

6.1 Comparison of Actor and C++
6.1.1 Syntax

The syntax for Actor is a mixture of Pascal and C. For example, the use of curly
brackets to enclose methods and the use of a semicolon at the end of each statement, are
similar to C. The use of 'End1f' after '1£' and the use of ':=' for assignment are similar to
Pascal.

A := B*C;

Thus, in each statement, the Actor syntax resembles a combination of the C and Pascal
syntax.

Although the syntax of the Actor language is somewhat similar to C and Pascal,
considerable effort is required in learning the language. This is due to the fact that Actor
is pure object oriented programming language and many of the features of the language
are unfamiliar to most programmers.

Borland C++ is an extension to the popular programming language C. The syntax
of C++ is very similar to the C programming language. This makes the transition from C
to C++ a very easy one for someone who is familiar with C. C++ does have extensions,
especially those for developing classes, that are new and so some effort is required in

learning these new features.

Results 90

It should be noted, however, that the development of an object oriented
application requires a totally new kind of approach to program development since it is
unlike a procedural program. Considerable experience is needed to master the skills
needed to create meaningful classes and in structuring the program to take advantage of

the features of object oriented programming.

6.1.2 Environments

The Actor environment is probably one of the best programming environments.
With a separate window for the Class Browser and the Attribute Browser, it is really very
different from conventional programming environments. With only one method displayed
at a time, and no space to declare global variables, it is a complete object oriented
environment. All instance and class variables are declared at the class definition level,
above the methods, making them available to all methods of a class. From a programmer's
perspective it is an excellent programming environment , though a bit slow and difficult to
learn.

The Borland C++ Windows environment is an integrated development
environment with the text editor, compiler and debugger options all available from the
same Windows environment. This makes application development very easy. It is also
possible to write C programs using the Borland C++ compiler. This is very important
since it makes it possible to reuse previously developed functions.

Since run time binding is the norm in Actor, this results in considerably longer
execution times for all applications. For example, in the continuous beam application the
analysis of a beam took seven seconds on a 80386 IBM PC with a 33 MHz processor.
The corresponding C++ application took less than two seconds. Also, the Actor compiler
is very slow. In comparison, the C++ compiler is extremely fast. Even when run time
binding was performed in C++ for the continuous beam application, it was still sufficiently

faster than the corresponding Actor application.

Results 91

In Actor, every method is compiled before saving. This makes it possible to test
the application during its development. However, the Actor compiler is very slow in
compilation and since the Actor compiler is not an incremental compiler, whenever a
minor change is made in a method the compiler has to recompile the entire method. Also,
if variables in a class definition are modified then all methods in that class and its sub
classes are recompiled. The C++ compiler is extremely fast and compilation takes only a
few seconds. The C++ compiler also takes advantage of precompiled header files which
speeds up the compilation process considerably.

Actor provides a much easier way to allocate dynamic memory as compared to
C++. In Actor, any variable is a type free variable and its type need not be defined until
the time of assignment. This means that a variable can hold any value, a real, an integer, a
string, and a particular variable can represent any of the data types in the program. This
feature made it possible to dynamically allocate memory for the stiffness matrix and
displacement and load vectors in the continuous beam application. Although it's possible
to allocate memory dynamically in C++ it was done indirectly using pointers.

The Actor documentation leaves a lot to be desired. The programming manuals do
not provide a comprehensive list of all the classes and their methods. Although the Class
Browser shows a list of all the classes and the corresponding methods, there is no easy
way to determine what each method does. In order to determine the purpose of a
particular method it was necessary to open the method and read the comments in the
method.

The Actor Debugger is a better tool as compared with the Borland C++ Debugger.
The debugger allows backward tracing and it is possible to modify methods. The
application can be started from that particular method with all the variables retaining their
data values. This saves considerable time since it is not necessary to start the application
from the beginning. The Borland C++ debugger is not as powerful as the Actor

Debugger. Also, the Borland C++ debugger is a DOS application and not a Windows

Results 92

application, thus making it necessary to switch between DOS and Windows during a
debugging session.

One of the most difficult aspects of the Actor environment was the effort required
in creating an executable file. Actor compiles all the methods while saving them. This
makes it possible to test the application during development. When the application is
completely debugged, creating a stand-alone executable file requires considerable effort in
compiling and linking the source and resource files. In Borland C++, once a project has
been created, compiling, linking and creating executable file is a very simple task. All that
is required is to select the 'Make' option from the 'Run' menu.

Actor is built on the Windows environment. It is not possible to develop DOS
applications using Actor. The Actor class structure is equipped with the necessary classes
for developing Windows applications. In Borland C++, the Borland Object Windows
Library of classes was used to develop Windows applications. Although it is possible to
develop Windows programs in C++ without using OWL, the process is extremely tedious
and is not recommended.

The Borland C++ (Version 3.0) compiler provided the comforts of a standard,
well established compiler. The elegant windows environment made it much easier to
develop applications as compared to Actor programming. By the time the applications
were developed in C++, the object oriented programming, methods and classes were fully
understood. This, along with the advantage of knowing C, made application development
considerably faster in C++ than in Actor. In view of the above discussion, it is author's
opinion that the Borland C++ is a better platform for application development than Actor.

A comparison of Actor and C++ is presented in the Tables 6.1.

6.2 Applicability of Object Oriented Programming in Structural Engineering
Miller [7] has suggested three important criteria: software development,

maintainability and usability for structural engineering software. In this section these

Results 93

Table 6.1 Comparison of Actor and C++

Feature Actor Borland C++ for Windows

Syntax Resembles C and Pascal. Resembles C.

