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The proper orthogonal decomposition (POD) is the prevailing method for basis
generation in the model reduction of fluids. A serious limitation of this method,
however, is that it is empirical. In other words, this basis accurately represents the
flow data used to generate it, but may not be accurate when applied ‘off-design’.
Thus, the reduced-order model may lose accuracy for flow parameters (e.g. Reynolds
number, initial or boundary conditions and forcing parameters) different from those
used to generate the POD basis and generally does. This paper investigates the use
of sensitivity analysis in the basis selection step to partially address this limitation.
We examine two strategies that use the sensitivity of the POD modes with respect to
the problem parameters. Numerical experiments performed on the flow past a square
cylinder over a range of Reynolds numbers demonstrate the effectiveness of these
strategies. The newly derived bases allow for a more accurate representation of the
flows when exploring the parameter space. Expanding the POD basis built at one
state with its sensitivity leads to low-dimensional dynamical systems having attractors
that approximate fairly well the attractor of the full-order Navier–Stokes equations
for large parameter changes.

1. Introduction
A number of practical engineering problems requires the repeated simulation of

unsteady fluid flows for a large number of parameter values. These problems include
the control, optimization and uncertainty quantification of fluid systems. To make
many of these problems tractable, reduced-order modelling has been used to minimize
the simulation requirements. The use of reduced-order modelling in control and
optimization has led to practical solutions for extremely challenging problems (Ito &
Ravindran 1996), such as control of low-Reynolds (Bergmann, Cordier & Brancher
2005) and high-Reynolds number flows (Rowley & Williams 2006), solutions to the
Hamilton–Jacobi–Bellman equation arising in nonlinear feedback control (Kunisch,
Volkwein & Xie 2004) and design of materials for desired microstructure-sensitive
material properties (Ganapathysubramanian & Zabaras 2004). The development of
accurate and reliable reduced-order models (ROM) is critical to the success of these
solution approaches.
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Reduced-order modelling for nonlinear time-dependent problems typically consists
of a mode selection strategy coupled with a model building step which generally
involves Galerkin methods (Antoulas, Sorensen & Gugercin 2001). Following Noack
et al. (2003), the choices for low-dimensional global mode bases can be classified as
mathematical (e.g. Noack & Eckelmann 1994a , b), physical (e.g. Bangia et al. 1997;
Morzyński, Afanasiev & Thiele 1999) and empirical approaches. Successes, difficulties
and limitations of each approach have been reported in the literature (see for example
Noack et al. 2003; Bergmann et al. 2005). Empirical approaches are the most general
purpose techniques in the sense that they can readily be applied to any problem
regardless of the physics and the governing equations involved. They however require
full-order solution data of the problem at hand on which some data processing is per-
formed to extract global modes having some statistically relevant properties. Among
them, one of the most popular approaches uses the proper orthogonal decomposition
(POD) (Loève 1955) of simulation time snapshots at a given set of the parameters
(see, for example, Sirovich 1987; Peterson 1989; Holmes, Lumley & Berkooz 1996;
Sirisup & Karniadakis 2004; Antoulas 2005; Couplet, Basdevant & Sagaut 2005).
The POD and its variants are also known as Karhunen–Loève expansions (Karhunen
1946; Loève 1955), principal component analysis (PCA) (Hotelling 1933) and empirical
orthogonal functions (EOF) (Lorenz 1956) among others.

This method of coupling a reduced-basis with Galerkin projection to build reduced-
order models of fluid flow has developed over the past two decades as more
complex simulation and control applications have emerged. The more computationally
demanding the direct simulation of these problems are, the higher the need for
reduced-order models.

Obviously, the accuracy of a reduced-order model crucially depends on how good
the reduced basis can represent the full-order solutions. The first issue is to determine
how large the truncation in the full-basis can be. A trade-off should be made between
the size of the truncated basis and its capability to accurately represent the set of
solutions. For turbulent flow problems, that have a wide spectrum of structures, the
truncation may only be limited to preserve accuracy. To circumvent this issue, a
number of specialized approaches have been proposed to model the influences of
the neglected (small) structures on the reduced basis. These approaches have shown
promise in managing the energy decay in the model. They are based on modifying
or tuning the viscosity term in the model (Aubry et al. 1988; Sirisup & Karniadakis
2004; Couplet et al. 2005). However, for flows where the first few modes rapidly
capture all the energy up to a few tenths of 1 % (as those considered in this study),
these approaches are unnecessary (Deane et al. 1991).

The second issue that arises is to what extent these bases, that have been obtained
from the flow data at one given set of parameters, can represent the solutions for a
wide range of parameters. Indeed, the bases obtained by selection methods are shown
to be optimal in a given sense (the POD basis being optimal in terms of energy
representation) for the particular set of flow snapshots but are generally not well
suited to represent any solution of the PDE at hand (unlike polynomial or spectral
bases used in finite-element methods, for example). Thus, regardless of what truncation
is used in the full basis, the reduced basis obtained may not be able to accurately
represent different solutions in the parameter space potentially leading to inaccurate
ROM even for the short-term dynamic simulations. This paper investigates this issue.

As a test problem, we consider the two-dimensional flow past a cylinder which
has been widely used for assessing the accuracy of ROM (Deane et al. 1991; Noack
et al. 2003; Galletti et al. 2004; Sirisup & Karniadakis 2004; Couplet et al. 2005;
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Borggaard, Hay & Pelletier 2007). The baseline configuration is set at Re = 100 for
which a ROM is built (model training). As already reported in the literature, low-
order models perform well for this problem given that an accurate snapshot database
from numerical simulations or experiments is available. Deane et al. (1991) have
examined the ability to mimic the full simulation for Reynolds numbers beyond the
values used for eigenfunction extraction. They report that the accuracy of the ROM
solutions deteriorates rapidly with larger and larger changes in the parameter value.
Furthermore, they show that, even though the dynamics remain low dimensional, the
POD eigenspaces significantly change with Reynolds number. That is, two basis sets
extracted for different Reynolds number span appreciably different subspaces. As an
example, the POD modes built at Re = 100 fail to capture on the average almost
65 % of the flow energy at Re = 150. Similarly, in the framework of flow control,
Lehmann et al. (2005) have noticed that the POD model extracted from the natural
attractor (uncontrolled flow) exhibits a declining ability to represent controlled flows
as vortex shedding is changed. Hence, if one wishes to address flows over a range of
parameter values, it is necessary to generate full-order flow data at more than a single
Reynolds number. Clearly, the reduced-order modelling accuracy and robustness
crucially depend on the database used to extract POD modes. As an example, Ma &
Karniadakis (2002) have successfully captured the three-dimensional bifurcation by
building a basis consisting of both three- and two-dimensional POD modes extracted
closely around the bifurcation point reported experimentally (note that it requires
the knowledge of the bifurcation state a priori ). Galletti et al. (2004) have applied
the POD technique to extract a basis from a mixed database that contains snapshots
at different Reynolds numbers. They have shown that the reduced-order system
built from this basis captures the trends of the dynamics for Reynolds numbers not
included in the database. Another approach uses generalized POD modes extracted
from flow snapshots of forced transient flows (e.g. Bergmann et al. 2005; Graham,
Peraire & Tang 1999a , b). It relies on the proper choice of an ad hoc forcing term
corresponding to parameter changes over the range of parameter values.

