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(ABSTRACT) 

Past research at this university has proven the feasibility of multi-disciplinary 

design of a complex system involving the complete interaction of aerodynamics and 

structural mechanics. Critical to this design process, is the ability to accurately 

and efficiently calculate the sensitivities of the involved quantities (such as drag 

and dynamic pressure) with respect to the design variables. These calculations 

had been addressed in past research, but it was felt that insufficient accuracy had 

been obtained. The focus of this research was to improve the accuracy of these 

sensitivity calculations with a thorough investigation of the computational aspects 

of the problem. These studies led to a more complete understanding of the source 

of the errors that plagued previous results and provided substantially improved 

sensitivity calculations. 

Additional research led to an improvement in the aerodynamic-structural in- 

terface which aided in the accuracy of the sensitivity computations. Furthermore, 

this new interface removed discontinuities in the calculation of the drag which the 

previous model tended to yield. These improvements were made possible with ap- 

plication of shape functions in surface deflection analysis, instead of the previous



‘zonal’ approach. Other factors which led to accuracy improvements were changes 

to the aerodynamic model and the paneling scheme. 

Final studies with the optimization process demonstrated the ability of the 

improved sensitivities to accurately approximate the design problem and provided 

useful results. Additional studies on the optimization process itself provided infor- 

mation on move limit restrictions and various constraint problems.
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1. INTRODUCTION 

In an ideal world, an aircraft would perform its mission in an optimal fashion. 

The designer would have perfectly balanced the demands of performance, cost, and 

safety in all respects through complete analysis of the various behavior characteris- 

tics of the project. Since an improvement in one characteristic frequently degrades 

another, this designer would apply optimization techniques to simple and exact 

equations which define the interactions within the problem. The result would be 

the best design which meets the requirements with a minimal amount of effort. 

Unfortunately, in all but the most trivial problems, this process is virtually 

impossible. In a general problem, even the concept of a ‘perfect’ balance of char- 

acteristics is ill defined. At best, a set of desirable attributes is selected and the 

designer attempts to satisfy requirements as best as possible. But problem specifi- 

cation is the least of the designers’ challenges. The majority of the difficulty lies in 

the fact that the trade-off analysis is generally a tremendously complicated process 

since exact equations which clearly define the interactions are rarely encountered. 

To further exacerbate the problem, many vehicles exhibit a cross interaction be- 

tween several disciplines (such as interactions between aerodynamics and structural 

mechanics). For a design to be successful in the modern world, these interactions 

must be analyzed with available knowledge and resources. 

The modern design process relies on a keen sense of intuition and experience 

to account for as much of an aircraft’s behavior as possible. This approach does 

an excellent job where one discipline is involved. For example, with a well defined 

planform and load requirements, current optimization techniques have been suc- 

cessful at designing a minimum weight wing. The weakness in this design process 

INTRODUCTION 1



is the limited consideration of multi-disciplinary effects beyond the preliminary de- 

sign phase. While it is obvious that a vast number of very successful aerospace 

vehicles have been achieved within this limitation, inclusion of multi-disciplinary 

effects during the design phase should enhance the final product. Furthermore, the 

increased use of composite materials in aircraft construction has virtually made 

such considerations a requirement. Vehicles built from such composite materials 

have strong aeroelastic interactions which must be accounted for. A great barrier 

to the inclusion of these effects, has been the tremendous cost considerations due 

to a lack of efficient multi-disciplinary design techniques. 

Past research at this university has focused on efficient multi-disciplinary design 

optimization. The first example of this focus was the design of a sailplane wing.! In 

this example, the aerodynamic and structural models were kept simple (lifting line 

theory for the aerodynamics, and beam theory for the structures) to demonstrate 

the feasibility and superiority of the approach. The complexity of the design prob- 

lem was increased by incorporating a vortex lattice method for the aerodynamics 

and a finite element model for the structures.” This increase in complexity resulted 

in a design problem which would have been prohibitively expensive had not approx- 

imate optimization techniques and new cross sensitivity analysis been employed.® 

The research was then further continued in the design of a forward swept transport 

wing.*>©6 Although this model still retained the vortex lattice and finite element 

models, additional complexity was introduced through a refinement of the aeroe- 

lastic interaction. Work progressed to incorporate more efficient cross-sensitivity 

analysis through the use of a modular sensitivity approach which treats each sep- 

arate discipline as a ‘black box’.45“® Reference 4 demonstrated the advantages 

of the new analysis and proved the feasibility and success of designing the signif- 

icantly more complex system. Unfortunately, Ref. 4 contained results where the 
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accuracy of the sensitivities was not very good, and it was felt that this aspect of the 

research should be improved. Furthermore, the drag calculations tended to yield 

discontinuities as the design parameters changed and values which seemed low. 

This study builds on the work of Ref. 4 and attempts to correct the problems 

present in that study. A detailed analysis of the numerical calculations required 

for the design problem is made with an emphasis on the aerodynamics and the 

aerodynamic-structural interface. This detailed analysis has revealed the source 

of the errors in Ref. 4 and provides further information on the behavior of the 

optimization process. In addition, this study has included the divergence sensitivity 

calculations which were absent in past research for the transport wing. 

Chapter 2 outlines the entire design problem to provide necessary background 

to begin the design process. Chapter 3 details the aerodynamic model and high- 

lights the structural model. In this chapter the problems in the past aerodynamic 

model are discussed and corrected to provide more consistent results. Chapter 4 

outlines the aeroelastic formulation as found in Ref. 6. Chapter 5 makes an in- 

depth study of the aerodynamic-structural interface and replaces the past model 

with a model that employs surface shape functions. Chapter 6 presents the drag 

sensitivity analysis and calculations. This chapter considers the results obtained in 

the previous research and generates improvements through a careful reexamination 

of the details of the finite differencing process. In addition, the effects of the new 

interface model are studied. Chapter 7 follows along the lines of chapter 6, dealing 

with the divergence calculations. In this chapter, the unique problems associated 

in the numerical calculations of the divergence sensitivity is addressed. Chapter 8 

gives the details involved with the approximate optimization process and presents 

the optimization results, old and new. An additional analysis on move limit size 

and the addition of constraints is also discussed. The final chapter outlines the 

results obtained, and reflects on the impact they made on the drag and divergence 

approximations and the final optimization cycles. 
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2. THE DESIGN PROBLEM 

2.0. Introduction 

In the detailed analysis which will follow in the next few chapters, it is im- 

portant not to lose sight of the design problem as a whole. The goal is to design 

a minimum weight aircraft which meets several constraints. The resulting design 

will be compared to a reference aircraft’ whose characteristics are given in ta- 

ble 2.1. A major difference between the reference wing and the current one is the 

sweep. The present design wing has a forward sweep at the initial design point while 

the reference aircraft has a standard aft sweep. The initial assignment of forward 

sweep may bring more aeroelastic effects into consideration during the optimiza- 

tion process. Due to the excessive computational costs associated with transonic 

analysis, the Mach number for the design will be limited to .48 while the refer- 

ence aircraft has a design Mach number of .78. The following sections detail the 

set-up of the design problem and its associated objective and constraint functions. 

Table 2.1. Reference Aircraft Design Specifications 

  
Average Cruise Conditions 
  

      
  

  

  
  

Mach Number 0.78 
Lift Coefficient 0.672 
L/D (Lift to Drag Ratio) 20.7 
c’ (Specific Fuel Consumption) 0.430 

Weights(N) Wing/Tail Data 
Aspect Ratio 14.0 

Gross Weight 4.494 x 10° Area(m?) 84.0 
Std. Empty Weight 2.852 x 10° Span(m) 34.3 
Wing Weight 3.020 x 104 Sweep at c/4, (deg) 15.0 
Usable Fuel Weight 2.738 x 104 Taper Ratio 0.25 
Payload Weight 1.368 x 10° Thickness(%) 12.0 

Horiz. Tail Area (m?) 11.71 
Vert. Tail Area (m7) 17.74 

Range(m): 2.34 x 10°       
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2.1. The Destgn Vartables and Wing Layout 

For any optimization problem, a set of variables must be selected which can 

be changed to modify the problem. These terms are known as the design variables 

and the forward-swept transport wing has 39 (see table 2.2). The first 6 define 

the planform of the wing (see Fig. 2.1), and the next two give the twist at the 

wing breakpoint and tip. These twist variables are included so the optimization 

can define a ‘jig shape’, thus allowing the wing to deform into an optimal shape. 

f 

  

  

  
    

    
Figure 2.1. Planform Design Variables 

Design variables 9 and 10 represent performance quantities, with the first rep- 

resenting the cruise dynamic pressure, and the second giving the usable fuel. The 

dynamic pressure optimization is referred to in section 2.4 and is essential to the 

calculation of the optimal range. 

The remaining 29 variables represent the structural panel thicknesses, the spar 

cap areas, and the ply orientation. The panels are organized by dividing the wing 
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into four sections, with two inboard the break and two outboard (See Fig. 2.2 

where A-A divides the wing inboard the break and B-B divides the wing outboard 

the break). Each of these sections is covered in a graphite-epoxy laminate with plies 

of 0°, + 45°, and 90°. The thickness of each of these plies is an independent design 

variable which gives a total of 24 (12 for the upper surface and 12 for the lower 

surface). The next four variables represent the cap areas for each of the spars, and 

the last design variable gives the reference orientation of the 0° ply with respect to 

the chord normal. The internal layout of the wing is held constant (i.e. the number 

of spars, ribs, panels, etc.), but the shape of the arrangement changes as the wing 

planform is changed (see Fig. 2.2). 

      
Inboard Sections 

  

Figure 2.2. Structural Layout of the Wing 
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Table 2.2. Design Variables for the Forward-Swept Wing Transport 

  

  

    

  

      

Planform Design Variables Performance Design Variables 

1. Chord length at the root 9. Dynamic pressure at cruise 

2. Chord length at the break 10. Usable fuel weight 

3. Chord length at the tip Structural Design Variables 
4, Distance from root to break 11-34. Panel thicknesses 

5. Distance from break to tip 35-38. Spar cap areas 

6. Sweep angle at the break 39. Ply orientation 

7. Jig twist at the break w.r.t. root 

8. Jig twist at the tip w.r.t. break       
2.2. The Objective Function 

As mentioned previously, the objective of the design is to minimize the total 

weight of the aircraft. The total weight is given by the summation of the aircraft 

empty weight, Wo, the usable fuel weight, W,;, and the payload weight, W,. 

The empty weight is calculated with the use of the empty weight of the reference 

aircraft, Wo,, by subtracting the wing weight savings times a growth factor, 7. 

The justification for this factor lies in the fact that as the structural wing weight 

is decreased, weight associated with the rest of the aircraft will also be reduced. 

Therefore, we express Wo as: 

Wo = Wor — n(Wur — w) (2.2) 

where Wo, and Wy, give the empty weight and wing weight for the reference aircraft, 

and W,, gives the wing weight for the design aircraft. The amplification factor, n, 

is selected to be 2 as in Ref. 6. 
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2.3. The Design Constraints 

Simply put, the structural constraints require the wing to not fail during during 

a 2.5g maneuver at 2.5 times the cruise dynamic pressure. The factor of 2.5 is 

included due to FAA requirements (this maneuver is assumed to occur during a 

dive). In addition, these constraints must allow for a factor of safety of 1.5. The 

strain constraints are applied to the skin plies and require a maximum strain of 

.012 in the normal and fiber directions, and in shear. The stress constraints are 

applied to the internal spar caps with .262 GPa. being the allowable maximum. An 

additional constraint requires the divergence speed to be 1.2 times the maneuver 

speed. 

The range constraint is that which drives the aerodynamic design. This con- 

straint is set to be equal to that of the reference aircraft at 2.34 x 10°Km. The 

range is calculated assuming the drag is proportional to the weight during the cruise 

phase, with the constant of proportionality being calculated when half of the usable 

fuel is burned off. The following section details the range calculation 

2.4. The Range Calculation 

The range calculation considered here is exactly the same as that of Ref. 6. The 

calculation begins by assuming the changes in aircraft weight (due to the burning 

of fuel) have a negligible effect on the elastic deformation. With this assumption 

we can write: 

D = qSCp(Cz) (2.3) 

where q is the cruise dynamic pressure, S is the wing area, and C’p is the drag 

coefficient which is a function of only the lift coefficient C,. Since the cruise is in 

balanced flight we have that the lift coefficient is 

W 
CL=— L 75 (2.4) 
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where W is the aircraft’s total weight. By differentiating D with respect to g, and 

setting the result equal to zero, 

W dCp 
SCp — —— =0 . D~ 7 aC, (2.5) 

and 

W dCp 
Im = SCD dC, (2.6) 

Rewriting Eq.(2.6) for the drag at the optimum range altitude, D,, with gm and 

Cy,,, also representing the optimum values, we get 

dCp Dm = WF (Cin) (2.7) 

which gives a value of D,, that is proportional to the weight. If we assume that 

the minimum drag of the elastic wing is also proportional the the weight and that 

the proportionality constant, « = dCp/dC_, is constant during the cruise, we can 

write 

Dm = KW), (2.8) 

during the entire cruise phase where Wy, is the half-fuel condition. 

The rate at which the aircraft burns fuel is given by 

WwW 

= = —c'T = —c'D = —c'KW,, (2.9) 

where c’ is the thrust specific fuel consumption of the engine and T is the thrust. 

Performing an integration from some initial time ¢; to some final time t;, we get 

toe) = Ke’ (ty — t;) (2.10) 

where W, and W; are the initial and final weight respectively. Since we will set the 

cruise at a constant speed V,, the range during cruise, R,, will be given by 

  Ve W; 
R,= Vi(ts — t:) = “106 ( 7) (2.11) 
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The calculation of « assumes we know the value of optimum dynamic pressure, 

dm, Which could be calculated from equation 2.6. However, we allow the dynamic 

pressure to be a design variable, which causes g to optimized with the rest of the 

aircraft. 
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3. THE AERODYNAMIC AND STRUCTURAL MODELS 

3.0. Introduction 

While the Vortex-Lattice Method (VLM) is an old approach for the solution 

of aerodynamic forces, it is ideally suited for the subsonic design problem being 

considered in this research. The accuracy of the method is sufficient for this pre- 

liminary design®, and the results can be obtained quickly, even over complex wing 

shapes. More sophisticated models certainly exist, but most have considerable com- 

putational costs associated with them. Without further research, these methods are 

far too expensive for design optimization. The VLM model used in this study is 

the same as that used in previous research*, however some modifications are made 

to the calculation of the forces in hopes of making the procedure more robust. 