Environment Complete integrated Complete integrated development
development environment | environment with text editor,
with a good Browser, compiler, linker and debugger.
Debugger and Inspector. '

Object Oriented Pure object oriented Hybrid nature allows

Programming language. Good tool for programmers to make use of
learning OOP. previously written C code.

Application Application can be tested An executable file has to be

Development and while in the development created for testing.

Testing stage.

Execution Run time binding and C compiler generates fast and
message passing make it efficient executable files.
slow in execution.

Debugging Powerful Debugger and Debugger is provided but is not

Inspector make debugging
Very easy.

as powerful as the Actor
Debugger.

Creation of
executable file

Several steps have to be
performed to compile and

Excellent integrated development
environment for compiling and

link the source file and linking all source files and
resources. resources.

Editor Buffer size for any method | No practical limitations on size of
is only 112 lines making it | source files. Excellent text
impossible to have methods | editor.
having more than 112 lines.

Windows Since the entire Object Windows Class Library is

Application environment is built on used to make it easier to develop

Development Windows it is easy to Windows applications.

develop Windows
applications.

Resulits

94

issues will be discussed focusing on the applications developed during this study. The
discussion focuses on the advantages and disadvantages of object oriented programming
while developing structural engineering applications.

The basic advantage of object oriented programming is increased modularity.
Software developers tend to develop programs into small modules to achieve ease of
software development and maintenance. In object oriented programming, since each
object is an independent module, it provides maximum modularity. Since each object
contains data and functions in one entity, it is very easy to develop a program as a series of
objects. This technique was evident in the development of the continuous beam
application. In the continuous beam application first the main window object was created
to assist data entry. Once the main window object was created, the program had the basic
user interface for the data entry completely debugged and then an object of the class
'Analysis' was created to perform the analysis. The only link between the 'MainWindow'
object and the 'Analyze' object was the data transfer functions. Thus, during the
development of the 'Analyze' object changes in the 'Analyze' object did not affect the
'MainWindow' object. This increased modularity is a significant advantage of object
oriented programming during the software development and maintenance stages over the
conventional programming paradigms.

Another feature of object oriented programming that has considerable potential for
structural engineering applications is inheritance. In the continuous beam application
developed using Borland C++, when the class 'Analysis' was developed, all input variables
were declared as protected data members of the class. These data members included span
data, load data and material properties data. The data members for the analysis part of the
class, such as, stiffness matrix and load vector were declared as private members. Thus,
when the 'design’ class was declared as a sub-class of the 'Analysis' class, all protected data
members in the 'Analysis' class were also available to objects of the class 'design’. This

saved the effort required in the redeclaration of the data members for geometry, load and

Results 95

material properties data in the class 'design'. This feature of inheritance can be quite useful
if the same application is modified to design plane frames. In this case, it is possible to
develop another sub-class from the 'Analysis' class to design column elements of the frame
while the existing class can design beam elements. Another class can be developed from
the column design class and the beam design class for the design of beam-columns. Thus,
the objects 'Analyze' and 'design’ can be used as part of a frame analysis and design
program which would save considerable programming effort. The ability to reuse
previously developed and tested objects and to derive new objects from these objects is a
significant advantage since it can considerably reduce program development time.

Another advantage of the object oriented programming is that objects depict real
world situations. For example, for the continuous beam application development of
separate objects for the analysis and design parallels those in the real world. When a beam
is designed, it is first analyzed and then designed. This function based classification can be
extended further for a frame in which after the analysis is performed, a beam object will
design the beams while column objects will design columns in the structure.

This study proves that object oriented programming does indeed make software
development, maintenance and usability of the code easier than conventional programs. It
should be noted that these advantages of object oriented programming do not come
without a few overheads. First, it is necessary for structural engineers to learn object
oriented programming. A conventional programmer may find it difficult to understand the
world of classes, objects and functions. The transition from conventional programming to
object oriented programming is a difficult one. Object oriented programming places
additional responsibility on the programmer to plan the objects and functions in advance.
However, this additional effort can result in a considerable saving in the future application
development.

The advantages of object oriented programming are more evident for large

applications. In smaller applications the time spent in the planning and development of

Results 96

objects may not be justified. To conclude, it may be stated that object oriented
programming definitely increases program modularity which leads to ease in software
development and maintenance. Also, the inheritance feature makes it possible to reuse
previously developed and tested objects, hence resulting in considerable savings in the

effort required in developing new applications.

Results 97

Chapter 7

Summary and Conclusions

In this chapter a summary of the study and the major conclusions are presented.
The chapter also discusses the success of the study against its slated objectives. The
advantages of object oriented programming, as stated in the chapter 2, and as experienced

during the course of application development are also summarized.

7.1 Summary

The main objectives of this study were to apply object oriented programming
technology to structural engineering and to study its advantages for structural engineering
applications. The study was based on two object oriented programming languages, Actor
and Borland C++. Both languages were used to develop two programs: Flexural Capacity
of Reinforced Concrete Tee Section and Analysis and Design of Reinforced Concrete
Continuous Beam. A third application, Design of Simply Supported Reinforced Concrete
Beam, was also developed in Actor. The Continuous Beam application is an example of a
practical structural engineering application and provided an opportunity to evaluate the
use of object oriented programming for structural engineering. Since programming styles
and environments of Actor and C++ differed considerably, a comparative study of the two

languages was also performed.

7.2 Conclusions
The development of two identical programs in Actor and C++ helped assess the
benefits and weaknesses of each of these languages. While Actor proved to be a superb

teacher of object oriented programming, Borland C++ was a better programming tool.