As already pointed out by Deane et al. (1991), the derived eigenfunctions cannot
be identified with coherent structures at any particular parameter value. Therefore,
a detailed analysis is impossible. However, these methodologies have more severe
drawbacks. First, the dimension of the basis has to be substantially increased for a
single ROM to predict a complete range of parameter values. This limitation can be
addressed by building models at each desired state by interpolating POD basis vectors
in the parameter space. Lieu, Farhat & Lesoinne (2006) have provided an efficient way
to do so by interpolating the principal angles between two POD subspaces. Morzyński
et al. (2007) have interpolated the POD eigenproblem in the parameter space to yield a
continuous mode interpolation procedure between two different states. Lehmann et al.
(2005) have interpolated a series of very low-dimensional models to build interpolated
Galerkin models specifically designed for systems where the local expansion modes
geometry and dynamic model structure are preserved through parameter changes.
All these approaches have been demonstrated to remove the need for a high number
of modes to represent flows at various operating conditions. Secondly, the cost of
the basis selection step is significantly increased since full-order data are required for
several parameter values that cover the entire range to be approximated by ROM.
This is the most severe limitation because the cost of the reduced-order approach
rises dramatically as full-order data are expensive and demanding to obtain. Another
approach is to include shift modes in the POD basis that enhance the robustness
and/or the stability of the resulting Galerkin approximation. Noack et al. (2003) have
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incorporated the normalized mean-field correction in the Galerkin model. They have
shown that the inclusion of this additional component allows for better prediction
of the Reynolds-number dependency. Here, we propose to use sensitivity analysis
in the basis selection process to enlarge the set of solutions that can be accurately
represented in the parameter space which in turn allows for more accurate low-
dimensional modelling.

The proposed approaches all rely on the sensitivities of the baseline POD modes
(their derivatives with respect to parameters). They are derived by differentiating
the eigenvalue problem that defines the set of POD modes. This yields a set of
equations for the eigenvalue and eigenvector sensitivities which requires flow sensitivity
data. Flow sensitivities are obtained by the Continuous Sensitivity Equation (CSE)
method (see, e.g. Borggaard & Burns 1997; Hristova et al. 2006; Ilinca, Pelletier & Hay
2008; Pelletier et al. 2008): the partial differential equations for the flow sensitivities
are derived by direct differentiation of the Navier–Stokes equations. They are then
approximated and solved with similar numerical methods as for the flow equations.
The appropriate methodology to derive mode sensitivities is thoroughly described.
Then, we show how these sensitivities can be used to improve the capability of the
POD bases to represent full-order flow solutions for a range of parameter yielding
improved ROMs. We consider both the extrapolation of the baseline basis in the
parameter space and its expansion using the mode sensitivities.

The paper is organized as follows. Section 2 deals with flow modelling. In § 2.1, we
introduce the modelling equations and their appropriate weak form for both the direct
numerical simulation (DNS) and low-dimensional models. Then § 2.2 presents the
numerical techniques for the DNS and the description of the flows considered. In § 2.3,
we first present the two steps of the reduced-order modelling: the proper orthogonal
decomposition and the reduced-order POD-Galerkin modelling; secondly, we examine
the accuracy of ROM solutions for different values of the Reynolds number. Section 3
covers sensitivity analysis. In § 3.1, we give a short presentation of the Sensitivity
Equation Method (SEM) for flow sensitivity analysis. Section 3.2 describes how the
POD mode sensitivities are evaluated and their accuracy is discussed in § 3.3. Finally,
§ 4 presents numerical results of improved ROMs using mode sensitivities.

2. Flow analysis
2.1. Model equations

We consider flows described by the unsteady incompressible Navier–Stokes equations.
The momentum and mass conservation laws are written as

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · σ , (2.1)

∇ · u = 0 (2.2)

where u is the velocity vector and σ = (−pI+τ (u)) is the stress tensor, ρ the density, p
the pressure and I the second-order identity tensor. For Newtonian fluids, the viscous
stress tensor is given by

τ (u) = μ(∇u + (∇u)T ) (2.3)

where μ is the fluid viscosity. The solution of these equations is sought on a domain
Ω with a boundary Γ =ΓD ∪ ΓN and over times t ∈ T = (0, tf ). Dirichlet and
homogeneous Neumann boundary conditions are imposed on boundary segments ΓD
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and ΓN , respectively,

u = u (ΓD), (2.4)

σ · n = 0 (ΓN ), (2.5)

where n is an outward unit vector normal to the boundary. The variables are initialized
in time using a prescribed initial solution.

For both the DNS and the ROM simulations of this PDE, the weak forms of (2.1)
and (2.2) are formed by a Galerkin projection on a set of suitable test functions. In
particular, the test functions for the momentum equation satisfy the homogeneous

version of the Dirichlet boundary conditions (2.4) (i.e w ∈ X0 = { f ∈
[
H 1(Ω)

]d | f = 0

on ΓD} with d the dimension of the problem). Then, we seek u ∈ X =
[
H 1(Ω)

]d
and

p ∈ L2
0(Ω) such that∫
Ω

(
ρ

∂u
∂t

+ ρ(u · ∇)u

)
· w dΩ =

∫
Ω

p (∇ · w) − τ : ∇w dΩ ∀ w ∈ X0, (2.6)∫
Ω

q (∇ · u) dΩ = 0 ∀ q ∈ L2
0(Ω). (2.7)

These equations have been obtained by integrating by parts the term involving σ as
classically done∫

Ω

(∇ · σ ) · w dΩ =

∫
Γ

(σ · w) · n dΓ −
∫

Ω

σ : ∇w dΩ (2.8)

=

∫
Γ

(σ · n) · w dΓ +

∫
Ω

p (∇ · w) − τ : ∇w dΩ. (2.9)

The integrand in the boundary integral is zero on ΓD since w ∈ X0 and also on ΓN

from the homogeneous Neumann boundary condition (2.5). For the DNS, the test

functions are finite-element interpolation functions that span
[
H 1(Ω)

]d
(see § 2.2); for

the ROM, the test functions are the POD modes that span the space generated by
the baseline flow snapshots (see § 2.3.2).