The structural model considered here, is also retained from previous research.°® 

The model employs the Finite-Element Method (FEM) to determine the deflections 

the wing undergoes during loading. The FEM model provides excellent results with- 

out the overwhelming computational costs that can be associated with sophisticated 

aerodynamic analysis. 

8.1. The Vortex-Lattice Method 

In the VLM approach, a thin wing is broken up into a discrete number of swept 

panels. Each of these panels lies on the mean camber surface of the wing. Attached 

to the quarter chord of each of these panels is a horseshoe vortex (see Fig. 3.1). If 

we follow the development of Ref. 9, the ends of the vortex filaments go to infinity, 

parallel to the x-axis of the wing. This approach is only an approximation, but it will 

provide sufficient accuracy.? The individual circulations all contribute an induced 

velocity on every panel. The boundary conditions require that the total induced 
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velocity is tangent to the surface of each individual panel at its control point, which 

is located at the three-quarter chord of the panel. With the application of these 

boundary conditions, we end up with a system of 2N equations in terms of the 

unknown circulation strengths, where N is the number of panels on one wing (both 

wings have to be accounted for). Previous work set the number of panels at 120, 

with 10 along each chord and 12 along the half-span. This study found that to 

be an inadequate number, and the panels were increased to 190, with 10 along the 

chord and 19 along the half-span. 

Attached Vortex 

Control Point 

  

  

\_ 
N
A
N
 _— 

«a NO 

| General Aerodynamic Panel 

| 

Le 

LT __— Trailing Vortex 

\ 
AN
 

lis
t 

            
Figure 3.1. Wing Panels with Sample Horseshoe Vorticies 
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The determination of the velocity caused by a vortex filament can be found 

through the application of the Biot-Savart Law: 

_ (dl xr) W=—, (3.1) 

where I is the strength of the given vortex and dl is its length. The magnitude of 

the velocity is easily seen to be: 

_ Tdi sin 6 
WV =, (3.2) 

where 9 is the angle between dl and r. If we again follow the procedure outlined in 

Ref. 9, the velocity induced by a vortex from Point A to B can be found to be: 

    

ros” r 
VaB= / sin 9d0 = (cos 6, — cos 82) (3.3) 

8 ATTrep Jo, ATT cp 

See Fig. 3.2 for an illustration of the terms involved. If we note the following 

  

  

relationships: 

—— [ry X f2| 
= 

Pp Fo 

fo: Tr, 
cos 6, = 

ror 
fo: 2 

cos 62 = 
Tore2 

and substitute them into Eq.(3.3), we obtain the following: 

T ry X Pre rT r2 
Varn = a Ir - ( — - 3.4 
AB 4n ry x r2|? ro (2 =) ( ) 

which gives us the general equation for the induced velocity vector. 

If a general horseshoe vortex, 1, is analyzed, the following position vectors are 

obtained for the vortex segment AB (see Fig. 3.3): 

~ A 

ro = (cos — 21) + (yar — yrs) IF + (220i — 218)k 

~ “a 
e 

ry = (x — 24,)8 + (y — ys) + (2 — 218) k 
“a a 

e 

r2 = (x — £9;)8+ (y — yi) + (2 — 222) ™
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These vectors can be substituted into Eq.(3.4) and an equation can be obtained for 

Vapi 

Van = *(Fi}(F2) (3.5) 

where ; 
Fy = {|(y — ysz) (2 — 222) — (y — yar) (2 — 218) Jt 

—[(z — w1i)(z — 224) — (2 — zai)(z — 214)|9 

+((w = 21:)(y — yai) — ( — 226) (y — vis) ]A}/ 
{[(y — yrs) (2 — 22%) — (y — yar) (z — 218)]? 

—[(z — 213) (2 — 221) — (x — 22i)(z — a18)]? 

+|(z — t1z)(y — yas) — (e — 22) (y — yis)]7} 

and 

Fy — [tai = tas) (@ = tax) + (yas = yrs) (y — yrs) + (224 = 21) (2 ~ 213) 
  

  

VJ (£ — £14)? + (y — yrs)? + (2 — 212)? 

[(w2i — 21i)(z — Faz) + (yor — yrs) (y — yor) + (228 — 21%) (2 — 222)] 

VJ (x — rox)? + (y — you)? + (2 — 22:)? 
  

  

Next, if the vortex segment AD is considered, the position vectors will be: 

~ 

To = (r1; — Zax)t 

~ ~ 
* 

ry = (x — zai)t+ (y — yis)d + (2 — zsh 

ta = (2 —a2u)i+ (y~yi)d + (2 — au)k 

If the same calculations are made as for Eq.(3.5) then the following can be obtained 

as Za; — 00:9 

a 

_ Tif —410)9 + (yu - y)k (x — 21;) 

mae 4m [(2 — 218)? + (yas — ¥)?] f r V(z — £13)? + (y — yrs)? + (2 — 214)? 

(3.6) 

    

  

THE AERODYNAMIC AND STRUCTURAL MODELS 14



For opposite segment, Boo, we obtain:? 

r; { (2 — 201) + (yor — y)k 

[ 

fi (x _ £2:) 

4n (z — za)? + (yar — y)?] E r V (z — rai)? + (y — yas)? + (2 — 22%)? 
  VBoo =   

  

(3.7) 

To obtain the total induced velocity for the given horseshoe vortex, Eqs.(3.5, 3.6, 

and 3.7) are summed together. 

If all the horseshoe vorticies over both wing surfaces are summed together, then 

the total induced velocity at some control point 7, would be represented as: 

2N 

Viena = > CiT; (3.8) 
t=1 

where C;; is an geometrical influence coefficient relating the induced velocity at 

control point 7 due to the bound horseshoe vortex 1. A system of 2N equations can 

now be formulated with the application of the boundary conditions. 

     
   Vorticity 

Vector 

Figure 3.2. Nomenclature for Induced Velocity by a Finite Length Vortex [9] 
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CP(x,y,Z)    
   

D(x;; 093; Ly; ) 

   
Trailing 
Vorticies    

Figure 3.3. Sample Horseshoe Vortex 

The boundary condition requires the total velocity to be tangent to the surface 

of the wing at all of the control points. 

Viena tj = 0 

The total velocity is represented by the sum of the freestream velocity, 

Uso = Ug. cos ai + 07 + Ug, sin ok 

and the induced velocity vector at control point 7. 

V3-n4a = u;t + v;9 + wyk 
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Employing Eq.(3.9} we get the boundary condition to be: 

. OF OF OF 
Uso sina — Ug. cos Dr 4 ap 0 oy 7 vi =0 (3.12) 

where F(z,y) represents the mean camber surface. If we let 6 be the angle the 

surface forms in the x — z plane, and ¢ be the angle in the y — z plane, then with 

some rearrangement we can write: 

—u, sin 6; cos $; — v; cos 6; sing; + w; cos p; cos 6; + Ugo sin(a — 6;) cos g; = 0 

(3.13) 

Finally, Eqs.(3.8 and 3.13) can be combined and a system of equations is generated 

of the form: 

Cr=R (3.14) 

which can be solved for the unknown Ir. 

8.2. Inft and Drag Calculations 

Once the circulation over each panel is known, it is possible to determine the 

lift and induced drag acting on the wing. If we follow the calculations performed 

in Ref. 4, then the Kutta-Joukowski theorem shows that the force per unit length 

on panel j is given by: 

F; = pV; x I; (3.15) 

where V; is the total velocity on panel j. The lift and drag can then be extracted 

to yield:* 

L; = (Fz, cosa — Fz, sina) Ay; 
(3.16) 

Ding; = (Fz, sina — F,, cos a) Ay; 
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This approach is recommended in Ref. 10. However, in the current study, it was 

determined that this approach tended to give values for drag which gave span effi- 

ciencies, e, greater than one. This indicated that the computed values for drag were 

low. These drag calculations were also highly dependent on the paneling scheme 

selected. It was later learned that this method is rarely used for drag determina- 

tion in industry computer codes.!! Furthermore, results given in Ref. 12, indicate 

that a near-field drag calculation is in fact sensitive to the paneling scheme and the 

geometrical layout. Since this approach does calculate the drag using near-field in- 

formation, it is subjected to panel sensitivity. This sensitivity is highly undesirable 

because as the design changes, the shape of the wing is changed. The new shape 

would require a different paneling scheme for optimal accuracy, and that is difficult 

to automate. A new approach needs to be used which is insensitive to the paneling 

scheme (providing the initial scheme has enough panels) 

A common alternative is found by calculating the induced drag in the far-field 

using the Trefftz plane./! In this approach, we note that in the far field the flow 

does not vary in the streamwise coordinate and is therefore 2-D. Furthermore, we 

know that in a plane perpendicular to the streamwise coordinate (the Trefftz plane) 

the 2-D flow is induced entirely by the trailing vortex sheet where the circulation 

along this sheet can be represented with the following Fourier sine series:1* 

T'(6) = 2bU S- An sinnd (3.17) 
n=1 

where @ is defined by 

cos 6 = 2y/b 

Since the circulation distribution has already been calculated, the coefficients of the 

series can be determined. In terms of this series representation, the downwash, w, 

is:}8 
sinné@ 

w= U. \- nAn— 

n=1 

3.18 
sin 6 ( ) 
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The induced drag is given by! 

5 Dina(9) = —Poo > (0)E (6) sin 6d8 

thus 

6 Dina(0) = —PooU2,b? > nA2 sin *n6d6 (3.19) 
n=1 

which is then integrated and nondimensionalized to yield the induced drag coeffi- 

cient, Cp,, as:!° 

  

Cc? 

Cy, = —= 
Di TAR 

  

oo A 2 

1+ > n{— 3.20 Xe(4) 0.29 
where AR is the aspect ratio. The lift coefficient, Cz, is defined by: 

CL=— (3.21) 

where qg is the dynamic pressure and S is the wing area. The total lift, Z, is given 

by integrating the lift per unit span, 

b/2 
L= 2 | Idy (3.222) 

0 

Or, in terms of the individual spanwise sections, 7: 

m 

L=2) ljAy; (3.226) 
j=l 

where m is the number of spanwise panels. The lift per unit span can be obtained 

with: 

Equation (3.20) can be written in terms of the span efficiency, e, as: 

Ci 
nARe 
  Cp= (3.24) 
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where 1 

  

00 A, \? 

e= 1 + d. n (=) 

The actual determination of the induced drag coefficient was done using the 

LIDRAG"* fortran code present in TRO3D.7* This routine determines the coeffi- 

cients of the Fourier series and returns the span efficiency, e, for a given lift distribu- 

tion. The code uses the principles given above with a 32 term series approximation. 

It should be noted that small errors will be incurred due to the dihedral caused by 

deflection because the LIDRAG routine does not account for this. However, Ref. 

15 gives some information which indicates that the error in e is negligible for small 

dihedral angles. Since the dihedral angles due to deflection encountered during this 

study were in fact small, this error will be neglected. 

The viscous drag on the wing is obtained by first determining the local section 

drag in the streamwise direction, Cz,, from the airfoil drag polar.!© The total viscous 

drag, Cp,, can then be determined with the following integral: 

5 pb/2 
Cp, = =/ Ca,cdy (3.25a) 

S Jo 

Or, in terms of the individual sections: 

Cp, = 

t
H
|
 bv 

m™m 

> Ca, Cj AY; (3.255) 

j= 1, 

where c is the local chord. 

The remaining drag is associated with the fuselage and tail,Cp,,. Since the 

aerodynamic shape of these surfaces is not being designed in this study, their con- 

tribution is assumed constant. This constant was determined in previous research 

by looking at a reference aircraft (see table 2.1), and subtracting the total wing 

drag coefficient from the aircraft’s total drag coefficient,* 

Coy, = CD, seo _ CD, (3.26) 
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where C’p,,,, is the drag coefficient of the reference aircraft at zero angle of attack, 

and C’p,,, is the drag coefficient of the design wing at the same angle of attack. 

While this above approximation is very crude, a detailed analysis of the fuselage 

and tail is beyond the scope of this study. 

3.8. Compressithility Correction 

Through the use of a Gothert transformation, the necessary compressiblity 

corrections can be applied to the aerodynamic analysis. The process is detailed in 

Ref. 17 and begins with the statement of the linearized potential equation, 

A7¢ A7¢ a7¢ 
2 — 
  

where § = \/1— M2, and ¢ is the perturbation potential. Under this linearization, 

the flow velocities are defined as follows: 

V = (U..cosat+u)i+vj + (Uco sina + w)k (3.28) 

where the perturbation velocities u,v, and w are: 

_ 29. oo, = 2 
ue 32’ ° = By" vO Oe 

Returning to the boundary conditions given in Eq.(3.12), we have: 

of of ; Of _ (Uso cosa + ular + va + Ucosina + w)a> = 0 (3.29) 

where {(z,y,z) gives the parametric equation for the surface. 

Since the VLM model given in section 3.1 is based on an incompressible flow, 

it is necessary to perform a transformation on Eq.(3.27) which gives it the same 
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form as the incompressible potential equation (8 = 1). This can be accomplished 

with the use of an affine transformation as follows:!7 

=a, y=by 2'=fz $= p'¢ 

If these expressions are substituted into Eq.(3.27), we indeed get the incompressible 

form. 
e? ¢' Q? ¢’ a? ¢' 

Ox!2 Oy! Az! =0 (3.30) 
  

In these transformed coordinates, the boundary conditions would be: 

of' 

Oz! 

‘ t 

(Uso cosa’ + uo 4 yr PA Dal ay + (Uc sina’ + w’) =0 (3.31)   

Now it is possible to use VLM method as before, but first the coordinates of 

the wing surface must undergo the affine transformation. Once the forces on the 

transformed wing are obtained, it is necessary to find the compressible values for 

these forces (or coefficients). Since the incompressible pressure coefficient is given 

as: 

Cl = -2U ou! (3.32) 

and u’ can be found to be £7u, then clearly: 

1 

The lift and induced drag coefficients are determined from integration of the pressure 

coefficient, therefore: 
1 

Cr = gan 

1 (3.34) 
/ 

Cp; = B2 D; 
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8.4. The Structural Model 

The structural analysis employs a modification of the WIDOWAC!® program 

and the details of this analysis can be found in Ref. 5. In short, the analysis uses 

the FEM with 1093 elements and 534 degrees of freedom. The wing is composed of 

684 anisotropic membrane elements for the graphite-epoxy wing skin, and 138 shear 

webs for the wing spars. Truss elements are utilized to model the spar caps and the 

vertical stiffness of the ribs.4 A simplified representation of the wing structure can 

be seen in Fig. 2.2. 
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4. THE AEROELASTIC FORMULATION 

4.0. Introduction 

The backbone of the multi-disciplinary design is the aeroelastic formulation 

which accounts for the interaction between the structural deformation and the aero- 

dynamic response. This interaction is complex and a set of simplifying assumptions 

must be made. We will make the same assumptions as in Ref. 6. First, it is as- 

sumed that all the aerodynamic response can be represented by a vector of forces, 

F,, acting at a predetermined set of structural points known as the load set.* Fur- 

thermore, it is also assumed that the full deformation of the structure can also be 

represented at this load set with a vector of deflections, 9. Finally, we assume that 

wing is affected by the aircraft only through the root angle of attack, a. With these 

simplifying assumptions, it is now possible to develop the wing’s full response to 

any given flight condition (provided the individual models are still valid) as in Ref. 