Summary and Conclusions 98

The convenience of embedding conventional C functions in C++ provided a smoother
transition for procedural programming to object oriented programming. The Actor
environment, although better than Borland C++ environment, lacked the versatility of the
later. It took special effort to create a stand-alone Windows application in Actor. In the
Borland C++ integrated development environment it was a matter of simply selecting the
'build' menu item to create the executable program. The Actor compiler was considerably
slower than the Borland C++ compiler. Based on the experience of programming in both
Actor and Borland C++ it is concluded that the Borland C++ is the better environment for
application development.

From a structural engineering view point, it was found that the use of object
oriented programming resulted in modular programs. This was very helpful in the
development and debugging process. Also, the resemblance of objects to real world items
such as analysis and design made the program easier to understand. The inheritance
feature of object oriented programming was of importance in the continuous beam
program. It can be used further to develop a program to design plane frames. Also, it
may ‘be mentioned that object oriented programming needs considerable thought during
the program development and planning stage. The benefits of object oriented
programming are possible only if the objects are well planned. It also takes considerable
effort to learn object oriented programming and to develop the skills and experience

needed to take advantage of the technology.

Summary and Conclusions 99

References

1. E. H. Tyugu, "Object Oriented Programming", Programming and Computer Software,
Vol. 18, No. 8, 1991.

2. W. Schubert and H. Jungklaussen, "Characteristics of Programming Languages and
Trends in Development", Programming and Computer Software, Vol. 16, No. 5,
1991.

3. J. Micallef, "Encapsulation, Reusability and Extensibility in Object-Oriented
Programming Languages", Journal of Object Oriented Programming, April/May 1988.

4. W.J. Cook, "Object Oriented Programming Versus Abstract Data Types",
Foundations of Object Oriented Languages, Lecture notes in computer science,

Vol. 489, REX School/Workshop, May/June1990.

5. J. W. Hopkins, "Objective C - Objet Oriented Programming : The Next Step Up",
Journal of Object Oriented Programming, May/June 1990.

6. H. Sallie, M. Humbrey and J. Lewis, "Evaluation of Maintainability Of Object Oriented
Software", Proceedings of the IEEE Region 10 Conference, September 24-27, Hong
Kong, 1990.

7. G. R. Miller, "What Object Oriented Programming Can Mean For Structural
Engineers", Electronic Computation, Proceedings of the Tenth Conference,
Indianapolis, 1991.

8. A. S. Watson and S. H. Chan, "A PROLOG-based Object Oriented Engineering
DBMS", Computers & Structures, Vol. 40, No. 1, 1991.

9. G. R. Miller, "An Object Oriented Approach to Structural Analysis and Design",
Computers & Structures, Vol. 40, No. 1, 1991.

10. G. R. Miller, "A LISP-based Object Oriented Approach to Structural Analysis",

Engineering with Computers, Vol. 4, No. 4, 1988.

References 100

11. G. R. Miller, "Object Oriented Concurrent Structural Analysis", Computing in Civil
Engineering, Proceedings of the Sixth Conference, September 11-13, Atlanta, 1989.

12. G. H. Powell, G. A. Abdalla and R. Sause, "Object-Oriented Programming Knowledge
Representation : Cute Things and Caveats", Computing in Civil engineering,
Proceedings of the Sixth Conference, September 11-13, Atlanta, 1989.

13. G. H. Powell and Rajiv Bhateja, "Data Base Design for Computer Integrated
Structural Engineering", Engineering with Computers, Vol. 4, No. 3, 1988.

14. H. N. Al-Nashif and G. H. Powell, "An Object-Oriented Algorithm for Automated
Modeling of Frame Structures: Stiffness Modeling", Engineering with Computers,
Vol. 7, No. 2, 1991.

15. G. H. Powell and G. A. Abdalla, F. Filippou, "An Object Oriented Approach to
Computer Aided Reinforced Concrete Design", Third International Conference on
Computing in Civil Engineering, August 10-12, Van Couver, B.C., Canada, 1988.

16. H. Adeli and G. Yu, "Computer Aided Design of Structures", Microcomputers in
Civil Engineering, Vol. 6, No. 3, 1991.

17. P. Remy, B. Devloo and J. S. Rodrigues Alves Filho, "An Object Oriented
Approach to Finite Element Programming (Phase I): A System Independent
Windowing Environmént for Developing Interactive Scientific Programs", Advances
in Engineering Software, Vol. 14, No. 1, 1992.

18. M. J. Rice, "An Object Oriented Approach to Freeway Analysis and Design", Third
International Conference on Computing in Civil Engineering, August 10-12, Van
Couver, B.C., Canada 1988.

19. A. A. Oloufa, "Modeling Operational Activities in Object Oriented Simulation",
Journal of Computing in Civil Engineering, Vol. 7, No. 1, 1993.

20. J. H. Garrett, "An Object Oriented Representation of Design Standards", Computing
in Civil Engineering, Proceedings of the Sixth Conference, September 11-13, Atlanta,
1989.

References 101

21. G. H. Powell and G. A. Abdalla, "Object Management in An Integrated Design
System", Computing in Civil Engineering, Proceedings of the Sixth Conference,
September 11-13, Atlanta, 1989.

22. W. Rotzheim, "Programming Windows with Borland C++", 1992,

23. K. Christian, "The Microsoft guide to C++ Programming", Microsoft Press, 1992.

24. B. Ezzel, "Turbo C++ Programming", Addison-Wesley Publishing Company, Inc.,
1990.

25. E. B, Tello, "Object Oriented Programming for Windows", John Willey & Sons,
Inc., 1991.

26. J. W. McCord, "Developing Windows Applications with Borland C++3", SAMS,
1991.

27. S. M. Holzer, "Computer Methods of Structures”, ELSEVIER, 1985.

28. L. Atkinson and M. Atkinson, "Using Borland C++", QUE Corporation, 1991.

29. International Data Corporation, "White Paper, Object technology : A Key Software
Technology for the 90's", Computerworld, 1992.