2.2. Flow description and direct numerical simulation

We consider here two-dimensional flows (d =2) over a square cylinder classified
by the Reynolds number based on the square edge length D and the free stream
velocity U∞ (Re = ρU∞D/μ). All Reynolds numbers examined in this study are in the
range for which flows are reported to be two-dimensional, laminar and T -periodic in
time exhibiting a Von Kármán vortex street (Okajima 1982; Sohankar, Norberg &
Davidson 1999) since Re ∈ [60; 150]. The baseline flow is set at Re = 100.

As can be seen in figure 1, the computational domain Ω extends 15D away from
the rear cylinder edge to allow for the simulation of the convection of several vortices
in the wake of the cylinder. The inflow and sides of the computational domain are
located six edge lengths away. The boundary conditions on Γ = ΓD ∪ ΓN are set
as follows. At the inlet and cylinder edges (ΓD), Dirichlet boundary conditions are
applied; the no-slip condition holds on the cylinder walls (u = [0, 0]T ) and the free
stream velocity (u = [U∞, 0]T ) is prescribed at the inlet. At the sides and outlet of
the computational domain (ΓN ), the homogeneous Neumann boundary condition is
applied as described by (2.5).

The DNS is performed by solving the discretized version of (2.6) and (2.7)
using the Taylor–Hood (P2 − P1) finite-element and a mixed-formulation. Thus,
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Sources St CD

Okajima (1982) Exp. 0.138–0.145 –
Davis & Moore (1982) 0.148–0.153 1.64
Frank et al. (1990) 0.154 1.61
Norberg (1996) Exp. 0.143 1.45
Sohankar, Norberg & Davidson (1997) 0.146 1.48
Sohankar, Norberg & Davidson (1998) 0.144–0.150 1.452–1.491
Saha, Biswas & Muralidhar (2003) 0.152 1.50
Present 0.149 1.54

Table 1. Strouhal number and mean drag coefficients at Re = 100.

Γn : σn = 0

Γw : u = 0

Γd : u = [U∞, 0]T

15D

6D

6D

6D D

Figure 1. Computational configuration.

the velocity variables are discretized by six-noded quadratic interpolation functions
(third-order spatial accuracy) while the pressure is discretized by piecewise linear
continuous functions (second-order spatial accuracy). An implicit Crank–Nicolson
time discretization of these equations (second-order temporal accuracy) leads to a
system of nonlinear algebraic equations which are linearized by Newton’s method
and solved using a sparse direct solver.

The mesh is defined by an adaptive refinement procedure used for solving the
steady-state equations for the baseline flow and sensitivity (see § 3). Additional user-
defined uniform refinement is applied in the wake region to allow for the accurate
calculation of the vortex street in the unsteady calculations. The resulting mesh
contains 51 532 nodes and 25 586 elements. Furthermore, the non-dimensional time
step for the integration scheme is chosen close to 0.01. Several refinement studies for
both the space and time discretizations indicate sufficient numerical accuracy.

The DNS solution is initialized by prescribing the solution of the steady version
of (2.1) and (2.2). During the first instant of the calculation, a continuous perturbation
is imposed to the zero-velocity condition on the cylinder walls to force the symmetry
breaking of the flow and hence speed up the onset of the vortex shedding.

The numerical results are validated by comparing the Strouhal number
(St = f D/U∞, where f is the vortex shedding frequency) and mean drag coefficient
on the cylinder at Re = 100 that are presently computed to those in the literature
as reported in table 1. Note that the experimental results of Norberg (1996) were
originally unpublished but are reported in Sohankar et al. (1999) and suggest that
St =0.18−3.7/Re for Re ∈ [50; 175] (see figure 2). Note also that the numerical results
in table 1 are obtained for a set of different domain sizes and boundary conditions.



Local improvements to reduced-order models using sensitivity analysis of POD 47

0.11

0.12

0.13

0.14

0.15

0.16

0.17

60 80 100 120 140 160

St

Re

Franke et al. (1990)
Norberg (1996)

Present

Figure 2. Strouhal number versus Reynolds number for the square cylinder flow.

The blockage ratios are also different but for all of them β � 5 %. However, the
present numerical results are clearly in the range of validity of what in reported in
the literature.

The flows considered in what follows have a Reynolds number which ranges from
60 to 150. Figure 2 compares the present numerical results for the Strouhal number to
those by Franke, Rodi & Schoaconung (1990) and Norberg (1996). As well established
in the literature, reducing the Reynolds number results in flows exhibiting less intense
vortices that are closer to the mean horizontal line so that the observed wake is thinner.
It also decreases the Strouhal number which tends to zero as the flow reaches its
steady regime (first supercritical Hopf bifurcation). Increasing the Reynolds number
has the opposite effect up to the second supercritical Hopf bifurcation where the
two-dimensional periodic solution becomes unstable to three-dimensional spanwise
perturbations.

2.3. Reduced-order modelling

2.3.1. The proper orthogonal decomposition

An important step in reduced-order modelling is to find a suitable set of basis
functions to represent u(·, t) ∈ X for t ∈ (0, T ). A natural way is to find basis elements
that are well expressed over a collection of typical simulations. The present discussion
will be carried out in a finite-dimensional setting since the input collection is the result
of a single DNS simulation that computes discrete flow fields uh(x, ti), at equally
spaced time instants ti ∈ (0, T ) for i = 1, . . . , m. This is referred to as the discrete
POD. For a broader discussion on the proper orthogonal decomposition the interested
reader is referred to Holmes et al. (1996). The developments in what follows are based
on the L2-inner product on the domain Ω , denoted by (., .)Ω , with corresponding
norm ‖.‖Ω . Furthermore, we consider the averaging operator which is the arithmetic
average so that ch(x) = 〈uh(x, t)〉 =1/m

∑m

k =1 uh(x, tk) (centring trajectory) and the
POD will be applied to the data yh

i (x) = uh(x, ti) − ch(x). Thus, the aim is to find a
low-dimensional subspace that is the best approximation to P =span{yh

j }m
j = 1. While

fairly standard, we provide details on the notations and methodology because they
will prove necessary in developing the sensitivity of the POD modes.
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Following the notation from Kunisch & Volkwein (1999) and Fahl (2000), we
assume that the input collection consists of linearly independent two-dimensional
finite-element (FE) snapshots

yh
i (x) =

[ ∑n

j=1 yh
j (ti)ϕj (x)∑n

j=1 yh
n+j (ti)ϕj (x)

]
(2.10)

where {ϕj }n
j = 1 denote the FE interpolation functions and n the number of nodes in

the mesh. The snapshot data matrix Y ∈ �2n×m is defined as

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yh
1 (t1) . . . yh

1 (tm)

...
...

yh
n (t1) . . . yh

n (tm)

yh
n+1(t1) . . . yh

n+1(tm)