6. 

4.1. The Functional Dependencies 

In chapter 3 we saw that we could determine the forces acting on the wing 

if we knew the strength of the circulation acting on each panel. Additionally, we 

know that this force is also dependent on the angle of attack, the dynamic pressure, 

and the geometry and deflection of the wing. Since the wing’s geometry and the 

dynamic pressure are represented by the design vector, p, and the deflection is given 

by 8, we can write 

F, = F,(p, a, 9, LF) (4.1) 

  

* Chapter 5 details the complete process of representing all the aerodynamic forces at the load 

set. 
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We also recall from chapter 3, that I can be determined from 

Cr=R (3.14) 

where the matrix C is dependent on p and @, and the vector R is dependent on p, 

?, and a. With this information, we can conclude that 

Fr = TI (p,a, 6) (4.2) 

By combining Eqs.(4.1 and 4.2), the following functional dependence will be ob- 

tained.® 

Fu = hi (p, a, 6) (4.3) 

The performance requirement that requires the aircraft to remain balanced at 

all times yields another functional equation® 

fo(p, Fa) = 3nW(p) —-N7F, = 0 (4.4) 

where n is the load factor, W is the weight, and N7 is the summation vector. From 

this equation it is possible to determine the angle of attack. 

From Refs. 5 and 6 we see that we can write the complete set of nodal deflec- 

tions, U (determined from finite element analysis), by solving 

K(p)U = TF, + nF;(p) (4.5) 

where K is the stiffness matrix, T is a Boolean matrix to expand F;, to the full degree 

of freedom (DOF) model (see Ref. 5), and Fy; is the gravitational and inertial force 

vector. To obtain @ we simply multiply it by the transpose of the Boolean matrix. 

6=TTU (4.6) 

And finally, the combination of Eqs.(4.5 and 4.6) yields 

d= fa(p, F,) (4.7) 
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4.2. The Solution Process 

The three equations given in last section (4.3, 4.4, and 4.7) represent a system 

of coupled non-linear equations for which @, a, and Fy are the unknowns. The 

solution procedure is given in Ref. 6 and will be detailed here. First we assume 

that each of the functions, fi, fo, and f3, behave as ‘black boxes’ to which no 

modifications will be made during the solution process.® The function f; represents 

the aerodynamic processes and the function f3 gives us the structural processes. 

These equations can be solved through the use of the Newton’s method. 

The first step involved in the solution process is setting up the system in ho- 

mogeneous form. 

F, — filp,a,0) =0 (4.8a) 

— f2(p, Fa) =N7F, — inW(p) =0 (4.8b) 

9 — fa(p, Fa) = 0 (4.8c) 

The iterative step is then written as 

JAX =Af (4.9) 

where 
AF, 

AX=< Aa (4.10) 
Ad 

and 

filp, «°, 0°) ~— F? 

Af = fo(p, Fo) (4.11) 
f3(p, Fe) — 6° 

where the Jacobian, J, is given by 

| —Of;/Oa —df,/00 
J= | -Of2/OF, 0 0 (4.12a) 

~Ofs/OF, 0 
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or 

| -qR -@¢A 

J=|N7 0 0 (4.126) 
-S 0 l 

This gives us the Jacobian in terms of the incremental aerodynamic force vector, 

qR, the aerodynamic influence matrix, gA, and the structural flexibility matrix S.° 

The incremental force vector element qr; describes the change in force at nodez due 

to a unit change in angle of attack, and the flexibility matrix element s;; describes 

the change in deflection at node 1 due to a unit change of force at node 7. The 

aerodynamic influence matrix will be discussed in detail in chapter 5. 

With the above information, it is now possible to partially solve the above 

matrix equation for the unknowns AF,, Aa, and A@ as follows: 

(I — gSA”)A@ = SBAf; + aA Ss + Afs (4.13) 

_ Afe —_ NTAfS;, — gNTAA@ 
  Aa NTR (4.14) 

AF, = Afi + qdRAa+ qAAé@ (4.15) 

where 

RN? 
=|- —— 4.16 B=I NTR ( ) 

and 

A*=BA (4.17) 

To begin the iteration we select the initial conditions to be the rigid wing 

approximation, 

F°=F,,; a® =a,; 0° =0 (4.18) 
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where 

For = fi (p, 0, 0) + qa,R (4.19) 

snW _- N7f, (p, 0, 0) 

qNTR 
Oy =   (4.20) 

Now the vector of unknowns can be approximated by a single Newton iteration with 

Eqs.(4.13 — 4.15). 

Also critical to the aeroelastic considerations is the calculation of the divergence 

dynamic pressure, gp. We proceed as in Ref. 6 and assume that the calculation 

can be made at a fixed angle of attack because we assume that the wing diverges 

much faster than the pilot can change the angle of attack. Then it is possible to 

represent the system (Eq. 4.9) as 

|  —-—gA AF, | _ ft A) (a8 1g 20 
where we have an eigenvalue problem for g which represents the divergence dynamic 

pressure (the lowest eigenvalue is gn). The corresponding eigenvector is represented 

as [Fap,9@ pl’. If we wish to reduce the problem to a standard linear eigenvalue 

problem, A@ can be represented in terms of AF, which yields:® 

(AS - “1)AF, =0 (4.22) 
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5. THE AERODYNAMIC-STRUCTURAL INTERFACE 

5.0. Introduction 

In any multi-disciplinary analysis, separate models describe each physical pro- 

cess. For the work involved here, the models represent static structural and aero- 

dynamic responses of a wing. Each of these models has specific control points (i.e. 

points where displacements and/or forces are applied and calculated). For the struc- 

tural model, we generally have control points at each of the finite element nodes, 

and the aerodynamic control points would be the vortex lattice control points. 

As mentioned in section 4.0, the design problem necessitates the selection of 

load set points. The aerodynamic and structural nodes are possible candidates for 

these points. Unfortunately, use of either of these sets would result in an enormous 

problem with large demands on storage and computational time because many of the 

aeroelastic and sensitivity terms have dimensions which are defined by the number of 

load set nodes. Furthermore, many of the calculations necessary in the aeroelastic 

formulation and sensitivity calculations have a run time which is dependent on 

the dimensions of these terms (i.e. the A matrix). An alternate choice is found 

by selecting a small subset of the structural control points. For this study, the set 

contains only 48.* All forces applied to the structure are applied only at these points 

(designated by the vector F,), and all deflections are given only at these points 

(designated by the vector @). Figure 5.1 shows a sample set of aerodynamic and load 

set points. In general, the load set and aerodynamic control points will be different. 

Therefore, there is a need to interface the load set nodes and the aerodynamic 

control points, so that information can be passed between the two systems. For 

  

* The relationships between this subset and the full DOF finite element model can be found 

in Ref. 5. 
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this specific problem, the interface involves the transference of displacements at 

the load set to the aerodynamic control points, and the transference of forces on 

the aerodynamic control points to the load set. This study looks at two different 

approaches to the interface model. 
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Figure 5.1. Aerodynamic Points and Load Set Nodes 

5.1. Previous Work 

The first model is a discrete zonal scheme developed in previous research by D. 

Polen.* The basis for Polen’s approach lies in a force and moment balance which 

conserves the force and moment totals of the entire force vector. For example, if a 

force is known at a particular aerodynamic point F,,, and that point is surrounded 

THE AERODYNAMIC-STRUCTURAL INTERFACE 30



by three load set points, then the forces at the load set points F,, can be calculated 

from 

3 

\” Fa; = Fe, (5.1) 
t=1 

Ms
 

Fy; (%a; — £0) = Fe,(£z; — £0) (5.2) J 

1 i 

Fi; (ye; — yo) = Fz, (ye, — Yo) (5.3) M:
 

1=1 

This balancing process is repeated for each aerodynamic node, and the resulting 

contributions to each structural node is stored in a matrix format such that 

Fu = DoF; (5.4) 

where F, and Fy, are the vectors of forces at the load set and aerodynamic points 

respectively, and Do is the transformation matrix. The deflections at each of the 

aerodynamic points (Z,) can be determined by requiring the work done by the 

aerodynamic forces and the load set forces to be the same. We get 

F'9 =F! 2Z, 

(DoF.)76 = FZ, 

F?D70 = F! Z, 

so that 

Z,=Dd76 (5.5) 

This gives us a result in terms of our previously determined transformation matrix. 

Essential to the Vortex Lattice Method is the correct calculation of the slope 

at the surface of the wing. The zonal scheme makes slope calculations trivial since 

each aerodynamic point lies in a ‘zone’ formed by three structural points. The 
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normal to plane which passes through those points will give the slope (see Fig. 5.2). 

From this figure, it is easy to see the linear interpolation of the approach. 

    
Normal to surface 

oe 

= C 

me 

——— Pane through load set points 

Aerodynamic point 

Lar Y 

        

  
Figure 5.2. Plane Through Three Load Set Nodes 

This approach is very straightforward and conceptually sound. Table 5.1 gives 

a sample of the resulting force and moment totals for the transference of forces at 

the aerodynamic points to the load set. The almost exact agreement given is due 

to the limited number of necessary calculations. Unfortunately, this method has 

drawbacks. The first of which is the difficulty in finding the most optimal ‘zone’ for 

each aerodynamic point. Clearly, there is almost an infinite number of combinations 
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for each point and some criteria must be determined for proper selection. Reference 

4 addresses this problem, but the end result is a model with extensive logic and 

significant computational costs. Another problem is not so obvious but is more 

critical. As the wing changes shape (which can happen if a design parameter is 

changed), an aerodynamic point can change its ‘zone’. This switch in zones can lead 

to discontinuities in drag as a design parameter is changed. Figure 5.3 illustrates this 

as the tip span is increased. If a change should happen while a design parameter is 

perturbed, tremendous errors in sensitivities would incur. Lastly, the interpolation 

the method performs is linear. Since a linear approach may not give us the best 

accuracy, we have another reason to look at an additional model and compare the 

  

            

  

two. 

Table 5.1. Force and Moment Totals for Old Approach 

Lift X-Moment Y-Moment 

Exact 7.9659x10°N | 4.9710x104N-m]| -1.6975x104N-m 

Transferred | 7.9659x10°N| 4.9710x104N-m| -1.6975x104N-m 

1.020 

1.0154 

S 1.010 

se 1.005} 

= 1.000b 
Ryo 

© 0.995> 
2 

0.9904 

0.985 | _ | | | ,       
12.3 12.4 12.5 12.6 12.7 

Tip Span (m) 

Figure 5.3. Drag vs. Tip Span for Previous Model 
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5.2. Shape Function Method 

An alternate approach can be found if the problem is viewed in the opposite 

direction. If we first examine deflections instead of forces, shape functions can be 

employed to represent the deformation in functional form. With this formulation, 

shape functions interpolate the deflection of the load set points to the aerodynamic 

points. This approach is by no means new; Ref. 19 lists a few of the multitudes 

of schemes that have been proposed, most using plate theory. Reference 19 also 

presents its own approach which doesn’t require any particular grid structure for 

the aerodynamic or structural points. Since our load set points do in fact have 

a particular grid structure (see Fig. 5.4a), we can take advantage of that and 

transform this grid into rectangular cells (see Fig. 5.4b). Next, we can employ the 

following cubic interpolation functions on the serendipity cells:?° 

W, = #(1— €)(1 —)[-10 + 9(€? + ”)| (5.6a) 

Wo = gy(1+ €)(1 — n)[-10 + 9(€7 +. n”)| (5.66) 

Us = A(1+ O(1 +n)[-10 + 9(€? +n9)] (5.6) 
Wa = (1 — O(1 + n)[-10 + 9(€? + n7)| (5.6d) 

Us = S(1— a) — (1-36) (5.6e) 
Ue = H(l—n)(1 + €)(1— 36) (5.6f) 

U7 = H(1+ €)(1 — n°)(1 — 3n) (5.69) 

Wg = (1+ €)(1—n”)(1 + 3n) (5.6h) 

Wo = gy(1 + n)(1 — €7)(1 + 36) (5.61) 

Wio = gx(1 + n)(1 — €7)(1 — 36) (5.63) 

Wir = (1 — (1-7) (1 + 3n) (5.6k) 

Wie = Z(1— 6)(1 — 07) (1 — 3n) (5.61) 
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The normalized coordinates, € and n, are defined in Fig. 5.4c which shows a rect- 

angular element with the necessary nodes. Since we only have data for the four 

corner nodes, we must interpolate values to the other 8 side nodes. This can be 

accomplished by using a linear or cubic spline along each grid line. The use of a 

linear spline results in linear surface splines, and a cubic spline gives cubic sur- 

face splines, which in effect gives us two separate models to consider. It should 

be noted that the use of a linear spline with cubic shape functions is an inefficient 

approach to a linear surface spline. In this case, the best method would employ 

linear isoparametric functions given by:?° 

V1 = 1(01-€)(1-n) (5.74) 
We = (14+ e)(1—n) (5.76) 
Wa = (1-81 +7) (5.7¢) 
Ws = 10+ (1 +n) (5.74) 

Clearly, only the four corner nodes are necessary and no iterpolation along grid 

lines is needed. 

While each approach will result in a linear surface spline, the cubic functions 

will have a slight penalty in CPU time. The advantage in using the cubic functions 

for both the linear and cubic surface splines lies in the fact that the same code 

can be used for the two different cases, which simplifies the comparison process. 

However, once the best model is selected the most efficient technique should be 

used. 