30. "Actor Programming Manual", Whitewater Group, Evanston, Illinois, 1991.

31. "Borland C++ Programming Manual", Borland Inc., Scott Valley, CA, 1992.

32. R. Lafore, "Object Oriented Programming in Turbo C++", Waite Group Press, Mill
Valley, CA, 1991.

33. American Concrete Institute, "Building Code Requirements for Reinforced Concrete
(ACI 318-89) and Commentary - ACI 318R-89, Detroit, Michigan, 1990.

34. K. J. Bathe and E. L. Wilson, "Numerical Methods in Finite Element Analysis",
Prentice-Hall, Englewood Cliffs, NJ, 1976.

References 102

Appendix A

Class Definitions for Continuous Beam Application in
C++

/***

Application class for the Continuous Beam Application
***/

_CLASSDEF (TTContApp) ;

// Application class definition

class TTContApp: public TApplication

{

public :

TTContApp (LPSTR AName, HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow) : TApplication (AName,
hInstance, hPrevInstance, lpCmdLine, nCmdShow)
{};

virtual void InitMainWindow(); // Function to open main window

}i

/***

Variables:
span Span of each element of continuous beam
I Moment of inertia for each span of the continuous beam
fc Compressive strength of concrete
fy Yield strength of steel
loadCase Load cases acting on the beam
loadComb Name of load combinations
factor Load factors
w Intensity of uniformly distributed load
udlType Load case for the UDL
partw Intensity of partially distributed load
parthA Distance of partial load from left support
partC Spread of the partial load
partType Type of partially distributed load
4 Concentrated load
conchA Distance of concentrated load from left support
concType Type of concentrated load
lineWl Intensity of linearly varying load at the left end
lineW2 Intensity of linearly varying load at the right end
lineC Spread of linearly varying load
lineType Load case for linearly varying load
support Support condition for the end supports
jtDisp Support settlement
Q Load vactor
M Structure compatibility matrix
J matrix for joint conditions
mBand Variable band matrix
DOF Degrees of Freedom
SS Stiffness matrix
EMod Modulus of elasticity
mmt Moment along span
trialB Width of trial section of beam
trialD Depth of trial section of beam

Appendix A 103

v Shear along span

maxMmt Maximum moment

maxVv Maximum shear

X Distance of section from left support

AsRqd Required tension steel

As1Rqd Required compression steel

Beta B value as per ACI

Mmt Moment at the design section

ratio Design steel ratio

b Design width of the beam

d Design depth of the beam

stBar Stirrup bar size

s Design spacing of stirrups
dhkkhkdhkhhdkhh

**/

_CLASSDEF (Analysis)

// Analysis

class Analysis

{
protected
float

float

float
float
int N

private
int *
float

public

Analysis

The s
to ob
void
void
void
void

void
void
void
void

void
void
void

void

void
void

Appendix A

class definition
: public TWindow

span{12],
*Q;
partW[1l2][5], partA[12][S], partC[12][5],
concA[12][10]:

lineWl({12][S], lineW2[12][S], lineA[12][5],
leftMmt[10] [12], rightMmt[10][12];
EL, combination, support([2], udlType[l12](5], partType[12][5],
concType[12] [10],1lineType[12] [5];

I[12], fc, fy,factor[10][10], w[1l2][5], tDisp[13],

P[12][10],

lineC[12]1([5];

*M, **J, mBand, DOF, // mBand = half band width

*SS, EMod, **mmt;

*MAXA ;

(PTWindowsObject AParent = NULL, LPSTR Title NULL)

: TWindow (AParent, Title)({};

etData functions are used to transfer data from main window
jects of analysis object */

setDatal();

setData2 () ;

setData3();

setDatad () ;

//
//
//
//
//
//
//
//
//
/!
/7
//
//

Initialization of member variables
Function to start the analysis
Computation of M code
Computation of M code
span
Computation
Computation of J code

Computation of half band width of the
stiffness matrix

Assembly of Global stiffness matrix
using skyline storage

Computing MAXA matrix

Computing load vector

initData();
initAnal ()
mCode () ;
oneEleMCode () ; for beam with one
mCode2 () ; of M code
jCode () ;
halfBand{);

assemble () ;

computeMaxa () ;
generateQ();

104

float udlFixed(int, int); // Fixed end moments due to UDL

float partFixed(int,
float concFixed(int,

int); // Fixed end moment due to partial load
int); // Fixed end moment due to concentarted
// load

/* The following eight methods compute the fixed end moments due to

the linearly varying

loads */

float linearFixed(int, int); // Fixed end moment due to linearly

// varied load

float linearl(int, int, int):;
float linear2(int, int, int);

float linearll(float,
float linearl2(float,
fivat linearl3(float,
float linear2l (float,
float linear22(float,
float linear23(fleoat,

void adjustForDisp():
void eleF();

float, float, float, float);
float, float, float, float);
float, float, float, float):
float, float, float, float}):;
float, float, float, float):;
float, float, float, float):

// Adjusting for joint settlements
// Computing element forces

/* Solution of the stiffness equation */

void forSubl();
void factl{):;
void solution();

// Forward substitution
// Factorizing the stiffness matrix
// Solution function

float fixedMmt (int, int); // Fixed moments due to continuity

void initDesign():;

void afterRatio();
}:

_CLASSDEF (Design)

// Creates the design object and
// starts design

class Design : public Analysis

{

private

float *trialB, *trialD, *mmt, *V, maxMmt[12][31], **maxV, *Xx,
**AsRqd, **AslRqd;
float Beta, Mmt, ratio, b, d;

int stBar, **s;

public :