...
...

yh
2n(t1) . . . yh

2n(tm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.11)

Each column of the snapshot data matrix represents a single snapshot of the input
ensemble. The matrix has full column rank due to the linear independence assumption
on the FE snapshots. Similarly, any two-dimensional vector function is discretized as

φ(x) =

[ ∑n

j=1 φjϕj (x)∑n

j=1 φn+jϕj (x)

]
(2.12)

so that the L2-inner product is computed by the M-inner product: (ψ, φ)Ω = ψT Mφ

where M ∈ �2n×2n is the symmetric positive definite (generally sparse) FE mass matrix.
Note that we are using φ for both the FE approximation as well as the coefficients
of its expansion in the basis ϕ. As noted by Kunisch & Volkwein (1999) and Fahl
(2000), using the Cholesky factorization of the mass matrix, M = LLT , the M-inner
product is reduced to a standard Euclidean inner product of the vectors that are left
multiplied by LT

(ψ, φ)Ω = (LT ψ)T (LT φ). (2.13)

Thus, we define the weighted snapshot data matrix

A = LT Y ∈ �2n×m. (2.14)

The so-called method of snapshots introduced by Sirovich (1987) expresses the POD
vectors as a linear combination of the snapshots which leads to the following
eigenproblem:

ATAV = VΛ with Φ = L−T AVΛ−1/2 = YVΛ−1/2, (2.15)

where the matrix Φ ∈ �2n×m collects the FE coefficients of the discrete POD basis
functions and Λ = diag(λ1, . . . , λm). Each column of Φ represents a single POD
vector φj and they are ordered such that λi � λi+1. Due to the assumptions on the FE

snapshots, the matrix AT A ∈ �m×m is symmetric positive definite so that the spectral
theorem guarantees a full orthogonal set of real eigenvectors associated to strictly
positive real eigenvalues. From the physical point of view, λi measures the average
kinetic energy of the data captured by φi over (0, T ).

The POD basis of dimension q is defined as a set of q dominant eigenfunctions.
Thus, the subspace P q =span{φj }q

j = 1 is the best approximating subspace of dimension
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q 1 2 3 4 5 6 7 8 9 10

Eq (Re = 150) 0.5058 0.9570 0.9686 0.9785 0.9882 0.9977 0.9985 0.9992 0.9995 0.9998
Eq (Re = 100) 0.4848 0.9515 0.9668 0.9819 0.9902 0.9985 0.9991 0.9997 0.9998 0.9999
Eq (Re = 60) 0.4868 0.9523 0.9722 0.9920 0.9957 0.9994 0.9997 0.9999 0.9999 0.9999

Table 2. Effectiveness of the POD for different Reynolds numbers.

q to P in terms of kinetic energy representation. One measure of the effectiveness of
the POD is related to the rate of decay of the eigenvalues and measured as

Eq =

∑q

j=1 λj∑m

j=1 λj

. (2.16)

2.3.2. Reduced-order POD-Galerkin modelling

From § 2.3.1, the approximation ur of order q of u is

ur (x, t) = c(x) +

q∑
j=1

φj (x)aj (t). (2.17)

Note that the POD is applied to an input collection that satisfies homogeneous
Dirichlet boundary condition on ΓD and is divergence free. By linearity, these
properties are transmitted to the POD basis vectors. Hence, taking w =φi for
i = 1, . . . , q in (2.6) and (2.7), one obtains∫

Ω

(
ρ

∂ur

∂t
+ ρ(ur · ∇)ur

)
· φi dΩ = −

∫
Ω

τ (ur ) : ∇φi dΩ for i = 1, . . . , q.

(2.18)
Note that the incompressibility constraint (2.7) is automatically satisfied since each φj

is solenoidal in the decomposition (2.17), and its associated Lagrange multiplier, the
pressure, is eliminated from (2.6) or (2.9). Using the orthogonal decomposition (2.17)
in the set of q equations, (2.18) leads to a set of ODEs for the time coefficients
a = [a1, . . . , aq]

T

ȧ(t) = f (a(t)). (2.19)

In the present study, (2.19) is integrated in time using the implicit second-order
Crank–Nicolson scheme. Moreover, accurate initial conditions can be obtained from
the DNS data, for an orthogonal basis: ai(0) = (y(0, ·), φi(·))Ω for i = 1, . . . , q .

2.3.3. Accuracy of ROM solutions

We first consider the baseline flow at Re =100. After an initial settling, the flow
reaches its periodic state in time. At this point, m =58 snapshots of the FE solution
were collected over one vortex shedding cycle of period T to build the snapshot
data matrix. The fluctuating kinetic energy captured by these modes is illustrated by
plotting the POD spectrum on a logarithmic scale in figure 3. Observe that there is a
rapid decrease in the energy distribution. Thus, the effectiveness of the POD in terms
of energy representation as measured by (2.16) and given in table 2 is rapidly large.
Indeed, the first six POD modes account for more than 99 % of the flow energy. As a
consequence, it was found by Deane et al. (1991) and Sirisup & Karniadakis (2004),
for the similar flows over a circular cylinder, that a six-mode POD system gives
accurate results when compared with DNS data, at least for the short-term dynamics
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q
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Figure 3. First 20 values of the POD spectrum for different Reynolds numbers.

as also reported by Galletti et al. (2004), Couplet et al. (2005) and Borggaard et al.
(2007) for the case of a square cylinder at this Reynolds number. Figure 3 and table 2
also report results for Re = 150 and Re =60. As can be seen, the lower the value of
the Reynolds number, the steeper the slope of the spectrum and thus the better the
efficiency of the POD. It means that a POD basis of fixed dimension q accounts for
a more important fraction of the energy in the data when Re is low. This ordering is
not true for the first three modes but then the picture is clear. Hence, it is expected
that the POD-Galerkin models for a fixed dimension q > 3 will be more accurate
when Re is low since the first q POD modes contain more energy.

Figure 4 shows the contours of the streamwise component of the first six spatial
POD vectors at the baseline. They are either symmetric or antisymmetric reflecting
the topology of the vortex street and the geometric symmetry. However, it is not
possible to foretell whether a mode will be even or odd in y with the exception of the
two primary modes. As noticed by Deane et al. (1991), their streamwise component
is odd (see figure 4) and their normal component even because the fluctuating part
of the flow snapshots appears clearly to possess this feature. However, the main
characteristic in the decomposition is that the eigenvalues decay pairwise and that the
POD modes can be grouped in pairs. These results are consistent with the topology
of the vortex street (see e.g. Deane et al. 1991; Sirisup & Karniadakis 2004; Couplet
et al. 2005; Hay, Borggaard & Pelletier 2008).

