
An Algorithm for Influence Maximization and Target Set Selection
for the Deterministic Linear Threshold Model

Anand Swaminathan

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Madhav V. Marathe, Chair
Chris J. Kuhlman

V. S. Anil Vullikanti
Keith R. Bisset

May 16, 2014
Blacksburg, Virginia

Keywords: Influence maximization, complex contagion, linear threshold
Copyright 2014, Anand Swaminathan

An Algorithm for Influence Maximization and Target Set Selection for the
Deterministic Linear Threshold Model

Anand Swaminathan

(ABSTRACT)

The problem of influence maximization has been studied extensively with applications that
include viral marketing, recommendations, and feed ranking. The optimization problem,
first formulated by Kempe, Kleinberg and Tardos, is known to be NP-hard. Thus, several
heuristics have been proposed to solve this problem. This thesis studies the problem of
influence maximization under the deterministic linear threshold model and presents a novel
heuristic for finding influential nodes in a graph with the goal of maximizing contagion spread
that emanates from these influential nodes. Inputs to our algorithm include edge weights
and vertex thresholds. The threshold difference greedy algorithm presented in this thesis
takes into account both the edge weights as well as vertex thresholds in computing influence
of a node. The threshold difference greedy algorithm is evaluated on 14 real-world networks.
Results demonstrate that the new algorithm performs consistently better than the seven
other heuristics that we evaluated in terms of final spread size. The threshold difference
greedy algorithm has tuneable parameters which can make the algorithm run faster. As a
part of the approach, the algorithm also computes the infected nodes in the graph. This
eliminates the need for running simulations to determine the spread size from the influential
nodes. We also study the target set selection problem with our algorithm. In this problem,
the final spread size is specified and a seed (or influential) set is computed that will generate
the required spread size.

Acknowledgments

I would never have been able to finish my thesis without the guidance of my committee
members, help from friends, and support from my family.

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Madhav V.
Marathe for the continuous support of my Masters study and research.

I offer my sincerest gratitude to my mentor, Dr. Chris Kuhlman, who has supported me
throughout my thesis with his patience and knowledge. I will cherish my experience working
with him throughout the rest of my career, and I hope to continue to collaborate with him
in the future.

I would like to thank the rest of my committee members, Dr. V. S. Anil Vullikanti and Dr.
Keith R. Bisset, for giving valuable comments about my thesis.

I gratefully acknowledge the funding received for my research from DTRA Grant HDTRA1-
11-1-0016, DTRA CNIMS Contract HDTRA1-11-D-0016-0001, NSF NetSE Grant CNS-
1011769, and NSF SDCI Grant OCI-1032677.

To Dr. Godmar Back, for allowing me to work with him on his project LibX.

To Daniel Hung, for providing me the opportunity to work as Graduate Assistant at the office
of Institutional Research and Effectiveness. I thank him for his flexibility and guidance.

I am grateful for my mother who is my first inspiration, my father for his support, and my
sister for her encouragement.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contribution . 2

2 Dynamics Model 4

2.1 Synchronous Graph Dynamical Systems . 4

2.2 Deterministic Linear Threshold Model [35], [44] 5

2.3 Deterministic threshold model . 7

2.4 Independent Cascade Model . 8

3 Formal Problem Statement 9

4 Related Work 12

4.1 Influence Maximization . 12

4.2 Minimum Sized Conversion Sets . 20

5 Graphs 22

6 Pre-Existing Influence Maximization Algorithms 24

6.1 Influence Maximization for the Independent Cascade model [58] 24

6.2 Influence Maximization for the Linear Threshold model [20] 30

6.3 Other Heuristics . 30

7 New Influence Maximization Algorithm 36

iv

7.1 Threshold Difference Greedy Algorithm (TDG) 36

7.2 Time and Space Complexity . 49

7.3 Results . 50

7.3.1 Outbreak Results . 50

7.3.2 Execution Times . 58

7.3.3 Target Set Selection(TSS) . 64

7.4 Threshold Difference Greedy Method with Alpha 66

8 Performance Improvements and Evaluation 69

9 Conclusion 73

Bibliography 74

Appendix A Plots 80

A.0.1 Execution Times for existing Influence maximization algorithms . . . 80

A.0.2 Total completion time comparison between different influence maxi-
mization algorithms and existing heuristics 88

A.0.3 Performance improvement achieved due to concurrent/parallel pro-
cessing . 89

A.0.4 New algorithm execution time comparison 91

A.0.5 Target Set Selection . 93

A.0.6 Final outbreak Results . 96

Appendix B Software 122

B.1 Graph input format . 122

B.2 Influence maximization by Chen et al. for independent cascade model, linear
threshold model and threshold difference greedy algorithm 123

B.3 Node Selection Using High Degree Heuristic, Degree Discount Heuristic, Be-
tweenness Centrality, Eigen Vector Centrality, Random Heuristic 125

v

List of Figures

2.1 Network to illustrate contagion dynamics on a graph. (a) Graph with node
numbers. (b) Linear threshold model parameters: thresholds (in black) and
edge weights (in blue). Edge weights are assumed symmetric; i.e., w(u,v) =
w(v,u) in this example. 7

4.1 Relationships among selected influence maximization algorithms from the lit-
erature, and our algorithm. For example, the PMIA and SIMPATH influence
maximization methods are related in that both use the local graph structure
for a node v to compute the influence (contagion spread) from nodes in the
vicinity of v. See Table 4.1 for meanings of arrows. Our method builds on the
LDAG method. 15

6.1 Execution Times for Chen’s Influence Maximization Algorithm for the Inde-
pendent Cascade Model. 25

6.2 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model. 26

6.3 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model. 27

6.4 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model. 28

6.5 Execution Times for Chen’s Influence Maximization Algorithm for the Linear
Threshold Model. 29

6.6 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model. 31

6.7 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model. 32

6.8 Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model. 33

vi

6.9 Comparison of Completion Times of Various Algorithms to Select the 500
Most Influential Seeds for Various Graphs. 34

7.1 Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight. 37

7.2 Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight. 38

7.3 Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight. 40

7.4 Figure showing the computation of IncInfl in a graph. The values in red
indicate threshold of nodes and values in black indicate edge weights. 46

7.5 Figure showing the IncInfl calculation for the graph from Figure 7.4 with
threshold values updated. 47

7.6 Figure showing an example of a graph where the TDG algorithm does not
provide optimum results. 48

7.7 Final Outbreak Results for Astroph Graph with Nodes Having a Uniform
Threshold of 0.5. 52

7.8 Final Outbreak Results for Enron Graph with Nodes Having a Uniform Thresh-
old of 0.5. 52

7.9 Final Outbreak Results for Epinion Graph with Nodes Having a Uniform
Threshold of 0.5. 53

7.10 Final Outbreak Results for Facebook Graph with Nodes Having a Uniform
Threshold of 0.5. 53

7.11 Final Outbreak Results for Wikipedia Graph with Nodes Having a Uniform
Threshold of 0.8. 54

7.12 Final Outbreak Results for Epinion Graph with Nodes Having a Uniform
Threshold of 0.8. 54

7.13 Final Outbreak Results for Slashdot Graph with Nodes Having a Uniform
Threshold of 0.8. 55

7.14 Final Outbreak Results for Twitter graph with Nodes Having a Uniform
Threshold of 0.8. 55

7.15 Final Outbreak Results for Ca-hepph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7. 56

vii

7.16 Final Outbreak Results for Cit-hepph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7. 56

7.17 Final Outbreak Results for Epinion Graph with Nodes Having a Random
Threshold between 0.3 and 0.7. 57

7.18 Final Outbreak Results for Fhs graph with Nodes Having a Random Threshold
between 0.3 and 0.7. 57

7.19 Final Outbreak Results for Grqc Graph with Nodes Having a Random Thresh-
old between 0.1 and 0.9. 59

7.20 Final Outbreak Results for Maxplanck Social Facebook Graph with Random
Threshold between 0.1 and 0.9. 59

7.21 Final Outbreak Results for Slashdot Graph with Nodes Having a Random
Threshold between 0.1 and 0.9. 60

7.22 Final Outbreak Results for Twitter graph with Nodes Having a Random
Threshold between 0.1 and 0.9. 60

7.23 Comparison of Execution Times between the LDAG Algorithm and the TDG
algorithm for Graphs with Nodes Having a Uniform Threshold of 0.5. 61

7.24 Comparison of Execution Times between the LDAG Algorithm and the TDG
Algorithm for Graphs with Nodes Having a Random Threshold assignment
between 0.1 and 0.9. 62

7.25 Target Set Selection Results for Various Graphs, Indicating the Number of
Seed Nodes Required to Affect the Specified Fraction of Nodes in the Graph. 63

7.26 Target Set Selection Results for Various Graphs, Indicating the Minimum
Fraction of Nodes Required to Affect the Specified Fraction of Nodes in the
Graph. 64

7.27 Target Set Selection Results for Various Graphs, Indicating the Time Taken
by the TDG algorithm to Affect the Specified Fraction of Nodes in the Graph. 65

7.28 Final Outbreak Results for Grqc Graph with Nodes Having a Uniform Thresh-
old of 0.5. 67

7.29 Final Outbreak Results for Twitter Graph with Nodes Having a Uniform
Threshold of 0.8. 68

7.30 Final Outbreak Results for Astroph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7. 68

8.1 Performance Improvement Achieved Due to Multithreading for Chen’s Influ-
ence Maximization algorithm for Independent cascade model. 70

viii

8.2 Performance Improvement Achieved Due to Multithreading for Chen’s Influ-
ence Maximization algorithm for Linear Threshold model. 71

8.3 Time Taken by the Setup/Preprocessing to Complete under the TDG Algo-
rithm for Different Number of Threads. 72

A.1 Execution times for Chen’s Influence Maximization algorithm for Independent
cascade model . 80

A.2 Execution times for Chen’s Influence Maximization algorithm for Linear Thresh-
old model . 81

A.3 Time taken to select each individual seed for Epinion, Facebook, Mva and
Slashdot graphs based on Chen’s Influence Maximization Algorithm for Inde-
pendent cascade model . 82

A.4 Time taken to select each individual seed for Ca-Astroph, Cit-Hepph, Enron,
Twitter and Wiki graphs based on Chen’s Influence Maximization Algorithm
for Independent cascade model for . 83

A.5 Time taken to select each individual seed for Condmat, Grqc, Ca-Hepph, Ca-
Hepth, Fhs and Maxplanck-social-facebook graphs based on Chen’s Influence
Maximization Algorithm for Independent cascade model 84

A.6 Time taken to select each individual seed for Epinion, Mva, Slashdot and Wiki
graphs based on LDAG algorithm for Linear Threshold model 85

A.7 Time taken to select each individual seed for Ca-Astroph, Cit-Hepph, Enron,
Twitter and Facebook graphs based on LDAG algorithm for Linear Threshold
model . 86

A.8 Time taken to select each individual seed for Condmat, Grqc, Ca-Hepph, Ca-
Hepth, Fhs and Maxplanck-social-facebook graphs based on LDAG algorithm
for Linear Threshold model . 87

A.9 Comparison of completion times of various algorithms to select 500 most in-
fluential seeds . 88

A.10 Performance improvement achieved due to multithreading for Chen’s Influence
Maximization algorithm for Independent cascade model 89

A.11 Performance improvement achieved due to multithreading for Chen’s Influence
Maximization algorithm for Linear Threshold model. 90

A.12 Comparison of execution times between LDAG algorithm and TDG algorithm
for graphs with uniform threshold of 0.5 . 91

ix

A.13 Comparison of execution times between LDAG algorithm and TDG algorithm
for graphs with random threshold between 0.1 and 0.9 92

A.14 Target set selection results for various graphs indicating number of seed nodes
required to affect fraction of nodes in a graph 93

A.15 Target set selection results for various graphs indicating minimum fraction of
nodes required to affect a given fraction of nodes in a graph 94

A.16 Target selection results for various graphs indicating time required to affect
fraction of nodes in a graph . 95

A.17 Final outbreak Results for Astroph graph with uniform threshold of 0.5 . . . 97

A.18 Final outbreak Results for Ca-hepph graph with uniform threshold of 0.5 . . 97

A.19 Final outbreak Results for Ca-hepth graph with uniform threshold of 0.5 . . 98

A.20 Final outbreak Results for Cit-hepph graph with uniform threshold of 0.5 . . 98

A.21 Final outbreak Results for Enron graph with uniform threshold of 0.5 99

A.22 Final outbreak Results for Epinion graph with uniform threshold of 0.5 . . . 99

A.23 Final outbreak Results for Facebook graph with uniform threshold of 0.5 . . 100

A.24 Final outbreak Results for Fhs graph with uniform threshold of 0.5 100

A.25 Final outbreak Results for grqc graph with uniform threshold of 0.5 101

A.26 Final outbreak Results for Maxplank social facebook graph with uniform
threshold of 0.5 . 101

A.27 Final outbreak Results for Slashdot graph with uniform threshold of 0.5 . . . 102

A.28 Final outbreak Results for Twitter graph with uniform threshold of 0.5 . . . 102

A.29 Final outbreak Results for Enron graph with uniform threshold of 0.8 104

A.30 Final outbreak Results for Epin graph with uniform threshold of 0.8 104

A.31 Final outbreak Results for Slashdot graph with uniform threshold of 0.8 . . . 105

A.32 Final outbreak Results for Twitter graph with uniform threshold of 0.8 . . . 105

A.33 Final outbreak Results for Wikipedia graph with uniform threshold of 0.8 . . 106

A.34 Final outbreak Results for Astroph graph with random threshold between 0.3
and 0.7 . 107

A.35 Final outbreak Results for Ca-hepph graph with random threshold between
0.3 and 0.7 . 107

x

A.36 Final outbreak Results for Cit-hepph graph with random threshold between
0.3 and 0.7 . 108

A.37 Final outbreak Results for Enron graph with random threshold between 0.3
and 0.7 . 109

A.38 Final outbreak Results for Epinion graph with random threshold between 0.3
and 0.7 . 109

A.39 Final outbreak Results for Facebook graph with random threshold between
0.3 and 0.7 . 110

A.40 Final outbreak Results for Fhs graph with random threshold between 0.3 and
0.7 . 110

A.41 Final outbreak Results for grqc graph with random threshold between 0.3 and
0.7 . 111

A.42 Final outbreak Results for Maxplank social facebook graph with random
threshold between 0.3 and 0.7 . 111

A.43 Final outbreak Results for Slashdot graph with random threshold between 0.3
and 0.7 . 112

A.44 Final outbreak Results for Twitter graph with random threshold between 0.3
and 0.7 . 112

A.45 Final outbreak Results for Wiki graph with random threshold between 0.3
and 0.7 . 113

A.46 Final outbreak Results for Astroph graph with random threshold between 0.1
and 0.9 . 115

A.47 Final outbreak Results for Ca-hepph graph with random threshold between
0.1 and 0.9 . 115

A.48 Final outbreak Results for Ca-hepth graph with random threshold between
0.1 and 0.9 . 116

A.49 Final outbreak Results for Cit-hepph graph with random threshold between
0.1 and 0.9 . 116

A.50 Final outbreak Results for Enron graph with random threshold between 0.1
and 0.9 . 117

A.51 Final outbreak Results for Epinion graph with random threshold between 0.1
and 0.9 . 117

A.52 Final outbreak Results for Facebook graph with random threshold between
0.1 and 0.9 . 118

xi

A.53 Final outbreak Results for Fhs graph with random threshold between 0.1 and
0.9 . 118

A.54 Final outbreak Results for grqc graph with random threshold between 0.1 and
0.9 . 119

A.55 Final outbreak Results for Maxplank social facebook graph with random
threshold between 0.1 and 0.9 . 119

A.56 Final outbreak Results for Slashdot graph with random threshold between 0.1
and 0.9 . 120

A.57 Final outbreak Results for Twitter graph with random threshold between 0.1
and 0.9 . 120

A.58 Final outbreak Results for Wiki graph with random threshold between 0.1
and 0.9 . 121

B.1 Figure showing a graph with 4 nodes and associated edge weight and threshold
values . 122

xii

List of Tables

2.1 Sequence of configurations and system transitions that result in a fixed point
at time t = 3 when vertex 6 is seeded; i.e., I = {6} and all other vertices are
initially in state 0. 7

4.1 Meanings of arrows in Figure 4.1. 16

5.1 List of networks studied in this project. Networks were cleaned to eliminate
redundant edges and self loops. Data here are for the giant component in each
network. Two of the networks are weighted. 23

6.1 List of Influence Maximization Algorithms Implemented from the Literature 24

7.1 Parameters for the TDG Algorithm. 40

xiii

Chapter 1

Introduction

1.1 Background

Collective behavior refers to the behavior that is diffused or dispersed over large distances.
The web and the social media have allowed for such rapid distribution of information around
the world. Research shows that people trust information obtained from their close social cir-
cle far more than information obtained from general advertisement channels. Thus a minor
piece of information can pass from ear to ear in a network and become a viral phenomenon.
This type of information dispersal has led to an increase in interest among researchers in
modeling the spread of such diffusion among a given population. A social network can be
modeled as a graph with nodes representing individuals and edges representing connections,
or relationships, between individuals. Information, behavior (e.g., joining a protest, adopt-
ing a fad), and other entities that can be propagated through a social network are referred
to as contagions (e.g., [13]). There are two models of diffusion that are widely studied in
the area of social networks - simple and complex. In a simple contagion model, each
individual can contract a contagion if only one of its neighbors possesses it. An example of
a simple contagion would be the spread of a contagious disease like the flu in a community
wherein each individual has a chance of getting infected if he/she comes in contact with
another infected person. In a complex contagion model, multiple sources of exposure are
needed before an individual adopts the change of behavior [13].