// Constructor for the design object
Design {(PTWindowsObject AParent = NULL, LPSTR Title = NULL)
: Analysis (AParent, Title){ b= d= 0;};

void afterData ();

void spanDesign{);
void givenDesign();

void finalDesign();

void sections(int);

// Function to start design after data

// transfer

// Function to start design of each span
// Function to start design if the section
// is given by the user

// Starting final design after section is
// fixed

// Computing sectional requirement

/***

Appendix A

105

The following seven functions compute the moment along each span of the
beam considering each span as a simply supported beam subjected to

support moments.
***/

void mmtUdl (int) ; // Moment due to distributed load
void mmtPartial{int); // Moment due to partial distributed load
void mmtPoint (int); // Moment due to concentrated loads

void mmtLinear{int}); // Moment due to linearly varying load

// Moment due to triangular loads
void triangle(float, float, float, float, float, int);

void mmtLeft (int);
void mmtRight {int);

// Functions to compute maximum moment and shear along each span
void maxMmtl (int);
void maxVl (int) ;

/***

Design functions: Design as per ACI 318-89

********i**/

void betacal(); // Computation of P value
void absMaxMmt () ; // Computation of maximum moment
void aftRatio(); // Function to start design after taking

// input of steel ratio
void trialSection(); // Computing sectional requirement
void afterSection(); // After taking user's choice for section

void chkCap(); // Computing flexural capacity of section
int afterChkCap(); // After checking capacity starting shear
// design
int ductCheck(); // Performing ductility check
void deleteSteel(); // Function to free the computer memory
void deleteShear():; // Function to free the computer memory used
// by shear design variables
void shearDesign(); // Function to design section for shear

void outFilel{char[]);// Writing ouput file
}:

_CLASSDEF (TTContWindow) ;

// Main window class definition
class TTContWindow : public TWindow
{
protected :
float span[12], I[12], fc, fy,factor[10][10], w[12][5],
jtDisp[13];
float partW([12][5]), partA[12][5], partC[12][5], P[12][10],
concA[l12][10];
float lineWl[12][5], lineW2[12][5], lineA[12][5], lineC[1l2][5]:;
int NEL, support(2], udlType[1l2][5], partType[l2][5],
concType[12] [10],1lineType(12] [5];
char loadCase[10][70], loadComb[10][70];

public :
TTContWindow (PTWindowsObject AParent, LPSTR ATitle);

Appendix A 106

void setAttr();
void initiateDatal():
virtual void Paint (HDC PaintDC, PAINTSTRUCT _FAR & PaintInfo);

// Following functions handle selection of a menu choice from the
// 'File' menu of the main window

virtual void CMNew(RTMessage Msg) = [CM_FIRST + CM_New];

virtual void CMOpen (RTMessage Msg) = [CM FIRST + CM_Open];
virtual void CMSave (RTMessage Msg) = [CM FIRST + CM_Save];
virtual void CMSaveAs (RTMessage Msg) = [CM FIRST + CM [SaveAs];
virtual void CMPrint (RTMessage Msg) = [CM_FIRST + CM Prlnt],
virtual void CMclose (RTMessage Msg) = [CM FIRST + CM | Exit];

// Functions to handle 'geometry' menu

virtual void CMS, an(RTMessage Msg) = [CM_FIRST + CM_Span];
virtual void CMEndSpts (RTMessage Msg) = [CM FIRST + CM_EndSpts];
virtual void CMMaterial (RTMessage Msg) = [CM_FIRST +

CM Materials];
// Function to handle material menu selection
void getMaterial (float, float):

// load cases menu

virtual void CMCases (RTMessage Msg) = [CM_FIRST + CM Cases];
// load combination menu

virtual void CMComb (RTMessage Msg) = [CM_FIRST + CM_Comb];

// loading

virtual void CMUdl (RTMessage Msg) = [CM_FIRST + CM_Udl];
virtual void CMPart (RTMessage Msg) = [CM FIRST + CM_Part];
virtual void CMConc(RTMessage Msg) = [CM FIRST + CM Conc],
virtual void CMLinear (RTMessage Msg) = [CM FIRST + CM_Linear];

virtual void CMSettle (RTMessage Msg) [CM FIRST + CM Settle],

// analysis menu

virtual void CMAnalyze (RTMessage Msg) = [CM_FIRST + CM Analyze];
// design menu
virtual void CMGivenSect (RTMessage Msg) = [CM FIRST +

~ CM_GivenSect];
virtual void CMMaxMmt (RTMessage Msg) = [CM_FIRST + CM MaxMmt]:;
virtual void CMFinal (RTMessage Msg) = [CM_ FIRST + CM Flnal],

// view menu

virtual void CMNextView(RTMessage Msg) [CM_FIRST + CM_NextView];

virtual void CMPrevView(RTMessage Msg) [CM FIRST + CM_PrevView];

virtual void CMCloseView(RTMessage Msg) = [CM FIRST +
CM_CloseView];

// help menu
virtual void CMAbout (RTMessage Msg) = [CM_FIRST + CM About];

// Getting span data
void getSpanData(float[], float[],int);

// Starting shear design for the section
void shearDesign{();

// Getting the data read from a data file
void getDatal();

Appendix A 107

void getData2();
void getData3():;
void getData4();

// Transferring data to write data file
void transferDatal():
void transferData2():;
void transferData3();
void transferDatad():;

// creating output file
void outFile(char []);

)}
_CLASSDEF (TFileDlg)