We now evaluate the accuracy of the approximated solution of the baseline flow
obtained from the POD-based ROM during one flow period. The approximation to
the full-order flow solution is expressed as a linear combination of the POD modes
using (2.17). The time-dependent coefficients obtained from solving ROM (2.19) are
denoted by {ar

i }i =1,q . The ROM solution ur will be compared to the full-order
solution obtained from the DNS uDNS . For the purpose of accessing the accuracy of
the ROM, we also consider the approximated solution up as the best representation
of uDNS by the q-dimension POD basis using decomposition (2.17). Thus, for up , the
time coefficients, denoted by {ap

i }i =1,q , are obtained by projecting the DNS data on
the reduced-POD basis. For an orthonormal basis, one has

a
p
i (t) = (φi(·), uDNS(t, ·))Ω ∀i = 1, . . . , q. (2.20)
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Figure 4. Iso-lines of the streamwise component of the first six POD modes.

Figure 5(a) shows the first four time coefficients using six POD modes in ur and
up . As can been seen, the agreement between the ar

i and a
p
i is very good. Note

that the time coefficients can be grouped in pairs and each pair of coefficients are
approximately sine and cosine functions of period T/k with k the pair wavenumber.
We now compare the approximations ur and up to uDNS for different q-dimensional
bases. For doing so, we compute the average relative errors in these approximations
for each value of q as

er
rel (u) = 〈‖ur − uDNS‖Ω〉/〈‖uDNS‖Ω〉, (2.21)

e
p

rel (u) = 〈‖up − uDNS‖Ω〉/〈‖uDNS‖Ω〉. (2.22)

Figure 5(b) shows the plot of er
rel and e

p
rel with the dimension q of the considered

basis. As can be seen, the relative errors in the approximated solutions are very close
up to q = 26. This result shows that the ROM performs well in computing the time
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Figure 5. Performance of baseline reduced-order models at Re = 100.

coefficients for decomposition (2.17). However, adding higher-order modes greater
than q = 26 in the ROM approximation does not improve the model solution. This
occurs when the numerical error becomes larger than the modelling error in (2.17).
This numerical error arises from the discrete sampling of the data over one period
and from the spatial and temporal discretization. It is however considered sufficient
since the approximated solution can reproduce the DNS data with four to five correct
digits. It is worth noting that no calibration is used in the present study. Unlike the
experiences reported in the literature (see e.g. Noack et al. 2003; Sirisup & Karniadakis
2004; Bergmann et al. 2005), we have not observed any numerical instability after
integration over a number of vortex shedding periods. During the first few periods,
depending on the dimension of the basis used, the ROM solution slightly drifts away
from the short-term dynamics shown in figure 5(a) for q = 6 due to the truncation in
the basis. However, once the low-dimensional limit cycle is reached, it never diverges
from it even after integration over 25 000 periods (we have tested models for q =4,
6, 8 or 12). This is illustrated in figure 6 which shows the phase portrait of the first
modes (the last 10 shedding periods are plotted). The higher the dimension, the better
the approximation (and the less drifting from the short-term dynamics).

We now investigate the ability of the ROM built at Re = 100 to predict solutions
at different Reynolds numbers. To focus on the influence of the basis on the accuracy
of the reduced-order solution, the initialization and centring are obtained from DNS
data at the corresponding perturbed states. Figure 7 shows relative errors in reduced-
order solutions with the Reynolds number for models of dimensions 6, 12 and 24. At
the baseline, the error is very low as already shown in figure 5(b). However, the error
dramatically increases when the Reynolds number is changed. Furthermore, even for
the smallest parameter perturbation (Re ≈ 95), the improvement of the approximated
solution with the dimension of the basis stops. Hence, this increase in the error is
not due to the truncation in the basis. These results simply show that as one goes
further from the baseline in the parameter space, the baseline POD basis becomes
less and less adequate to represent the perturbed flow solution and leads to poor
reduced-order modelling.

The remainder of this article aims at improving the ROMs using sensitivity analysis.
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Figure 7. Relative errors in reduced-order modelled flows for different Reynolds numbers.

3. Sensitivity analysis
Sensitivity analysis has been an active topic of research in the past three decades

since it finds many academic and industrial applications. A flow sensitivity is defined
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as the derivative of a flow variable with respect to a parameter in the system. It
thus quantifies how the flow reacts to variations in the parameter. Among the main
applications of sensitivity analysis are: fast evaluation of nearby configurations;
uncertainty analysis of the system response; identification and ranking of key
parameters and gradient computation for optimization algorithms. Furthermore, the
body of work on sensitivity analysis has shown that it provides an enriched base of
information on which to develop the understanding of complex flow problems.

3.1. Flow sensitivity analysis

The continuous sensitivity equations are derived formally by direct differentiation of
the flow equations (2.1) and (2.2) with respect to an arbitrary parameter α.

Thus, we treat the variable u as a function of both space and the parameter α.
This dependency is denoted by u = u(x, t; α). The flow sensitivities are defined as the
partial derivatives

su =
∂u
∂α

; sp =
∂p

∂α
. (3.1)

Then, continuous equations governing sensitivity fields are written as

ρ ′
[
∂u
∂t

+ (u · ∇) u

]
+ ρ

[
∂su

∂t
+ (su · ∇) u + (u · ∇) su

]
= ∇ · σ (su) + ∇ · τ ′(u), (3.2)

∇ · su = 0 (3.3)

where the derivatives of the fluid properties (ρ and μ here) are denoted by a (′) and
we define

τ ′(u) = μ′(∇u + (∇u)T )

σ (su) = −spI + μ
(
∇su + (∇su)

T
)
.

To complete the description of the problem, the boundary conditions (2.4) and (2.5)
have to be differentiated in the same way. Considering only value parameters (i.e.
parameters that do not influence the geometry), one has

su = su (ΓD), (3.4)

(σ (su) + τ ′(u)) · n = 0 (ΓN ). (3.5)

The weak forms of (3.2) and (3.3) are formed and solved with the same numerical
methods as for the flow. Details on the methodology and numerical procedure can
be found in the literature (see Hristova et al. 2006; Pelletier et al. 2008).

In continuation of the previous study, we consider the dynamic viscosity as a
parameter to control the Reynolds number and compute the flow sensitivity with
respect to μ. Hence, we set μ′ = 1 and ρ ′ = 0. Furthermore, for this parameter, the
Dirichlet boundary condition on ΓD for the sensitivity problem is homogeneous since
su = 0.

