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|. Supplementary Method

S1 Transcription factor activity estimation

S1.1 I dentifiability of motif-guided Sparse Decomposition (MSD)
In order to reliably estimate transcription facagtivity (A), the sparsity property of
the regulation strength matr&is very important. In fact, the following theoresthe

key to obtaining a reliable estimationAf1].

Theorem: (Identifiability conditions - locally very sparsepresentation): Assume
that the number of transcription binding sites (B8Bis unknown and the following
two conditions are met:

1) each TFBS has at least two strictly well-grouhgeints (SWGPs), which means
that for each index =1,---,n, there are at least two columns®fs(;, j1) ands(, j2)

that have nonzero elements only in positiqne., each TFBS is uniquely present at



least twice);

2) for any x(;,k)#zcx(,,q), any cOR, k,g=1:--,Nand k#q, $(;, k) has more than
one nonzero element.

Then,A is uniquely determined by except for left multiplication with a permutation

and scaling matrix. For proofs of the theorem werre [1].

Under this identifiability condition, we proposeuse a motif-guided clustering

method to find representative columnsxofor an estimation oA.

S1.2 screening transcription factor binding motifs

we do not perform motif discovery as part of oarfeng procedure, but rather
assume that we have a list of motifs for putatre@scription factor binding sites
(TFBSSs) by searching a database of regulatory elegrseich as TRANSFAC [2]. Our
learning algorithm only inputs validated TFBSs thbw for a straight-forward
biological interpretation, which facilitates bioists to decipher the function of genes
being regulated under a given experimental conditiio this paper, all human
promoter DNA sequences were obtained from the UG8Gome database [4]; in
particular, upstream 5,000 bp from the transcriptitart site (TSS) was obtained.
Cautions are also needed when considering thendesta TSS for binding strength in
high eukaryotes, especially human genome. In hidgdamsyotes, especially human
genome, gene promoter region is defined in a wveldéirge range, e.g., upstream

1,000 bp, 2,000 bp or 5,000 bp from TSS to dowastreundreds or thousands base



pair. For example, a recent genome-wide ChIP-op-shidy shows that only 4% of
estrogen receptor binding sites are mapped to hpQiromoter-proximal regions [3].
Many sites are located in regions of 1,000 bp @6 bp away from TSS. We thus
used distance from TSS 5,000 bp to define theaimtiotif binding strength based on
motif score and number of occurrences. With altalerate position weight matrices
(PWMs) provided by the TRANSFAC 11.1 Professionatdbase [2], Match' [5]
algorithm was used to generate a gene-motif binglirength matrix with the cut offs

that minimize the false-positive rate.

S2 Regulation Strength estimation by spar se decomposition

For the sparse decomposition of gene expressia tihet solution set ok = As, in
variables, defines an affine set ilR". By minimizing the cost function>i4 s (with
assumed “inactive” TFs), we suppress the regulation sttbraf “inactive” TFs
while leaving the regulation strength of “active®g'to change freely in the active
subspace in order to fulfill the constraint corattk = As. This may also be viewed

as a form of projection into the active subspagelf6fact, the cost function can be

reformulated into a quadratic formt (s)=s'Hs with H :('g gj wherelq is the

gxq identity matrix. When the cost functid(s) is strictly convex for all feasible
points, it has a unique local minimum that is @l global minimum. A sufficient
condition to guarantee the strict convexityf®) is forH to be positive definite [7].

The projection into active subspace finally leamlan elegant solution to our sparse
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decomposition problem, i.e., the solution to thiéoteing Karush-Kuhn-Tucker (KKT)

ey W] s

wherel is the nx1 vector of Lagrange multipliers.

system [6]:



