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I. Supplementary Method 

S1 Transcription factor activity estimation  

 

S1.1 Identifiability of motif-guided Sparse Decomposition (mSD) 

In order to reliably estimate transcription factor activity (A), the sparsity property of 

the regulation strength matrix S is very important. In fact, the following theorem is the 

key to obtaining a reliable estimation of A [1]. 

 

Theorem: (Identifiability conditions - locally very sparse representation): Assume 

that the number of transcription binding sites (TFBSs) is unknown and the following 

two conditions are met:  

1) each TFBS has at least two strictly well-grounded points (sWGPs), which means 

that for each index 1, ,i n= ⋯ , there are at least two columns of S: s(:, j1) and s(:, j2) 

that have nonzero elements only in position i (i.e., each TFBS is uniquely present at 
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least twice);  

2) for any (:, ) (:, )k c q≠x x , any c ∈R , , 1, ,k q N= ⋯ and k q≠ , s(:, k) has more than 

one nonzero element.  

Then, A is uniquely determined by X except for left multiplication with a permutation 

and scaling matrix. For proofs of the theorem we refer to [1]. 

 

Under this identifiability condition, we propose to use a motif-guided clustering 

method to find representative columns of X for an estimation of A. 

 

S1.2 screening transcription factor binding motifs 

we do not perform motif discovery as part of our learning procedure, but rather 

assume that we have a list of motifs for putative transcription factor binding sites 

(TFBSs) by searching a database of regulatory elements such as TRANSFAC [2]. Our 

learning algorithm only inputs validated TFBSs that allow for a straight-forward 

biological interpretation, which facilitates biologists to decipher the function of genes 

being regulated under a given experimental condition. In this paper, all human 

promoter DNA sequences were obtained from the UCSC Genome database [4]; in 

particular, upstream 5,000 bp from the transcription start site (TSS) was obtained. 

Cautions are also needed when considering the distance to TSS for binding strength in 

high eukaryotes, especially human genome. In high eukaryotes, especially human 

genome, gene promoter region is defined in a relative large range, e.g., upstream 

1,000 bp, 2,000 bp or 5,000 bp from TSS to downstream hundreds or thousands base 
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pair. For example, a recent genome-wide ChIP-on-chip study shows that only 4% of 

estrogen receptor binding sites are mapped to 1,000 bp promoter-proximal regions [3]. 

Many sites are located in regions of 1,000 bp to 5,000 bp away from TSS. We thus 

used distance from TSS 5,000 bp to define the initial motif binding strength based on 

motif score and number of occurrences. With all vertebrate position weight matrices 

(PWMs) provided by the TRANSFAC 11.1 Professional Database [2], MatchTM [5] 

algorithm was used to generate a gene-motif binding strength matrix with the cut offs 

that minimize the false-positive rate. 

 

 

S2 Regulation Strength estimation by sparse decomposition  

For the sparse decomposition of gene expression data, the solution set of =x As , in 

variable s, defines an affine set in Rn . By minimizing the cost function 2
1

q
tgt s=∑ (with 

assumed q “inactive” TFs), we suppress the regulation strength of “inactive” TFs 

while leaving the regulation strength of “active” TFs to change freely in the active 

subspace in order to fulfill the constraint condition =x As . This may also be viewed 

as a form of projection into the active subspace [6]. In fact, the cost function can be 

reformulated into a quadratic form: ( ) =s s HsTf  with q =  
 

I 0
H

0 0
 where Iq is the 

q q×  identity matrix. When the cost function f(s) is strictly convex for all feasible 

points, it has a unique local minimum that is also the global minimum. A sufficient 

condition to guarantee the strict convexity of f(s) is for H to be positive definite [7]. 

The projection into active subspace finally leads to an elegant solution to our sparse 
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decomposition problem, i.e., the solution to the following Karush-Kuhn-Tucker (KKT) 

system [6]: 

                       
T

λ
     =     

    

s 0H A
xA 0

,                  (S1) 

where λ is the 1n ×  vector of Lagrange multipliers. 
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II. Supplementary Tables 

 
 

 

Table S1 - AUC Comparison of mSD, SD and FastNCA methods for 11 
transcription factors in yeast synthetic data 

 

Cut-off 

p-value 
Method ARG80 DAL82 GCN4 GCR2 HAP1 MIG1 RGT1 RTG1 RTG3 STE12 XBP1 

Averaged 

AUC over 

TFs 

p = 0.1 mSD 0.5892 0.7057 0.8204 0.7827 0.9238 0.8390 0.8180 0.3281 0.4890 0.7487 0.8318 0.7160 

 FastNCA 0.4634 0.4466 0.8129 0.6807 0.1435 0.5531 0.3873 0.8297 0.8612 0.5318 0.5672 0.5707 