Using a classical verification procedure in sensitivity analysis, we compare the
solution of the sensitivity equation method presented above with the sensitivity
computed by finite-difference (FD) of two nearby flow solutions

∂u
∂μ

∣∣∣∣
FD

=
u(μ0 + 
μ) − u(μ0)


μ
(3.6)

at the nominal parameter μ0. The parameter increment 
μ is chosen sufficiently
small for the FD computation to be accurate and sufficiently large for the difference
between the two nearby flow solutions to be at least one order of magnitude larger



Local improvements to reduced-order models using sensitivity analysis of POD 55

–30

–20

–10

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

d
C

D
/d

μ

Time (s)

0 20 40 60 80 100 120 140

Time (s)

SEM
FD

–800

–600

–400

–200

0

200

400

600

800

d
C

L
/d

μ

SEM
FD

(a) (b)

Figure 8. Comparison between FD and SEM.

than the discretization error. Here, we have found 
μ/μ0 = 0.01 %. We look at the
sensitivity of the drag and lift coefficients that are related to the sensitivity of the
loads applied by the flow to the cylinder as defined by

∂

∂μ

[
CD

CL

]
=

∂

∂μ

{
1

(1/2)ρU 2
∞D

∫
Γw

σ (u) · n dΓ

}

=
1

(1/2)ρU 2
∞D

∫
Γw

(σ (su) + τ ′(u)) · n dΓ (3.7)

where Γw is the square cylinder wall. All these results are shown in figure 8. As can be
seen, the agreement between the SEM of the FD solution is very good which shows
that an accurate flow sensitivity is obtained for the problem at hand.

It is worth noting that the SEM provides an efficient way to generate flow
sensitivities compared to the FD approach which is more straightforward since it only
requires evaluations from the flow solver and thus almost no additional development.
However, this option is costly because the problem must be solved for two or
more values (for higher order finite differences when necessary) of each parameter.
Furthermore, numerical evaluations of certain sensitivities may be limited for shape
parameters since technical problems arise due to mesh topology changes. Finally, they
may suffer from round-off errors (i.e. subtractive cancellation errors). The SEM has
none of these limitations. Furthermore, the sensitivity problem is always linear and
thus can be solved for a fraction of the cost of solving the nonlinear Navier–Stokes
equations (see Ilinca et al. 2008; Pelletier et al. 2008 for a more complete discussion).

3.2. POD sensitivity analysis

This section aims at deriving the sensitivity of the discrete POD modes with respect
to a generic value parameter α. Sensitivity analysis of eigenvalue problems has been
the subject of several studies in the literature. The methodology for computing the
sensitivity of eigenvalues and eigenvectors of multiplicity one is reported by Fox &
Kapoor (1968) and Murthy & Haftka (1988). The treatment of general multiple
eigenvalues has been examined by Lancaster (1964) and, in the context of structural
vibration problems, by Seyranian, Lund & Olhoff (1994).

For the present discussion, we consider matrices with simple eigenvalues. This may
seem to contradict the fact that the eigenvalues of the exact spatial autocorrelation
tensor Rs , built from the analytical solution of the unsteady Navier–Stokes
equations, are of multiplicity two. This is due to the spatio-temporal symmetry
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[u(x, y, t), v(x, y, t)]T = [u(x, −y, t + T/2), −v(x, −y, t + T/2)]T (Deane et al. 1991).
It is worth mentioning that the multiplicity of the eigenvalues is preserved through a
change in the viscosity coefficient since, for the range of Reynolds numbers considered
in this study, the periodic vortex shedding is always observed and hence the nature of
the data is preserved. However, in the finite precision setting, this is only approximately
true. Indeed, it suffices to use an unsymmetrical mesh in the DNS for this property
to be only approximately observed. Hence, the discrete numerical approximation of
Rs has only single eigenvalues though they can clearly be grouped in pairs as already
mentioned in § 2.3.3. Note that the treatment of multiple eigenvalues is not much
more involved as long as the multiplicity is preserved with parameter changes. The
interested reader is referred to Hay et al. (2008) for this case.

We start with (2.15) noting B= ATA; then the kth column of V, denoted by Vk , is
the solution of the eigenvalue problem

BVk = λkVk. (3.8)

We assume that the entries of the B, V and Λ matrices are smooth functions of
the parameter α so that (3.8) can be differentiated with respect to α. For the sake
of compactness, the partial derivative of any matrix or vector is denoted using the
superscript (α). Thus, implicit differentiation of (3.8) with respect to α leads to

BαVk + BVα
k = λα

k Vk + λkV
α
k , (3.9)

(B − λkI)V
α
k = −

(
Bα − λα

k I
)
Vk.

Hence, the sensitivity of the vector Vk is solution to the symmetric linear system (3.10)
which has solutions only if the right-hand side vector belongs to the range of B − λkI
and thus must be orthogonal to ker (B − λkI) which is generated by Vk . In other words

VT
k

(
Bα − λα

k I
)
Vk = 0. (3.10)

Hence, since Vk has unit norm, the sensitivity of the eigenvalues is obtained
through (Lancaster 1964; Fox & Kapoor 1968; Murthy & Haftka 1988; Seyranian
et al. 1994)

λα
k = VT

k BαVk. (3.11)

Thus, solutions to system (3.10) are completely characterized. We found one particular
solution, noted sk by solving it in the least-square sense (obtaining the minimum norm
solution). Since λk is simple, sk + γVk for all γ ∈ � is the general expression for the
solutions of (3.10). To determine the particular solution of (3.10) that corresponds to
the sensitivity of Vk , an additional condition must apply for finding the γ that gives
Vk . It comes naturally from the normalization condition VT

k Vk = 1 which was used to
specify Vk . Differentiating the normalization condition gives VT

k Vα
k = 0 and thus we

find

Vα
k = sk −

(
sT
k Vk

)
Vk and γ = −sT

k Vk. (3.12)

Once the sensitivity of the matrices V and Λ are determined, the sensitivity of the
POD spatial modes are easily computed by differentiating Φ = YVΛ−1/2

Φ α = YαVΛ−1/2 + YVαΛ−1/2 + YV(Λ−1/2)α

= YαVΛ−1/2 + YVαΛ−1/2 − 1

2
YV(Λ−1/2ΛαΛ−1)

= YαVΛ−1/2 + YVαΛ−1/2 − 1

2
Φ ΛαΛ−1. (3.13)
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Figure 9. Absolute value of the first 30 values of the sensitivity POD spectrum.

We note that this discussion could have been carried out from the infinite-
dimensional setting with minor changes related to the fact that the eigenspaces
are then two-dimensional. There are interesting differences between the continuous
and discrete settings when the parameter influences the shape of the domain. This
will be studied in future work.

It is worth noting that in (3.13) the mode sensitivities Φ α are evaluated from a
linear combination of the flow data, the sensitivity data and the original POD modes.
Hence, the sensitivities of the modes share their common linear properties. As the
centred flow data and the POD modes, the sensitivity data have zero values on the
boundary ΓD and are solenoidal (see § 3.1). Thus, the mode sensitivities also do,
implying that (2.18) is still valid if the mode sensitivities are used as test functions in
the Galerkin method.