Supplementary Tables

Table S1 - AUC Comparison of mSD, SD and FastNCA methods for 11

transcription factors in yeast synthetic data

Averaged
Cut-off
Method ARG80 DALS82 GCN4 GCR2 HAP1 MIG1 RGT1 RTG1 RTG3 STE12 XBP1 AUC over
p-value TEs
p=01 mSD 0.5892 0.7057 0.8204 0.7827 0.9238 0.8390 0.8180 3282.  0.4890 0.7487 0.8318 0.7160
FastNCA 0.4634 0.4466 0.8129 0.6807 0.1435 0.5531 0.3873 8290.  0.8612 0.5318 0.5672 0.5707
sD 0.4984 0.9290 0.8730 0.6485 0.5226 0.9022 0.7246 8180.  0.4483 0.5055 0.7326 0.6912
p=0.05 mSD 0.5311 0.6859 0.8344 0.7811 0.9335 0.8251 0.8222 7382.  0.8454 0.7325 0.8497  0.7799
FastNCA 0.4554 0.4418 0.8099 0.4196 0.0795 0.5234 0.7175 845@.  0.8517 0.4960 0.8402 0.5891
sD 0.5916 0.7607 0.8784 0.6341 0.4858 0.8927 0.7422 8688. 0.4704 0.5211 0.7233 0.6881
p=0.01 mSD 0.7779 0.7105 0.8154 0.7938 0.9738 0.8136 0.9058 741G. 0.8265 0.7234 0.7439 0.8024
FastNCA 0.4618 0.4493 0.7974 0.4276 0.0773 0.4725 0.3831 861a. 0.8644 0.4700 0.8370 0.5547
SD 0.5255 0.7660 0.8613 0.6180 0.5304 0.8801 0.7418 8730.  0.4735 0.4836 0.7279 0.6801
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Figure S1 - Comparison of Receiver Operator Characteristic (ROC) curves for
mSD and other methods (i.e., SD and FastNCA) on simulation data

Three different cut-off p-values are used to corafghe methods for their tolerance in
the false positive rate of binding information: @)t-off p-value = 0.05; (b) cut-off

p-value = 0.01; (c) cut-ofp-value = 0.1.
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Figure S2 - Gene clusters identified as co-regulated by HAP1 (left), MIG1 (middle)
and STE12 (right), respectively

The first row: initial clusters from ChlIP-on-chipata for HAP1 (a), MIG1 (b) and STE12 (c),
respectively; the second row: identified target egerof HAP1 (d), MIG1 (e) and STE12 (f),
respectively; the third row: the ground truth ofget genes regulated by HAP1 (g), MIG1 (h) and
STE12 (i).

By integrating known TF binding site informationdagene expression data with the
mSD approach, we can identify three different sdesaf co-regulated genes that are
not only co-expressed but also share common remylakelements in a
condition-dependent way. The three scenarios ameett as tondition-enabled”,
“condition-expanded” and “condition-combined” in this paper, which are illustrated in
Fig. S2 and discussed as follows:

Scenario 1 - ¢ondition-enabled”: in this scenario, the TFs regulate some of their



target genes in one condition but not in otherst &mample, the initial cluster
associated with HAP1 obtained from ChlIP-on-chipadatone shows a complex
pattern of gene expression (Fig. S2(a)); the mSagrh selected a subset of genes
in the initial cluster by consulting with the expston data, showing a much
coherent expression pattern (Fig. S2(d)). Compawitg the ground truth from the
simulation, the genes selected by mSD correspomdnt@jor portion of the regulated
genes by HAP1 (Fig. S2(g)). Since the experimeptaidition of the available
ChlP-on-chip data is not consistent with that ad tfene expression data, not all the
initial genes from ChlP-on-chip data are activatedranscribed. Instead, the genes
are regulated in a “condition-enabled” way, i.elyoa subset of genes being actually
activated and transcribed with a coherent pattérgene expression. This scenario
indicates that the binding of HAP1 to its targehge might be influenced by different
experimental conditions.

Scenario 2 - ¢ondition-expanded”: in this second scenario, the target genes in
one condition are further expanded to include ntarget genes in another condition.
For example, the MIG1 ChIP-chip data give us omlg target genes, YELO70W and
HXT13, when the cut-offpp-value is relatively small (cut-off p-value = 0.0@Hig.
S2(b)). With the help of gene expression datamB® approach can help find more
target genes (Fig. S2(e) that are actually incluidethe simulation (i.e., the ground
truth) (Fig. S2(h)). As we can see from the figuhe mSD approach selected a subset
of genes showing a highly coherent pattern of geqeession with expanded support

from binding information (noting that the actuat-aff p-value used to generate the



gene expression data is relatively large).