Online social networking websites like Twitter and Facebook have provided an effective
medium for diffusing ideas and spreading influence. These social networking websites pro-
vide a platform for marketing products and businesses online. Due to budgetary constraints
in marketing, the ideal strategy is to influence a set of users who will start using the product
and who will in turn influence their friends to use the product and so on. Informally, the
problem of influence maximization as defined in [35], is the problem of finding a small set of
seed nodes (that initially possess a contagion) in a social network that maximizes the spread

1

2

of influence. Kempe et al. proved that this optimization problem is NP-hard, and presented
a greedy approximation algorithm guaranteeing that influence spread is (1− 1

e
− ε) of opti-

mal influence spread [35]. Just as important, their work has motivated the development of a
huge body of literature on the topic of influence maximization. Influence maximization has
applications in viral marketing, feed ranking, recommendations and several other areas.

A complex contagion requires multiple contacts for an individual to change his/her state
and exhibits a different diffusion pattern compared to a simple contagion. Let us take a
real-world example that exhibits complex contagion: a tense atmosphere prevailing in a city
which can potentially lead to a public protest. It has been argued [13] and demonstrated
empirically [31] that the possibility of an individual participating in a protest depends on
the number of that person’s neighbors who are already part of the protest. In particular, for
this and other scenarios, we focus on the linear threshold model. Informally, the model is as
follows: A social network is given. Each directed edge (v1, v2) from one person v1 to another
person v2 has an edge weight wv1,v2 associated with it that quantifies v1’s influence on v2. A
person v2 who has not contracted a contagion is influenced by all of its distance-1 neighbors
that have contracted it. The weights of the edges formed with these contagious neighbors
are added, and if this sum is at least equal to v2’s threshold for acquiring the contagion,
then v2 will do so. A formal definition is given in Chapter 2. Our goal in this work is to
identify, for a social network whose contagion dynamics are those just described, a minimal
set of seed nodes that initially possess the contagion so that the contagion will propagate to
a large number of people. As will be described later, this problem of identifying seed nodes
is formally hard. Thus, we present a new algorithm for computing a small seed node set.

We also make a distinction that carries through the entire thesis. The linear threshold model
described in [35] assumes that thresholds are assigned randomly to vertices of a graph, and
that threshold assignments are made stochastically as part of the model implementation.
That is, just prior to the executing the linear threshold dynamics on a network, thresholds
are assigned to vertices. We use, in contrast, a deterministic linear threshold model in which
thresholds are assigned deterministically to vertices. This difference in threshold assignments
has important subtle ramifications; see [44].

1.2 Contribution

1. New influence maximization algorithm: the major contribution of this thesis is
a new influence maximization algorithm for the deterministic linear threshold model.
The nodes’ threshold values are deterministic and are provided as an input to our
algorithm. The new algorithm called the Threshold Difference Greedy (TDG) algo-
rithm takes into account both edge weights as well as node thresholds to compute the
influence spread. The space and time complexities of the algorithm have also been
analyzed.

3

2. Experimental evaluation of influence maximization algorithms: the proposed
TDG algorithm in this paper has been evaluated against seven existing algorithms,
namely, the High Degree Heuristic, the Random Heuristic, the influence maximization
algorithm by Chen et al. for the independent cascade model [58], the influence maxi-
mization algorithm by Chen et al. for the linear threshold model [20], the Eigenvector
Heuristic, the Degree Discount Heuristic, and the Betweenness Centrality Heuristic.
Experiments were conducted on 14 real-world networks with average degree ranging
from 5 to 50. The TDG algorithm performs better than other approaches for the great
majority of conditions considered. All the evaluations are done through experiments
using the InterSim simulator.

3. Tuneable parameters for the TDG algorithm: the TDG algorithm has tuneable
parameters that trade off computational speed for solution accuracy. We show that a
single set of parameters consistently gives better results in terms of outbreak size than
other heuristics, while minimizing the algorithm execution time. For instance, for the
Epinion graph with 75877 nodes and a very low threshold of 0.1 (onerous conditions),
TDG completes in 199 seconds while other other state of the art approaches take
thousands of seconds to complete.

4. Algorithm for both influence maximization and target set selection: the
TDG algorithm computes infected nodes as part of the algorithm and thus, unlike
other influence maximization heuristics, can be used to address both the influence
maximization problem and the target set selection problem. The experimental results
for addressing both of the problems are provided in this thesis.

5. Parallel implementations of several influence maximization algorithms: the
influence maximization algorithm by Chen et al. for the independent cascade model
[58], the LDAG algorithm for the linear threshold model [20], and the TDG algorithm
have been implemented to execute in a parallel fashion. The parallelism is achieved by
threading and not through distributed processing. The results of the improvement in
the running time are available in Chapter 8.

6. Verified software applications for integration into CINET: all of the imple-
mented heuristics that have been evaluated are tested and have inbuilt log structures,
so that these algorithms can be extended or modified in the future. The package
containing all these heuristics can be integrated into CINET [1].

Chapter 2

Dynamics Model

2.1 Synchronous Graph Dynamical Systems

We use the graph dynamical system (GDS) [48, 40, 46, 47] formalism, which is also
referred to as a discrete dynamical system (e.g. [4, 3, 5]), to model contagion propagation
on social networks. That is, the dynamics are discrete in time and discrete in node states.
Let B denote the Boolean domain {0,1}. A GDS S over B is a triple S = (G,F , R), where

(a) G(V,E), a directed graph with node set V and edge set E where n = |V | and m = |E|,
represents the underlying social network on which a contagion propagates,

(b) F = {f1, f2, . . . , fn} is a collection of functions in the system, with fv denoting the
local transition function or vertex function associated with vertex or node vi,
1 ≤ i ≤ n, and

(c) R is the update scheme that specifies the execution sequence of the function fv.

For an undirected graph G, an edge {a, b} is equivalent to two directed edges: an edge from
a to b, written (a, b), and an edge b to a, written (b, a). Throughout this manuscript, we use
the convention that a directed edge (a, b) denotes that a influences b.

Each node in graph G has a state value from B. Each function fv specifies the local inter-
action between node v and its distance-1 (i.e., adjacent) neighbors in G. Vertex function fv
computes the next state for the vertex v. We use the convention that a node is not a neigh-
bor of itself, but this convention is irrelevant for the dynamics that we study. In this paper,
our main focus is the deterministic linear threshold (LT) model. The deterministic
linear threshold model works the same way as the linear threshold model [35] explained in
Section 2.2. The only difference is that, in this model, the threshold values on the nodes are
deterministic and are prefixed.

4

5

The update scheme we use throughout this work is the synchronous update scheme,
meaning that to compute the states of nodes at time t, all inputs to fv (1 ≤ v ≤ n) are
quantities at time (t− 1). We provide an example below to make this concrete, but we note
here that there are other update schemes [3]. The synchronous update scheme means that
the GDS is a synchronous dynamical system (SyDS), and we use SyDS henceforth to
emphasize the synchronous update approach; i.e. S is an SyDS.

A configuration C(t) of an SyDS at any time is an n-vector (s1, s2, . . . , sn), where si ∈ B is
the state of v. A single SyDS transition from one configuration to another can be expressed
by the following pseudocode, where each of the two steps is executed in parallel, but the
steps themselves are executed serially.

for each node v do in parallel
(i) Compute the value of fv(t+ 1) from C(t− 1). Let s′i = si(t) denote this value.
(ii) Update the state of v to s′v.

end for

If an SyDS has a transition from configuration C1 = C(t) to configuration C2 = C(t+1), we say
that C2 is the successor of C1 and C1 is a predecessor of C2. For deterministic fv, as is the
case here, a successor is unique. A configuration C1 is called a fixed point if the successor of
C1 is C1 itself. It is known (e.g., [38]) that progressive threshold systems always reach a fixed
point. A configuration C which does not have a predecessor is called a Garden of Eden
configuration. A forward trajectory is the sequence (C(t))tft=0 of configurations from time
t = 0 to the time tf , at which time the deterministic system reaches and traverses all of its
limit cycles (i.e., a limit cycle is a repeating sequence of configurations). For a deterministic
discrete dynamical system on a finite graph (sometimes called a finite dynamical system),
a limit cycle will always be reached. A fixed point defined earlier is a limit cycle of length 1.

2.2 Deterministic Linear Threshold Model [35], [44]

We note that the linear threshold model [35] and the deterministic linear threshold model
[44] use the same parameters and state functions, and consequently, the description here
applies to both the models.

In the linear threshold model, each directed edge (u, v) in the graph is assigned a fixed
weight w(u,v), with 0 ≤ w(u,v) ≤ 1. Weights are not necessarily symmetric; i.e., in general
w(u,v) 6= w(v,u). Each vertex v is assigned a fixed threshold θv such that 0 ≤ θv ≤ 1. A vertex
v transitions its state, sv, 0 → 1, if the sum of weights of incoming edges from nodes that
are in state 1 is greater than or equal to v’s threshold; otherwise a node in state 0 remains in
state 0. A node in state 1 remains in state 1. This is called a progressive threshold model
[35]. Formally, the vertex function fv is as follows:

6

1. If a vertex v is in state 1 at time t− 1 (i.e., sv(t− 1) = 1), then sv(t) = fv(t) = 1 (i.e.,
the state does not change).

2. If sv(t− 1) = 0, then sv(t) = 1 if the following condition is satisfied∑
u∈N in(v)
su(t−1)=1

w(u,v) ≥ θv . (2.1)

3. Otherwise sv(t) = 0.

Here, N in(v) = {u | (u, v) ∈ E}; i.e., N in(v) is the set of distance-1 neighbors of v (each
element of N in(v) forms an edge to v). N in(v) is the set of in-neighbors of v, and these are
the nodes that influence v to change state. Also, in this model, a node u that changes to
state 1 at time t∗ will influence its out-neighbors N out(u) at each time t > t∗ (This contrasts
with the dynamics in some other models; e.g., independent cascade [35]). Also we adopt the
convention that θv, w(u,v) have values between 0 ≤ θv, w(u,v) ≤ 1. Other values of thresholds
and edge weights can be used, in general.

Example 1: Consider the S whose underlying graph is shown in Figure 2.1(a). Suppose
for each node v, 1 ≤ v ≤ 8, the vertex function fv is the linear threshold function with vertex
thresholds and edge weights as given in Figure 2.1(b). Hence, this is a complex contagion
[13], since for at least some vertices, multiple neighbors must contribute to a vertex’s state
change. For example, for node 2, θ2 = 0.6, but no weight on a single edge that is incident on
node 2 will cause node 2 to transition state. A forward trajectory is given in Table 2.1. We
detail a few of those state transitions here. In the initial configuration, the seed set I (i.e.,
the nodes initially in state 1) is I = {6} and all other nodes are in state 0. During the first
time step (t = 1), the state s3 of node 3 changes to 1 because w(6,3) = θ3 = 0.5, and hence
the criterion of Equation (2.2) is satisfied. Similarly for node 7, w(6,7) = 0.42 > θ7 = 0.3, and
so vertex 7 transitions to state s7 = 1. No other vertex changes state. At time t = 2, the
state of node 1 changes to s1 = 1 because w(3,1) = 0.4 > θ1 = 0.2, and hence the criterion of
Equation (2.2) is satisfied. No other vertex changes state at this time. From Table 2.1, we
see that there are no vertex state transitions from t = 3 to t = 4, indicating that the system
has reached a fixed point at t = 3. The spread size is the number of nodes in state 1 at
the end of contagion propagation, and the spread fraction is the corresponding fraction
of nodes. Here, the spread fraction is 5/8=0.625. We call this sequence of configurations
that completely specifies the system dynamics from one seed node set a diffusion instance.
Hence, a forward trajectory is also a diffusion instance. In the simulations described later,
we are computing diffusion instances.

7

1	 2	

3	 4	 5	

6	 7	 8	

(a)

0.2 0.6

0.5 0.7 0.8

0.6 0.3

0.4

0.4

0.5

0.42 0.21

0.1

0.2

0.33

0.6

0.3

0.41

0.39

(b)

Figure 2.1: Network to illustrate contagion dynamics on a graph. (a) Graph with node
numbers. (b) Linear threshold model parameters: thresholds (in black) and edge weights (in
blue). Edge weights are assumed symmetric; i.e., w(u,v) = w(v,u) in this example.

Table 2.1: Sequence of configurations and system transitions that result in a fixed point at
time t = 3 when vertex 6 is seeded; i.e., I = {6} and all other vertices are initially in state 0.
Time System Configuration

C = (s1, s2, s3, s4, s5, s6, s7, s8)
0 (0, 0, 0, 0, 0 1, 0, 0)
1 (0, 0, 1, 0, 0 1, 1, 0)
2 (1, 0, 1, 0, 0 1, 1, 0)
3 (1, 0, 1, 1, 0 1, 1, 0)
4 (1, 0, 1, 1, 0 1, 1, 0)

2.3 Deterministic threshold model

In the deterministic threshold model, each directed edge (u, v) is assigned a fixed weight 1.
Each vertex v is assigned a fixed threshold θv such that θv ≥ 1 and is an integer. A vertex v
transitions its state, sv, 0→ 1, if the sum of weights of incoming edges from nodes that are
in state 1 is greater than or equal to v’s threshold; otherwise a node in state 0 remains in
state 0. A node in state 1 remains in state 1. Formally, the vertex function fv is as follows:

1. If a vertex v is in state 1 at time t− 1 (i.e., sv(t− 1) = 1), then sv(t) = fv(t) = 1 (i.e.,
the state does not change).

8

2. If sv(t− 1) = 0, then sv(t) = 1 if the following condition is satisfied∑
u∈N in(v)
su(t−1)=1

w(u,v) ≥ θv . (2.2)

3. Otherwise sv(t) = 0.

2.4 Independent Cascade Model

The independent cascade model is described here since one of the algorithms used in
the influence maximization studies assumes this dynamics model. The network has a fixed
weight w(u,v) on each directed edge (u, v) (i.e., u influences v) where 0 ≤ w(u,v) ≤ 1. The
vertex function for this progressive model is as follows :

1. If a vertex v is in state 1 at time t− 1 (i.e., sv(t− 1) = 1), then sv(t) = fv(t) = 1 (i.e.,
the state does not change).

2. If a vertex v has state sv(t− 1) = 0, then for each u ∈ N in(v) that changed to state 1
at t − 1, perform a Bernoulli trial. If for at least one edge (u, v) the random number
r ≤ w(u,v), then sv(t) = fv(t) = 1. (Note there are separate random numbers r for each
u.)

3. Otherwise, sv(t) = 0.

Note that once a vertex u transitions to state 1, it has one chance (at the next time) to
independently influence each of its distance-1 neighbors in state 0 to transition to state 1.

Chapter 3

Formal Problem Statement

In this chapter, we provide formal problem statements for the problems that are addressed
in this thesis.

We provide a formal statement for the problem of finding the most effective nodes to seed,
in order to cause a large number of nodes to become affected. Two dynamics models were
investigated in the initial work [35]: the IC model and the LT model (cf. Chapter 2).

We now address the influence maximization under the deterministic linear threshold model.
The only change necessary in the problem statement for the linear threshold model is that
vertex thresholds are assigned at random. The decision problem variant is as follows.

Influence Maximization Problem for Deterministic Linear Threshold Model
(IM Decision Problem) [35]

Given: A social network G(V,E) with vertex set V and edge set E where n = |V | and
m = |E|, a set K = {0, 1} of vertex states, a set W of edge weights wij for the influence of
vertex i on vertex j, a set T of thresholds θi for vertices 1 ≤ i ≤ n, a sequence (fv)

n
v=1 of

vertex functions where fv describes how vertex v changes state in the linear threshold model,
an update scheme for sequencing the fv, and two integers ρ and σG, such that both integers
are ≤ n.

Question: Does S have a seed set I with |I| ≤ ρ, whose elements each have initial state 1,
such that the spread size σG(I) is at least σG?

The corresponding optimization problem variant follows.

Influence Maximization Problem for Deterministic Linear Threshold Model
(IM Optimization Problem) [35]

Given: A social network G(V,E) with vertex set V and edge set E where n = |V | and
m = |E|, a set K = {0, 1} of vertex states, a set W of edge weights wij for the influence of
vertex i on vertex j, a set T of thresholds θi for vertices 1 ≤ i ≤ n, a sequence (fv)

n
v=1 of

9

10

vertex functions where fv describes how vertex v changes state in the linear threshold model,
an update scheme for sequencing the fv, and an integer k < n.

Find: The set I of seed nodes, of size k = |I|, whose initial state is 1, such that the spread
size σG(I) is maximum.

As mentioned in Chapter 1, our focus is the deterministic linear threshold model [44], which
differs in some aspects from the linear threshold model [35]. In the deterministic model, the
thresholds are assigned to vertices deterministically, while in the linear threshold model, they
are assigned uniformly at random, taking on values between 0 and 1. These have a significant
affect on complexity results. In [35], it was shown that the influence maximization optimiza-
tion problem is NP-hard. They also showed that the optimization problem is polynomial
time approximable to within a factor e/(e − 1) + ε for any ε > 0 under selected diffusion
models. For the deterministic linear threshold model, there is no n1−ε factor polynomial time
approximation unless P=NP [44]. Furthermore, the complexity of determining the influence
from a given seed set (influential set) is different for the two models. Chen et al [20], showed
the problem to be #P-hard for the linear threshold model. However, for the deterministic
linear threshold model, the solution is efficiently computable [44]. Note that while these
differences exist, the dynamics in Section 2.2 are the same in both the deterministic linear
threshold model and the linear threshold model.