A possible problem with the cubic surface spline lies in the boundaries of the 

grid. It is necessary to select the value of the second derivative at these boundaries, 

and a poor selection may adversely effect the results. A linear boundary will be 

used for this study because of the limited number of grid points along any given grid 

line (This would result in a linear spline only near the boundaries of the surface). 
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(A) Grid Structure of Load Set Nodes 
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(B) Transformed Grid (C) Serendipity Element with Nodes 

Figure 5.4. Sample of Node Grid Structure and Serendipity Element 
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As before, it is convenient to put the interpolation in a matrix format. This 

result can be obtained by making a unit perturbation at a single load set point 

and calculating the resulting displacement at each of the aerodynamic points. The 

amount of displacement at each aerodynamic point is determined by first locating 

the cell in which the point lies, and then using the following summation?° 
12 

Zp = ‘> 2iV; (5.8) 

Once the unit perturbation is cycled through each load set point, a transformation 

matrix can be obtained and we have the vector of displacements at each aerodynamic 

point, 

Z,= D6 (5.9) 

where D is now the transformation matrix. The forces applied to the load set points 

can be found with 

F, = D’F, (5.10) 

where this equation is derived as before for Eq.(5.5). 

The calculation of slopes with the shape function method is more involved than 

that of the previous method, but it is not difficult. The first step is to represent 

the surface deflection in its series formulation and take the derivatives with respect 

to z and y 

  

12 
dZ,z dV; 

dp = () (5.11) 
t=1 

dZ, wn (av; i; = oa (SF) (5.12) 
t=1 

where z; are the nodal deflections for the given cell. The complication arises because 

    

we do not know the shape functions in terms of z and y. However, we do know zg, 

y, and W; in terms of € and 7, so we can write the following 

dv; Oo Oy dv; 

a | | ae Be} | ae (5.13 
av; { | dr Oy dv. 
“dn. an onl \ dy 
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where 

Or (OV; 

ag - a ( Og (6-14) 

2 yo, (2) (5.15) 
an =" \ On 

Oy _ 2 Ov; 

ae dy ( ag 678) 

Oy _ Sy; (S2) (5.17) 
On 7 \ On 

Once again, it would be more appropriate to use the linear isoparametric functions 

given in Eq.(5.7) because z and y only vary linear along each grid line. However, 

for ease of programming, the cubic shape functions were used with a linear spline 

along the grid lines to determine the values of xz and y along the side nodes. 

Finally, the necessary derivatives of V,; can be found through a simple inversion. 

ay; dz dy)" ( dh; 
dz de OE de 
dv; ( |oar 2a ay; (5.18) 
‘ay ) Lan On) a 

These calculation can be found in almost any finite element text (see Ref. 20). 

Again we have a very simple model to the interface, but now with a more gen- 

eral approach and significantly less logic. The order of interpolation of this method 

can easily be changed from linear to cubic, which may produce more accuracy in 

the results. Table 5.2 gives the resulting force and moment totals for a transfer 

of aerodynamic forces to the load set for the new method. The small difference 

between the aerodynamic set and the structural set occurs because the shape func- 

tion method involves more equations, and truncation errors build up. The following 

sections will compare the results of the two methods and make a selection on which 

one to choose. 
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Table 5.2. Force and Moment Totals for Shape Functions 

  

Lift X-Moment Y-Moment 

Linear 

Exact 1.5527xX104N | 1.1137x10°N-m| -8.9618x10°N-m 
Transferred] 1.5527x104N]| 1.1137x105N-m| -8.9633x10°N-m 

Cubic 

Exact 1.5527x104N | 1.1137x105N-m| -8.9618x10?N-m 
Transferred | 1.5527x104N| 1.1136x105N-m| -8.7014x10°N-m             

5.3. The A Matriz 

Mentioned in section 4.2, the A matrix defines the influence of deformation on 

the aerodynamic forces, where qa;; is the change in force at node 1, due to a unit 

displacement at node 7. By thinking of the A matrix in this way, a method for 

its calculation is clear. A small perturbation is made at node 7, and the resulting 

change in forces is divided by the magnitude of the perturbation and stored in the 

jth column of the A matrix. Once all of the nodes have been cycled through, the 

complete matrix has been found. Clearly, the accuracy of the A matrix is highly 

dependent on the aerodynamic-structural interface. Because of this dependence, 

we have a way to at least partially check the integrity of the interface model. 

The first step in checking the A matrix (and consequently the interface model) 

is the proper selection of perturbation size. Since a uniform deflection of the wing 

should result in no change in force, the sum of the A matrix elements should be 

zero. Figure 5.5 represents the sum the of the A matrix verses the perturbation 

size for each of the interface models. Values larger than 1.0 x 10~°m are to large 

because the response is non-linear, and values smaller than 1.0 x 10~°m result in 

large truncation errors. The optimum perturbation size is around 1.0 x 1077m. All 

calculations are made on an IBM 3090 at double precision. 
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The next check of the models involves a measure of the accuracy of the A 

matrix. The accuracy for this test is a measure of how well A@ approximates the 

exact changes in the forces. The deformation is the same for all of the models so 

that an accurate comparison can be made. The comparison will be made by plotting 

the exact lift verses the approximate lift. 

F, = fi(p, a0, €90) (5.19) 
rn 

Lezact = S° Fa; (5.20) 

t=1 

Lapproz = Lo + ¥_ qai;][€90,| (5.21) 
t=1 

Where @p is a set of deflections which is multiplied by a scalar € that is varied from 0 

to 1, and ao is some initial angle of attack.* Figure 5.6 gives Lezact and Lapproz for 

the previous interface model, while Figs. 5.7 and 5.8 give it for the linear and cubic 

surface splines respectively. It is easy to see that each method’s approximation is 

linear and tangent to the exact calculations at the origin. Unfortunately, a direct 

comparison of the three plots cannot be made because the exact calculations also 

depend of the interface model used. What we can compare, is how well each of the 

models approximate their own exact solutions, with the error given by 

    

Np Np 

e= IS ae — AF ai pron YA Fa. oo. (5.22) 

t=1 t=1 

A Fu eact = Fy — Fay (5.23) 

AF a, pproz = GA[E4| (5.24) 

Figure 5.9 compares the error of each method as € is increased. In each case the 

error is caused by the non-linearity of the response. From this figure it would seem 

that the cubic surface splines produce the lowest errors, but not by enough to justify 

its use based on accuracy alone. 
  

* 6, was actually the elastic response of the wing at the initial design conditions with the 

linear shape function interface, and a, was the rigid wing angle of attack. 

THE AERODYNAMIC-STRUCTURAL INTERFACE 40



  

      

  

      

    
  

ZI 
© 

1071 F 

1 — Old Method “ 
4 — Linear Shape Functions 4 

~ 1n-2 | Q O — Cubic Shape Functions O 
© 10 — 

A. 2 

q Zi 
—~ * Z 

2 1073 + 5 
& ix 

E Z 
a g 

1074 + N 

7 

10-5 + ~ S ° 
—__! | eo i ! al ! 2 

10-10 10-8 10-6 10-4 
A®(m) 

Figure 5.5. Sum of the A Matrix verses Step Size 

2.160 

2.155- 
O — Exact Lift 

-~ 2.1504 4S — Approximate Lift 

o 
S. 2.145} 
ae. 
2 2.1404 
4 

— 2.1385F- 
a) 

oO 
FE 2.130F 

2.125f- 

2.1207 & _ l a 

0.0 0.2 0.4 0.6 0.8 1.0 

E 

Figure 5.6. Exact and Approximate Lift for Old Approach 

THE AERODYNAMIC-STRUCTURAL INTERFACE



  

      

      

  

       

Z190F O — Exact Lift 
_ 4 — Approximate Lift 

S 
x 2.14F- 
Z, 
= 
a 
~ 2.134 
3S 

wa) 
° 
4 

2.12F 

elit 5 I 4 _ 1 _1 

0.0 0.2 0.4 0.6 0.8 1.0 

E 

Figure 5.7. Exact and Approximate Lift for Linear Surface Splines 

2.18 

2.174 . 
DO — Exact Lift 
4 — Approximate Lift 

6. 2.165 

< 
= 2.15¢ 
= 
FJ 214+ 
© 

© 2i3f 

2.12F 

e116 4 1 l _ 4 l     
  

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.8. Exact and Approximate Lift for Cubic Surface Splines 

THE AERODYNAMIC-STRUCTURAL INTERFACE 42



  0.14 F 

0.12 
O ~ Old A Matrix 
4A — Linear A Matrix 

0.10 O — Cubic A Matrix 

,, 0.08 
O 

o 
mj} 0.06 

0.04 

0.02 

0.00         
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5.4. Interface Model Selection 

In order to select an interface model one must consider not only the accuracy 

of the given method, but its computational cost. Based on the error calculations 

made in the previous section, the shape function approaches look to be the most ac- 

curate, with the cubic version slightly more accurate than the linear one. The shape 

function approaches also use much less CPU time than the previous method.* This 

savings is important because the transformation matrix will have to be calculated 

each time the planform is perturbed. Furthermore, the discontinuous behavior of 

the previous method as discussed in section 5.1 makes it very undesirable. There- 

fore, the shape function method will be used throughout the rest of the study with 

  

* See table 5.3 and note that the CPU time for the linear approach could be reduced by 

approximately 20% if the four linear isoparametric functions are used. 
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the selection of the order to be determined when the accuracy of the sensitivity 

calculations is being considered (Chaps. 6 and 7). 

Table 5.3. Run Time to Compute Interface Transformation Matrix 

Old Method Linear Splines Cubic Splines 

| 120.858 | 9.08s | 9.18 
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6. THE DRAG SENSITIVITY 

6.0. Introduction 

Crucial to the approximate optimization (Chap. 8), is the accurate calculation 

of the drag sensitivity. With this sensitivity, one can make a linear approximation 

of the drag which is assumed to be accurate in some small neighborhood near the 

design point in question. Since the sensitivity is the derivative of the drag with 

respect to each design variable, the computational cost could be considerable if 

efficient methods are not followed. The following sections detail the derivation of 

the sensitivities as given in Ref. 6, and discuss the numerical procedures necessary 

to obtain accurate results. These results are then presented for various cases to 

justify the final numerical approach, and to determine the source of any errors. 

Finally, the results obtained are compared to past research. 

6.1. The Drag Sensitivity Formulation 

As stated above, the drag sensitivity is simply the derivative of the drag with 

respect to each of the design variables. A simple brute force approach to this 

calculation would be to apply a forward difference with a small perturbation on a 

single design variable. Each forward difference would provide the derivative of the 

drag with respect to that design variable, holding the other variables constant. 

pt — Dip + Api) — D(p) : (6.1) 
||Apil| 
  

where p is the vector of design variables and Ap, is a vector with the z’” element 

equal to the perturbation and all other entries equal to zero. While this direct 

approach would calculate a very accurate tangent to the drag (providing that the 

correct Ap, is selected), it would be an extremely expensive method to employ. This 
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direct calculation of the flexible wing drag sensitivity would result in 3.25 hours of 

CPU time.* Since the drag needs to be approximated at several times during the 

design process, this large amount of CPU time is unacceptable. A more sensible 

approach can be found by recognizing a functional form of the drag in terms of a, 

0, and p. 

Looking back at section 4.1, we recall that the functional dependence for F, is 

as follows: 

Fy = fi(p, a, @) (4.3) 

Since drag is a function of the lift, the drag can also be written as: 

D = D(p, a, 8) (6.2) 

where we say that the drag is a function of the design variables, p, the angle of 

attack, a, and the vertical deflections, 6. Note that a and @ are actually functions 

of p, so Eq.(6.2) ultimately reduces to D = D(p) to which Eq.(6.1) is applicable. 

To determine the drag derivative in this form, the chain rule is employed to 

obtain: 

Di = (3) + (32) a! + (3) Q’ (6.3) 
Op a,@ da p,0 0g Pp, 

where 

Oa 00 
i= =; ‘= 6.4 a Op’ g Op ( ) 

Traditionally, the values of a’ and 6’ are evaluated by differentiating Eqs.(4.13- 

4,15)®, but this approach requires differentiating the A and S matrices with respect 

to p. This process is very expensive, and the total cost would approach that of the 

  

* The majority of this time is in the evaluation of the A matrix and the aeroelastic formulation 
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direct analysis. If instead, we follow Ref. 6 and differentiate Eqs.(4.3, 4.4, and 4.7), 

we can obtain: 

JY’ = f' 

where 

Fy 
y’= a (6.5) 

and 

fi 
fi=9 fy (6.6) 

fs 

f= (34) += 1,2,3 (6.7) 
Fa a, 

Note that the Jacobian, J, is exactly the same as that in Eq.(4.12), and once again 

we can partially solve the system to yield 

SR 
(I _ qSA*)6’ >= SBfi + NTR fit+fs (6.8) 

ERENT SH = NAO 
— qNTR 
  (6.9) 

Fi = fi + qRa’ + gAé’ (6.10) 

This approach clearly uses no derivatives of A and S; only the partial derivatives 

of f1, f2, and fz with respect to p are needed (F,, a, and @ are fixed). Since these 

calculations are fairly inexpensive, this approach is considerably less expensive than 

that of the traditional and direct methods.* In the following sections, the numerical 

methods used for the evaluation of these sensitivities are analyzed. 

  

* This approach needs only an additional 163 seconds 
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6.2. The Numerical Evaluation of Sensitivity Terms 

The first step necessary to evaluate Eqs.(6.8-6.10) is the determination of f/f, 

fg, and f§. Each of these terms will be calculated using a forward difference and 

will result in either a vector or matrix quantity. Since these functions are treated 

as ‘black boxes’ as in section 4.2 the calculations are straightforward. 

The f,; function represents the aerodynamic processes, and returns a vector of 

forces at the load set nodes. A forward difference for f{ yields: 

filp + Ap;, a, 8) _- filp, a, 8) 

||Ap;|| 

  fi, = (6.11) 

where fi, is a vector which gives the derivative of the load set forces with respect 

to the j*” design variable. The perturbation vector A p; is exactly the same as that 

in section 6.1. Since the values of a and @ are held constant, f; is only affected by 

changes of the planform and the dynamic pressure. Therefore, 7 only needs to be 

varied from 1 to 9, and the last 30 columns of the f; matrix are set to zero. The 

final dimensions of fj are the number of load set nodes x the number of design 

variables (48 x 39). 