Scenario 3 €ondition-combined”: as the third scenario, the target genes of a TF
were identified as combined genes from differenhditions. For each TF, we
allocated the target genes by gathering genes sitlilar expression patterns and
shared binding site(s). For example, the targeegei STE12 are shown in Fig. S2.
As we can see from the figure, the initial clustesociated with STE12 obtained from
ChlP-on-chip data (Fig. S2(c)) shows a relativetgme expression pattern, but from
the gene expression data, the actual target gen83E12 shows a much complex
expression pattern (Fig. S2(i)). The complex exgos pattern is supported by the
following biological studies. STE12 was reported garticipate in the cell wall
integrity signaling pathway [8], and to constitaeoordinated group with other TFs
regulating genes involved in cell cycle controlregulation of telomere maintenance
[9]. The mSD approach selected a combined subggrds as shown in Fig. S2(f); in
addition to the genes supported by both data seusmme genes are backed up by
ChIP-on-chip data and the others by gene expresksitm This scenario demonstrates
that the mSD approach can obtain “condition-comibiriarget genes from both gene

expression data and binding information.
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(c) cut-off p-value = 0.01

Figure S3 - Performance comparison of mSD, SD and FastNCA methods - ROC
curves for the identified regulatory modules of HAP1 (left) and STE12 (right),

respectively

Three different cut-off p-values (0.1, 0.05 and 10.Chave been applied to

ChlP-on-chip data for investigating the noise intpacthe performance.
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Figure S4 - Determination of the trade-off parameter A for yeast cell cycle data

Dark-green triangle: mean entropy of motif occupanmagenta diamond: mean

non-uniformity of gene expression pattern; bluecleir C(A) that adds up mean

entropy of motif occupancy and mean non-uniforroitgene expression pattern.
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Figure S5 - The modified cost function, C(u, A) = yH(A)+(1-g)NonU(A), for the
yeast cell cycle study

For this study, we can see from the figure thathwitie new cost function, the
determination of parametgris not sensitive to paramefemwhen0.4<u<0.6. Wheng

is out of the above-mentioned range, we can sdehbacost function does not give
rise to a clear U-shaped curve. In particular, whef.6 the cost function is largely
bised to motif occupancy (measure bi1)), while ignoring expression pattern
(measure byNonU(1)); conversely, wheru<0.4, the cost function is biased to

expression pattern while ignoring the motif occupaimformation
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Figure S6 - Determination of the trade-off parameter A for breast cancer cell
line data: (a) estrogen-induced condition and (b) estrogen-deprived condition

Dark-green triangle: mean entropy of motif occuganmagenta diamond: mean

non-uniformity of gene expression pattern; bluecleir C(A) that adds up mean

entropy of motif occupancy and mean non-uniforroitgene expression pattern.
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Figure S7. The new cost function, C(u, A) = yH(A)+(1-ug)NonU(A), for the breast

cancer study: (a) estrogen-induced condition and (b) estrogen-deprived
condition

For the estrogen-induced condition, it can be ofeskthat with the new cost function,
the determination of parameteis not sensitive to paramefewhen0<u<0.6; for the
estrogen-deprived condition, the determination afameteri is not sensitive to
parametep: when0.2<u<0.6. However, when: is out of the above-mentioned range,

particularly, whernu>0.6, we can clearly see that the cost function doegyivat rise
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to a clear U-shaped curve, since it is largely dige motif occupancy (measure by
H(4)), while ignoring expression pattern (measure NgnU(1)). Therefore, we

cautiously conclude that paramigris an important paramter to be specified for a
specific study, although the obtained results froum breast cancer study are not

sensitive to paramterwhen 0.Zu<0.6.
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Figure S8 - More PPl subnetworks of target genes of ETF identified in
estrogen-induced and estrogen-deprived conditions

Yellow diamond: target genes of ETF; purple ciraé@ect neighbors of the target genes as
obtained from protein-protein interaction data.

In Fig. S8, we found several proteins such as YREZ33B related to Ras signal
transduction pathway. Since Ras-dependent evepeaapo be activated as a
consequence of EGFR mutations in cancer cells [tLi3] possible that the aberrant
function of Ras-related proteins may contributbreast cancer development [11] by
a network of proto-oncogene proteins controllingedse signaling events that

regulate cell growth and differentiation definedRas signal transduction pathway.
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Figure S9 - The distribution of Kolmogorov-Smirnov (KS) rank statistic

We selected gene sets with the same size of theréaf ER target gene list from the
background gene population, and repeated 10,0@timgenerate the corresponding
null distribution of the Kolmogorov-Smirnov (KS)mh statistic. The KS score of our
inferred ER target gene set is indicated as thelined(at KS score = 208) in the

figure.
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