The problem of finding the smallest set I of seed nodes (called a target set [14] or con-
version set [25]) to ensure that all nodes become affected under a deterministic threshold
model was first presented as a decision problem in [24, 25] and concurrently in [14, 15].
Their dynamics model is the threshold model in section 2.3; i.e., fv for v ∈ V is a threshold
function. We make a small modification in the optimization variant to allow specification of
any (final) spread size, following [15].

Target Set Selection Decision Problem [25, 14]

Given: A social network G(V,E) with vertex set V and edge set E where n = |V | and
m = |E|, a set K = {0, 1} of vertex states, a set W of edge weights wij for the influence of
vertex i on vertex j, each vertex i, 1 ≤ i ≤ n has threshold θi, a sequence (fv)

n
v=1 of vertex

functions where fv for a vertex v describes how vertex v changes state in the linear threshold
model, an update scheme for sequencing the fv, and an integer ρ ≤ n.

Question: Does the S have a target set (i.e., a seed set whose elements are initially in
state 1) I where |I| ≤ ρ, such that all nodes become affected?

The optimization problem variant, of finding the smallest set of seed nodes to ensure that at
least σG nodes become affected, is formalized below. This is a variant considered in [14, 15].

Target Set Selection Optimization Problem [25, 14]

Given: A social network G(V,E) with vertex set V and edge set E where n = |V | and
m = |E|, a set K = {0, 1} of vertex states, a set W of edge weights wij for the influence of
vertex i on vertex j, each vertex i, 1 ≤ i ≤ n has threshold θi, a sequence (fv)

n
v=1 of vertex

11

functions where fv for a vertex v describes how vertex v changes state in the linear threshold
model, an update scheme for sequencing the fv, and an integer σG ≤ n.

Find: The set I of seed nodes, with the least cardinality, whose elements are nodes with
initial state of 1 with all other vertices initially in state 0, such that the spread size σG(I)
(i.e., the final number of nodes in state 1) is at least σG.

When the required number of nodes to be affected σG is less than n, this problem is called
the Target Set Selection (TSS) Problem. When σG = n, this problem is called the Perfect
Target Set Selection (PTSS) problem in [14, 15]. Other variants are presented in [2]. The
decision problem is NP-Complete [25] for the case where all the edge weights are 1.

Chapter 4

Related Work

4.1 Influence Maximization

The problem of selecting individuals to market to, who might then influence others to also
purchase a commodity, was first posed in [23]. One of the contentions of the authors’ was
that a person’s value in marketing included a component related to her position in her social
network and the influence she exerted on others. They used a probabilistic cost-benefit model
to identify individuals with the greatest network value. They also attempted to predict future
purchasing activities and applied their method to a movie dataset. In [53], they extended
their model for improved computational speed and investigated knowledge sharing networks.
They laid the groundwork for the study of influence maximization by positing how to select
a subset of agents (nodes) to query, in order to learn the node’s (trusted) neighbors, that
leads to greatest profits. This has led to a large body of work on influence maximization, to
which we now turn.

Arguably the seminal work in influence maximization is [35], which addressed a discrete
formulation of the optimization problem posed in [23]. It is useful to detail some of this
work, since it laid the groundwork for the great majority of influence maximization work that
followed. The influence maximization problem they addressed is formalized in Chapter 3.

The dynamics models studied in [35] for investigating the influence maximization question
are progressive. In almost all works, the update scheme is taken as synchronous and the
vertex state set K = {0, 1}, although there are exceptions (e.g., for competing contagion
models). Two dynamics models are studied in [35]: independent cascade (IC) and linear
threshold (LT). These were presented in Chapter 2

The work [35] made a number of contributions that are regularly used today in the analysis
of network dynamics: (i) it popularized the IC and LT models described above; (ii) it showed
that the influence maximization problem for both models is NP-hard; (iii) it popularized

12

13

the use of submodular functions, which have been used in a host of influence studies (e.g.,
[36, 37, 41, 17, 20, 11, 39, 50]); and (iv) it showed that both IC and LT models were
submodular.

This last contribution has particular ramifications. It means that the greedy hill-climbing
algorithm introduced in [49] could be used for obtaining approximate solutions to the influ-
ence maximization problem. Further, this hill-climbing algorithm has a provable performance
bound that is within (1 − 1/e − ε) (=63%) of optimum for arbitrarily small ε > 0 (that is,
it is a (1 − 1/e − ε)-approximation) [49]. Thus, the spread size resulting from seeding the
nodes in the computed influential node set I is guaranteed to be within 63% of the optimal
spread size for the IC and LT models.

Submodular functions capture the idea that the incremental increase to a function f , with the
addition of a node u to an argument set S, will be at least as great as the incremental increase
if u is added to a set T , where S ⊆ T . Formally, f is submodular if f(S ∪ {u}) − f(S) ≥
f(T ∪ {u})− f(T) for S ⊆ T . A function f is monotone if for all S ⊆ T , f(S) ≤ f(T). In
the formulations of [35], f and the spread size σ(I) from a seed set I, are both submodular
and monotone [35].

Not all functions are submodular. For example, the threshold model of section 2.3, used
in numerous empirical and theoretical studies (e.g., [15, 25, 31, 51, 55, 34, 38]), is not
submodular. To see this, consider the graph G(V,E) that is a clique on n ≥ 3 nodes. To
each node assign the θ-threshold function, where 1 < θ < n. Let σG(Q) be the function
that computes the number of affected nodes, given a set Q of nodes that are in state 1.
Let S = T = ∅; i.e., S and T are initially empty. Then σ(S) = σ(T) = 0 for threshold θ.
Select any one node u ∈ V , and S ∪ {u} = {u}. The resulting number of affected nodes, is
σ(S ∪ {u}) = 1, since all nodes have threshold-2 (the 1 comes from the fact that su = 1).
Now, add to T the set whose elements are u and any other θ−1 vertices {y1, y2, . . . , yθ−1} in
V . Then σ(T ∪ {u, y1, . . . , yθ−1}) = n because any θ nodes in the clique G that are affected
will cause all other nodes to be affected. Now, examine the submodularity definition. We
have S ⊆ T . But f(S ∪ {u})− f(S) = 1− 0 = 1 6≥ f(T ∪ {u})− f(T) = n− 0 = n. Thus,
the threshold function is not submodular.

The basic greedy hill climbing algorithm used in [35], a variant of which was proposed in [23],
is given in Algorithm 1. Note that this is a particular implementation of the greedy strategy
where simulation is employed to compute spread sizes σ(I) so that the influential node sets I
can be determined; cf. line 1. This algorithm provides a (1− 1/e) approximation gaurantee
for both the IC and LT models [35]. The general algorithm is provided in Algorithm 2. Note
that line 1 in Algorithm 2 is the generalization of line 1 in Algorithm 1. The goal of many
of the influence maximization schemes described below is to find methods to compute v in
line 1 of Algorithm 2 in less time, using less memory, and/or providing a better solution.

Parts of this lineage of [35] is illustrated in Figure 4.1, which provides selected methods from
the literature and our view of their dependencies. Greedy hill climbing is the work of [35];
other works are described below. The methods are arranged top-down and left to right, from

14

Algorithm 1: Greedy Hill Climbing of KKT [35].

input : Graph G(V,E), dynamics model M , number of diffusion instances nj,
maximum time per diffusion instance tmax, number k of influencing nodes to
find.

output: Set A of maximum influencers, of cardinality k.

Read in inputs: G(V,E), ni, tmax, k.
// Loop over diffusion instances.
for (j = 1; j ≤ nj; ++j) do

Set Aj, the influence set for diffusion instance j, to empty.
for (i = 1 to k) do

1 Using simulation over tmax time steps with the dynamics model M , where
there is one seed node vi ∈ V per simulation instance, let vi be the node
(approximately) maximizing the marginal gain σ(Aj ∪ {v})− σ(Aj).
Set Aj = Aj ∪ {v}.

Assign to A the maximum k nodes that occur most frequently in the nj sets Aj.
Return A.

Algorithm 2: General Greedy Hill Climbing

input : Graph G(V,E), dynamics model M , number k of influencing nodes to find.
output: Set A of maximum influencers, of cardinality k.

Read in inputs: G(V,E), k.
Set A to empty set.
for (i = 1 to k) do

1 Let v ∈ V \A be the node (approximately) maximizing the marginal gain
σ(A ∪ {v})− σ(A).
Set A = A ∪ {v}.

Return A.

15

earliest works to most recent works. For example, LDAG and SIMPATH are related in that
both characterize local graph structure in the vicinity of a node v to estimate the influence
on v and to estimate v’s influence on nearby nodes. The LDAG method uses DAGs (directed
acyclic graphs) while SIMPATH uses all paths between v and all of its nearby nodes.

CELF PMIA LDAG

Simpath SPS-CELF++

Our
Algorithm

Greedy Hill
Climbing

UBLF

Figure 4.1: Relationships among selected influence maximization algorithms from the liter-
ature, and our algorithm. For example, the PMIA and SIMPATH influence maximization
methods are related in that both use the local graph structure for a node v to compute the
influence (contagion spread) from nodes in the vicinity of v. See Table 4.1 for meanings of
arrows. Our method builds on the LDAG method.

We now turn to other works on influence maximization. Optimal sensor placement to detect
cascades is the subject of [41]. However, the problem can also be cast in a manner—using
reductions in penalty functions— so that it becomes the same as an influence maximization
problem. The reduction function can be written as an absolute reduction, or as a penalty
reduction per unit cost. By using both formulations, and at each time, choosing the node v
that provides the largest gain in penalty reduction considering both methods, a submodular
scheme is produced, generating a (1/2)(1− 1/e) approximation guarantee. By noticing that
most networks are sparse (i.e., average degree � O(n)) an inverted index approach and a

16

Table 4.1: Meanings of arrows in Figure 4.1.
From To Meaning

CELF SIMPATH CELF algorithm used in SIMPATH.
CELF SPSCELF++ CELF algorithm used in SPS-CELF++.
Greedy Hill
Climbing

PMIA,
LDAG, SIM-
PATH, CELF

These algorithms use the submodularity ideas from the
Greedy Hill Climbing approach.[35].

PMIA LDAG The idea that local structures around a vertex approxi-
mately defines the influence on, and influence exerted by,
a node v; this is an idea applied to the IC model, and
then used in the LT model.

LDAG SIMPATH The idea that local structures around a vertex approxi-
mately defines the influence on, and influence exerted by,
a node v; this is an presented in an LT model that is used
in another LT model.

SIMPATH SPS-
CELF++

SPS-CELF++ uses SIMPATH-SPREAD to estimate
spread size

CELF UBLF UBLF reduces the number of Monte-Carlo simulations of
CELF using a upper bound function.

priority queue can be employed. Because of the submodularity property, nodes are ordered
in non-increasing order of the reduction penalty. Then, after a node s is selected as an
influential node, one starts at the top of the ordered list of nodes and continues to evaluate
nodes (to update their gain in penalty reduction) until a node s′’s recomputed gain in penalty
reduction does not change much, and hence its rank does not change. By submodularity, no
node with lesser previous gain can produce a larger gain than s′, after s is removed. Hence,
the entire set of nodes does not have to be re-evaluated, and significant savings is realized in
not recomputing the gain in penalty reduction for each node; this is the lazy property in the
cost-effective lazy forward (CELF) selection process. The sparsity condition also helps to
localize changes in gain in penalty reduction for nodes, further reducing the number of nodes
whose gain must be recomputed. They note that in one case, this lazy approach results in
a 700× improvement in speed, compared to the non-lazy scheme. The algorithm is tested
on small networks, from hundreds to a couple tens of thousands of nodes, and very small
average degrees, or on a larger network with, again, a very small average degree.

Several algorithms for influence maximization are considered in [19]. A NewGreedyIC ap-
proach uses the same idea in [35] for reasoning about the IC model: pre-compute active
edges (edges over which contagion spreads) in graph G. Here, graphs are undirected and
edge weights are symmetric. One can compute both σ(S) and σ(S∪{u}) efficiently by depth
or breadth first search. They find that correlation biases are not significant on real networks.
A MixedGreedyIC method uses the NewGreedyIC method for the first iteration (i.e., the first

17

influential node), and then uses CELF [41] for all further iterations. The NewGreedyWC
method uses a slightly different approach to address undirected graphs with unsymmetric
edge weights (i.e., w(u,v) 6= w(v,u)). The approach essentially focuses on strongly connected
components and edges between them. MixedGreedyWC uses the NewGreedyWC method to
compute the first influential node, and CELF to compute all subsequent influential nodes.
SingleDiscount selects as the next most influential node the node with the greatest dis-
counted degree. A node’s discounted degree is its original degree, minus the number of its
distance-1 neighbors that have already been selected as influential nodes. The DegreeDis-
countIC method discounts a node v’s degree based on the number of its distance-1 neighbors
that are already in the influential set, but the discount process is based on an analysis of a
star subgraph centered at v; this discount is greater than the discount in the SingleDiscount
model. The models are applied to two realistic networks. When execution time is critical,
the degree discount methods are more attractive, but when quality of solution is important,
the two mixed strategies (involving CELF) are preferred.

Influence maximization under the IC model is studied in [17]. It is shown that the problem
of computing the spread size from a specified seed set I in the IC model is NP-hard. The
authors’ in [17] devise a maximum influence arborescence (MIA) model to compute influential
nodes, and show that the function for computing σ(I) using the MIA model is submodular
and monotone. Therefore, the 1 − 1/e-approximation bound holds for the MIA, based
on [49]. MIA uses the idea that a node v interacts mostly with other nodes that are within a
short geodesic distance of it. This assumption paves the way for a more efficient method for
computing influential nodes. To compute node v’s influence, and the influence exerted on v by
other nodes, efficient, they use arborescences rooted at v. An in-arborescence (respectively,
out-arborescence) is a tree in a directed graph such that all edges are directed towards
(respectively, away from) the root. An in-arborescence quantifies other nodes’ influence
on v; an out-arborescence quantifies v’s influence on its neighbors. The depth of these
arborescence structures is controlled by a tunable parameter η such that the probability
of a path from v to another node u (which is the product of the weights of the edges
forming the path) is at least η. A large value of η leads to arborescences of lesser depth and
hence more restricted consideration of local influence. A small value for η produces larger
arborescences, but at greater cost (execution time). Activation probabilities are computed
from the arborescences that characterize influence. These activation probabilities are used
to compute influential nodes. Each additional influential node can require updates to other
nodes’ activation probabilities, and they provide efficient linear update schemes with provable
properties. Other refinements include altering arborescences of nodes that have not yet been
selected as influential, so that these arborescences do not include paths containing already-
selected influential nodes. This modification, called prefix excluding MIA (PMIA) is shown
to be sequence submodular. These latter modifications are detailed in [18, 58]. They run tests
on four networks and compare their model to CELF [41], degree discount [19], a shortest
path heuristic [37], and PageRank [52]. Interestingly, all of the networks have small average
degrees, in the range 4 to 13. One wonders how these methods would perform on networks
with higher average degree where arborescences would presumably be larger.

18

Influence maximization under the LT model is studied in [20, 21]. It is shown that the
problem of computing the spread size from a specified seed set I in the LT model is NP-
hard. The authors’ in [21] describe a heuristic to compute influential nodes for the LT model.
It is called Linear Threshold Directed Acyclic Graph (LDAG) heuristic. Conceptually, they
use the same approach as in [17] for the IC model: evaluate local influence of (and on) a node
v by assessing directed cyclic graphs (DAGs) rooted at v. They assume that v’s influence
is only propagated on the DAG rooted at v. Again, the depth of a DAG is controlled by a
parameter η where 0 < η ≤ 1 controls the minimum weight of a path to v, in a DAG rooted
at v (the path weight is the product of the weights of the edges that form it). They show
that the influence maximization problem in their LDAG dynamics model, where nodes only
propagate their influence on these respective DAGs, is NP-hard. Now, σ(I) in the LDAG
dynamics model is both submodular and monotone, and hence the seed set I in the LDAG
model has a 1 − 1/e performance guarantee on the spread size, just as the original models
evaluated in [35]. However, one can compute the spread size on DAGs efficiently. At issue
is how to construct these DAGs. They specify the following properties for a DAG rooted at
v, DAG(v), on a graph G(V,E,W), where W is the set of edge weights: (i) DAG(v) should
be an induced subgraph of G; (ii) InfD(u, v) ≥ η (meaning that the total path weight
InfD(u, v); i.e., the influence probability from u to v for all paths from u to v, should be
at least η); and (iii)

∑
y∈X InfD(u, v) is maximum among all DAGs rooted at v, where X

is the node set of a DAG. They show that it is NP-hard to find such DAGs, and propose a
greedy algorithm that constructs DAG(v) by successively adding a node u from X (i.e., to
nodes currently in DAG(v)) that has an edge to at least one node of DAG(v) in G, such that
the new path weight to v is maximum among all candidate u. This scheme is efficient. Note
that this LDAG algorithm does not have a performance guarantee. They use methods to
update influence, in the form of activation probabilities, as new influential nodes are found.
There are two points of interest. First, their approach does not make use of the thresholds
assigned to nodes. Their companion method for the IC model does (since there is an implicit
threshold of 1 for each node). They show that their LDAG method performs just as well
or better than other methods in identifying seed nodes to spread a contagion, and that it
scales well. Hence, it is natural to wonder if including thresholds would increase the model’s
effectiveness. Second, all of the networks again have small average degrees, in the range 4
to 13; they are the same networks used in [17]. So, one wonders again how the methods
would do with greater-degree networks where arborescences would presumably be larger.