The f function represents a force balance for the aircraft. Recalling Eq.(4.4) 

we have 

fo(p, Fa) = $nW(p) —N7 Fy (4.4) 

The derivative of this equation with respect to p yields 

f, = $n (6.12) 

  fo, = 45n (6.13) 
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where f2, is a scalar which represents the derivative of total aircraft weight with 

respect to the j*” design variable. Note that weight does not depend on the dynamic 

pressure or the twist of the wing, so the derivatives with respect to the 7°”, 8**, 

gt? design variables are zero. The final dimensions of fi are 1 x 39. and 

The function f3, gives the structural response of the wing and returns a vector 

of deflections at the load set nodes. The forward difference yields 

f _ fa(p + Ap;, Fa) — fa(p, F,) 

"3 |Ap,|| 
  (6.14) 

where f3. is a vector which represents the derivative of the deflections with respect 

to the 7** design variable. Since the forces are held constant, the columns of f§ for 

the twists, dynamic pressure, and usable fuel are zero. The final dimensions for f3 

are the same as that of fj. 

The final function is the flexible wing drag. The calculation of this term is 

performed at the same time as that of f}. However, instead of a vector of force 

derivatives for each design variable, we get the scalar quantity of the drag derivative 

for each variable (Note that a and @ are still held fixed). The forward difference 

yields 

(6.15)   

(3) _ D(p+ Ap;,a,0) — D(p, a, 8) 

OP / 2 |Ap;|| 
As for f{, the last 30 derivatives will be zero. 

Looking at Eq.(6.3), we see the derivatives 0D/da and @D/00. These terms 

are related to the R vector and A matrix respectively (recalling that R = OF, /0a 

and A = OF,/00). Of these derivatives, 0D/Oa and the R vector are the most 

trivial to calculate. For each, a forward difference with a small perturbation in 

angle of attack, yields the respective derivative. 

fi(p,a + Aa, 8) ~~ filp, a, 9) 

R= Aa 
(6.16)   
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and 

D(p,a + Aa, 0) — D(p, a, 6) 
OD/da = 

[Oc Aa 
  (6.17) 

The final dimensions of the R vector are 48 x 1, while 0D /0a is a scalar. The final 

unknown terms are the A matrix and 0D/00. The calculation of the A matrix was 

discussed in detail in section 5.3, and 0D/0@ is calculated the same way with the 

result being a vector of drag derivatives, with dimensions 1 x 48, instead of a matrix 

of force derivatives. 

6.8. Discusston and Comparison of Results 

To this point the sensitivity analysis has been developed and computed in the 

same manner as that of previous research (with the exception of the aerodynamic- 

structural interface and the aerodynamic model). The results obtained in the past 

contained a significant number of assumptions which greatly affected the results. 

Furthermore, a parametric study of the accuracy was never performed so that a 

greater depth of understanding for the numerics was not possible. Figure 6.1 shows 

the exact and approximate drag verses relative design change for past research, 

where the change in design variables is given in table 6.1 (note that the structural 

terms represent values above the minimum gauge). Ideally, the approximation 

would be perfectly tangent to the exact drag at the initial point.* Clearly, there is a 

significant disparity between the approximation and the tangent. While some error 

may be expected because of the large number of calculations and finite difference 

approximations involved in the chaining process, it was felt that the error was 

excessive and some attempt should be made to improve it. 

As mentioned in chapter 5, the selection of the interface model needs to be made 

at this time. The most rigorous approach to this selection would be to make the error 
  

* This would be obtained with the direct sensitivity calculation, but at a prohibitive cost 

THE DRAG SENSITIVITY 50



analysis that follows on each method. Unfortunately, preliminary investigations on 

the use of the cubic approach yielded problems with the calculation of divergence 

pressure and the associated sensitivity. For these calculations, unreasonable results 

were obtained for the case with the linear endpoints on the spline. The endpoint 

scheme was changed to a quadratic one and the result were no longer unreasonable. 

However, since a robust approach to the interface is desirable, further investigations 

will be limited to the linear surfaces, which still yield very good results. A more 

detailed explanation associated with the cubic interface will be reserved for the 

following chapter on divergence sensitivity. 
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Figure 6.1. Exact and Approximate Drag for Previous Results 
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Table 6.1. Initial and Final States of Relative Design Change 
  

  

      

Variable Initial State Final State 

1 6.9163 x 10°m 6.6402 x 10°m 

2 3.7650 x 10°m 3.8706 x 10°m 

3 1.7250 x 10°m 1.6570 x 10°m 

4 5.7537 x 10°m 5.9919 x 10°m 

5 1.2248 x 10'm 1.2744 x 10'm 

6 4.5500 x 107'Rad 3.9362 x 10°'Rad 

7 0.0000 x 10°Rad . -3.1210 x 107?7Rad 

8 0.0000 x 10°Rad 7.5000 x 10-*Rad 

9 2.6740 x 10°Pa 2.8268 x 10°Pa 

10 2.1902 x 10*N 2.3457 x 10*N 

11 7.6200 x 10-’m 4.2207 x 10-*m 

12 7.6200 x 10-’m 1.3149 x 10-*m 

13 7.6200 x 10-7m 1.5642 x 10-*m 

14 7.6200 x 10-7m 2.0236 x 10°-7m 

15 8.5950 x 107*m 1.6315 x 10°-°m 

16 4.2000 x 10-*m 3.6612 x 10°-’m 

17 7.6200 x 10-’m 6.3300 x 10°§*m 

18 7.6200 x 10-§&m 2.4323 x 10°-’m 

19 2.0697 x 10-°*m 2.1523 x 10-*m 

20 2.3910 x 10°-*m 2.4862 x 10°-*m 

21 3.2640 x 10°-*m 3.1336 x 10°-*m 

22 2.3145 x 10-°*m 2.2222 x 10°*m 

23 7.6200 x 107*m 1.6375 x 107*m 

24 7.6200 x 10-*m 4.8575 x 10°-*m 

25 7.6200 x 10°-*m 2.0868 x 10-*m 

26 7.6200 x 10-*m 1.9452 x 107*m 

27 9.3510 x 1077m 2.9506 x 10-*m 

28 7.6200 x 10-*m 7.8316 x 10-*m 

29 7.6200 x 10-*m 1.7946 x 10°*m 

30 7.6200 x 10°-°*m 2.3646 x 107*m 

31 2.3460 x 107m 2.2535 x 10-*m 

32 3.3150 x 107*m 3.1830 x 10°-*m 

33 4.7430 x 10°*m 4.5535 x 10-°*m 

34 2.2128 x 107-*m 2.1247 x 107-*m 

35 1.4025 x 107-*m? 1.2622 x 107°m? 

36 8.1930 x 10-‘*m? 3.1662 x 10-°m? 

37 7.5330 x 107m? 4.8013 x 10-*m? 

38 3.1620 x 10-*m? 5.6171 x 10°-*m? 

39 4.7439 x 10-'Rad 3.3350 x 10°'Rad   
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Table 6.2. Direct Drag Sensitivity Results 

  

  

      

Variable| a’ (Rad/m) D’ (N/m) 
1 -3.190x 107° 2.385 x 10? 

2 -2.204x 107? 1.579x 10? 

3 -1.702x 107? -1.301 x 10? 

4 -2.134x 107? -8.386 x 10? 

5 -1.366x 107? -8.536 x 10? 

6 3.135 x 107? 1.939 x 10° 

7* -7.463x107' -7.428 x 10° 

8* ~-2.233x107? -3.429x 10° 

* Derivatives are per radian       

Table 6.2 gives the results for the direct sensitivity calculation for the first eight 

design variables with the nominal set of initial conditions (see table 8.1). Since the 

direct calculation will in fact give the exact tangent to drag calculation, this table 

will give us results with which to compare the computed sensitivities. While more 

than the first eight variables would be useful, the excessive cost of the calculation 

limited the list to the planform variables. This was considered only a minor problem 

because these derivatives are significantly larger (thus having the greatest impact 

on the analysis) than the others, and they had the largest error. A preliminary 

investigation determined that the total error in drag prediction with respect to the 

other 31 variables was approximately 3%, which is quite acceptable. 

6.8.1. The Inttial Results and Improvements 

The first step in the error analysis was the selection of a baseline case with which 

to start. This case makes most of the same assumptions as in the past but with 

the new interface and aerodynamic models. Another major difference between this 

case and the old one involves the transformation matrix calculated in the interface 

model. In the past is was assumed that this matrix was not significantly changed 
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by small perturbations in the planform design variables. While this assumption 

is obviously not true, the computational costs associated with the previous inter- 

face model probably eliminated the possibility of updating this matrix as needed. 

Since the new model uses significantly less computational time, there is no need to 

continue this assumption. 

The results in the baseline case for the angle of attack sensitivity, a’, and the 

drag sensitivity, D’, are given in table 6.3. A listing of 6’ and F) would also be 

useful, but since each of these is a matrix, it would be difficult to represent them 

with any brevity. One quickly notices that the error associated with the angle of 

attack sensitivities is reasonably small and acceptable, so it is reasonable to assume 

that 6’ has a similar amount of error. F! may have a slightly larger amount of 

error because any small amount of error in 6’ and a’ will have an effect on this 

calculation. However, it is still reasonable to assume that the error is acceptable. 

The sensitivity associated with the drag has a significantly larger error especially 

with design variables 2, 3, 6, and 7. A similar table of derivatives and errors for 

the previous results would be useful, but such calculations were never performed. 

However, figure 6.2 illustrates that there is still a significant improvement in the 

overall drag prediction as compared to previous results over the same variation in 

design variable (see table 6.1). 

Table 6.3. Baseline Drag Sensitivity Results 

  

  

        
      

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.127x 107° 2.0% 2.443 x 10? 2.4% 
2 -2.184 107? 0.9% 2.360 10? 49.5% 
3 -1.709x 107? 0.4% -1.060x 10? 18.5% 
4 -2.076x 107? 2.7% -7.819x 10? 6.8% 
5 -1.312 107? 4.0% ~8.389 x 10? 1.7% 
6 2.915x107? 7.0% — 1.115x 10° 42.5% 
7* -7.286x 107? 2.4% -5.341x 10° 28.1% 
8* -2.188x107! 2.0% -3.019x 10? 12.0% 

* Derivatives are per radian 
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Figure 6.2. Exact and Approximate Drag for Baseline Case 

The second assumption to be considered was the design point at which 0D/00 

is calculated. In previous research, this quantity was determined at the rigid wing 

conditions (a = a,, 8 = 0) and assumed to not change much from that point. This 

term should be calculated at the flexible wing conditions, since the flexible wing drag 

is the quantity being approximated. The justification behind this assumption may 

again have been computational time considerations. Since 0D/0@ and the A matrix 

are calculated at exactly the same time, the derivative is at the rigid wing conditions 

where the A matrix is first calculated. Table 6.4 gives the new sensitivity results 

with the removal of this assumption. There is clearly a very significant improvement 

in the second, third, and sixth terms, with a slight degradation in a few of the terms. 

The overall result in drag prediction is more accurate, and this increased accuracy 

more than justifies the additional 225 second cost. 
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Table 6.4. Drag Sensitivity Results with Correct 0D/00 

  

  

        
      

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.127x107° 2.0% 2.435 x10? 2.1% 
2 -2.184x 107? 0.9% 1.762 x 10? 11.6% 

3 -1.709x 107? 0.4% -1.346 x 10? 3.5% 
4 -2.076x 107? 2.7% -7.919x 10? 5.6% 

5 -1.312x107? 4.0% -8.089x 10? 5.2% 
6 2.915x107? 7.0% 1.788 x 10° 7.8% 
7* -7.286x107! 2.4% -5.261 x 10° 29.2% 
8* -2.188107! 2.0% -2.875x 10° 16.2% 

* Derivatives are per radian 
  

6.8.2. Perturbation Size Considerations 

At this time, it was decided to analyze some of the step size selections for 

the various sensitivity calculations. In section 5.3 this analysis was made for the 

calculation of the A matrix. Since this matrix is closely related to 0D/00, this 

analysis was assumed to also be adequate for 0D/00, and the perturbation in 6 

was left at its optimal value. 

Another step size selected in the past involves the structural ‘black box’, fs, 

and the weight. The selection of a step size for the weight sensitivity, W’, proved to 

bea difficult task. A ‘flat region’ where there is little variation in the finite difference 

calculation verses the perturbation size was never found. At perturbations smaller 

than 1x 10~?m, the difference calculation yielded erratic results.* The final decision 

was to leave the perturbation at these lower bounds, which is the value selected by 

P.J. Kao® and M. Rais-Rohani. The step size selections for f{ was also left at the 

value selected by P.J. Kao’. 
  

* Note that the structural thicknesses were scaled by 1x10* so the perturbation for these 
terms would be 1xX10~5m. The usable fuel was scaled by 1x107~* which yields a perturbation size 
of 1x107N. The step size for the dynamic pressure was fixed at 10Pa. For the twist and sweep 

terms the units are in radians. 
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The selection in the perturbation size for the calculation of the R vector and 

8D/d«a also proved to be difficult. A similar lack of a ‘flat region’ as before was re- 

sponsible for for the problem. Values of Aa smaller than 1 x 10~2deg also produced 

erratic results due to truncation error. The final selection of this perturbation size 

was left at 1° as selected by D. Polen® in previous research as it seems to produce 

reasonably good results. 

The final perturbation size to be considered is the one for fj and (@D/Op)a,9. 

The easiest way to analyze the impact of the perturbation on these terms is to 

vary the step size and look at the resulting changes in the angle of attack and drag 

sensitivities. The baseline case above, has a perturbation of 1 x 10~?m (units are 

in radians for the twist, sweep, and orientation terms, and in Pa. for the dynamic 

pressure). This value was reduced to 1 x 10~°m in order of magnitude steps. The 

results are given in tables 6.5-6.7. The reduction in step size to 1 x 10~*m clearly 

has a positive impact on some of the sensitivities. This gives the conclusion that 

baseline value of 1 x 10~?m is too large. Since the sensitivities do not significantly 

change when the value is reduced further, the value was selected to be 1 x 107*m. 