 SD 0.4984 0.9290 0.8730 0.6485 0.5226 0.9022 0.7246 0.8180 0.4483 0.5055 0.7326 0.6912 

              

p = 0.05 mSD 0.5311 0.6859 0.8344 0.7811 0.9335 0.8251 0.8222 0.7382 0.8454 0.7325 0.8497 0.7799 

 FastNCA 0.4554 0.4418 0.8099 0.4196 0.0795 0.5234 0.7175 0.8454 0.8517 0.4960 0.8402 0.5891 

 SD 0.5916 0.7607 0.8784 0.6341 0.4858 0.8927 0.7422 0.8688 0.4704 0.5211 0.7233 0.6881 

              

p = 0.01 mSD 0.7779 0.7105 0.8154 0.7938 0.9738 0.8136 0.9058 0.7413 0.8265 0.7234 0.7439 0.8024 

 FastNCA 0.4618 0.4493 0.7974 0.4276 0.0773 0.4725 0.3831 0.8612 0.8644 0.4700 0.8370 0.5547 

  SD 0.5255 0.7660 0.8613 0.6180 0.5304 0.8801 0.7418 0.8730 0.4735 0.4836 0.7279 0.6801 
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III.  Supplementary Figures 

      
      (a) 

       

 (b) 

 

(c) 

Figure S1 - Comparison of Receiver Operator Characteristic (ROC) curves for 
mSD and other methods (i.e., SD and FastNCA) on simulation data 

Three different cut-off p-values are used to compare the methods for their tolerance in 

the false positive rate of binding information: (a) cut-off p-value = 0.05; (b) cut-off 

p-value = 0.01; (c) cut-off p-value = 0.1. 
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By integrating known TF binding site information and gene expression data with the 

mSD approach, we can identify three different scenarios of co-regulated genes that are 

not only co-expressed but also share common regulatory elements in a 

condition-dependent way. The three scenarios are termed as “condition-enabled”, 

“condition-expanded” and “condition-combined” in this paper, which are illustrated in 

Fig. S2 and discussed as follows: 

Scenario 1 - “condition-enabled”: in this scenario, the TFs regulate some of their 

 
                   (a)                                  (b)                                  (c) 

 
                    (d)                                 (e)                                  (f) 

 
                    (g)                                 (h)                                  (i) 

Figure S2 -  Gene clusters identified as co-regulated by HAP1 (left), MIG1 (middle) 
and STE12 (right), respectively 
The first row: initial clusters from ChIP-on-chip data for HAP1 (a), MIG1 (b) and STE12 (c), 

respectively; the second row: identified target genes of HAP1 (d), MIG1 (e) and STE12 (f), 

respectively; the third row: the ground truth of target genes regulated by HAP1 (g), MIG1 (h) and 

STE12 (i).  
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target genes in one condition but not in others. For example, the initial cluster 

associated with HAP1 obtained from ChIP-on-chip data alone shows a complex 

pattern of gene expression (Fig. S2(a)); the mSD approach selected a subset of genes 

in the initial cluster by consulting with the expression data,  showing a much 

coherent expression pattern (Fig. S2(d)). Comparing with the ground truth from the 

simulation, the genes selected by mSD correspond to a major portion of the regulated 

genes by HAP1 (Fig. S2(g)). Since the experimental condition of the available 

ChIP-on-chip data is not consistent with that of the gene expression data, not all the 

initial genes from ChIP-on-chip data are activated or transcribed. Instead, the genes 

are regulated in a “condition-enabled” way, i.e., only a subset of genes being actually 

activated and transcribed with a coherent pattern of gene expression. This scenario 

indicates that the binding of HAP1 to its target genes might be influenced by different 

experimental conditions. 

Scenario 2 - “condition-expanded”:  in this second scenario, the target genes in 

one condition are further expanded to include more target genes in another condition. 

For example, the MIG1 ChIP-chip data give us only two target genes, YEL070W and 

HXT13, when the cut-off p-value is relatively small (cut-off p-value = 0.01) (Fig. 

S2(b)).  With the help of gene expression data, the mSD approach can help find more 

target genes (Fig. S2(e) that are actually included in the simulation (i.e., the ground 

truth) (Fig. S2(h)). As we can see from the figure, the mSD approach selected a subset 

of genes showing a highly coherent pattern of gene expression with expanded support 

from binding information (noting that the actual cut-off p-value used to generate the 
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gene expression data is relatively large).  

Scenario 3 -“condition-combined”: as the third scenario, the target genes of a TF 

were identified as combined genes from different conditions. For each TF, we 

allocated the target genes by gathering genes with similar expression patterns and 

shared binding site(s). For example, the target genes of STE12 are shown in Fig. S2. 