An upper bound on the spread size, which can be used to prune unnecessary spread esti-
mations (Monte-Carlo calls) in the CELF algorithm is proposed in [59]. In the initialization
step, CELF needs to estimate the spread size using Monte-Carlo simulations for each node
in a graph, resulting in n Monte-Carlo calls. Consequently, the method is very slow for large
graphs. Based on an upper bound, the authors propose a new greedy algorithm, Upper
Bound-based Lazy Forward (UBLF), which outperforms the original CELF algorithm. The
nodes are ranked based on their upper bound scores and algorithm uses the upper bound
scores to limit the Monte-Carlo simulation. The authors then go on to explain the relation
between upper bound estimated (which is used as node’s influence) and the actual influence

19

of the node. Researchers in [10] have proposed a near optimal time algorithm for the IC
model. The approach to seed selection is through a polling process where nodes are picked
at random after a hyper graph construction. The main motive of the approach is not to com-
pute influence for all seeds in the graph. Instead, their algorithm uses a sampling method to
generate a sparse hyper-graph of the network which allows them to estimate the influence
of a node. The hyper-graph encodes the influence estimates. The algorithm them proceeds
by selecting node in a greedy fashion to provide a hyper-graph of maximum degree. The
algorithm also provides provisions for early termination and runs in sublinear time.

Influence maximization strategies have also been studied for time varying graphs and under
other constraints. The problem of influence maximization in dynamic networks is studied
in [60]. They proposed a new algorithm for probing influence diffusion called Maximum
Gap Probing (MGP), which maximizes the change of solution obtained by probing. The
intuition is to probe the nodes which are expected to bring the biggest change to the approx-
imated solution on the observed network. The idea of incorporating time factor in influence
maximization algorithm is described in [43]. The time constrained influence maximization
problem is defined based on Latency Aware Independent Cascade influence propagation
model. The authors of [43] propose a greedy algorithm, a simulation, and two algorithms
based on Influence Spread path to address time constrained influence maximization in social
networks. The greedy algorithm proceeds by selecting nodes with the maximum marginal
influence and adds them to the influential set. The simulation-based algorithm and the
Influence Spreading Path algorithm take in the time factor into account and return a set
of activated nodes given a initial seed set. Time critical influence maximization problem,
where one wants to achieve maximum influence within a deadline is presented in [16]. To ad-
dress the deadline, the Independent Cascade model is extended to incorporate a time delay.
The MIA-M algorithm proposed in this paper uses an augmented length path to take the
deadline constraint into account. Two algorithms have been proposed to this problem: one
based on a dynamic programming procedure, and a second one converts the problem to a
problem under the IC model and applies fast heuristics. The algorithm effectively computes
Maximum Influence in-arborescences for all nodes with a propagation probability limit and
an augmented length. The algorithm then greedily selects nodes and updates marginal gain
using the nodes’ in-arborescence.

The first attempt to investigate the influence maximization problem in online social networks
with both friend and foe relationship is described in [42]. This paper also studies the influence
diffusion and the influence maximization in signed networks. The relationships are modeled
using positive and negative edges in the graph. The paper extends the voter model to signed
digraphs and provides a detailed mathematical analysis for the model. They show that
the steady state dynamics depends on the graph structure: balanced graphs, anti-balanced
graphs, and strictly balanced graphs. The influence maximization problem has been studied
under the voter model for signed digraphs in two forms. One is instant influence, which
counts the total number of influenced nodes at a time step t > 0 and average influence,
which takes the average number of influenced nodes within the first t time steps. The

20

algorithm is evaluated extensively on both real-world and synthetic networks and the results
demonstrate that the algorithm performs better a host of heuristics. The Least Cost Rumor
Blocking (LCRB) problem where rumors originate from a community in the network and a
notion of protectors being used to limit the bad influence of these rumors is studied in [26].
The problem is defined as identifying a minimal subset of individuals as initial protectors
to minimize the number of people infected at the end of the diffusion process. The network
structure of the graph is taken into consideration and minimum protectors are employed to
protect bridge ends. The greedy algorithm proposed in the paper has been evaluated on
different parameters such as network density, community size and rumor originators. The
experimental results show that the greedy algorithm and the SCBG (Set Cover based greedy
algorithm) algorithm outperform the two heuristics: MaxDegree and Proximity.

Researchers in [8] put forward important questions to answer before selecting influencers.
Some of the questions are: where exactly does the influence of an influencer lie? How is it
distributed? On what type of actions (or products) is an influencer influential? What are the
demographics of its followers? The influencer validation improves the confidence and ensures
marketer’s satisfaction. The paper finds the solution to the questions raised and presents
a greedy algorithm. They formulate the problem of providing explanations (called PROXI)
as a discrete optimization problem of feature selection; i.e, to find upto k selections, each
containing one or more features, while maximizing the coverage. The objective function and
the intuitive greedy heuristic are evaluated on two real-world datasets Twitter and Flixster.
[?] addresses the fact that individuals attribute different costs for becoming early adopters in
the process of influence maximization. The paper discusses a constant-factor approximation
mechanism for the Coverage, Linear Threshold, Independent Cascade, the Voter and general
sub modular influence models. The mechanism is evaluated by experiments of real data sets
- network data with a million nodes and 72 million edges, together with a cost-distribution
by running a simulated campaign on Amazon’s Mechanical Turk platform. When compared
against the greedy benchmark, in this model, as the budget increases, the gap between the
two mechanisms grow. [45] show that in a deterministic linear threshold model, there is no
n(1−e) polynomial factor polynomial time approximation for the problem unless P = NP .

4.2 Minimum Sized Conversion Sets

The target set or the conversion set problem, presented in Chapter 3, was first posed in [14,
15, 24, 25]. The complexity result (the decision problem is NP-Complete) is shown to hold
for the case where any single node has threshold θ ≥ 3 [25]; in [15], the result is also shown
to hold when θ = 2. Solutions (i.e., the sizes of conversion sets) for a number of stylized
networks, including paths, cycles, bipartite graphs, and toroidal grids are given in [25]. Chen
[15] gives the first approximability results for the majority thresholds model, showing that
the majority thresholds model have the same approximation ratio as the general case; i.e.,

21

the problem cannot be approximated within a ratio of O(2[log n]1−ε), for any fixed constant
ε > 0, unless NP⊆DTIME(n polylog (n)). For the special case of trees, [25] provides a
polynomial time algorithm to compute optimal conversion sets when all node thresholds are
the same. An algorithm for the non-uniform threshold case is provided in [14]. Both of these
works assume that a node’s threshold is not larger than its degree.

Beyond trees, [6, 7] provide an algorithm for computing conversion sets for graphs with
bounded tree width. The tree width of an undirected graph is a number associated with the
graph. It is the size of the largest vertex set in a tree decomposition of a graph or the size of
the largest clique in a chordal completion of a graph. For a graph with n nodes and upper
bound tree width w, the algorithm in [7] runs in time nO(w), and can be adapted to directed
graphs, and graphs with weighted edges and nodes. However, there is no implementation of
this algorithm, and correspondingly, no experimental evaluation of its performance. Also,
they argue that tree width characterizes the time complexity of any target set selection
algorithm, since it is unlikely that the time complexity could be less than no(

√
w). Finally,

in [7] the authors provide the first results for a non-progressive (non-monotone) dynamics
model. For each node v and its assigned threshold θv, v may transition from 0 → 1 and
1 → 0. It transitions up to 1 as in the progressive case: when the number of its neighbors
in state 1 is at least θv. It transitions down to 0 when the number of its neighbors in state 1
is less than θv. They prove that the non-monotone target set selection problem is #P-hard.

A genetic algorithm is used [57] to compute solutions to the target set selection problem
that converge in probability to the optimal solution. However, the graphs on which they run
evaluations are quite small: at most 1500 nodes, with the maximum average degree of any
graph being 15 (most are on the order of 3 to 5). Thus, whether the algorithm can scale to
even moderate-sized graphs (e.g., roughly 20000 to 100000 node graphs) is an open issue.

A straight-forward, intuitively appealing algorithm for computing target sets for determinis-
tic threshold dynamics is presented in [54]. The approach is to compute a set of seed nodes
that will result in all nodes being affected. It uses a pruning process to remove nodes from a
graph whose thresholds can be satisfied, based on their degrees. The process is fast, enabling
evaluation of graphs with several million nodes. While there are no explicit steps to compute
a small target set, the authors find in practice that target (seed) sets are routinely about
0.5% to 5% of the nodes in many graphs. A primary reason why such small target sets are
produced is because thresholds for low-degree nodes are specifically reduced to enable these
nodes to transition (i.e., their thresholds are reduced to be no more than their in-degrees).
In real (e.g., mined) scale-free social networks, 35% to 50% of nodes are typically degree-1.
If these nodes have thresholds > 1, then they cannot be affected unless they are seeded. An
alternative approach that could be implemented is to identify nodes v that could not transi-
tion (because θv > dinv), and simply remove them from the graph, in a pruning process that
is similar to that for computing k-cores. Then one could focus on the resulting subgraph,
and compute the target set on the subgraph of nodes that can possibly transition to state 1.

Chapter 5

Graphs

The set of graphs used to evaluate the influence maximization heuristics is shown in Table
6.1. All of the graphs in Table 6.1 are unweighted except FB-02 and FHS. For the unweighted
networks, the edge weights are assigned in the following fashion. For a vertex v, the weight
on each incoming edge to v is set equal to 1/Din(v) where Din(v) is the degree of v.

The graph classes SF and ED in Table 6.1 refer to scale free and exponential decay networks
respectively. An ED (exponential decay) network has the following form (where exp is the
exponential function):

p(d) = c3 exp(− c4 ∗ d)

where c3 and c4 are constants, d is a specified degree, and p(d) is the probability that a node
has that degree. An SF (scale-free) network has the following form:

p(d) = c1d
−c2

where c1 and c2 are constants (both > 0), d is the specified degree, and p(d) is the probability
that a node has that degree.

22

23

Table 5.1: List of networks studied in this project. Networks were cleaned to eliminate
redundant edges and self loops. Data here are for the giant component in each network.
Two of the networks are weighted.
Networks Number

Nodes, n
Number
Edges, m

Average
Degree,
dave

Average Clus-
tering Coeffi-
cient, CCave

Graph
Class

Epinions [33] 75877 508836 10.7 0.138 SF
Slashdot [33] 77360 905468 12.1 0.0555 SF
Wikipedia (Wiki)
[33]

7066 103663 28.3 0.141 SF

Twitter/Tweet
[22]

22405 59925 5.35 0.000850 SF

Enron (email) [33] 33696 180811 10.7 0.509 SF

Ca-Astroph [33] 17903 196972 22.0 0.633 ED
Ca-Condmat [33] 21363 91286 8.55 0.642 ED
Ca-Grqc [33] 4158 13422 6.46 0.557 ED
Ca-Hepth [33] 8638 24806 5.74 0.482 ED
Cit-Hepph [33] 34401 420783 24.5 0.286 ED

Ca-Hepph [33] 11204 117619 21.0 0.622 Ind.
FHS (weighted)
[27]

10430 37103 7.11 0.530 ED

MONT-VA [12] 77,528 1,967,714 50.8 0.395 Neither
FB-01 [56] 63,392 816,886 25.8 0.222 ED
FB-02 (weighted)
[56]

43,953 182,384 8.30 0.111 ED

Chapter 6

Pre-Existing Influence Maximization
Algorithms

This chapter describes the existing influence maximization heuristics from the literature that
have been implemented and evaluated in this study. These are listed in Table 6.1. We address
the execution times for the various influence maximization algorithms in this chapter. The
effectiveness of the algorithms to spread contagion is evaluated along with the results from
the new algorithm in Chapter 7.

Table 6.1: List of Influence Maximization Algorithms Implemented from the Literature
Algorithm References
Influence Maximization for the Independent Cascade model [58]
Influence Maximization for the Linear Threshold model [20]
Eigenvector Heuristic [9]
High Degree Heuristic [29]
Degree Discount Heuristic [19]
Betweenness Centrality Heuristic [28]
Random Heuristic

6.1 Influence Maximization for the Independent Cas-

cade model [58]

Chen et al. present a scalable algorithm that studies the influence maximization problem for
large-scale social networks for the independent cascade model in [58]. The algorithm works
by computing local arborescence structures for each node in the graph to approximate the
influence propagation. The PMIA model presented in [58] assigns an influence value to each

24

25

node in the graph. The seed selection process picks the node with the maximum influence
and updates the influence of other nodes due to the seed selected. For example, suppose
vertices u and v can both infect vertex w. If v is selected as an influential node, then u′s
influence on w is updated. This form of seed selection and update process continue until the
desired number of influential seeds have been selected.
The algorithm was implemented in Java and used Java’s Executor Service to achieve concur-
rency. We improved the running time of the algorithm by using multiple threads in parts of
the algorithm which could be executed in parallel. The results of the performance improve-
ments are presented in Chapter 8. The algorithm is divided into two major steps: (i) setup
or the preprocessing step; (ii) seed selection and influence update step.

1

10

100

1000

10000

100000

Ti
m

e
 In

 S
e

co
n

d
s

Graphs

Execution Times For Influence Maximization Algorithm under IC Model

Setup Time

Time taken
to
determine
500 seeds

Figure 6.1: Execution Times for Chen’s Influence Maximization Algorithm for the Indepen-
dent Cascade Model.

Figure 6.1 shows the execution times for the two steps for various graphs. The blue line
indicates the time taken for the preprocessing step and red line indicates the time taken for
the seed selection and the update step for selecting 500 influential nodes. We use influential
nodes, seeds and seed nodes synonymously. For the above experiments, 16 threads were
used to execute the algorithm and the propagation probability limit, a parameter for the

26

algorithm was set as 0.0001 for all graphs except FHS. The propagation probability limit
for FHS graph was set as 0.05. Most of the time taken involved in computing arborescence
structures and recreating these structures for a few nodes after each seed selection step.

0 100 200 300 400 500
Nth Seed

0

50

100

150

200

250

300

350

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-epin.giant.clean.uel

Plot-1-IC-inp-fb-01.clean.uel

Plot-1-IC-inp-mva.clean.uel

Plot-1-IC-inp-slashdot0811.clean.uel

Figure 6.2: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model.

Figures 6.2, 6.3 and 6.4 show the time taken for each seed to be selected. The networks in
Figures 6.2, 6.3 and 6.4 have been grouped arbitrarily. For most of the graphs, the time
taken for selecting the initial set of seeds is relatively greater than those for later-chosen
seeds. This is because initially the arborescence strutures are large, and a greater number
of nodes require updating.

27

0 100 200 300 400 500
Nth Seed

0

5

10

15

20

25

30

35

40

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-ca-astroph.giant.uel

Plot-1-IC-inp-cit-hepph.giant.uel

Plot-1-IC-inp-enron.giant.uel

Plot-1-IC-inp-tweet.uel

Plot-1-IC-inp-wiki.giant.clean.uel

Figure 6.3: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model.

28

0 100 200 300 400 500
Nth Seed

0

2

4

6

8

10

12

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-ca-condmat.giant.uel

Plot-1-IC-inp-ca-grqc.giant.uel

Plot-1-IC-inp-ca-hepph.giant.uel

Plot-1-IC-inp-ca-hepth.giant.uel

Plot-1-IC-inp-fhs.uel

Plot-1-IC-inp-maxplanck-social-facebook-wallPosts.gcc.clean.wt.uel

Figure 6.4: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Independent Cascade Model.

29

1

10

100

1000

10000

Ti
m

e
 In

 S
e

co
n

d
s

Graphs

Execution Times For Influence Maximization Algorithm under LT Model

Setup Time

Time taken
to
determine
500 seeds

Figure 6.5: Execution Times for Chen’s Influence Maximization Algorithm for the Linear
Threshold Model.

30

6.2 Influence Maximization for the Linear Threshold

model [20]

Chen et al. presented an algorithm for the influence maximization problem for the linear
threshold model which involves computating DAG′s in time linear to the size of the graph.
Unlike the algorithm for the independent cascade model in [58], the arborescence for each
node v is computed only once during the preprocessing step. Only activation probabilities
and influence values are updated during the seed selection step. Thus, less processing is
performed.

The algorithm was implemented in Java and used Java’s Executor Service to achieve con-
currency similar to the parallel implementation in Section 6.1. The algorithm is divided into
two major steps: (i) setup or the preprocessing step; (ii) seed selection and the influence
update step.

Figure 6.5 shows the execution times for various graphs. The blue line indicates the time
taken for the preprocessing step and the red line indicates the time taken for the seed selection
and updating step for selecting 500 seed nodes. Similar to the experiments in Section 6.1, 16
threads were used to execute the algorithm. The propagation probability limit, a parameter
for the algorithm, was set to 0.0001 for all graphs except FHS. The propagation probability
limit for FHS graph was set as 0.05. The time taken to select seeds in this algorithm is less
than the algorithm in Section 6.1. This is because the LDAG structures are not created or
updated during the seed selection process.

Figures 6.6, 6.7 and 6.8 show the time taken for selecting each seed. The time taken for
each seed selection in this algorithm is less than that taken by the algorithm in Section 6.1
as shown in these corresponding sets of figures. Thus the algorithm for the linear threshold
model by Chen et al. runs much faster than the algorithm for the independent cascade model
discussed in Section 6.1.

6.3 Other Heuristics

Along with the more intricate influence maximization algorithms described in Sections 6.1
and 6.2, several other heuristics from the literature have been implemented as shown in table
6.1.