Table 6.5. Drag Sensitivity Results with Ap; = 1x10~3m 

  

  

          

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.130x 107? 1.9% 2.435 x 10? 2.1% 
2 -2.185x107? 0.9% 1.749 10? 10.8% 
3 -1.710x10-? 0.5% -1.360x 10? 4.6% 
4 -2.076x 107? 2.7% -7.916x 10? 5.6% 
5 -1.312x10-? 4.0% -8.089x 10? 5.2% 
6 2.740107? 12.6% 1.733 x 10° 10.7% 
7* -7.298x107? 2.2% -6.036x 10? 18.7% 
8* -2.191x107? 1.9% -3.083 x 10° 10.1% 

* Derivatives are per radian       
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Table 6.6. Drag Sensitivity Results with Ap; = 1x10~*m 

  

  

            

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.131«107 1.8% 2.435 x 10? 2.1% 

2 -2.185x107? 0.9% 1.747 x10? 10.6% 
3 -1.711x107? 0.5% -1.362 x 10? 4.8% 
4 -2.076x 107? 2.7% -7.916x 10? 5.6% 

5 -1.312x107? 4.0% -8.089x 10? 5.2% 
6 2.732 x 107? 12.9% 1.730x10° 10.8% 
7* -7.300x107! 2.2% -6.113 x 10° 17.7% 
8* -2.191x107? 1.9% -3.104x 10° 9.5% 

* Derivatives are per radian 
  

Table 6.7. Drag Sensitivity Results with Ap; = 1x10~'m 

  

  

        
    

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.1311075 2.1% 2.435 x 10? 2.1% 
2 -2.185x107? 0.9% 1.745 x 10? 10.5% 
3 -1.711X107? 0.5% -1.362 x 10? 4.8% 
4 -2.076x 107? 2.7% -7.916x 10? 5.6% 
5 ~1.312x 107? 4.0% -8.089x 10? 5.2% 
6 2.731X107? 12.9% 1.729x 10° 10.8% 
7* -7.300x 107! 2.2% -6.121x 10° 17.6% 
8* -2.191x107? 1.9% -3.106x 10° 9.4% 

* Derivatives are per radian 
  

6.3.3. The Final Investigations 

Recalling the past assumption made in the calculation of 0D/00, we see the 

same assumption has been made for the A matrix and R vector. These quantities 

are needed for the rigid angle of attack determination and aeroelastic formulation, 

so they obviously do not initially use the deflection information or the flexible angle 

of attack. Again the assumption states that these terms are not affected by the 

inclusion of the flexible terms. Since both the A matrix and R vector are involved 
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in Eqs.(6.8-6.10) this may have a detrimental effect on the sensitivity calculations. 

Tables (6.8-6.10) present the results for variously updating one or both of the terms 

(compare with table 6.5). Quite surprisingly, any updating of the A matrix results 

in adverse effects on the sensitivities. A possible explanation of this result could be 

a lower accuracy in the calculation of the A matrix when deflections are present. 

Since the entire problem is very sensitive to any errors in the A matrix, even small 

disturbances to accuracy can have drastic results. In any case, the errors associated 

with not updating the A matrix are not extremely significant. Updating the R 

vector alone actually improves the results significantly. Unfortunately, updating 

the R vector alone is not mathematically sound, so no updating of either term is 

performed. 

A final analysis was performed to determine the effect of not updating the in- 

fluence transformation matrix. While this is an incorrect assumption it is consistent 

to what was done in the past, and it would save some computational time (approxi- 

mately 60 seconds per design cycle). The results are presented in table 6.11 and the 

sensitivities are actually not affected too adversely (compare with table 6.5). Un- 

fortunately, this result does not hold true for the divergence sensitivity (see Chap. 

7) so the updates are performed. 

Table 6.8. Drag Sensitivity Results with Updated A and R 

  

  

          

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.140x 10-3 1.6% 2.420 10? 1.5% 
2 -2.122x107? 3.7% 2.213x10? 40.2% 
3 -1.683 x 107? 1.1% -1.174x 10? 9.7% 
4 -2.077x 107? 2.6% -7.974x 10? 4.9% 
5 -1.360x 107? 0.4% -8.507 x 10? 0.3% 
6 1.970x 107? 37.2% 1.111x10° 42.7% 
7* -7.358x107! 1.4% -6.679 x 10° 10.1% 
8* -2.224x107! 0.4% -3.399 x 10° 0.9% 

* Derivatives are per radian       
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Table 6.9. Drag Sensitivity Results with Updated A 

  

  

            

Variable a’ (Rad/m) |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.119x 107° 2.2% 2.444 x 10? 2.5% 
2 -2.107x 107? 4.4% 2.374x 10? 50.3% 
3 -1.671x107? 1.8% -1.046x 10? 19.5% 
4 -2.064 107? 3.3% -7.815 x 10? 6.8% 
5 -1.351x107? 1.1% -8.404 x 10? 1.5% 
6 1.957x 107? 37.6% 1.096 x 10° 43.5% 
7* -7.309x 107? 2.1% -6.119x 10° 17.6% 
8* -2.209x 107? 1.1% -3.230x 10° 5.8% 

* Derivatives are per radian     

Table 6.10. Drag Sensitivity Results with Updated R 

  

  

            

Variable| a’ (Rad/m) | |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.153x1073 1.2% 2.410x 10? 1.0% 
2 -2.201x 107? 0.1% 1.57410? 0.3% 
3 -1.723x107? 1.2% -1.497 x10? 15.1% 
4 -2.091 x 107? 2.0% -8.082 x 10? 3.6% 
5 -1.321x 107? 3.3% -8.193x 10? 4.0% 

6 2.760x 107? 12.0% 1.755x10° 9.5% 

7* -7.350x107! 1.5% -6.619x 10° 10.9% 
8* -2.207x107! 1.2% -3.258x 10° 5.0% 

* Derivatives are per radian     

Table 6.11. Drag Sensitivity Results with no Update on D 

  

  

        
    

Variable| a’ (Rad/m) | |Error(a’)| D’ (N/m) |Error(D’)| 

1 -3.138x 107° 1.6% 2.442 x10? 2.4% 
2 -2.195x10-? 0.4% 1.776 10? 12.5% 
3 -1.680x 107? 1.3% -1.336x 10? 2.8% 
4 -2.079x 107? 2.6% -7.913 x 10? 5.6% 
5 -1.339x 107? 2.0% -8.133x 10? 4.7% 
6 3.881x 107? 23.8% 1.856x 10° 4.3% 
7* -7.298x 107! 2.2% -6.036x 10° 18.7% 
8* -2.191107? 1.9% -3.083 x 10° 10.1% 

* Derivatives are per radian   
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6.4. Conclusions for the Drag Sensitivity 

This analysis indicated that the best results where obtained with updating the 

influence transformation matrix, performing the 0D/0@ calculation at the flexible 

wing conditions, and selecting the perturbation for the design variable vector to be 

1x 10~3m for the calulation of f{ and 0D/Op (other perturbations were left at their 

previous values). Furthermore, the new interface and aerodynamic models clearly 

had a very positive impact with the majority of this improvement coming from the 

new drag calculations. The net results of this analysis provided a much improved 

drag approximation which is verified in figure 6.3 (range of design variables is once 

again given in table 6.1). An additional test of the analysis is provided in figure 6.4, 

where approximate and exact drags are compared over a different set of initial and 

final conditions. And finally as indicated in chapter 5, the discontinuous behavior of 

the exact drag was eliminated. The next chapter looks at obtaining similar success 

for the divergence sensitivity. 
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Figure 6.3. Final Approximation of the Drag 
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Figure 6.4. Drag Approximation with Different Range of Design Variables 
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7. THE DIVERGENCE SENSITIVITY 

7.0. Introduction 

As with the drag, the divergence sensitivity is an important part of the approx- 

imate optimization. Once again, a linear approximation will be used to model the 

divergence pressure in some small neighborhood. In many aircraft, the divergence 

pressure is a critical constraint which influences the design. For the present wing 

design study, the divergence may or may not be critical. Certainly the use of a 

forward sweep adversely effects the divergence pressure, but this will hopefully be 

offset with the variability of the ply orientation. The formulation which follows was 

developed in previous research, however the numerical modeling of the problem was 

never successfully completed. 

7.1. The Divergence Sensitivity Formulation 

A simple brute force approach to the divergence sensitivity could be applied 

here just as it could for the drag 

  

(32) _ 9p(p+ Api) — qn(p) © 
—— 7.1 

Ops [Api (7-1) 
where p and Ap; are defined as in Eq.(6.1). Again, the drawback of this approach 

is the prohibitive cost. However, the application of the direct approach will provide 

values that can be used for accuracy checks. Once again, it is necessary to determine 

a much more efficient approach to extract the derivatives of the divergence pressure. 

This efficient approach can be found in Ref. 6 and involves differentiating 

Eq.(4.21) with respect to p to yield 

3 PB pele OMe yae oe 
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If we continue following Ref. 6, this equation is multiplied by the left eigenvector, 

[Fz ,07], which is defined by 
a 

{| -qpA Fa,0TI| ', 9A) =o 
to obtain 

0 ~ qpA ‘ Fup 
[Fi,,97| |S ( 0 ] Op \ =0 (7.3) 

Solving for gj}, we obtain 

po gp Fi, A'0p + 07S'Fup 

ip* FT Ap 
  (7.4) 

Unfortunately, the above equation contains derivatives of A and S for which care 

was taken to avoid in the drag calculations. However, this problem can be simplified 

by looking at the definitions of the respective terms. Looking at A’@p, we see 

Oo {Of 
; —_— — — WA0n = 55 (SB) op (7.5) 

With this formulation it is possible to obtain gA’@p without calculating A’. This 

process is outlined in Ref. 6 and represents a considerable time savings. Begin by 

considering a generic case where f is a function of a vector X, and D is a unit 

vector. The scalar product of 0f/O0X and D represents the directional derivative 

of f in the direction D, i.e. 

of pam *[f(Xo + €D) — f(Xo)] 
d = “[f(Xo + D)]exo (7.6) 

where Xo is the point where the derivative is being evaluated. 

Since this equation holds true for a vector D of any magnitude, we can clearly 

write 

OQ fi 9 “Pay = “[N(O0 + eB) |ex0 (7.7) 
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noting f; is a vector operation instead of a scalar one. To obtain the derivative with 

respect to the design vector, p, we perform a finite-difference on the right-hand side 

of Eq.(7.7), keeping in mind that @p is held constant (note that the finite difference 

formulation of the right hand side is used for evaluation). 

{4 
pt+Ap; de 

|| Api| 

The number of function evaluations of f; for this calculation is equal to the number 

SI fi (00 + <0) e=0| [f1 (80 + <Oo)le=o| 
  gA'Op = P (7.8) 

of design variables, np (the nominal value on the right hand side of Eq.(7.8) is equal 

to A@p, so that evaluation does not have to be made). A finite difference calculation 

for A’ would require np X nq evaluations, where ng represents the number of load 

set nodes. Clearly, there is a substantial savings with the simplification. 

The evaluation of S’F,p follows in exactly the same manner where we write 

  

0 { Ofs 
‘ = 

and 

Ofs d 
——Fy, a Fa Fa €= 7.1 aR, te? 7e Fal o + €Fap)|e=0 (7.10) 

Once again, a finite difference of the right hand side of Eq.(7.10) (holding Fap 

constant) will yield S’F,p with considerably less calculations. 

7.2. The Numertcal Evaluation of Sensitivity Terms 

Unlike the drag sensitivity, the divergence sensitivity is analytically evaluated 

for several of the terms involved (Eq.(7.4)). The exceptions are the gA’@p and 

S’F,p terms which were discussed in the previous section. Therefore, we expect the 

accuracy of the divergence sensitivity to be entirely dependent on the approximation 

of these terms. The following section details the results obtained for the sensitivity 

and the step size considerations involved in the process. 
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7.8. Discusston and Results 

As mentioned at the beginning of this chapter, the formulation of the divergence 

sensitivity is exactly the same as that of previous research. The difference in this 

current study is that these calculations are activated in the optimization process. 

For the most part, the necessary formulations were present, but no reasonable results 

were obtained. 

Once again, the aerodynamic-structural interface will be the linear shape func- 

tion approach. The problem of the cubic approach involves the evaluation of the 

dynamic pressure itself. Since there are only 6 load set nodes along any given chord- 

wise direction, the interpolation of deflections and forces is highly dependent on the 

boundary conditions selected for the cubic splines (see chapter 5). The divergence 

is a value which is highly sensitive to the distribution of forces along the chord. 

An improper selection for the boundary will yield erroneous divergence pressures. 

Since it is impossible to have a priors knowledge of the best boundary condition, 

the cubic approach is very limited, and will not be used in this study. 

7.8.1. Calculation of (Of;/00)Op 

If we recall Eq.(7.7), 

af, d 
5 9p = <|fi(%o + Bd) |e=0 (7.7) 

a finite difference calculation is needed to evaluate the right hand side (the finite 

difference calculation is illustrated in Eq.(7.6)). The proper selection of € is crucial 

to successfully approximating the directional derivative. The value of this derivative 

at the nominal conditions (no perturbations on the design variable vector) should 

be equal to A@p as indicated in section 7.1. This knowledge provides a check on 

the proper selection of €. 
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The initial results of this check met with little success, no value of € yielded 

a vector very close to A@p. This error was eventually traced to a problem with 

consistency. While the above derivative is evaluated at the flexible angle of attack 

and deformation, the divergence and A matrix are evaluated at the rigid wing 

conditions. This inconsistency was discussed in the previous chapter, but was found 

to have minimal impact on the drag sensitivity. Unfortunately the same cannot be 

said for the divergence problem. The solution was to evaluate Eq.(7.7) at the rigid 

wing conditions (a = a,, 09 = {0}). The optimal selection of « could now proceed. 

The research for the selection of € was conducted by M. Rais-Rohani, with the 

optimal found to be 10. This may seem like an extremely large value, but close 

inspection of 7.7 will reveal that the step size used in the finite difference is actually 

€?p. For this problem, @p is a vector with very small elements. Therefore, 10 x@p 

yielded the best results which agreed with A@p to several significant figures. 