// class definition for the file dialog
class TFileDlg : public TFileDialog
{
public :
TFileDlg (PTWindowsObject AParent, int Resourceld, LPSTR
AFilePath)
TFileDialog (AParent, Resourceld, AFilePath){};

|

_CLASSDEF (TAboutDlg)

// class definition for the About dialog

class TAboutDlg : public TDialog

{

public :

TAboutDlg (PTWindowsObject AParent, LPSTR ATitle)

‘ TDialog (AParent, ATitle) ({};

void MyAboutOk (RTMessage Msg) = [ID_FIRST + ID_AboutOK];

Vi
_CLASSDEF (TSpanDlg)

// class definition for the Span dialog
class TSpanDlg : public TDialog
{

private
int count; // counter
int NEL; // number of elements
float span[12], I[12]; // span & inertia
TEdit *spanEdit, *inertia; // edit controls for span & inertia
TStatic *Staticl; // static control for span number
public :
TSpanDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST

+ WM_INITDIALOG] ;
[ID_FIRST + ID_Next];
[ID_FIRST + ID Prev];
[ID_FIRST + ID_Cancel];

void SpanNext (RTMessage Msg)
void SpanPrev(RTMessage Msg)
void SpanDone (RTMessage Msg)
void setSpan():

}:

Appendix A 108

_CLASSDEF (TSptDlg)

// class definition for the Span dialog
class TSptDlg : public TDialog
{
private:
int support(2];

public:
TSptDlg (PTWindowsObject AParent, LPSTR ATitle) :
TDialog (AParent, ATitle) {};

virtual void RadioOne (RTMessage Msg) = [ID_FIRST + ID_ RADIOONE];
virtual void RadioTwo (RTMessage Msg) = [ID_FIRST + ID RADIOTWO];
virtual void RadioThree(RTMessag:.. Msg) = [ID_FIRST +

ID_RADIOTHREE];
virtual void RadioFour (RTMessage Msg) = [ID_FIRST + ID RADIOFOUR];
virtual void RadioFive (RTMessage Msg) = [ID_FIRST + ID RADIOFIVE];
virtual void RadioSix(RTMessage Msg) = [ID_FIRST + ID_RADIOSIX];

virtual void sptCancel (RTMessage Msg) = [ID_FIRST + ID Cancel];
virtual void sptDone (RTMessage Msg) = [ID FIRST + ID_AboutOK];
virtual void WMInitDialog{RTMessage Msg) = [WM_FIRST +

WM_INITDIALOG] ;

void setSpt();
}:

_CLASSDEF (TMatDlg)

// class definition for the Material dialog
class TMatDlg : public TDhialog
{
private
TEdit *Editl, *Edit2; // edit boxes for fc & fy
float fc, fy:;

public :
TMatDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST
+ WM_INITDIALOG];
void setMat();
void matDone (RTMessage Msg) = [ID_FIRST + ID AboutOK];
void matCancel (RTMessage Msg) = [ID_FIRST + ID Cancel];
}i

_CLASSDEF (TCaseDlg)

// class definition for the load case dialog
class TCaseDlg : public TDialog
{

private:
TEdit *Editl; // edit box for load case
TStatic *Staticl; // static conttrol for name
char loadCase[10][70] ;
int count, NEL;

public :
TCaseDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM FIRST

+ WM_INITDIALOG] ;

Appendix A 109

void

void

void

void
}:

setCase();

caseDone (RTMessage Msg)
caseNext (RTMessage Msg)
casePrev(RTMessage Msg)

nnn

_CLASSDEF (TCombD1g)

// Combination dialog box class
class TCombDlg : public TDialog
{
private:
int count, NEL;
TEdit *Editl, *Edit2;
TStatic *Staticl, *Static2;
TListBox *caselist;

[ID_FIRST + ID_Cancel];
[ID_FIRST + ID Next];
[ID_FIRST + ID_Prev];

// Edit boxes
// Static boxes
// list box for load cases

char loadCase[10][70],loadComb[10]{70];

float factor[10][10];

public:

TCombDlg (PTWindowsObject AParent,
virtual void WMInitDialog (RTMessage Msg)

setComb () ;
combDone (RTMessage Msg)
combNext (RTMessage Msg)

void
void
void

LPSTR ATitle);
[WM_FIRST
+ WM_INITDIALOG];

[ID_FIRST + ID_Cancel];
[ID_FIRST + ID Next];

void combPrev(RTMessage Msg) [ID_FIRST + ID Prev];
void addCase {RTMessage Msg) = [ID_FIRST + ID AboutOK];
void deleteCase (RTMessage Msg) = [ID_FIRST + ID Delete];

virtual void HandleListBoxMsg(RTMessage Msg)

}i
_CLASSDEF (TUd1Dlg)

// UDL dialog box class
class TUdlDlg : public TDialog

{
private:

[ID_FIRST + ID Listl];

int count, NEL, udlType[12][5];

TEdit *Editl;
TListBox *caselist,
char loadCase[10]([70];
float span([12],w[12][5];

public:

*spanlist;

// Edit box
// list box for load cases & span

// 5 udls per span are allowed

TUd1lDlg (PTWindowsObject AParent, LPSTR ATitle);

virtual void WMInitDialog(RTMessage Msgq)

setUdl ();

udlDone (RTMessage Msg)
udlNext (RTMessage Msg)
udlPrev(RTMessage Msg)

void
void
void
void

[WM_FIRST
+ WM_INITDIALOG];

[ID_FIRST + ID_Cancel];
[ID_FIRST + ID Next];
[ID_FIRST + ID_Prev];

virtual void HandlelistBoxMsg(RTMessage Msg)

}s;
_CLASSDEF(TSettleDlg)

// UDL dialog box class

Appendix A

[ID_FIRST + ID_List2];