Before ending this section, we emphasize that the mode sensitivities may not
always be defined. Indeed, we have here assumed that data snapshots, eigenfunctions
and eigenvalues are smooth functions of the parameter in the neighbourhood of the
current state so that (3.8) can be differentiated. Clearly, there is a number of situations
for which this is not true. This is a limitation of this method. For the case of the flow
past a cylinder, the POD modes do not undergo a smooth transition at the first Hopf
bifurcation (see § 2.2) so that the mode sensitivities are not defined at this Reynolds
number.

3.3. Numerical results

The sensitivity of the snapshot data matrix Yα is built by assembling m = 58 snapshots
of the FE sensitivity solution collected at the same instants as the flow snapshots.
Then, Aα = LT Yα and Bα =AαTA+ATAα are formed and the sensitivity of the eigenvalues
and POD modes is computed. We recall that the mass matrix M (and thus L) does
not depend on the parameter α = μ under consideration here since it is a value
parameter. Figure 9 shows the absolute value of the sensitivity of the POD spectrum.
For verification purposes, we compare the results obtained by the method described
in § 3.2 (we refer to them as SEM) to the sensitivity computed by finite-difference
(FD) using the decompositions of the baseline (μ0) and perturbed flows (μ0 + 
μ)
with again 
μ/μ0 = 0.01 %

∂λk

∂μ
(μ0)

∣∣∣∣
FD

=
λk(μ0 + 
μ) − λk(μ0)


μ
. (3.14)



58 A. Hay, J. T. Borggaard and D. Pelletier

q

||d
φ

q
/d

μ
||

0 5 10 15 20 25 30
102

103

104

105

SEM
FD

Figure 10. Norm of the first 30 POD mode sensitivities.

As can be seen, the agreement between the two approaches is very good. Indeed, for
the first 14 eigenvalue sensitivities, the relative differences are less than 2 % and reach
5% for the first 20. Except for the fifth and sixth modes, the eigenvalue sensitivity
(roughly) decreases with the mode number in a similar way as the eigenvalues do.
This shows that the ranking of the eigenvalues will be preserved through changes in
the Reynolds number. Only the rate of the energy decay will be affected so that the
dimension of the basis required to represent a certain amount of the total energy will
change as already noted in § 2.3.3. However, the magnitudes of the sensitivities of the
fifth and sixth eigenvalues are larger than the magnitudes of the sensitivities of the
third and fourth eigenvalues. Given that the eigenvalues between 3 and 6 are very
close (see figure 3), it indicates that the fifth and sixth POD spatial functions play
more significant roles than the third and fourth POD spatial functions in capturing
energy at nearby parameter values. This information could be used to guide the basis
truncation criteria. Indeed, in our case, the sensitivity information provides the insight
that we would not want to truncate between 3 and 6. Note that the sensitivities can
also be grouped in pairs which shows that this property of the eigenvalues is preserved
through a change in the viscosity around the baseline as expected from the previous
discussion. It is worth noting that all the eigenvalue sensitivities but the fourth are
negative. This result was also expected since a positive perturbation of the parameter
increases the viscosity so that the system is likely to dissipate more energy and thus
the positively perturbed flows have less energy than the baseline flow.

To assess the accuracy of the POD mode sensitivities, figure 10 compares the norm
of the first 30 POD mode sensitivities computed with their FD counterparts. Observe
that the agreement is very good. The first 18 sensitivities exhibit less than 2 % of
the relative differences and the first 36 exhibit less than 5 %. A qualitative picture
of the structure of the POD mode sensitivities is given in figure 11 where contours
of the streamwise component of the first six POD mode sensitivities is presented.
Clearly, they greatly resemble the first six POD modes presented in figure 4 up to a
switch between the modes within each pair. This apparent similarity is due the property
of homogeneity in the time direction which makes the temporal eigenfunctions ψ i

Fourier modes (once again this is only approximately true in finite precision). Since
they are approximately a sine or cosine function of period T/k with k the pair
wavenumber, their derivatives with respect to any parameter are approximately a
linear combination of these sine and cosine functions. Each sensitivity is made
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Figure 11. Iso-lines of the sensitivity of the streamwise component
of the first six POD modes.

orthogonal to its corresponding original function through (3.12). Thus, if ψ i is a sine
function, its derivative is a cosine function and vice versa (for more details see Hay
et al. 2008).

However, the similarity of the POD modes and their sensitivities is only a visual
artefact since they can be shown to be linearly independent and thus they span
different subspaces. To see this, we consider the set of vectors containing the POD
modes and their sensitivities and we make them maximally linearly independent
by computing an orthonormal basis for this set of vectors. The eigenfunctions
are not modified from this operation since they already form a set of linearly
independent orthonormal vectors. Components of the POD modes are removed from
the sensitivities. Contours of the streamwise component of the resulting orthogonalized
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Figure 12. Iso-lines of the orthogonalized sensitivity of the streamwise component of the
first six POD modes.

sensitivities are shown in figure 12 for the first six modes. Their structures are
now clearly different of those of the original modes. However, they also exhibit
antisymmetry or symmetry with respect to the mid-line of the geometry. This was
expected since the nature of the flow is preserved for a wide range of Reynolds
number around the baseline.

4. More robust reduced-order models
This section aims to improve the robustness of the bases used to construct

approximated flow solutions by using the now available POD mode sensitivities.

4.1. More robust reduced bases

We examine two different ideas for constructing improved reduced bases
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(a) Extrapolated basis: as for the flow variables, we treat each POD mode as a
function of both space and parameter α: φ = φ(x; α). In the context of the cylinder
flow, this is a natural idea since the POD modes clearly depend on the Reynolds
number. A change 
α in the parameter from its baseline value α0 is reflected in the
modes through a first-order expansion in the parameter space

φ(x; α) = φ(x; α0) + 
α
∂φ

∂α
(x; α0) + O(
α2). (4.1)

The capability of this extrapolation clearly depends on whether or not the POD
modes exhibit a nearly linear dependence with respect to the parameter α. However,
the dimension of the reduced basis is preserved and the reduced approximation of
the flow variables is still expressed using (2.17). Other approaches based on the idea
of mode interpolation can be found in the literature (Lehmann et al. 2005; Lieu
et al. 2006; Morzyński et al. 2007). It has been shown that they lead to an increased
robustness of the derived POD models with parameter changes and thus motivate
the extrapolation approach using mode sensitivities.