7.8.2. Calculations for q'p 

All the terms remaining in Eq.(7.4) can be analytically obtained from the sys- 

tem of equations in 4.21, with the exception of S'Fap which was originally formu- 

lated by P.J. Kao, and modified by M. Rais-Rohani to obtain accurate results. As 

with the drag sensitivity calculations, the updating of the interface transformation 

matrix needs to be considered. If we don’t update this matrix the results given 

in table 7.1 are obtained (once again the complete vector of derivatives would be 

useful, but the cost was to prohibitive). The application of the update yields the 

results given in table 7.2. Clearly, the update had an extremely large impact of the 

accuracy, where we consider the ‘correct’ solution to be that which is obtained with 

the direct approach. This discovery is in sharp contrast to the result obtained with 

the drag sensitivity, where this update only marginally changed the results. 
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Table 7.1. Divergence Sensitivity Results with no Update on 
Interface Transformation Matrix 

  

  

        

Variable| Direct (Pa/m) | Eq.(7.4) (Pa/m)| |Error(g‘)| 

1 -6.640 x 10° -6.295 x 10° 5.2% 

2 2.993 x 10* 5.234 x 10% 74.9% 

3 2.212104 5.389 x 104 143.6% 
4 8.340x 10° 7.002 x 10° 16.0% 

5 -1.549x 104 -2.934x 10* 84.1% 
6 -9.942 «10° -7.144x10° 28.1% 

7* -2.642 x 10° -2.987 x 10° 13.0% 

8* -2.736x 10° -2.819x 10° 3.0% 
* Derivatives are per radian     
  

Table 7.2. Divergence Sensitivity Results with Updated 
Interface Transformation Matrix 

  

  

      
  

Variable| Direct (Pa/m) | Eq.(7.4) (Pa/m)| |Error(q})| 

1 -6.640x 10° -6.818 x 10° 2.7% 

2 2.993 x 10* 2.851104 4.8% 
3 2.212x10* 2.129x 10% 3.8% 

4 8.340x 10° 7.308 x 10° 12.4% 

5 ~1.549x 10* -1.618 x 10* 4.4% 

6 -9,.942x 10° ~1.021 10° 2.6% 

7* -2.642 x 10° - -2.987 x 10° 13.0% 

8* -2.736x 10° -2.819x10° 3.0% 

* Derivatives are per radian     
  

The accuracy of the results are comparable to those obtained in the drag calcu- 

lations, with the largest error occurring in the break span and twist terms. Initially, 

one might expect a greater accuracy because of the small number of finite difference 

calculations involved. However, offsetting this reduced number of approximations, 

is the fact that the terms A’@p and S‘F,p are essentially second derivatives, and the 
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nested forward differences have errors which build up. In any event, the accuracy 

obtained is suitable for the optimization problem. 

An additional analysis involved selecting the step size in p for the A’@p cal- 

culation. Tables 7.3-7.5 represent step sizes for Ap; of 1 x 107?m and 1 x 1074m 

respectively. Since there is little variation in the result with these changes, the value 

was left at 1 x 107?m. 

Table 7.3. Divergence Sensitivity Results with Ap; = 1x10~*m 

  

  

          

Variable) Direct (Pa/m) | Eq.(7.4) (Pa/m)| |Error(q5)| 

1 -6.640x 10° -6.817 10° 2.7% 

2 2.993 x 10* 2.850x10* 4.8% 
3 2.212 x10* 2.130 10* 3.7% 

4 8.340 x 10° 7.308 x 10° 12.4% 
5 -1.549x 10* -1.618x 10+ 4.5% 
6 -9.942 x 105 -1.081 x 10° 8.8% 

7* -2.642 x 10° -2.941 105 11.3% 
8* -2.736x 105 -2.814x10° 2.8% 

* Derivatives are per radian   
  

Table 7.4. Divergence Sensitivity Results with Ap; = 1x10~*m 

  

  

      
    

Variable| Direct (Pa/m) | Eq.(7.4) (Pa/m)| |Error(q¢p)| 

1 -6.640x 10° -6.817 x 10° 2.7% 
2 2.993 x 10 2.850 104 4.8% 
3 2.212x10* 2.130x10* 3.7% 
4 8.340x 10° 7.308 x 10° 12.4% 
5 -1.549x10* -1.618 x 10* 4.5% 
6 -9.942 x 10° -1.081 x 10° 8.8% 
7* -2.642 x 10° -2.937 x 10° 11.2% 
8* -2.736x 105 -2.813x105 2.8% 

* Derivatives are per radian   
  

THE DIVERGENCE SENSITIVITY 69



Finally, the impact of using the flexible wing conditions in the calculation of 

A’@p is given in table 7.5. This selection results in sever errors in several terms, 

which clearly demonstrates the importance of using the rigid wing conditions. 

Table 7.5. Divergence Sensitivity Results at Flexible Wing Conditions 

  

  

      
  

Variable; Direct (Pa/m) | Eq.(7.4) (Pa/m)| |Error(q',)| 

1 -6.640x 10° -6.568 x 10° 1.1% 
2 2.993 x 104 1.286x10* 57.0% 
3 2.212104 -2.550x 104 215.3% 
4 8.340x 10° 7.350 x 10° 11.9% 
5 -1.549x 10* -4,614x 10° 70.2% 
6 -9.942x 105 -1.190x 10° 19.7% 
7* -2.642 10° -5.023 x 10° 90.1% 
8* -2.736x 105 -4.090x 105 49.5% 

* Derivatives are per radian     
  

7.4. Conclustons for the Divergence Sensitivity 

In the final analysis, an acceptable accuracy for the divergence sensitivity can 

be obtained providing the rigid wing conditions are used and the interface transfor- 

mation matrix is updated as the planform of the wing is perturbed. Figure 7.1 gives 

the exact divergence dynamic pressure verses the approximation over the variation 

of design variables given in table 6.1. Clearly the approximation is tangent to the 

exact at the initial point, but the variation in the design parameters is too great, 

which make a linear approximation inadequate for such a large neighborhood. This 

problem could be corrected by not allowing the design parameters to change to such 

a degree. This limiting will be discussed in the following chapter on the approximate 

optimization. 

70 THE DIVERGENCE SENSITIVITY



Di
ve

rg
en

ce
 

D
y
n
a
m
i
c
 

Pr
es

su
re

 
(P

a 
X 

10
4)

 

  

    

     

—_ jw 1 

O — Exact Divergence 
4 — Approximate Divergence 

=
 

0
 —
 

Design change given in table 6.1 

    
  

115, 

104+ 

gf 

Bf 
| __! ! ___| a ___| 

0.0 0.2 0.4 0.6 0.8 1.0 

Relative Design Change 

Figure 7.1. Exact and Approximate Divergence Dynamic Pressure 

THE DIVERGENCE SENSITIVITY 71



8. THE OPTIMIZATION PROCEDURE AND RESULTS 

8.0. Introduction 

The final and most important aspect of the design procedure is the approximate 

optimization process and results. At this point, all the effects of the changes to the 

models and sensitivity calculations will come into play. Obviously the change to the 

drag model will have a negative impact on the range constraint (due to the increased 

drag). The inclusion of the divergence constraint may also have an effect on the 

final design if that constraint becomes critical at any time during the design cycles. 

It is expected that this analysis will be quite difference from previous research 

due to these changes. Furthermore, it is hoped that the increased accuracy in the 

sensitivities will make the optimization a smoother process. 

8.1. The Optimization Formulation 

As with any optimization procedure, the goal in this research is to minimize 

some objective function subject to a set of constraints. Chapter 2 detailed the 

objective function and constraints of interest for the wing design problem being 

considered. With these in mind, it is possible to formulate the optimization as:° 

minimize W/(p) 

such that g,(p) >0 

V.(p) > Vr (8.1) 

R.(p,D) > Rr 

gp(p) > 1.44 dm 

where g, is a vector of functions which represent the structural constraints. The 

values V, and V, represent the available and required wing volume respectively 
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(needed for fuel storage). The terms R, and R,, represent the calculated and 

required aircraft range as discussed in Chapter 2. The final terms gp and qm 

represent the calculated divergence dynamic pressure and the maneuver dynamic 

pressure respectively. 

An exact analysis of the constrained optimization problem given above would 

result in a monumental computational problem with prohibitive computational 

costs.* The solution to this problem is to follow Ref. 6 and perform sequential 

approximate optimizations, where each of the constraints is linearized at some ini- 

tial condition, and assumed to be accurate in some small neighborhood near that 

point, p°. This small neighborhood is defined by move limits given for each design 

variable such that: 

pi = py + 6; (8.2) 

where 6; is the move limit for variable :. Very small move limits will give the 

approximations the highest accuracy, but will dramatically slow the convergence. 

Each approximate optimization can be written as:° 

minimize W(p) 

such that g.(p°) + +3 a Ap; >0 
t 

  

V.(p) > Ve 

R.(p,D) > Ry (8.3) 
Np dqp 

qo(p°) + >> Bp, —— Ap; > 1.44 X dm 
i=1 ** 

“? aD 

Op; 
  where D= D(p®)+ Ap; 

t=1 

where np represents the number of design variables and Ap; represents the change 

in the 7** design variable. Note that the range is calculated directly from the 
  

* An exact analysis is possible with a much smaller design problem (e.g. Ref. 1). 
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drag approximation instead of being linearized itself. Also note that while the 

linear approximations to the structural stresses and strains were never specifically 

addressed in this study, the methods used for their calculation are similar to that 

of the other sensitivities. 

During each of these approximate optimization cycles, the objective function 

and associated constraints are analyzed with the NEWSUMT-A program?!. This 

code employs an extended interior penalty function procedure to find the minimum 

aircraft weight subject to the approximate constraints and the allowed move limits 

for the design variables. Once this optimum is found, the new design point becomes 

the initial point, p°, for a new cycle. Note that at the beginning of each cycle, the 

aeroelastic and sensitivity analysis is performed to find the appropriate linearization 

for the new cycle. This procedure is continued until global convergence is obtained 

(Figs. 8.1-8.3 illustrate this process and outline the sensitivity calculations). 

8.2. The Inttral Design Point 

At the beginning of an optimization process it is necessary to select the initial 

set of design variables. While the performance and structural design variables were 

changed in each of the optimization runs made, the initial planform of the wing was 

the same for all cases (Table 8.1).* 

Table 8.1. The Initial Planform Variables 

  

    

pi: Root Chord(m) 6.916 ps: Tip Span(m) 12.250 
p2: Break Chord(m) 3.765 pe: Sweep(deg) 26.070 
ps: Tip Chord(m) 1.725 p7: Break Twist(deg) 0.000 
pa: Break Span(m) 5.754 ps: Tip Twist(deg) 0.000     
  

* The initial point in this context is the value of the design variable vector at the start of the 

first approximate optimization cycle. 
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8.3. Results and Discusston 

As a first attempt at a full optimization, the structural design variables were 

set at the values used in previous research by P.J. Kao® and D. Polen.* The dynamic 

pressure was set at 2674 Pa. and the usable fuel was set at 21902 N which were 

also used in the past. The move limits for the aerodynamic and performance design 

variables were set at 4% while the structural variables had very large limits. The 

large move limits on the structural variables were justified by the belief that the 

linearization associated with these terms was highly accurate. Table 8.2 gives some 

pertinent optimization results for seven cycles. 

Table 8.2. Optimization Results for First Run 

  

  

  

Beg. of Move Limits; Range |No. of Violated | Most Violated 

Cycle [A & P Str. Margin Constraints Str. Constraint 

1 4.0% co -36.38% 23 #47 22.12% 

2 4.0% 00 -22.46% 31 #36 12.81% 
3 4.0% 00 -14.94% 31 #36 12.13% 
4 4.0% © -9.20% 34 #47 13.81% 
5 4.0% 00 -4,36% 40 #3 12.06% 
6 4.0% 00 -1.58% 59 #47 20.06% 
7 4.0% -0.73% 76 47 29.76%             

A quick inspection of the above results reveals that the initial design violates a 

considerable number of constraints. While the optimizer will attempt to satisfy all 

of the constraints, it is clear that it could not. In fact, both the number of violations 

and the magnitude of the greatest violation, steadily increased. One possibility for 

this error, was the excessive move limits for the structural variables. If we recall 

Fig. 7.1 we saw that the approximation of the divergence dynamic pressure was 

tangent, but that the exact response was very non-linear in the chosen domain. 
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This non-linearity may have the same adverse effects on the structural constraint 

approximations. To investigate this theory, another run with move limits of 15.0% 

on the structural variables was made. Under these new conditions, it was quickly 

apparent that the reduced move limits were not sufficient to correct the error. How- 

ever, it should be noted that the optimization was able to accurately approximate 

the range, as indicated by the steadily decreasing violation for that term. This accu- 

racy is an excellent indication that the drag approximation is functioning properly. 

Unfortunately, the divergence constraint never became critical during this entire 

study. Therefore a similar check could never be made on divergence, but there is 

no reason to believe the approximation would be inaccurate. 

Another possibility for the problem was found by consulting R.T. Haftka who 

indicated that NEWSUMT-A does not perform very well when an initial condition 

violates a large number of constraints. A suggestion was made to thicken the 

structural members and increase the initial fuel and dynamic pressure until most of 

the violations were alleviated. Table 8.3 give the results for five design cycles with 

the significantly reduced violations. 

Table 8.3. Optimization Results for Second Run 

  

  

Beg. of [Move Limits| Range |No. of Violated | Most Violated 
Cycle |A & P Str. | Margin Constraints Str. Constraint 

1 4.0% 15.0%| -0.25% 2 F47 1.79% 
2 4.0% 15.0%| -0.05% 2 #47 6.25% 
3 4.0% 15.0%| -0.07% 7 #47 9.76% 
4 4.0% 15.0%} -0.06% 12 #47 12.36% 
5 4.0% 15.0%] -0.13% 19 #47 14.08%               

Unfortunately, it is clear that the reduced move limits and improved initial 

conditions, still could not eliminate the violation growth. It was felt that the only 

THE OPTIMIZATION PROCEDURE AND RESULTS 79



remaining possibility for success, would lie in a further reduction of move limits. 

A run was made with all the limits set at 4%, and violation growth was again 

encountered. The next attempt set all the aerodynamic and performance move 

limits to 3%, and cycled the structural limits between 3% and 7%. Under these 

conditions, the violation growth was contained and a successful run resulted. The 

output for this run is given in table 8.4. 

Table 8.4. Optimization Results for Third Run 

  

  

Beg. of Move Limits; Range o. of Violated | Most Violated 

Cycle |A & P Str. | Margin Constraints |Str. Constraint 

1 3.0% 3.0% | -0.25% 2 #AT 1.79% 
2 3.0% 3.0% 0.84% 1 #47 1.86% 
3 3.0% 7.0% | -0.10% 2 #47 4.66% 
4 3.0% 7.0% | 0.69% 1 #47 2.43% 
5 3.0% 3.0% | 0.91% 1 #47 1.74% 
6 3.0% 3.0% | -0.07% 6 #47 6.10% 
7 3.0% 7.0% | 0.70% 2 #3 1.12% 
8 3.0% 7.0% 0.92% 1 #3 1.63% 
9 3.0% 3.0% | 0.95% 1 #3 1.97% 

10 3.0% 3.0% | 0.88% 2 #3 1.19% 
11 3.0% 7.0% | 0.87% 2 #3 0.72% 
12 3.0% 7.0% | 0.86% 2 #3 0.64%             
  

While this last attempt did yield a usable result after 12 cycles*, the design 

was interesting but not necessarily of practical importance (See Figs. 8.4-8.13 

for plots of the convergence history of various terms). The problem is that the 

optimizer increases the amount of usuable fuel (see Fig. 8.6). While this is not an 

optimization problem, it does mean that the final design will compromise some fuel 

economy, which is generally not desirable. For the most part, this increase in fuel is 

  

* The optimization could have been continued, but it was felt that sufficient cycles had been 

run to demonstrate the success. 
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economy, which is generally not desirable. For the most part, this increase in fuel is 

due to a slight increase in the flexible wing drag (see Fig. 8.7). The rise in drag is 

a result of a complex interaction of wing geometry and the dynamic pressure (Fig. 