As we can see from the figure, the initial cluster associated with STE12 obtained from 

ChIP-on-chip data (Fig. S2(c)) shows a relatively simple expression pattern, but from 

the gene expression data, the actual target genes of STE12 shows a much complex 

expression pattern (Fig. S2(i)). The complex expression pattern is supported by the 

following biological studies. STE12 was reported to participate in the cell wall 

integrity signaling pathway [8], and to constitute a coordinated group with other TFs 

regulating genes involved in cell cycle control or regulation of telomere maintenance 

[9]. The mSD approach selected a combined subset of genes as shown in Fig. S2(f); in 

addition to the genes supported by both data sources, some genes are backed up by 

ChIP-on-chip data and the others by gene expression data. This scenario demonstrates 

that the mSD approach can obtain “condition-combined” target genes from both gene 

expression data and binding information.  
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(a) cut-off p-value = 0.1 

   

(b) cut-off p-value = 0.05 

       

(c) cut-off p-value = 0.01 

Figure S3 - Performance comparison of mSD, SD and FastNCA methods - ROC 
curves for the identified regulatory modules of HAP1 (left) and STE12 (right), 
respectively 

Three different cut-off p-values (0.1, 0.05 and 0.01) have been applied to 

ChIP-on-chip data for investigating the noise impact on the performance.
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Figure S4 - Determination of the trade-off parameter λ  for yeast cell cycle data 

Dark-green triangle: mean entropy of motif occupancy; magenta diamond: mean 

non-uniformity of gene expression pattern; blue circle: ( )C λ  that adds up mean 

entropy of motif occupancy and mean non-uniformity of gene expression pattern.  
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Figure S5 - The modified cost function, C(µ, λ) = µH(λ)+(1-µ)NonU(λ), for the 
yeast cell cycle study 
 

For this study, we can see from the figure that with the new cost function, the 

determination of parameter λ is not sensitive to parameter µ when 0.4≤µ≤0.6. When µ 

is out of the above-mentioned range, we can see that the cost function does not give 

rise to a clear U-shaped curve. In particular, when µ>0.6 the cost function is largely 

bised to motif occupancy (measure by H(λ)), while ignoring expression pattern 

(measure by NonU(λ)); conversely, when µ<0.4, the cost function is biased to 

expression pattern while ignoring the motif occupancy information.  
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(b) 

Figure S6 - Determination of the trade-off parameter λ  for breast cancer cell 
line data: (a) estrogen-induced condition and (b) estrogen-deprived condition 

Dark-green triangle: mean entropy of motif occupancy; magenta diamond: mean 

non-uniformity of gene expression pattern; blue circle: ( )C λ that adds up mean 

entropy of motif occupancy and mean non-uniformity of gene expression pattern.  
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 (a)  

 

 (b) 

 
Figure S7. The new cost function, C(µ, λ) = µH(λ)+(1-µ)NonU(λ), for the breast 
cancer study: (a) estrogen-induced condition and (b) estrogen-deprived 
condition 
 

For the estrogen-induced condition, it can be observed that with the new cost function, 

the determination of parameter λ is not sensitive to parameter µ when 0≤µ≤0.6; for the 

estrogen-deprived condition, the determination of parameter λ is not sensitive to 

parameter µ when 0.2≤µ≤0.6. However, when µ is out of the above-mentioned range, 

particularly, when µ>0.6, we can clearly see that the cost function does not give rise 
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to a clear U-shaped curve, since it is largely bised to motif occupancy (measure by 

H(λ)), while ignoring expression pattern (measure by NonU(λ)). Therefore, we 

cautiously conclude that paramter µ is an important paramter to be specified for a 

specific study, although the obtained results from our breast cancer study are not 

sensitive to paramter µ when 0.2≤µ≤0.6.   
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Figure S8 - More PPI subnetworks of target genes of ETF identified in 
estrogen-induced and estrogen-deprived conditions 
Yellow diamond: target genes of ETF; purple circle: direct neighbors of the target genes as 

obtained from protein-protein interaction data.  

 

In Fig. S8, we found several proteins such as YPT3, Rab33B related to Ras signal 

transduction pathway. Since Ras-dependent events appear to be activated as a 

consequence of EGFR mutations in cancer cells [10], it is possible that the aberrant 

function of Ras-related proteins may contribute to breast cancer development [11] by 

a network of proto-oncogene proteins controlling diverse signaling events that 

regulate cell growth and differentiation defined in Ras signal transduction pathway. 
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Figure S9 - The distribution of Kolmogorov-Smirnov (KS) rank statistic 

We selected gene sets with the same size of the inferred ER target gene list from the 

background gene population, and repeated 10,000 times to generate the corresponding 

null distribution of the Kolmogorov-Smirnov (KS) rank statistic. The KS score of our 

inferred ER target gene set is indicated as the red line (at KS score = 208) in the 

figure.  
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