The Betweenness centrality is a measure of a node’s centrality in a network. It is equal to
the number of shortest paths between all pairs of vertices that pass through a given node
[28]. The Eigenvector heuristic assigns relative scores to all nodes in the network based
on the concept that connections to high-scoring nodes contribute more to the score of the
node in question than similar connections to low-scoring nodes [9].The High Degree or the
Degree Centrality computes the out-degree for each node in the graph where the out-degree

31

0 100 200 300 400 500
Nth Seed

0

20

40

60

80

100

120

140

160

180

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-epin.giant.clean.uel

Plot-1-LT-inp-mva.clean.uel

Plot-1-LT-inp-slashdot0811.clean.uel

Plot-1-LT-inp-wiki.giant.clean.uel

Figure 6.6: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model.

32

0 100 200 300 400 500
Nth Seed

0

5

10

15

20

25

30

35

40

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-ca-astroph.giant.uel

Plot-1-LT-inp-cit-hepph.giant.uel

Plot-1-LT-inp-enron.giant.uel

Plot-1-LT-inp-fb-01.clean.uel

Plot-1-LT-inp-tweet.uel

Figure 6.7: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model.

33

0 100 200 300 400 500
Nth Seed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-ca-condmat.giant.uel

Plot-1-LT-inp-ca-grqc.giant.uel

Plot-1-LT-inp-ca-hepph.giant.uel

Plot-1-LT-inp-ca-hepth.giant.uel

Plot-1-LT-inp-fhs.uel

Plot-1-LT-inp-maxplanck-social-facebook-wallPosts.gcc.clean.wt.uel

Figure 6.8: Time Taken to Select Each Individual Seed Based on Chen’s Influence Maxi-
mization Algorithm for the Linear Threshold Model.

34

of a node is the number of outgoing edges from a given node [29]. In the Degree Discount
heuristic, if node u is selected as a seed, then node u is removed from the graph and the
degree of each of its neighbors is decremented by one [19]. The Random heuristic picks a
node from the graph randomly.

These heuristics have been implemented in Python using NetworkX library [32]. NetworkX is
a Python package for the creation, manipulation, and evaluation of the structure, dynamics,
and functions of graph networks. All the heuristics have been implemented in a serial fashion.

0.1

1

10

100

1000

10000

100000

1000000

Ti
m

e
 In

 S
e

co
n

d
s

Graphs

Total Completion Times For Selecting 500 Seed Nodes

Betweenness
Centrality

Eigen Vector
Centrality

High Degree

Random

Degree Discount

Influence Max -
IC

Influence Max -
LT

Figure 6.9: Comparison of Completion Times of Various Algorithms to Select the 500 Most
Influential Seeds for Various Graphs.

Figure 6.9 shows the completion times of all the algorithms for various graphs. The Be-
tweenness Centrality takes a very long time to complete compared to other algorithms. The
Random and the High Degree heuristic take less than 1 second to complete in most cases.
The influence maximization algorithms by Chen et al. of Section 6.1 and 6.2 take more
time to complete than Eigenvector heuristic, High Degree, Random and Degree Discount

35

heuristic but is faster than the Betweenness Centrality for most of the graphs examined.
The multi-threaded implementation of the algorithms in Sections 6.1 and 6.2 helps drive
down the execution times.

Chapter 7

New Influence Maximization
Algorithm

This chapter covers our proposed heuristic for the deterministic linear threshold dynamic
model.

7.1 Threshold Difference Greedy Algorithm (TDG)

The Threshold Difference Greedy (TDG) algorithm works as follows. Informally, a node
v’s influence is captured recursively by determining whether it causes neighboring nodes to
transition, and if not, by the residual that remains. We assume that nodes’ threshold values
are known. As an example, take a node v with an out-going edge to node u. The weight of
edge (v, u) (i.e., edge from v to u) is wvu, and the threshold of u is θu. The residual rvu
edge weight for edge (v, u) is

rvu = wvu − θu (7.1)

If rvu ≥ 0, then v influences u to transition from state 0 to 1. If rvu < 0 then the edge
weight is insufficient to cause u to transition state, and the value of r indicates how far away
u is from transitioning. The influence of node v, IncInfl(v), is the amount of influence
exerted by v on all other nodes in the graph; i.e., it quantifies how much v influences all
other nodes to transition from state 0 to state 1. The incremental influence of a node v,
denoted IncInfl(v), is the amount of influence assigned to v based on its effect on u. In the
above example, if v by itself influences u to change state; i.e., if rvu ≥ 0, then IncInfl(v) is
incremented by a value 1. If instead v contributes to the transition of node u, but cannot
cause u to transition on its own, then v gets partial influence in causing u to transition. If
v contributes to u’s transition, but u does not change state based on v’s influence, then the

36

37

incremental influence IncInfl(v) is incremented by value (wvu ÷ θu). The intuition is that
the closer wvu comes to θu, the higher is the magnitude of (wvu ÷ θu). The magnitude of
IncInfl(v) increases as wvu increases. We illustrate some details of our algorithm through
the following examples :

a) Time t = 0

d) Time t = 2

b) Time t = 1

c) Time t = 2

Figure 7.1: Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight.

Let us consider the graph in Figure 7.1. Node A has two edges pointing to nodes B and C.
The thresholds of the three nodes A, B, and C at time t=0 are 0.5, 0.6, and 0.3 respectively.
Initially the IncInfl of all nodes is set to zero. We compute IncInfl for these three nodes.
Since nodes B and C do not have any outgoing edges from them, their IncInfl is zero; i.e,
IncInfl(B) = 0 and IncInfl(C) = 0. Node A has two outgoing edges to two other nodes.
For node B, the weight of the edge wAB is less the θB, and so A partially influences B.
IncInfl(A) = IncInfl(A) + ((wAB ÷ θB)) = 0 + (0.5 ÷ 0.6) = 0.833. This also indicates
that A contributes to meeting 83.3% of B′s threshold. For node C, the weight of the edge
wAC is more the θC , and A enables C to change state. IncInfl(A) = IncInfl(A) + 1 =
0.833 + 1 = 1.833.

Let us consider another example in Figure 7.2. Nodes A and C both have edges incident on B.

38

a) Time t = 0 c) Time t = 2 b) Time t = 1

d) Time t = 3
e) Time t = 4

Figure 7.2: Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight.

39

Due to other nodes in the graph(not shown in the figure), the IncInfl(A) and IncInfl(C)
are computed as 5 and 7 respectively and IncInfl for edges to B are yet to be computed
for both nodes. For edge wAB, since the weight of the edge is less the θB, A partially
influences B. Then, IncInfl(A) = IncInfl(A) + ((wAB ÷ θB)) = 5 + (0.5 ÷ 0.6) = 5.833.
For edge wCB, since weight of the edge is less the θB, C partially influences B. Then,
IncInfl(C) = IncInfl(C)+((wAB÷θB)) = 7+(0.4÷0.6) = 7.66. The value of IncInfl(B)
is zero.

Continuing with Figure 7.2, the node with maximum influence C gets picked as a seed at
time t = 1. Node C influences B and changes B′s threshold to 0.2. Node B’s threshold is
decremented by the influence provided to it by C; i.e, θB = θB−wCB. Since B′s threshold has
changed, IncInfl(A) needs to be updated. Now since wAB > θ

′
B for the new threshold of B,

A can completely influence B and changes B’s state. So, IncInfl(A) = IncInfl(A) + 1 =
6. The ComputeInfluence function invoked for Node A will evaluate IncInfl of A to 6.
Once A is selected as a seed, then A can change the state of B as shown in the figure.
Suppose a node v solely influences u such that u transitions state, then u’s influence on its
distance-1 neighbors is computed, and these influences are also attributed to v (not just u).
This transference of influence is continued recursively until no such nodes can transition,
or until a user-specified maximum depth d1 is reached. Note that d1 may equal ∞. The
distance d1 characterizes the extent of the graph that is used to compute the influence of v.
As d1 increases, the IncInfl(v) is more accurate, but this comes at an increased cost. The
computation takes place level by level starting from the initial node. This scenario has been
explained in Figure 7.3. Node A has edges to nodes B, C, and D. Node A can completely
influence nodes B and C but can only partially influence D as wAD < θD. But since A can
change the state of B and C, B and C can in turn cooperate with A and influence D (each
contributes a weight of 0.1) and the final outcome is that D’s threshold is met and Node D
changes state. Thus, if initially IncInf(A) is α, then the scenario just described results in
IncInf(A) becoming α + 3. The IncInfl for D’s change of state is credited to A.

The node v that is selected and added to the influential set is the node that has the highest
IncInfl(v) value among nodes which have not been selected as seeds, and which have not
been infected. Once v is selected, the diffusion process is performed to a user-defined depth
d2 from v to determine the number of nodes that are affected owing to v’s addition to
influential set S. Note that d2 may nor may not be equal to d1, and can be set to ∞. As d2
increases, the influence due to v is more accurately captured but at a greater cost.

Finally, we specify a distance d3 such that the minimum distance between a new candidate
seed v and any node in the infected set I is at least d3. This is motivated by the complex
contagion dynamics that we seek to characterize. A summary of all algorithm parameters is
given in Table 7.1.

The Algorithm 3 presents a pseudo code of the TDG algorithm. It has subroutines to
Algorithm 4 and Algorithm 5. Lines 5 to 7 in Algorithm 3 indicate a call to subroutine
ComputeInfluence in Algorithm 4 invoked for every node in the graph. Note that the Com-

40

a) Time t = 0 b) Time t = 1

c) Time t = 2 c) Time t = 3

Figure 7.3: Figure showing diffusion spreading through nodes at various time stamps. θ
indicates the threshold on each node and w indicates the edge weight.

Table 7.1: Parameters for the TDG Algorithm.
Parameter Description

d1 Depth to which influence of each node is computed v.
d2 Depth to which diffusion is run to compute the number

of affected nodes and update thresholds.
d3 Minimum distance between a new node v to put into to

the influential set, and any node already in the set I.

41

puteInfluence method for each node in the graph can be executed concurrently. Once the
IncInfl for all the nodes have been computed, the execution proceeds to Line 8 to 13 in
Algorithm 3. In lines 9 to 11, the most influential node or the node with the highest value
of IncInfl is picked and is added to the set of seeds and the set of infected nodes. Line 13
involves a call to subroutine UpdateForNewSeed in Algorithm 5.

The Algorithm 4 contains the ComputeInfluence subroutine and shows the computation of
IncInfl for a node in the graph. The IncInfl(v) is represented as Infv in the algorithm. The
subroutine ComputeInfluence proceeds execution from node v using a level order traversal or
the BFS traversal on v′s out-neighbors. The subroutine uses Queue Q for this purpose. In
Line 7 of Algorithm 4, a node is fetched from the queue. Lines 8 to 17 indicate the influence
computation due the neighbors of the node fetched from the queue. If the edge weight is
greater than the threshold, then lines 10 to 13 are executed, the IncInfl is incremented by
1, and the neighbor is added to the queue. If the edge weight is lesser than the threshold,
then lines 15 to 17 are executed. Note that in line 11 there is a condition to see if the level
is less than d1. This condition must be true for a node to be inserted into the queue. The
execution stops when the queue becomes empty.

The Algorithm 5 contains the UpdateForNewSeed subroutine. This function takes care of
updating thresholds, incremental influence IncInfl, and the set of infected nodes. The
subroutine executes similar to the ComputeInfluence subroutine. It proceeds execution by
performing a BFS traversal on out-neighbors of seed node s. Lines 6 to 15 in the function
perform the steps for updating the thresholds and the set of infected nodes. As shown in
lines 6 to 11, if the edge weight of the neighbor is greater than the neighbor’s threshold value,
then the neighbor is added to the queue and the set of infected neighbors. Its threshold is
updated to zero. If the edge weight of the neighbor is less than the neighbor’s threshold
value then its threshold is only updated (shown in line 13). For each of the neighbor w, a
call to the function UpdateIncomingNeighborInfluence is made to update the incremental
influence of all the nodes that can affect w (shown in line 15). Note that in line 10 there is
a condition to see if the level is less than d2. This condition must be true for the node to be
inserted into the queue. The execution stops when the queue becomes empty.

The Algorithm 6 contains the function UpdateIncomingNeighborInfluence. This function
uses a queue and performs a BFS traversal similar to Algorithms 4 and 5. But this subroutine
traverses the incoming neighbors of a given node. For each of the neighbor traversed, the
function calls the ComputeInfluence subroutine in Algorithm 4. If the edge weight is greater
than the in-neighbor’s threshold. then the entry is added to the queue. Note that in Line
8 there is a condition to see if the level is less than d1. This condition must be true for the
node to be inserted into the queue. The execution stops when the queue becomes empty.

The execution of the algorithm is explained with an example in Figures 7.4 and 7.5. Figure
7.4 shows the execution of the preprocessing step. Here the values for d1 and d2 are set as
∞. The IncInfl for all the nodes are computed, of which the computation of IncInfl for
the three nodes A, D, and C are shown in the figure. After this step, node A which has the

42

Algorithm 3: InfluenceMaximization

input : Graph G(V,E); Number of seed nodes required nmax; Vector θ indicating
thresholds for each node with |vθ| = n; A set of edge weights W , with
p(u,v) ∈ W being the weight on the edge from u to v; Depth to which
incremental influence is evaluated d1; Depth through which infected nodes
are computed d2; Distance between the seeds selected d3

output: Set S containing the most influential nodes of size nmax.

1 Read in all inputs
2 Set S = ∅, R = ∅
3 Set Infv = 0

4 // Compute initial influence for each node.
5 for (v ∈ V) do
6 // See Algorithm 4.
7 ComputeInfluence(v,R,vθ,W ,d1,G,Inf)

8 for (i = 1 to nmax) do
9 Select s = argmaxv∈V \R{Infv}

10 S = S ∪ {s}
11 R = R ∪ {s}
12 // See Algorithm 5.
13 UpdateForNewSeed(s,R,vθ,W ,d1,d2,G, Inf)

14 return S

43

Algorithm 4: ComputeInfluence

input : Node v; Infected node set R; Threshold vector θ; set of edge weights W with
p(u,v) ∈ W being the weight on the edge from u to v; Depth to which
incremental influence is evaluated d1; Graph G; Influence vector Inf.

output: Updated influence vector Inf.

1 Instantiate: empty queue Q, empty pathlist L, level l.
2 /* Infv is the influence exerted by node v on its neighborhood
3 up through, and including, level d1. */
4 Set Infv=0; P = P .append(v); Q.enqueue(v).
5 Store θ values into θtemp
6 while (Q.notEmpty()) do
7 u=Q.dequeue.
8 for (w ∈ G.OutNeighbors(u) \(R ∪ L)) do
9 if (p(u,w) ≥ θw) then

10 Infv = Infv + 1
11 if (l ≤ d1) then
12 Q.enqueue(w)

13 L = L ∪ {w}
14 else
15 Infv = Infv + (p(u,w) ÷ θw)
16 // Temporarily update θw
17 θw = θw - p(u,w)

18 Check and update l

19 Restore back θ values from θtemp.

44

Algorithm 5: UpdateForNewSeed

input : Seed node s; Infected nodes set R; Threshold vector θ; set of edge weights W
with p(u,v) ∈ W being the weight on the edge from u to v; Depth to which
incremental influence is evaluated d1; Depth to which diffusion is simulated
d2; Graph G; Influence vector Inf.

output: Updated threshold vector θ and Infected Nodes set R

1 Instantiate: empty queue Q, empty pathlist L, level l.
2 Set l = 1; P = P .append(s); Q.enqueue(s).
3 while (Q.notEmpty()) do
4 u=Q.dequeue.
5 for (w ∈OutNeighbors(u) \(R ∪ L)) do
6 if (p(u,w) ≥ θw) then
7 R = R ∪ {w}
8 L = L ∪ {w}
9 θw = 0

10 if (l ≤ d2) then
11 Q.enqueue(w)

12 else
13 θw = θw − p(u,w)
14 // See Algorithm 6.
15 UpdateIncomingNeighborInfluence(w, R, vθ, W , d1, G, Inf)

16 Check and update l

45

Algorithm 6: UpdateIncomingNeighborInfluence

input : Node v; infected node set R; threshold vector θ; set of edge weights W with
p(u,v) ∈ W being the weight on the edge from u to v; depth to which
incremental influence is evaluated d1; graph G; influence vector Inf.

output: Updated threshold vector θ.

1 Instantiate: empty queue Q, empty pathlist L, level l.
2 Set l = 1; P = P .append(v); Q.enqueue(v).
3 while (Q.notEmpty()) do
4 u=Q.dequeue.
5 for (w ∈InNeighbors(u) \(R ∪ L)) do
6 ComputeInfluence(w,R,wθ,W ,d1,G,Inf)
7 if (p(u,w) ≥ θw) then
8 if (l ≤ d1) then
9 Q.enqueue(w)

10 Check and update l

highest IncInfl value is selected as the seed node. Once node A gets selected as the seed,
the update step is executed. The update step updates the thresholds and IncInfl of other
nodes in the graph. The nodes with updated threshold values is shown is Figure 7.5. It is
to be noted that the IncInfl of nodes C and D have changed after the update step of seed
node A. Now Node C has the highest IncInfl and is selected as the next seed node. All
the nodes in the graph get infected after node C is selected as the seed. Thus the algorithm
finishes after this step.

Figure 7.6 presents an example where the TDG algorithm does not match the optimum
result. In this example, Node D has the highest value of IncInfl and thus gets selected
as the seed node. In order to infect all the nodes in the graph, the TDG algorithm selects
nodes D, A, F as seeds. The optimum result selects nodes F and C as seed nodes. Nodes
F and C together can infect all the nodes in the graph.