8.10). In any case, the additional weight of the extra fuel is more than offset by the 

concurrent savings in structural weight, especially in the wing (Fig. 8.5). Most of 

these structural saving come from the reduction in wing area (Fig. 8.8). 

Other effects which reduce structural weight include the application of a neg- 

ative twist distribution which places more of the wing loading near the root, and 

the reduction of aspect ratio. Each of these approaches increase drag, but reduce 

structural weight by lowering the bending moment at the root. Again, the increased 

fuel weight is offset by the structural savings. 

This initial investigation was successful in terms of the optimization process, 

but produced unexpected results. What was desired was a more efficient wing, with 

an increase in aspect ratio, a decrease in wing area, and a removal of the majority of 

the sweep (because of the subsonic cruise). Since NEWSUMT-A never encountered 

a range problem, there was no need to optimize the wing for drag considerations. 

An intelligent approach to a fourth optimization run, would be to add an additional 

constraint which maximizes the amount of usable fuel. This new design should force 

the creation of a more efficient wing, because drag increases could no longer be offset 

by an increase in fuel. The end result would be a more practical design that accounts 

for some fuel economy. The selection of this maximum, will greatly effect the final 

design. The more frugal the selection, the more efficient the final wing will be. This 

efficiency will be at the cost of some weight reduction, because the higher stresses 

found in high aspect ratio wings necessitate stronger wing members. 
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Figure 8.4. Aircraft Gross Weight vs. Cycle Number for Third Run 
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Figure 8.7. Flexible Wing Drag vs. Cycle Number for Third Run 
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Figure 8.10. Cruise Dynamic Pressure vs. Cycle Number for Third Run 
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Figure 8.11. Sweep at Break vs. Cycle Number for Third Run 
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Figure 8.12. Break Twist (Jig) vs. Cycle Number for Third Run 
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Figure 8.13. Tip Twist (Jig) vs. Cycle Number for Third Run 
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An attempt with this new constraint was made by selecting the usable fuel 

maximum to be the initial allotment. Since the design code is not set up for this 

additional constraint, the maximum fuel amount is maintained by restricting the 

appropriate move limit. This approach works well providing the range constraint is 

never violated to any great degree. Therefore, this initial allotment is just enough 

to complete the mission at the initial set of design variables. Another constraint 

added to this run involves the dynamic pressure. Since the velocity of the cruise 

portion of the flight is fixed at 142 m-s—!, the dynamic pressure defines the alti- 

tude at which the aircraft will fly. Since it was felt that flight below 20k feet was 

unrealistic, the dynamic pressure was limited to 6553 Pa. If a more sophisticated 

engine performance model is utilized in the future, this constraint should not be 

necessary because of substantial fuel consumption penalties at low altitude (the 

current model holds the specific fuel consumption constant with altitude). Table 

8.5 gives the optimization results for this new run. 

Figures 8.14—-8.23 give the optimization history for several variables during this 

new run. It is immediately apparent the the behavior of the drag, usable fuel, 

and aspect ratio is markedly different than the run made with no fuel limit. The 

drag and usable fuel stayed essentially constant (Figs. 8.16 and 8.17), while the 

aspect ratio increased to offset the drag rise due to the negative twist distribution 

(Figs. 8.19 and 8.22—8.23 respectively). These figures also indicate that the dynamic 

pressure constraint became active at about the 18°" design cycle (see Fig. 8.20). 

Furthermore, it is apparent that the range constraint is slightly more critical than 

in the previous run, and that this constraint remained active throughout the design 

optimization. 

Of concern during this run was the previously mentioned twist distribution, and 

the drastic decrease of wing area (see Fig. 8.18). These two factors combined to 
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produce large angles of attack at the wing root, which makes stall an issue. Since 

the Vortex Lattice Model cannot model stall, additional constraints need to be 

implemented to avoid invalidating the aerodynamic model. These new constraints 

were imposed on the break and tip twists at the 17'” design cycle. The best approach 

to this problem is to apply a constraint directly to the local C;’s at the root, break, 

and tip respectively. But as previously mentioned, no allowance for such a constraint 

was made in the design code. This approach will be used in the future, but it is 

beyond the scope of this current study. As expected, the twist limitations were only 

partially effective in limiting the root angle of attack. At the final design, the root 

angle of attack was 13° which is the the stall regime for the airfoil. However, this is 

not considered a major concern because the basic mechanics of the design process 

were still effective. Furthermore, it would be a simple task to locate an airfoil which 

could maintain such a high angle of attach without stall. 

This fourth and final optimization run was concluded on the 27°" cycle were it 

was felt that total weight of the aircraft was sufficiently converged (see Fig. 8.14). 

At this point, the area of the wing clearly converged to a value of 63.2 m?, and the 

aspect ratio roughly converged to 11.7. The sweep of the wing was still decreasing 

at this point, but it did show signs of an eventual leveling off. If the design was 

continued beyond this point, the sweep would most likely have finally converged to 

some very low value which is what we expect. However, the savings in total weight 

with a continuation in the design would be minimal. Furthermore, a continuation 

would have even further reduced the wing area (slightly), which would have further 

aggravated the root angle of attack. 

THE OPTIMIZATION PROCEDURE AND RESULTS 88



Table 8.5. Optimization Results for Fourth Run 

  

  

          

Beg. of Move Limits| Range |No. of Violated | Most Violated 

Cycle |A & P Str. | Margin Constraints Str. Constraint 

1 3.0% 3.0% | 0.98% 0 NA NA 
2 3.0% 3.0% | 0.48% 0 NA NA 
3 3.0% 3.0% | 0.49% 0 NA NA 
4 3.0% 3.0% | 0.50% 0 NA NA 
5 3.0% 5.0% | 0.51% 1 #47 0.10% 
6 3.0% 5.0% | 0.46% 1 #47 0.57% 
7 3.0% 5.0% | 0.44% 2 #3 0.81% 
8 4.0% 5.0% | 0.42% 2 #3 1.40% 
9 4.0% 5.0% | -0.12% 5 #3 7.43% 

10 3.0% 3.0% | 0.21% 3 #3 4.32% 
11 3.0% 3.0% | 0.10% 2 #3 4.19% 
12 3.0% 3.0% | 0.10% 2 #3 4.21% 
13 3.0% 3.0% | 0.28% 3 #3 5.21% 
14 3.0% 3.0% | -0.18% 4 #3 5.19% 
15 3.0% 3.0% | -0.18% 4 #47 4.91% 
16 3.0% 3.0% | -0.24% 3 #3 1.90% 
17 3.0% 3.0% | -0.32% 3 #3 1.77% 
18 3.0% 3.0% | -0.19% 4 #3 3.31% 
19 3.0% 3.0% | -0.41% 7 #3 2.74% 
20 3.0% 3.0% | -0.05% 6 #36 1.84% 
21 3.0% 3.0% | -0.07% 16 #36 9.58% 
22 3.0% 3.0% | -0.06% 7 #37 1.18% 
23 3.0% 3.0% | -0.11% 12 #161 4.36% 
24 1.5% 1.5% | 0.81% 15 #119 7.33% 
25 1.5% 1.5% | -0.15% 10 #161 3.53% 
26 1.5% 1.5% | -0.09% 9 #47 2.50% 
27 1.5% 1.5% | -0.10% 8 #47 0.99%   
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Figure 8.14. Aircraft Gross Weight vs. Cycle Number for Fourth Run 
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Figure 8.15. Wing Weight vs. Cycle Number for Fourth Run 
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Figure 8.16. Usable Fuel Weight vs. Cycle Number for Fourth Run 
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Figure 8.18. Total Wing Area vs. Cycle Number for Fourth Run 
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Figure 8.19. Aspect Ratio vs. Cycle Number for Fourth Run 
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Figure 8.20. Cruise Dynamic Pressure vs. Cycle Number for Fourth Run 
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Figure 8.21. Sweep at Break vs. Cycle Number for Fourth Run 
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Figure 8.22. Break Twist (Jig) vs. Cycle Number for Fourth Run 
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Figure 8.23. Tip Twist (Jig) vs. Cycle Number for Fourth Run 

THE OPTIMIZATION PROCEDURE AND RESULTS 94



8.4. Conclustons on the Optimization Process 

Table 8.6 gives some of the initial and final set of design variables for the final 

run. A comparison with the reference aircraft (Table 2.1) reveals that the design 

aircraft is considerably lighter than that of the reference with similar amounts of 

fuel. While some of this improvement may be accounted for by the reduced Mach 

number of the design aircraft, the majority of the reduction comes from the much 

smaller and lighter wing structure. 

Table 8.6. Initial and Final Results for Last Run 

Initial Design Final Design 
  

Gross Weight (N) 4.581 x 10° 4.212 x 10° 
Wing Weight (N) 3.294 x 104 1.609 x 104 
Usable Fuel Weight (N) 2.738 x 104 2.740 x 10* 

Range Margin 

From Reference 0.98% -0.10% 

Chord Lengths (m) 
Root 6.916 4.640 

Break 3.765 2.273 
Tip 1.725 1.124 

Distance from 
Root to Break (m) 5.754 4.834 

Distance from 
Root to Break (m) 12.250 8.774 

Total Wing Area (m7?) 128.7 63.22 

Aspect Ratio 10.07 11.72 

Sweep Angle (deg) 26.1 17.0 

Ply Orientation (deg) 27.2 24.4           
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Table 8.7 gives some of the final design results obtained in previous research. 

Unfortunately, it is difficult to compare these results with the new ones that have 

been obtained, because the old drag model gave considerably less drag than the new 

one. Therefore, the previous run had a range surplus at the start which resulted in 

a very difference final design. Additionally, the old design was only run for 7 cycles. 

Table 8.7. Initial and Final Results for Previous Research 

Initial Design Final Design 
  

  

Gross Weight (N) 4.391 x 10° 4.150 x 10° 
Wing Weight (N) 2.779 x 104 1.728 x 104 
Usable Fuel Weight (N) 2.190 x 104 1.876 x 104 

Range Margin 

From Reference 17% 1% 

Chord Lengths (m) 
Root 6.916 5.912 

Break 3.765 3.218 

Tip 1.725 1.234 

Distance from 

Root to Break (m) 5.754 4.918 

Distance from 

Root to Break (m) 12.250 10.443 

Total Wing Area (m?) 128.7 91.39 

Aspect Ratio 10.07 10.33 

Sweep Angle (deg) 26.1 18.8 

Ply Orientation (deg) 27.2 25.6       
  

The optimization procedure revealed interesting interactions between the wing 

planform and the aircraft weight. The reduction of aspect ratio and a negative twist 
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distribution, combined with a reduction of wing area were the the optimization’s 

most effective methods to reduce the weight. When a limit on the usable fuel 

was applied, the aspect ratio was used to offset any drag increases due to the twist 

distribution. While many more studies are needed into the optimization, the success 

of the designs indicates that the new sensitivities worked well. 
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9. CONCLUSIONS 

The most important accomplishment of this study was a detailed understanding 

of drag and divergence sensitivity calculations. Associated with that understanding 

was the ability to greatly improve the accuracy of those calculations over previous 

work. The calculation error was generally lower than 10% which provided approx- 

imations that where very close to the exact tangents of the drag and divergence 

curves. It was concluded that the majority of the errors from the past could be 

attributed to the lack of consistency in some of the drag terms and a drag model 

which produced questionable results. 

The improvement in the drag model was provided with a far-field analysis which 

yielded what was felt to be more reasonable results for drag. An added benefit of 

the model was a more robust approach which was less sensitive to the wing paneling 

scheme. 

The divergence sensitivity also benefited from this study. While this derivative 

was never successfully computed in the past, new calculations provided results with 

accuracy similar to that of the drag sensitivity. 

Another important accomplishment was the development of a new model for 

the aerodynamic-structural interface. This new model employed shape functions 

over a grid structure defined by the load set nodes. The major advantage of this new 

approach was the elimination of the discontinuous behavior of the previous interface. 

Other advantages of the model include a more general and compact interpolation 

scheme and a considerable reduction in computational times. It is also felt that this 

shape function approach also contributed significantly to the increased accuracy of 

the sensitivities. 
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The study ended with a look at the optimization process and made some obser- 

vations on the results. These studies also concluded that very tight move limits (3%) 

were required to keep the structural constraint violations contained. An important 

topic of future work will be further investigations in the optimization process with a 

detailed study of additional constraint problems. These additional problems could 

include fuel minimization and range maximization studies. It is also hoped that 

future work can determine approaches which will allow much larger move limits. 

S22 which is Another area of future work includes the incorporation of FLOP 

a flight optimization code for preliminary design. This code would be employed 

for a more accurate model the aircraft weight. Another obvious improvement to 

the multi-disciplinary design would be a more accurate aerodynamic model (such 

as small disturbance theory). While this is an attractive topic for future research, 

the computational requirements for such a problem are staggering. Preliminary 

investigations on small disturbance codes (CAPTSD?? and TRO3D"*) indicated 

that the computation times involved in solving the flow field are on the order of 300 

times greater than that of the vortex lattice method. This would result in almost 

40 hours of CPU time on a IBM 3090 for each optimization cycle. It is clear that 

a significant amount of research will have to be conducted to reduce this run time 

to make the problem feasible. 

One approach to reducing the necessary number of flow analyses is suggested 

by Sheena and Karpel?®, who proposed the analysis of the aeroelastic response 

using vibration modes. With this approach, all deflections are represented with a 

linear combination of the vibration modes. Since any given object has an infinite 

number of modes, only the first several are taken into account. While this is only 

an approximation, it takes relatively few modes to model a problem with sufficient 

accuracy. This reduced number of degrees of freedom would result in considerable 

time savings but still not enough to consider a small disturbance model feasible in 

the immediate future. 
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