110

class TSettleDlg : public TDialog
{
private:
int count, NEL;
TEdit *Editl; // Edit box
TStatic *Staticl; // static control for the joint name
float jtDisp[13];

public:
TSettleDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST

+ WM_INITDIALOG];
void setSettle();
void settleDone (RTMessage Msg)
void settleNext (RTMessage Msg)
void settlePrev(RTMessage Msg)

[(ID_FIRST + ID _Cancel];
[ID_FIRST + ID Next];
[ID_FIRST + ID_Prev];

}s
_CLASSDEF (TPartDlg)

// Partial distributed load dialog box class
class TPartDlg : public TDialog
{
private:
int count, NEL, partType(12][5];
TEdit *Editl, *Edit2, *Edit3; // Edit box
TListBox *caselList, *spanList; // list box for load cases & span
char loadCase[10][70];
float span[12],partW[12][5], partA[12][5], partC[12][5];
// 5 partial loads per span are allowed

public:
TPartDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST

+ WM_INITDIALOG] ;
void setPart();
void partDone (RTMessage Msg) = [ID_FIRST + ID_Cancel];
void partNext (RTMessage Msg) = [ID_FIRST + ID Next];
void partPrev(RTMessage Msg) = [ID_FIRST + ID Prev];
virtual void HandlelListBoxMsg(RTMessage Msg)
= [ID_FIRST + ID List2];
}:

_CLASSDEF (TConcDlg)

// Concentrated load dialog box class
class TConcDlg : public TDialog
{
private:
int count, NEL, concType(12][10];
TEdit *Editl, *Edit2; // Edit box
TListBox *caselist, *spanlist; // list box for load cases & span
char loadCase[10][70];
float span[12], P[12][10], concA[12][10];
// 10 conc loads per span are allowed

public:
TConcDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST
+ WM_INITDIALOG];

Appendix A 111

void setConc();
void concDone (RTMessage Msg)
void concNext (RTMessage Msg) [ID_FIRST + ID_Next];
void concPrev(RTMessage Msg) [ID_FIRST + ID_Prev];
virtual void HandleListBoxMsg(RTMessage Msg)

= [ID_FIRST + ID List2];

[ID_FIRST + ID_Cancel];

};
_CLASSDEF (TLineDlg)

// Concentrated load dialog box class
class TLineDlg : public TDialog
{
private:
int count, NEL, lineType[l2][5];
TEdit *Editl, *Edit2, *Edit3, *Edit4; // Edit box
TListBox *caseList, *spanlList; // list box for load cases
// & span
char loadCase[10] [70];
float span[12], lineWl[12][5], lineA[12][5]:
// 5 varying loads per span are allowed
float lineW2([12][5], lineC[12][5], b, d;

public:

TLineDlg (PTWindowsObject AParent, LPSTR ATitle};

virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST
+ WM_INITDIALOG] ;

void setLine();

void lineDone (RTMessage Msg)

void lineNext (RTMessage Msg) [ID_FIRST + ID_Next];

void linePrev(RTMessage Msg) [ID_FIRST + ID Prev];

virtual void HandlelistBoxMsg (RTMessage Msg)

= [ID_FIRST + ID List2];

[ID_FIRST + ID Cancel];

}:
_CLASSDEF (Ratio)

// Dialog class for steel ratio input from the user
class Ratio : public TDialog
{
private
TEdit *Editl;
float ratio, rhoMax, rhoMin;

public :
Ratio (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST

+ WM_INITDIALOG]:;
void setData(float , float);
void okPressed(RTMessage Msg) = [ID_FIRST + ID_Cancel];
}:

_CLASSDEF (TSectionDlg)

// Section data dialog box
class TSectionDlg : public TDialog
{
private :
TEdit *Editl, *Edit2;
TListBox *sectlist;
float trialB[7}, trialD[7]:

Appendix A 112

public :
TSectionDlg (PTWindowsObject AParent, LPSTR ATitle);
void sectOK(RTMessage Msg) = [ID_FIRST + ID AboutOK];
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST
+ WM INITDIALOG] ;
void setData{); -
void closeSect (RTMessage Msg) = [ID_FIRST + ID Cancell;
virtual void HandleListBoxMsg (RTMessage Msg)
= [ID_FIRST + ID List2];

}i

// Class for the dialog object to warn the user about the doubly reinf.
section
_CLASSDEF (TWarnSectDlg)

class TWarnSectDlg : public TDialog
{
public
TWarnSectDlg :: TWarnSectDlg (PTWindowsObject AParent, LPSTR AName)
¢ TDialog(AParent, AName){};

void doublyOK(RTMessage Msqg) = [ID FIRST + ID AboutOK];
void closeDoubly(RTMessage Msg) = [ID_FIRST + ID Cancel];
}:

// Class for the stirrup data
_CLASSDEF (TStirrupDlg)

class TStirrupDlg : public TDialog
{
private
TEdit *Editl;
public :
TStirrupDlg (PTWindowsObject AParent, LPSTR ATitle);
virtual void WMInitDialog(RTMessage Msg) = [WM_FIRST
+ WM_INITDIALOG] ;
void stirrupOK(RTMessage Msg) = [ID _FIRST + ID AboutOK];
void stirrupClose(RTMessage Msg) = [ID_FIRST + ID_Cancel];

};
_CLASSDEF (TGiveSectDlg)
// Given Section data dialog box

class TGiveSectDlg : public TDialog
{

private
TEdit *Editl, *Edit2;
float b, d;

public :
TGiveSectDlg (PTWindowsObject AParent, LPSTR AName);
void sectOK(RTMessage Msg) = [ID_FIRST + ID_AboutOK];
void closeSect (RTMessage Msg) = [ID_FIRST + ID Cancel];