The algorithm presented in this Section 7.1 has the following advantages :

1. Multiple steps in the preprocessing stage can be executed concurrently. The ComputeInfluence
function can be invoked for each individual node in parallel.

2. The algorithm gives more information than other existing influence maximization al-
gorithms. It produces (a) the influential nodes in the graph, and (b) the spread size
(i.e., the number of affected nodes due to seed set).

3. It can be tailored for different depths to be consistent with theory proposed in [30].

46

IncInfl(A) = (0.5/0.6) + (0.5/0.9) + (0/4/0.8) + (0.3/0.5) = 2.48

IncInfl(C) = (0.5/0.9) + (0.4/0.8) + (0.3/0.5) = 1.65

IncInfl(D) = (0.3/0.9) + (0.2/0.6) + 1 + (0.25/0.5) = 2.16

Figure 7.4: Figure showing the computation of IncInfl in a graph. The values in red
indicate threshold of nodes and values in black indicate edge weights.

47

IncInfl(C) = 1 + 1 + 1 + 1 + 1 = 5

IncInfl(D) = 1 + 1 + 1 = 3

Figure 7.5: Figure showing the IncInfl calculation for the graph from Figure 7.4 with
threshold values updated.

48

Figure 7.6: Figure showing an example of a graph where the TDG algorithm does not provide
optimum results.

49

Thus as a part of computing the influential node set, one obtains the extent of contagion
diffusion that is achievable, by setting d2 to ∞. As a result, a separate simulation to
compute the total number of affected nodes for a particular influential set is not required.
On the downside, the running time of the algorithm is greater when the number of affected
nodes is high. Execution time comparisons are shown in Section 7.3.2. As the diffusion
process is deterministic, the algorithm can be used to identify the number of influential nodes
required to achieve a particular spread size (target set selection problem). A modification
to the algorithm takes in an input: the desired spread size and outputs the minimum set
of influential nodes in the graph needed to attain the desired spread. The results for this
Target Set Selection problem have been presented in Section 7.3.3 for various graphs and
different spread size values.

7.2 Time and Space Complexity

Let n denote the number of nodes in the graph and m denote the number of edges in the
graph.

Proposition : The time complexity of the TDG algorithm in O((n∗M1)+(M1∗M2)) where
M1,M2 ≤ m. The value of M1 depends on Davg, θ and d1, and the value of M2 depends on
Davg, θ and d2. Here Davg is the average degree of graph, θ represents the threshold values
assigned to nodes, d1 and d2 are parameters for the TDG algorithm.

Proof : The three subroutines ComputeInfluence, UpdateForNewSeed, and UpdateIncom-
ingNeighborInfluence in Algorithms 4, 5 and 6 respectively perform a BFS traversal upto a
level(or depth). For the subroutines ComputeInfluence, UpdateIncomingNeighborInfluence
the level limit is d1. The level limit for the subroutine UpdateForNewSeed is d2.

The preprocessing step is performed for every node v in the graph (as indicated in lines 5 to
7 in Algorithm 3). The subroutine ComputeInfluence is invoked for every node in the graph.
For each node, a breadth first search is performed and nodes are added into the queue until
level d1. Each node added to the queue contributes to IncInfl and this proceeds until the
queue becomes empty. The number of lookups performed by the ComputeInfluence function
for each node is M1 ≤ m and this value depends on Davg, θ and d1. Thus in the worst case,
m look ups may be performed. Since the ComputeInfluence function is invoked for every
node in the graph, the running time of the preprocessing step is O(n ∗M1). In the worst
case, the value of M1 is equal to m.

Once the preprocessing step completes, the most influential node is picked as seed in O(n)
and the update process begins. The update process performs two operations:

1. Update the threshold of nodes for the seed selected. This execution proceeds upto level

50

(depth) d2.

2. For each of the node u whose threshold gets updated in the previous step, update the
IncInfl for all nodes that can affect u’s threshold. This execution can proceed upto
level d1.

For a given graph with edge weights, the number of nodes that will have their thresholds
modified for each seed selected depends on Davg, θ and d2. The number of update operations
that can be performed is M2 ≤ m. For each of the update operation, the compute influence
subroutine is invoked. Thus the running time for the seed selection and update process is
O(M1 ∗M2) where value of M1,M2 ≤ m.

Thus the time complexity of the algorithm in O((n ∗M1) + (M1 ∗M2)) where M1,M2 ≤ m.

Space complexity : The algorithm does not compute any arborescence structures unlike
the LDAG algorithm. It uses queues for intermediate computation. The only values stored
are IncInfl for each node. So the space complexity of the algorithm is O(n + m) where
n is the number of nodes in the graph and m is the number of edges in the graph.

7.3 Results

This section presents the comparison results of our algorithm and the algorithms in Chapter
6 for the graphs of Chapter 5. For the experiments, the vertex thresholds are assigned to
the nodes in the graph in four different ways: uniform threshold of 0.5, uniform threshold of
0.8, a threshold between 0.3 and 0.7 assigned uniformly at random, a threshold between 0.1
and 0.9 assigned uniformly at random.

In the plots, the TDG algorithm has been labeled as LTMNew. The name also indicates the
parameter used for that particular curve in the plot. For example LTMNew 5 20 3 1 indicates
that the new algorithm with parameter d1 = 5, d2 = 20, d3 = 3. The last entry 1 indicates a
flag for parameter d3. If value of the flag is 1, then d3 is considered ∞. The value ’@’ in the
legend indicates∞. We perform experiments with eight different combinations of parameter
values for d1, d2, d3.

7.3.1 Outbreak Results

A subset of the results for various graphs is presented in this section. The complete set
of plots is available in Appendix A. The plots not only compare results of the existing
algorithms with the TDG algorithm but also show how different parameter values, d1, d2,
and d3, for the TDG algorithm impact the result. For all the plots, the red lines indicate
the TDG algorithm. The black line with an inverted triangle as the marker denotes the

51

algorithm described in Section 6.2 based on [20], and this algorithm is considered as one of
the best algorithms for the linear threshold model.

As shown in Figures 7.7, 7.8, 7.9, and 7.10, the TDG algorithm performs better than all
the existing algorithms for a uniform threshold of 0.5. For the graphs Astroph, Enron, and
Facebook the algorithm with parameter d1 = 2 and d2 = 2 performs as good as parameter
values d1 =∞ and d2 =∞ when the number of seeds are low. But as the number of seeds
increase, the outbreak size for parameter values d1 = 2 and d2 = 2 becomes slightly less and
this outbreak size is still better than the other existing algorithms. The LT algorithm in [20]
is the second best in most cases. For Astroph and Enron, as the number of seeds become
more than 200, the Degree discount and the Eigenvector heuristic starts performing very
well. The intuition we derive is that the seeds picked by these heuristics reside in different
location affecting a smaller set of nodes around them but as the seed count increase above
a limit, they together start a cascade and cause large number of nodes to be affected. This
effect is most dominant for the epinion graph. For the Eigenvector Centrality and High
degree heuristic, the number of affected nodes for 400 seeds is 8301 but for 500 seeds it
becomes 54979.

As shown in Figures 7.11, 7.12, 7.13, and 7.14, the TDG algorithm performs better than all
the existing algorithms for a uniform threshold of 0.8. This supports our intuition that the
existing algorithms might select seeds which may be highly influential, but a high threshold
value to the neighbors of these selected seeds can reduce the influence propagation. For
all the graphs with uniform threshold 0.8, the TDG algorithm with parameter d1 = 2 and
d2 = 2 performs as good as d1 =∞ and d2 =∞.

Figures 7.15, 7.16, 7.17, and 7.18 show results for graphs with nodes having a random
threshold value between 0.3 and 0.7. Figure 7.15, for the Ca-hepph graph, shows the De-
gree discount heuristic performing well for 100 and 200 seed nodes, and the Betweenness
Centrality performing better than the LDAG algorithm [20] for 300 and 400 nodes. Figure
7.16, for the Cit-hepth graph, shows the TDG algorithm producing large number of affected
nodes compared to other algorithms for 500 seed nodes. Figure 7.17, for the Epinion graph,
shows High degree, Degree discount, Eigenvector heuristics producing huge spread sizes for
400 nodes which are better than other algorithms. But for 500 seed nodes, all the algorithms
except the IC algorithm in [58] and the Random heuristic reach the 60000 node mark. Figure
7.18 shows results for the FHS graph with real edge weights. As shown in the figure, the
spread size shoots up to around 4000 nodes for 5 seed nodes and grows less rapidly as the
number of seed nodes increase. This is because, the FHS graph has few nodes with very
high edge weights and others having extremely low edge weights.

Figures 7.19, 7.20, 7.21, and 7.22 show results for graphs with nodes having a random
threshold value between 0.1 and 0.9. Figure 7.20 shows the results for maxplanck social
facebook network, which is a graph with real edge weights. The edge weights in this graph
are extremely low compared to the threshold values. As a result, the spread sizes are also
very small. The contagion spread is very little, and therefore results of the algorithm are

52

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.7: Final Outbreak Results for Astroph Graph with Nodes Having a Uniform Thresh-
old of 0.5.

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.8: Final Outbreak Results for Enron Graph with Nodes Having a Uniform Threshold
of 0.5.

53

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.9: Final Outbreak Results for Epinion Graph with Nodes Having a Uniform Thresh-
old of 0.5.

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.10: Final Outbreak Results for Facebook Graph with Nodes Having a Uniform
Threshold of 0.5.

54

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.11: Final Outbreak Results for Wikipedia Graph with Nodes Having a Uniform
Threshold of 0.8.

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.12: Final Outbreak Results for Epinion Graph with Nodes Having a Uniform
Threshold of 0.8.

55

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.13: Final Outbreak Results for Slashdot Graph with Nodes Having a Uniform
Threshold of 0.8.

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.14: Final Outbreak Results for Twitter graph with Nodes Having a Uniform Thresh-
old of 0.8.

56

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.15: Final Outbreak Results for Ca-hepph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7.

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.16: Final Outbreak Results for Cit-hepph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7.

57

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

70000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.17: Final Outbreak Results for Epinion Graph with Nodes Having a Random
Threshold between 0.3 and 0.7.

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.18: Final Outbreak Results for Fhs graph with Nodes Having a Random Threshold
between 0.3 and 0.7.

58

not sensitive to the parameter values. In Figure 7.21, for the Slashdot graph, the Degree
discount, the Eigenvector Centrality and the High Degree heuristic performs extremely well
for 200 seed nodes. Also for 200 seeds the TDG algorithm with parameter values d1 = 5 and
d2 = 20 performs better than other parameter values considered.

7.3.2 Execution Times

This section compares the execution times of the TDG algorithm with the LDAG algorithm
for the linear threshold model [20]. The experiments were executed using 16 threads in a
single compute node with 16 core processors. We compare both the setup/preprocessing
time and the time to select 500 seed nodes. For both the algorithms, the preprocessing step
was executed concurrently using 16 threads. But the seed selection and the update process
was executed serially using a single thread for the TDG algorithm and concurrently using
16 threads for the LDAG algorithm in [20]. As shown in Figure 7.23, the TDG algorithm
runs faster than the LDAG for most of the graphs for uniform threshold of 0.5. The yellow-
orange bars in Figure 7.23 represent execution times of the LDAG algorithm [20]. The TDG
algorithm with parameters d1 = 2 and d2 = 2, as indicated by the pink-red bar, runs faster
than the LDAG algorithm for all the graphs. When the parameter for the TDG algorithm
is set as d1 = ∞ and d2 = ∞, the algorithm runs slower than its counter part for FHS
and Twitter graph as indicated by the blue bar. This is because, the number of nodes that
changed their states due to the influential set was relatively high. The update process for
the influential seed selected went to greater depths to update the threshold values. Thus the
time taken to determine 500 seeds is high for these two graphs. After a closer examination
into the execution times of these two graphs, we found that for Twitter, the 194th made 3030
nodes to change state and the update step for this seed took 90 seconds to complete. Also
the 228th seed selected made 5488 nodes to change state and the update step for this node
took 787 seconds to complete. For certain graphs like grqc, the algorithm finishes in less
than 1 second and we do not see any bars in the Figure 7.23 for these graphs.

Figure 7.24 shows the results of execution times for TDG algorithm and the LDAG algorithm
[20] for graphs with a random threshold value between 0.1 and 0.9 assigned to each node.
Similar to the results for a uniform threshold of 0.5, and the TDG algorithm with parameters
d1 = 2 and d2 = 2 faster than the LDAG algorithm for all the graphs, as indicated by green
bar in the figure 7.24. When the parameter for the TDG algorithm is set as d1 = ∞
and d2 = ∞, the algorithm runs slower than its counter part for FHS and Slashdot graph
as indicated by the blue bar in Figure 7.23. For the TDG algorithm, the time taken for
selecting the most influential node is higher if the update process affects large number of
nodes over a greater depth.

59

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.19: Final Outbreak Results for Grqc Graph with Nodes Having a Random Threshold
between 0.1 and 0.9.

0 100 200 300 400 500
Number Of Seeds Selected

0

100

200

300

400

500

600

700

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.20: Final Outbreak Results for Maxplanck Social Facebook Graph with Random
Threshold between 0.1 and 0.9.

60

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

70000

80000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.21: Final Outbreak Results for Slashdot Graph with Nodes Having a Random
Threshold between 0.1 and 0.9.

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.22: Final Outbreak Results for Twitter graph with Nodes Having a Random Thresh-
old between 0.1 and 0.9.

61

1

10

100

1000

10000

Ti
m

e
 In

 S
e

co
n

d
s

Graphs

Comparison of Execution Times for graphs with uniform threshold of 0.5

LTMNew_@_@_3_0
Setup time

LTMNew_@_@_3_0
Time to Determine
500 Seeds

LTMNew_2_2_3_0
Setup time

LTMNew_2_2_3_0
Time to Determine
500 Seeds

LT Setup Time

LT Time to Determine
500 Seeds

Figure 7.23: Comparison of Execution Times between the LDAG Algorithm and the TDG
algorithm for Graphs with Nodes Having a Uniform Threshold of 0.5.

62

1

10

100

1000

10000

100000

Ti
m

e
 In

 S
e

co
n

d
s

Graphs

Comparison of Execution Times for graphs with random threshold between
0.1 and 0.9

LTMNew_@_@_3_0
Setup time

LTMNew_@_@_3_0
Time to Determine
500 Seeds

LTMNew_2_2_3_0
Setup time

LTMNew_2_2_3_0
Time to Determine
500 Seeds

LT Setup Time

LT Time to Determine
500 Seeds

Figure 7.24: Comparison of Execution Times between the LDAG Algorithm and the TDG
Algorithm for Graphs with Nodes Having a Random Threshold assignment between 0.1 and
0.9.

63

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

102

103

104

105

N
u
m

b
e
r

o
f

N
o
d
e
s

R
e
q
u
ir

e
d
 T

o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure 7.25: Target Set Selection Results for Various Graphs, Indicating the Number of Seed
Nodes Required to Affect the Specified Fraction of Nodes in the Graph.

64

7.3.3 Target Set Selection(TSS)

As a part of studying the influence maximization problem, we also looked into the problem
of Target Set Selection. The TDG algorithm with parameter d2 set as ∞, determines the
number of affected nodes after the seed selection step. This process can be used to study the
Target Set Selection(TSS) problem where the goal is to find the minimum set of seeds that
can produce an outbreak of desired size. Note that the LDAG algorithm cannot be used
for TSS problem. For studying the TSS problem, the TDG algorithm was executed with
parameter values d1 = 10 and d2 =∞, and no limitation on d3 by setting the flag to 1. The
TSS factor is the prescribed fraction of nodes in the graph that needs to be affected. The
algorithm was run for TSS factor of 0.5, 0.7, 0.9 and 1 for all graphs. The algorithm like
in the previous sections, was executed using 16 threads on a single computing node with 16
core processors.

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

10-3

10-2

10-1

100

Fr
a
ct

io
n
 O

f
N

o
d
e
s

R
e
q
u
ir

e
d
 T

o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure 7.26: Target Set Selection Results for Various Graphs, Indicating the Minimum
Fraction of Nodes Required to Affect the Specified Fraction of Nodes in the Graph.

Figures 7.25, 7.26, and 7.27 show the target set selection results for various graphs with nodes
assigned a random threshold value between 0.1 and 0.9. The straight line in the Figure 7.25
for the Mva graph between 0.5 and 1, indicates that comparatively lesser number of seeds
were required to affect all the nodes in the graph as compared to 50% of the nodes. But

65

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

100

101

102

103

104

T
im

e
 T

a
ke

n
 I
n
 S

e
c

T
o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure 7.27: Target Set Selection Results for Various Graphs, Indicating the Time Taken by
the TDG algorithm to Affect the Specified Fraction of Nodes in the Graph.

66

for the FHS and the Enron graph, higher number of seeds were required to reach target set
selection factor of 1 from 0.5.

In the Figure 7.26, it can be seen that to completely affect all the nodes in a graph, i.e, to
attain a target set selection factor of 1, almost all nodes were needed to be selected as seeds
in the case of the maxplanck social facebook graph(43913 seeds out of 43953 nodes). For
the wiki graph, only 1.84% of the nodes were required to affect all the nodes in the graph.