};

Appendix A 113

_CLASSDEF (readData)

// class for file reading & writing
class readData
{
private :
float span(l12], I[12], fc, fy,factor[10][10], w[1l2][5],
jtDisp[13];
float partW[12][5], partA([12][5], partC[12][5], P[12][10],
concA{l12][10];
float 1lineWl[12][5], lineW2[12][5], lineA[1l2][5],
lineC[12][5];
int NEL, combination, support[2], udlType[12][5],
partType[12] [5],concType[12]) [10],1lineType[12][5];
char loadCase[10][70], loadComb[10]([701;

public :
void init ();
void read (HWND);
void write (HWND);

// transfer from data file
void outl();
void out2{();
void out3();
void outd():;

// write data to file
void setDatal():;
void setData2():;
void setData3{():;
void setDatad():;
}:

Appendix A 114

Appendix B

Table B.1 lists the major subroutines in Holzer's frame analysis program and the
corresponding methods in the Analysis class of the analysis and design of reinforced
concrete continuous beams application. Although to someone unfamiliar with the
concepts of object-oriented programming it may appear that these functions are similar

there are some fundamental differences between the two. These are outlined below.

1. Holzer's program is written in FORTRAN 77, a procedural programming language
which is now over fifteen years old and has been replaced with FORTRAN 90.

2. The Actor version of Analysis is written using the Actor programming language. Since
Actor is a pure object oriented programming language there is little similarity between the
Actor code and the corresponding code in a procedural programming language such as
FORTRAN 77. The C++ version of Analysis is written using AT & T's C++ version 2.0.

Again there is little resemblance between C++ code and FORTRAN 77 code.

3. The entire analysis procedure in the Continuous Beam application (both Actor and
C++ versions) has been implemented as a class. This means that the analysis procedure is
totally self contained and is independent of other parts of the program. Both the data and
the methods are defined within the class. It is possible to modify and even replace the

entire Analysis class (with another one) without affecting any other parts of the program.
4. The functions in the class 'Analysis' do not have any arguments since all the necessary

data for the analysis is defined as data members within the class. In Holzer's program it is

necessary to pass arguments to each function.

Appendix B 115

Table B.1 Comparison of Subroutines in Holzer's Frame Analysis Program and

Functions in the 'Analysis' class of the Continuous Beam Application

Holzer's program 'Analyze' Object Purpose of function

Subroutine 'Codes' Functions 'jCode' and | Generate Joint and Member
'mCode’ code.

Subroutine MBAND' Function 'halfBand' Compute half band width.

Subroutine MACT' Functions 'udlFixed', | Compute fixed end actions
'partFixed', due to member actions.

‘concFixed' and 'linearFixed'

Subroutine 'ASSEMF'

Function 'generateQ'

Assemble local fixed end

forces.

Subroutine ELEMS' Function 'Assemble’ Compute global stiffness
coefficients.

Subroutine 'ASSMS' Function 'Assemble’ Assign system stiffness
coefficients to global

stiffness matrix.

Subroutine 'SOLVE'

Function 'Solution’

Call the functions to solve

the stiffness equation.

Subroutine ELEMF'

Function 'eleF'

Compute local forces on

elements.

Appendix B

116

5. Unlike Holzer's program there are no global variables or arrays and none are needed.

6. Since 'Analysis' is implemented as a class, it can easily be used in other programs such
as, for example, a program to perform the analysis of plane frame or space frame. By
using the inheritance feature it is possible to derive a new class based on 'Analysis' that
provides whatever additional functionality is needed. It would not be necessary to make
any changes to 'Analysis’ itself. It is not possible to extend Holzer's program without
making extensive modifications to the original code, a process that would be extremely

difficult since it is written in FORTRAN and uses global variables.

7. The allocation of memory for objects of the 'Analysis' class is done dynamically.
Memory is allocated as needed only during the analysis process. After the results of the
analysis are saved, the entire analysis object can be removed from memory (along with the
associated variables and arrays) thus making the additional memory available to the

program for other tasks such as design.

8. The C++ version of 'Analysis' makes extensive use of pointers for assigning arrays, a
feature that is not available in FORTRAN. The use of pointers makes it possible to create
arrays dynamically and also results in faster execution especially when working with large

matrices.

9. The subroutines in Holzer's program and in the 'Analysis' class are fairly standard and
are available in numerous other frame analysis programs. All frame analysis programs
provide subroutines for computing the half band width, computing fixed end forces,
computing local stiffness matrices, assembling the global stiffness matrix, solving the

resulting equations and computing local element forces.

Appendix B 117

10. Although the Continuous Beam Design application used a matrix analysis approach
for performing analysis, there are many other analysis techniques that can be used for the
analysis of continuous beams, such as for example, the three moment method. In fact,
given the modular nature of the application, it would be a relatively easy task to replace

the 'Analysis' class with one that uses a different analysis procedure.

Appendix B 118

Vita

Ajay B. Kulkarni was born on September 9, 1969, in Pune, India. He graduated
from M. E. S. Boys' High School, Pune, in May 1984. In May 1987 he graduated from
Cusrow Wadia Institute of Technology, Pune, with a Diploma in Civil Engineering. In
May of 1990 he was awarded Bachelor of Civil Engineering by Pune University and
received a Gold Medal for being first in the University. He joined the Construction
Division of Tata Engineering and Locomotive Company, Limited (TELCO), Pune, as a
Graduate Trainee Engineer. In August 1991 he enrolled in the Department of Civil
Engineering at Virginia Polytechnic Institute and State University where he earned Master

of Science in Civil Engineering in May 1993.

Vita 119