Figure 7.27 shows the amount of time taken by the TDG algorithm to compute seeds to
attain a given TSS factor. The algorithm computes seeds to affect all the nodes for the
Ca-grqc in close to 1 second while for the Slashdot graph, the algorithm takes the maximum
time of 8451 seconds to compute seeds to affect all the nodes in the graph. Also for the Mva
graph, one can see a steep rise in time taken from 0.5 to 0.7. It was found that 16 seeds
beyond those required for the TSS factor of 0.5, were required to reach TSS of 0.7 and 0.9
and these 16 seeds affected 38009 nodes. The update process to compute affected nodes took
close to 3000 seconds for these 16 seeds.

7.4 Threshold Difference Greedy Method with Alpha

This section presents a different way of computing IncInfl for the TDG algorithm compared
to the one presented in Section 7.1. A parameter α is used in computing influence when a
node completely affects other nodes. The algorithm is similar to that in Section 7.1 except
for the way IncInfl is calculated. Consider an example, take a node v with an out-going
edge to node u. The weight of edge (v, u) (i.e., edge from v to u) is wvu, and the threshold
of u is θu. The residual rvu edge weight as shown in Section 7.1 for edge (v, u) is wvu − θu.
If rvu ≥ 0, then v influences u to transition state 0 → 1. If rvu < 0 then the edge weight is
insufficient to cause u to transition state, and the value of r indicates how far away u is from
transitioning. In this method if rvu ≥ 0, then Infl(v) is incremented by a value α. If instead
v contributes to the transition of node u, but cannot cause u to change state on its own,
then v gets partial influence in causing u to transition. If v contributes to u’s transition, but
u does not change state based on v’s influence, then the incremental influence IncInfl(v)
is increased by value 1 + (wvu − θu). The intuition is that the closer wvu comes to θu, then
(wvu − θu) has lesser negative magnitude.

Figures 7.28, 7.29, and 7.30 show results where the red line indicates the outbreak size
achieved through the Threshold Difference greedy algorithm with alpha. For some graphs,
this method did not perform well and the optimal value of α varies for each graph. These
shortcomings are not present is the Threshold Difference greedy algorithm of Section 7.1 and
the algorithm performs better without the value of α.

67

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.28: Final Outbreak Results for Grqc Graph with Nodes Having a Uniform Threshold
of 0.5.

68

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.29: Final Outbreak Results for Twitter Graph with Nodes Having a Uniform
Threshold of 0.8.

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure 7.30: Final Outbreak Results for Astroph Graph with Nodes Having a Random
Threshold between 0.3 and 0.7.

Chapter 8

Performance Improvements and
Evaluation

Influence maximization algorithms typically take a long time to run. Depending on the
size and the structure of the graphs, the execution time can range from seconds to several
days. As a part of the implementation of influence maximization algorithms proposed by
Chen et al in Sections 6.1 and 6.2, and the threshold difference greedy algorithm (TDG),
we addressed the bottlenecks in these algorithms and improved the performance of these
algorithms. This chapter presents the results of the performance improvement achieved
and the changes made to the algorithm in order to achieve it. These influence maximization
algorithms have been paralellized to run concurrently on a single compute node with multiple
cores. The implementation does not support distributed processing across several nodes.

The algorithms are implemented using Java’s ExecutorService library with cached thread
pools. Our intention is to use multiple threads to execute steps in the algorithm that can
be parallelized, and reduce access to common (shared) data structures. In the case of the
influence maximization algorithm for the IC model [58] and the LDAG algorithm [20], both
the steps in the algorithm are executed in parallel. The two steps are : a) setup or the
preprocessing step, b) seed selection and the update step. Due to concurrent execution, the
value of Incremental Influence for a particular node can be modified by multiple threads.
Such update operations need to be synchronized. It was found that the priority queue used
by the authors in [58] and [20] had to be modified by multiple threads at the same time.
When one thread makes an update to the priority queue for a particular node in the graph, all
the other threads have to wait before gaining access to the queue. Thus, the priority queue
caused lots of overhead for concurrent execution of these algorithms. The priority queue
implementation was removed to improve performance. In the case of the TDG algorithm,
only the preprocessing step runs in a parallel fashion.

The experiments to measure the performance improvement achieved were run on a single
cluster node with 16 core processors. Figures 8.1 and 8.2 show the execution times for the

69

70

influence maximization algorithm under IC model and the LDAG algorithm respectively.
The propagation probability limit has been set to 0.0001 for these experiments. As shown
in the figure 8.1, for the ca-astroph graph when the worker threads were increased from 1 to
8, the execution time for preprocessing/setup step reduced from 210 seconds to 16 seconds,
and the time to compute 500 seeds reduced from 4701 seconds to 3271 seconds. For the
Cit-hepph graph, when the worker threads were increased from 1 to 15, the execution time
for the preprocessing/setup step reduced from 491 seconds to 26 seconds, and the time to
determine 500 seeds reduced from 12178 seconds to 7488 seconds.

1

10

100

1000

10000

100000

1 2 4 8 15 30 45 60

Ti
m

e
 In

 S
e

co
n

d
s

Numer of Threads

Execution Times For Cit-hepph and Ca-astroph For Different Number Of
Threads under IC Model

ca-astroph
Preprocessing
time

ca-astroph time
to determine
500 seeds

cit-hepph
Preprocessing
Time

cit-hepph time
to determine
500 seeds

Figure 8.1: Performance Improvement Achieved Due to Multithreading for Chen’s Influence
Maximization algorithm for Independent cascade model.

As shown in the figure 8.2, for the ca-astroph graph when the worker threads were increased
from 1 to 30, the execution time for preprocessing/setup step for the LDAG algorithm
reduced from 119 seconds to 11 seconds, and the time to compute 500 seeds reduced from
498 seconds to 487 seconds. For the Cit-hepph graph, when the worker threads were increased

71

from 1 to 30, the execution time for the preprocessing/setup step of the LDAG algorithm
reduced from 309 seconds to 26 seconds, and the time to determine 500 seeds reduced from
673 seconds to 671 seconds.

0

100

200

300

400

500

600

700

800

1 2 4 8 15 30 45 60

Ti
m

e
 in

 s
e

co
n

d
s

Number of Threads

Execution Times For Cit-hepph and Ca-astroph For Different Number Of
Threads under LT Model

ca-astroph
Preprocessing
time

ca-astroph time
to determine
500 seeds

cit-hepph
Preprocessing
Time

cit-hepph time
to determine
500 seeds

Figure 8.2: Performance Improvement Achieved Due to Multithreading for Chen’s Influence
Maximization algorithm for Linear Threshold model.

Figure 8.3 shows the execution times taken by the preprocessing step in TDG algorithm for
different number of threads. As shown in the figure, for the Epinion graph when the worker
threads were increased from 1 to 45, the execution time for the preprocessing/setup step
reduced from 143 seconds to 18 seconds. For the Mva graph, when the worker threads were
increased from 1 to 45, the execution time for the preprocessing/setup step reduced from 98
seconds to 14 seconds.

72

0

20

40

60

80

100

120

140

160

1 2 4 8 15 30 45 60

Ti
m

e
 In

 S
e

co
n

d
s

Number Of Threads

Threshold difference Greedy Algorithm Setup/Preprocessing Time For
Different Number Of Threads

Epinion Setup
time

Mva Setup time

Figure 8.3: Time Taken by the Setup/Preprocessing to Complete under the TDG Algorithm
for Different Number of Threads.

Chapter 9

Conclusion

The research in the field of influence maximization is growing rapidly. We have looked into
a broad range of algorithms from the literature, and have provided a brief summary for
each of the algorithms examined. In this thesis, I have presented the threshold difference
greedy (TDG) algorithm for the deterministic linear threshold model which addresses both
the influence maximization problem as well as the target selection problem. With extensive
experiments on 14 real-world networks of varying size and density, I have shown that the
novel approach using vertex thresholds is better than the seven other algorithms taken from
the literature. Since the execution time is a crucial factor for any influence maximization
heuristic, the tuneable parameters are essential in controlling the execution times. The per-
formance improvement attained through threading was important in reducing the execution
times for several graphs. Through this thesis, I have shown that the threshold of a node
is an important input for a graph and data mining techniques to compute threshold values
for real world networks can provide more accurate results for the influence maximization
problem.

73

Bibliography

[1] Sherif Elmeligy Abdelhamid, Richard Alo, S. M. Arifuzzaman, Pete Beckman,
Md Hasanuzzaman Bhuiyan, Keith Bisset, Edward A. Fox, Geoffrey C. Fox, Kevin Hall,
S.M.Shamimul Hasan, Anurodh Joshi, Maleq Khan, Chris J. Kuhlman, Spencer Lee,
Jonathan P. Leidig, Hemanth Makkapati, Madhav V. Marathe, Henning S. Mortveit,
Judy Qiu, S.S. Ravi, Zalia Shams, Ongard Sirisaengtaksin, Rajesh Subbiah, Samarth
Swarup, Nick Trebon, Anil Vullikanti, and Zhao Zhao. CINET: A CyberInfrastructure
for Network Science. In 8th IEEE International Conference on eScience, 2012.

[2] Eyal Ackerman, Oren Ben-Zwi, and Guy Wolfovitz. Combinatorial model and bounds
for target set selection. Theoretical Computer Science, 411:4017–4022, 2010.

[3] Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard E. Stearns. Complexity of reachability problems for finite dis-
crete sequential dynamical systems. Journal of Computer and System Sciences, 72:1317–
1345, 2006.

[4] Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. Reachability problems for sequential dynam-
ical systems with threshold functions. Theoretical Computer Science, 295(1-3):41–64,
2003.

[5] Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J.
Rosenkrantz, Richard Edwin Stearns, and Mayur Thakur. Predecessor existence prob-
lems for finite discrete dynamical systems. Theoretical Computer Science, 386:3–37,
2007.

[6] Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. An exact almost
optimal algorithm for target set selection in social networks. In ACM Conference on
Electronic Commerce (EC 2009), pages 355–362, 2009.

[7] Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth
governs the complexity of target set selection. Discrete Optimization, 8:87–96, 2011.

74

75

[8] Glenn Bevilacqua, Shealen Clare, Amit Goyal, and Laks V. S. Lakshmanan. Validating
Network Value of Influencers by means of Explanations. In 2013 IEEE 13th Interna-
tional Conference on Data Mining (ICDM 2013), 2013.

[9] Phillip Bonacich. Some unique properties of eigenvector centrality. Social Networks,
29(4):555–564, 2007.

[10] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximiz-
ing social influence in nearly optimal time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), 2014.

[11] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the Spread of Misin-
formation in Social Networks. In Proceedings of the 20th International Conference of
World Wide Web Conference (WWW 2011), 2011.

[12] Barrett C, Beckman R, Khan M, Kumar VS Anil, Marathe M, Stretz P, Dutta T, and
Lewis B. Generation and analysis of large synthetic social contact networks. In Winter
Simulation Conference, pages 1003–1014, 2009.

[13] D. Centola and M. Macy. Complex Contagions and the Weakness of Long Ties. Amer-
ican Journal of Sociology, 113(3):702–734, 2007.

[14] Ning Chen. On the approximability of influence in social networks. In ACM-SIAM
Symposium on Discrete Algorithms (SODA 2008), pages 1029–1037, 2008.

[15] Ning Chen. On the approximability of influence in social networks. SIAM J. Discrete
Mathematics, 23:1400–1415, 2009.

[16] Wei Chen, Wei Lu, and Ning Zhang. Time-Critical Influence Maximization in Social
Networks with Time-Delayed Diffusion Process. In (CoRR 2012), 2012.

[17] Wei Chen, Chi Wang, and Yajun Wang. Scalable Influence Maximization for Prevalent
Viral Marketing in Large-Scale Social Networks. In Proc. ACM Intl. Conf. on Data
Mining and Knowledge Discovery (KDD 2010), pages 1029–1038, 2010.

[18] Wei Chen, Chi Wang, and Yajun Wang. Scalable Influence Maximization for Prevalent
Viral Marketing in Large-Scale Social Networks. Technical report, Microsoft Research
Technical Report MSR-TR-2010-2, 2010.

[19] Wei Chen, Yajun Wang, and Siyu Yang. Efficient Influence Maximization in Social
Networks. In Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD
2009), 2009.

[20] Wei Chen, Yifei Yuan, and Li Zhang. Scalable Influence Maximization in Social Net-
works under the Linear Threshold Model. In 2010 IEEE 10th International Conference
on Data Mining (ICDM 2010), 2010.

76

[21] Wei Chen, Yifei Yuan, and Li Zhang. Scalable Influence Maximization in Social Net-
works Under the Linear Threshold Model. Technical report, Microsoft Research Tech-
nical Report MSR-TR-2010-133, 2010.

[22] M. Conover, J. Ratkiewicz, M. Francisco, B Goncalves, A. Flammini, and F. Menczer.
Political polarization on twitter. In Proc. of the Fifth International AAAI Conference
onWeblogs and Social Media (AAAI 2011), 2011.

[23] P. Domingos and M. Richardson. Mining the Network Value of Customers. In Proc.
ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2001), pages 57–61,
2001.

[24] Paul A. Dreyer. Applications and Variations of Domination in Graphs. Ph.D. Thesis,
Rutgers University, 2000.

[25] Paul A. Dreyer and Fred S. Roberts. Irreversible k-threshold processes: Graph-
theoretical threshold models of the spread of disease and of opinion. Discrete Applied
Mathematics, 157:1615–1627, 2009.

[26] Lidan Fan, Zaixin Lu, Weili Wu, Bhavani Thuraisingham, Huan Ma, and Yuanjun
Bi. Least cost rumor blocking in social networks. In 2013 IEEE 33rd International
Conference on Distributed Computing (ICDCS 2013), pages 540–549, 2013.

[27] James H. Fowler and Nicholas A. Christakis. Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the Framingham Heart Study.
BMJ, 337, 2008.

[28] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[29] Linton C Freeman. Centrality in social networks conceptual clarification. Social net-
works, 1(3):215–239, 1979.

[30] Sharad Goel, Duncan J Watts, and Daniel G Goldstein. The structure of online diffusion
networks. In Proceedings of the 13th ACM Conference on Electronic Commerce, pages
623–638. ACM, 2012.

[31] Sandra Gonzalez-Bailon, Javier Borge-Holthoefer, Alejandro Rivero, and Yamir Moreno.
The Dynamics of Protest Recruitment Through an Online Network. Nature Scientific
Reports, pages 1–7, 2011. DOI: 10.1038/srep00197.

[32] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[33] J. Leskovec website, 2011. http://cs.stanford.edu/people/jure/.

77

[34] Fariba Karimi and Petter Holme. Threshold model of cascades in empirical temporal
networks. Physica A: Statistical Mechanics and its Applications, 392:3476–3483, 2013.

[35] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the Spread of Influence Through
a Social Network. In Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery
(KDD 2003), pages 137–146, 2003.

[36] David Kempe, Jon Kleinberg, and Eva Tardos. Influential Nodes in a Diffusion Model
for Social Networks. In Proc. Intl. Conf. on Automata, Languages and Programming
(ICALP 2005), pages 1127–1138, 2005.

[37] Masahiro Kimura and Kazumi Saito. Tractable Models for Information Diffusion in
Social Networks. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (PKDD 2006), pages 259–
271, 2006.

[38] Chris J. Kuhlman, V. S. Anil Kumar, Madhav V. Marathe, S. S. Ravi, and Daniel J.
Rosenkrantz. Inhibiting diffusion of complex contagions in social networks: Theoretical
and experimental results. J. Data Mining and Knowledge Discovery, 2014. To appear.

[39] Chris J. Kuhlman, V. S. Anil Kumar, and S. S. Ravi. Controlling opinion propagation
in online networkss. Journal of Computer Networks, 57:2121–2132, 2013.

[40] V. S. Anil Kumar, Matthew Macauley, and Henning S. Mortveit. Limit set reachability
in asynchronous graph dynamical systems. In Reachability Problems (RP) 2009, volume
5797 of Lecture Notes in Computer Science, pages 217–232, Berlin/Heidelberg, 2009.
Springer.

[41] Jure Lekovec, Andreas Krause, Carlos Guestrin, and Christos Faloutsos Jeanne Van-
Briesen Natalie Glance. Cost-effective Outbreak Detection in Networks. In Proc. ACM
Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2007), 2007.

[42] Yanhua Li, Wei Chen, Yajun Wang, and Zhi-Li Zhang. Influence Diffusion Dynamics
and Influence Maximization in Social Networks with Friend and Foe Relationships. In
6th ACM International Conference on Web Search and Data Mining (WSDM 2013),
pages 657–666, 2013.

[43] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. Time Constrained Influence Maximiza-
tion in Social Networks. In 2012 IEEE 12th International Conference on Data Mining
(ICDM 2012), 2012.

[44] Zaixin Lu, Wei Zhang, Weili Wu, Joonmo Kim, and Bin Fu. The complexity of in-
fluence maximization problem in the deterministic linear threshold model. Journal of
Combinatorial Optimization, 24(3):374–378, 2012.

78

[45] Zaixin Lu, Wei Zhang, Weili Wu, Joonmo Kim, and Bin Fu. The complexity of in-
fluence maximization problem in the deterministic linear threshold model. Journal of
Combinatorial Optimization, DOI 10.1007/s10878-011-9393-3, 2012.

[46] Matthew Macauley and Henning S. Mortveit. Cycle equivalence of graph dynamical
systems. Nonlinearity, 22(2):421–436, 2009. math.DS/0709.0291.

[47] Matthew Macauley and Henning S. Mortveit. Update sequence stability in graph dy-
namical systems. Discrete and Continuous Dynamical Systems S., 4(6):1533–1541, 2011.
Preprint: math.DS/0909.1723.

[48] Henning S. Mortveit and Christian M. Reidys. An Introduction to Sequential Dynamical
Systems. Universitext. Springer Verlag, 2007.

[49] G. L. Nemhauser, L. A. Wosley, and M. L. Fisher. An Analysis of Approximations
for Maximizing Submodular Functions. Mathematical Programming Study, 14:265–294,
1978.

[50] Nam P. Nguyen, Guanhua Yan, My T. Thai, and Stephan Eidenbenz. Containment
of Viral Spread in Online Social Networks. In Proceedings of the ACM Web Science
Conference (WebSci 2012), June 2012.

[51] Mark G. Orr and Clare Rosenfeld Evans. Understanding long-term diffusion dynamics
in the prevalence of adolescent sexual initiation: A first investigation using agent-based
modeling. Research in Human Development, 8:48–66, 2011.

[52] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank ci-
tation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

[53] M. Richardson and P. Domingos. Mining Knowledge-Sharing Sites for Viral Marketing.
In Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2002), pages
61–70, 2002.

[54] Paulo Shakarian and Damon Paulo. Large Social Networks can be Targeted for Viral
Marketing with Small Seed Sets. In 2012 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012), 2012.

[55] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. Structural
Diversity in Social Contagion. Proceedings of the Naitonal Academy of Sciences (PNAS
2012), 109(9):5962–5966, 2012.

[56] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. On the evolution of user inter-
action in Facebook. In Proc. WOSN, pages 7–12, 2009.

[57] Cheng Wang, Lili Deng, Gengui Zhou, and Meixian Jiang. A global optimization algo-
rithm for target set selection problems. Information Sciences, 267:101–118, 2014.

79

[58] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for inde-
pendent cascade model in large-scale social networks. Journal of Data Mining and
Knowledge Discovery, DOI 10.1007/s10618-012-0262-1, 2012.

[59] Chuan Zhou, Peng Zhang, Jing Guo, Xingquan Zhu, and Li Guo. UBLF: An Upper
Bound Based Approach to Discover Influential Nodes in Social Networks. In 2013 IEEE
13th International Conference on Data Mining (ICDM 2013), 2013.

[60] Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang, and Xiaoming Sun. Influence
Maximization in Dynamic Social Networks. In 2013 IEEE 13th International Conference
on Data Mining (ICDM 2013), 2013.

Appendix A

Plots

A.0.1 Execution Times for existing Influence maximization algo-
rithms

Figure A.1: Execution times for Chen’s Influence Maximization algorithm for Independent
cascade model

80

81

Figure A.2: Execution times for Chen’s Influence Maximization algorithm for Linear Thresh-
old model

82

0 100 200 300 400 500
Nth Seed

0

50

100

150

200

250

300

350

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-epin.giant.clean.uel

Plot-1-IC-inp-fb-01.clean.uel

Plot-1-IC-inp-mva.clean.uel

Plot-1-IC-inp-slashdot0811.clean.uel

Figure A.3: Time taken to select each individual seed for Epinion, Facebook, Mva and
Slashdot graphs based on Chen’s Influence Maximization Algorithm for Independent cascade
model

83

0 100 200 300 400 500
Nth Seed

0

5

10

15

20

25

30

35

40

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-ca-astroph.giant.uel

Plot-1-IC-inp-cit-hepph.giant.uel

Plot-1-IC-inp-enron.giant.uel

Plot-1-IC-inp-tweet.uel

Plot-1-IC-inp-wiki.giant.clean.uel

Figure A.4: Time taken to select each individual seed for Ca-Astroph, Cit-Hepph, Enron,
Twitter and Wiki graphs based on Chen’s Influence Maximization Algorithm for Independent
cascade model for

84

0 100 200 300 400 500
Nth Seed

0

2

4

6

8

10

12

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-IC-inp-ca-condmat.giant.uel

Plot-1-IC-inp-ca-grqc.giant.uel

Plot-1-IC-inp-ca-hepph.giant.uel

Plot-1-IC-inp-ca-hepth.giant.uel

Plot-1-IC-inp-fhs.uel

Plot-1-IC-inp-maxplanck-social-facebook-wallPosts.gcc.clean.wt.uel

Figure A.5: Time taken to select each individual seed for Condmat, Grqc, Ca-Hepph, Ca-
Hepth, Fhs and Maxplanck-social-facebook graphs based on Chen’s Influence Maximization
Algorithm for Independent cascade model

85

0 100 200 300 400 500
Nth Seed

0

20

40

60

80

100

120

140

160

180

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-epin.giant.clean.uel

Plot-1-LT-inp-mva.clean.uel

Plot-1-LT-inp-slashdot0811.clean.uel

Plot-1-LT-inp-wiki.giant.clean.uel

Figure A.6: Time taken to select each individual seed for Epinion, Mva, Slashdot and Wiki
graphs based on LDAG algorithm for Linear Threshold model

86

0 100 200 300 400 500
Nth Seed

0

5

10

15

20

25

30

35

40

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-ca-astroph.giant.uel

Plot-1-LT-inp-cit-hepph.giant.uel

Plot-1-LT-inp-enron.giant.uel

Plot-1-LT-inp-fb-01.clean.uel

Plot-1-LT-inp-tweet.uel

Figure A.7: Time taken to select each individual seed for Ca-Astroph, Cit-Hepph, Enron,
Twitter and Facebook graphs based on LDAG algorithm for Linear Threshold model

87

0 100 200 300 400 500
Nth Seed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 T

a
ke

n
 I
n
 S

e
co

n
d
s

T
o
 S

e
le

ct
 N

th
 S

e
e
d

Plot-1-LT-inp-ca-condmat.giant.uel

Plot-1-LT-inp-ca-grqc.giant.uel

Plot-1-LT-inp-ca-hepph.giant.uel

Plot-1-LT-inp-ca-hepth.giant.uel

Plot-1-LT-inp-fhs.uel

Plot-1-LT-inp-maxplanck-social-facebook-wallPosts.gcc.clean.wt.uel

Figure A.8: Time taken to select each individual seed for Condmat, Grqc, Ca-Hepph, Ca-
Hepth, Fhs and Maxplanck-social-facebook graphs based on LDAG algorithm for Linear
Threshold model

88

A.0.2 Total completion time comparison between different influ-
ence maximization algorithms and existing heuristics

Figure A.9: Comparison of completion times of various algorithms to select 500 most influ-
ential seeds

89

A.0.3 Performance improvement achieved due to concurrent/parallel
processing

Figure A.10: Performance improvement achieved due to multithreading for Chen’s Influence
Maximization algorithm for Independent cascade model

90

Figure A.11: Performance improvement achieved due to multithreading for Chen’s Influence
Maximization algorithm for Linear Threshold model.

91

A.0.4 New algorithm execution time comparison

Figure A.12: Comparison of execution times between LDAG algorithm and TDG algorithm
for graphs with uniform threshold of 0.5

92

Figure A.13: Comparison of execution times between LDAG algorithm and TDG algorithm
for graphs with random threshold between 0.1 and 0.9

93

A.0.5 Target Set Selection

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

102

103

104

105

N
u
m

b
e
r

o
f

N
o
d
e
s

R
e
q
u
ir

e
d
 T

o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure A.14: Target set selection results for various graphs indicating number of seed nodes
required to affect fraction of nodes in a graph

94

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

10-3

10-2

10-1

100

Fr
a
ct

io
n
 O

f
N

o
d
e
s

R
e
q
u
ir

e
d
 T

o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure A.15: Target set selection results for various graphs indicating minimum fraction of
nodes required to affect a given fraction of nodes in a graph

95

0.0 0.2 0.4 0.6 0.8 1.0
Target Set Selection Factor

100

101

102

103

104

T
im

e
 T

a
ke

n
 I
n
 S

e
c

T
o
 A

tt
a
in

 T
a
rg

e
t

ca-hepph

wiki

fb-01

maxplanck-social-facebook-wallPosts

ca-condmat

tweet

ca-hepth

ca-astroph

mva

epin

ca-grqc

slashdot0811

cit-hepph

fhs

enron

Figure A.16: Target selection results for various graphs indicating time required to affect
fraction of nodes in a graph

96

A.0.6 Final outbreak Results

Uniform threshold of 0.5

97

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.17: Final outbreak Results for Astroph graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.18: Final outbreak Results for Ca-hepph graph with uniform threshold of 0.5

98

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.19: Final outbreak Results for Ca-hepth graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.20: Final outbreak Results for Cit-hepph graph with uniform threshold of 0.5

99

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.21: Final outbreak Results for Enron graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.22: Final outbreak Results for Epinion graph with uniform threshold of 0.5

100

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.23: Final outbreak Results for Facebook graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.24: Final outbreak Results for Fhs graph with uniform threshold of 0.5

101

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.25: Final outbreak Results for grqc graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

100

200

300

400

500

600

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.26: Final outbreak Results for Maxplank social facebook graph with uniform
threshold of 0.5

102

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.27: Final outbreak Results for Slashdot graph with uniform threshold of 0.5

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.28: Final outbreak Results for Twitter graph with uniform threshold of 0.5

103

Uniform threshold of 0.8

104

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.29: Final outbreak Results for Enron graph with uniform threshold of 0.8

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.30: Final outbreak Results for Epin graph with uniform threshold of 0.8

105

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.31: Final outbreak Results for Slashdot graph with uniform threshold of 0.8

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.32: Final outbreak Results for Twitter graph with uniform threshold of 0.8

106

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.33: Final outbreak Results for Wikipedia graph with uniform threshold of 0.8

Random threshold between 0.3 and 0.7

107

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.34: Final outbreak Results for Astroph graph with random threshold between 0.3
and 0.7

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.35: Final outbreak Results for Ca-hepph graph with random threshold between 0.3
and 0.7

108

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.36: Final outbreak Results for Cit-hepph graph with random threshold between
0.3 and 0.7

109

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.37: Final outbreak Results for Enron graph with random threshold between 0.3
and 0.7

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

70000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.38: Final outbreak Results for Epinion graph with random threshold between 0.3
and 0.7

110

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.39: Final outbreak Results for Facebook graph with random threshold between 0.3
and 0.7

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.40: Final outbreak Results for Fhs graph with random threshold between 0.3 and
0.7

111

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.41: Final outbreak Results for grqc graph with random threshold between 0.3 and
0.7

0 100 200 300 400 500
Number Of Seeds Selected

0

100

200

300

400

500

600

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.42: Final outbreak Results for Maxplank social facebook graph with random thresh-
old between 0.3 and 0.7

112

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.43: Final outbreak Results for Slashdot graph with random threshold between 0.3
and 0.7

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.44: Final outbreak Results for Twitter graph with random threshold between 0.3
and 0.7

113

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.45: Final outbreak Results for Wiki graph with random threshold between 0.3 and
0.7

114

Random threshold between 0.1 and 0.9

115

0 100 200 300 400 500
Number Of Seeds Selected

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.46: Final outbreak Results for Astroph graph with random threshold between 0.1
and 0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.47: Final outbreak Results for Ca-hepph graph with random threshold between 0.1
and 0.9

116

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.48: Final outbreak Results for Ca-hepth graph with random threshold between 0.1
and 0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.49: Final outbreak Results for Cit-hepph graph with random threshold between
0.1 and 0.9

117

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.50: Final outbreak Results for Enron graph with random threshold between 0.1
and 0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

70000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.51: Final outbreak Results for Epinion graph with random threshold between 0.1
and 0.9

118

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.52: Final outbreak Results for Facebook graph with random threshold between 0.1
and 0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.53: Final outbreak Results for Fhs graph with random threshold between 0.1 and
0.9

119

0 100 200 300 400 500
Number Of Seeds Selected

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.54: Final outbreak Results for grqc graph with random threshold between 0.1 and
0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

100

200

300

400

500

600

700

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.55: Final outbreak Results for Maxplank social facebook graph with random thresh-
old between 0.1 and 0.9

120

0 100 200 300 400 500
Number Of Seeds Selected

0

10000

20000

30000

40000

50000

60000

70000

80000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.56: Final outbreak Results for Slashdot graph with random threshold between 0.1
and 0.9

0 100 200 300 400 500
Number Of Seeds Selected

0

5000

10000

15000

20000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.57: Final outbreak Results for Twitter graph with random threshold between 0.1
and 0.9

121

0 100 200 300 400 500
Number Of Seeds Selected

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r

O
f

A
ff

e
ct

e
d
 N

o
d
e
s

LTMNew_10_@_3_1

Influence Max-IC

LTMNew_2_2_3_1

Random

Influence Max-LT

High Degree

LTMNew_2_2_3_0

Eigen Vector Centrality

Degree discount

LTMNew_10_@_3_0.txt

LTMNew_@_@_3_1

LTMNew_@_@_3_0

Betweeness

LTMNew_5_20_3_0

LTMNew_5_20_3_1

Figure A.58: Final outbreak Results for Wiki graph with random threshold between 0.1 and
0.9

Appendix B

Software

B.1 Graph input format

Figure B.1: Figure showing a graph with 4 nodes and associated edge weight and threshold
values

The graph input for all the influence maximization algorithms must be in a specific format.
The algorithms will only accept the graphs in following format. The format for file is

122

123

Line 1 : NodeId< space >NumberOfNeighbors<space>Threshold
Line 2 to Line NumberOfNeighbors+1 : <space><space>NodeId<space>EdgeWeight

The above format is repeated for all the nodes in the graph. The node id must be an inte-
ger(supported long integers) and the edge weights and thresholds are double decimal values.
For example, for the graph shown in the figure B.1. The input graph file will be :
1<space>3<space>0.2
<space><space>2<space>0.3
<space><space>3<space>0.5
<space><space>4<space>0.6
2<space>0<space>0.4
3<space>3<space>0.4
<space><space>1<space>0.5
<space><space>2<space>0.4
<space><space>4<space>0.3
4<space>2<space>0.2
<space><space>1<space>0.6
<space><space>3<space>0.3

Note that each directed edge is provided as a input. In case of an undirected graph, two
directed edges are assigned in opposite direction between two nodes.

B.2 Influence maximization by Chen et al. for inde-

pendent cascade model, linear threshold model

and threshold difference greedy algorithm

The influence maximization by Chen et al. for independent cascade model based on [58],
linear threshold model based on [20] and the threshold difference greedy algorithm presented
in this thesis are available in a single package.

Programming language: Java
Package jar path :
svn.vbi.vt.edu/svn/ndssl-collab/Papers/anand-work/Softwares/java/InfMax Algorithm Package.jar
Source code path:
svn.vbi.vt.edu/svn/ndssl-collab/Papers/anand-work/Softwares/java/MaxIndependentCasc
Execution Command :
java -jar InfMax Algorithm Package.jar Command.txt
Execution Command with memory specification :
java -Xms1000M -Xmx30000M -jar InfMax Algorithm Package.jar Command.txt

124

The InfMax Algorithm Package.jar is the name of the jar package available in the package
jar path. The Command.txt is the name of the file which contains the set of statements
that provides input for the execution. Each line in the file Command.txt corresponds to a
separate execution. Each line in the Command.txt file contains a set of arguments separated
by a <space>.

Argument 1: Name of graph file
Argument 2: Name of output file
Argument 3: Propagation probability limit
Argument 4: Number of seed nodes required
Argument 5: Type of Algorithm. Specify 1 for Influence maximization by Chen et al. for
independent cascade model. Specify 2 for Influence maximization by Chen et al. for linear
threshold model. Specify 3 for threshold difference greedy algorithm.
Argument 6: Debug mode On/Off. Specify 1 to set debug mode as On.
Arguement 7: Number of threads

Example for determining 500 seed nodes using influence maximization by Chen et al. for
independent cascade model for cit-hepph graph with 0.5 as propagation probability limit, 16
threads :
inp-cit-hepph.giant.uel cit-hepph-opt.txt 0.5 500 1 0 16

Example for determining 500 seed nodes using influence maximization by Chen et al. for
linear threshold model for cit-hepph graph with 0.5 as propagation probability limit, 16
threads :
inp-cit-hepph.giant.uel cit-hepph-opt.txt 0.5 500 1 0 16

The arguments below are only required if argument 5 is specified as 3, i.e the following ar-
guments are required only for threshold difference greedy algorithm.

Argument 8: Value for d1
Argument 9: Value for d2
Argument 10: Value for d3
Argument 11: Flag to take d3 into account. Set this value as 1 to not consider value of d3.
Argument 12 : Target set selection factor value.

The Argument 3 is not taken into consideration for the threshold difference greedy algo-
rithm. Example for determining 500 seed nodes using threshold difference greedy algorithm
for cit-hepph graph, 16 threads and values for parameters set as d1 = 10, d2 = 100, d3 = 3,

125

flag to take d3 into account not set and target set selection factor as 0.5:
inp-cit-hepph.giant.uel cit-hepph-opt.txt 0.5 500 1 0 16 10 100 3 0 0.5

B.3 Node Selection Using High Degree Heuristic, De-

gree Discount Heuristic, Betweenness Centrality,

Eigen Vector Centrality, Random Heuristic

Programming Language : Python
Code Path : svn.vbi.vt.edu/svn/ndssl-collab/Papers/anand-work/Softwares/python/generate-
seeds.py
Execution command :
python generate-seeds.py FileOrFolderName option seedCount

The FileOrFolderName is the path to a folder which contains the graphs. A single graph
file can also be provided as input in FileOrFolderName. The option determines the heuristic
needed to be executed. The option values are :

Betweenness centrality 1
Eigen vector centrality 2
High Degree heuristic 3
Random heuristic 4
Degree Discount heuristic 5

The seedCount is the number of seed nodes to be produced. For example in order to find
200 seed nodes using the degree discount heuristic for all the graphs in folder input graph,
the execution command is :
python file.py input graph 5 200