(b) Expanded basis: the sensitivities of the modes have been shown to span a
different subspace than the POD modes. Thus, it is natural to expect that if the
approximated solution is selected in the union of the two subspaces a broader
class of solution can be represented. We expand the original basis to consist of
the first q eigenfunctions with their q sensitivities

[
φ1; . . . ; φq; φα

1 ; . . . ; φα
q

]
. The

underlying assumption behind this approach is that the subspace spanned by the
mode sensitivities is well suited to address the change in the solutions induced by a
change in the parameter. This is indeed a legitimate assumption since the sensitivities,
being the first-order derivatives, represent the preferred directions in phase space
where parameter changes occur. However, the dimension of the reduced basis has
now doubled and the reduced approximation of the flow variables is now expressed
as

ur (x, t) = c(x) +

q∑
j=1

φj (x)aj (t) +

2q∑
j=q+1

φα
j−q(x)aj (t). (4.2)

We first look at the ability of these two new sets of functions to span the data
obtained at Reynolds numbers other than Re0. To do so, we project the flow
snapshots obtained at various Reynolds numbers onto the q-dimensional baseline
and extrapolated POD bases and the 2q-dimensional expanded basis to produce the
time coefficients in (2.17) and (4.2). Then we measure the discrepancies between the
resulting approximated flows and DNS data from (2.22) in figure 13. Note that in
order to isolate the influence of the reduced-basis, the centring trajectory c(x) in (2.17)
and (4.2) is defined as the time average of flow snapshots at each perturbed state.
As can be seen in figure 13, the two new bases are better-suited than the baseline
basis to represent the data at the perturbed states. For the extrapolated approach,
the improvement is only significant locally around the baseline which is consistent
with the first-order extrapolation idea. The improvement is also better for the 6-
dimensional model than that for the 12-dimensional model. This is due to the fact
that the lower the mode the better its linear extrapolation in the parameter space.
That is the first POD modes exhibit a more linear dependency with the viscosity
than the later higher order modes. However, the best modelling capability is obtained
from the expanded POD basis. Compared to the extrapolated basis, the expanded
basis performs significantly better because the influence of the mode sensitivities
in the linear combination (4.2) is not constrained to be a fraction of the weight
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Figure 13. Relative errors in approximated (projected) flows using different bases.

of its corresponding POD mode following linear extrapolation. Again the closer to
the baseline, the larger the improvement. However, as opposed to the extrapolated
approach, the expanded basis approximation yields a significant improvement even
for the largest parameter perturbations regardless of the basis dimension.

4.2. Accuracy of the sensitivity-based low-dimensional modelling

This section reports the accuracy of the ROMs built from the improved reduced
bases described previously for the short-term dynamics of the flow. As previously, to
focus on the influence of the basis used in the reduced-order modelling, all ROM
simulations are initialized using the DNS data at the considered state and use the
appropriate centring.

Figure 14 shows the relative errors in reduced-order modelled flows using different
bases as calculated from (2.21). Generally speaking, the relative errors are close to
what was reported for the projection test in figure 13. This means that the dynamical
systems obtained by projection of the Navier–Stokes equations on the bases can
efficiently reproduce the short-term dynamics of all the components in the bases
(baseline modes, extrapolated modes, baseline mode sensitivities) for all Reynolds
numbers. This is not an obvious result especially considering that the sensitivity
of the baseline modes has never been studied in the literature. Indeed, there is
no guarantee that a Galerkin-based dynamical system can reproduce the dynamics
of its modal components even with correct initial conditions. The only important
difference with the projection results above appears for the expanded approach with
q = 6 and close to the baseline where it performs slightly worse. Particularly, at the
baseline (Re0 = 100), the (2q =12)-dimensional expanded basis, which contains the
first six baseline POD modes, brings a solution relative error slightly higher than
when only the first six modes are included (baseline approach). This means that an
amplitude-selection mechanism in this dynamical system has incorrectly transferred
energy to some mode sensitivities though they represent an insignificant fraction of
the flow energy at the baseline. However, this phenomenon is indeed limited and
is not observed for q = 12. All in all, the expanded approach performs significantly
better than the baseline approach.
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Figure 14. Relative errors in reduced-order modelled flows using different bases.

4.3. Low-dimensional modelling and long-term dynamics

In this section, we build low-dimensional model using only DNS data extracted at
the baseline Reynolds number. That is, the initial conditions, centring trajectories
and bases are only calculated from the DNS data at the baseline parameter value.
Furthermore, we look at the long-term behaviour of the low-dimensional systems by
integrating them over a sufficiently long time to reach their attractors. This is a more
involved problem than above since transients of dynamical systems initialized from
the projection on the attractor of the full-order simulation can stay close to it over
several periods but can drift away after a sufficient long time (Deane et al. 1991).

Using the ideas behind the extrapolated approach, the centring is linearly
extrapolated in the parameter space to the perturbed state (μ0 +
μ). In the expanded
approach, the sensitivity of the centring mode is added to the low-dimensional basis.
Hence, the modelled solutions are expressed as

(a) Baseline approach (dimension q)

ur = cμ0
+

q∑
j=1

[φj ]μ0
aj , (4.3)

(b) Extrapolated approach (dimension q)

ur =
(
cμ0

+ 
μcα
μ0

)
+

q∑
j=1

(
[φj ]μ0

+ 
μ
[
φα

j

]
μ0

)
aj , (4.4)

(c) Expanded approach (dimension 2q + 1)

ur = cμ0
+

q∑
j=1

[φj ]μ0
aj +

2q∑
j=q+1

[
φα

j−q

]
μ0

aj + cα
μ0

a2q+1. (4.5)

Note that the sensitivity of the centring is solenoidal with zero values on the boundary
ΓD according to the Dirichlet boundary condition for the sensitivity problem (see § 3.1).
Thus, (2.18) is still valid when using cα

μ0
as a test function in the Galerkin method.



64 A. Hay, J. T. Borggaard and D. Pelletier

Re

St

60 80 100 120 140 160

Re
60 80 100 120 140 160

0.12

0.13

0.14

0.15

0.16

0.17

DNS
DNS--first order from baseline
ROM--baseline POD
ROM--extrapolated POD
ROM--expanded POD

Strouhal number

S
ig

n
al

 e
n
v
el

o
p
es

–1.5

–1.0

–0.5

0

0.5

1.0

DNS
ROM--baseline POD
ROM--extrapolated POD
ROM--expanded POD

Signal envelopes

(a) (b)

Figure 15. Reynolds number dependence of ROM for q = 12.

For the baseline and expanded approaches, a change in the Reynolds number only
changes the viscosity coefficient in the low-dimensional system of equations. For the
extrapolated approach, the basis and centring are also modified.

We look at the long-term dynamics of the modelled flow response by integrating
the low-dimensional systems over 1000 shedding cycles for q = 12 (the dimension of
the system for the expanded approach is thus 25). Their predictions of the Strouhal
number for several values of the Reynolds number in the range 60–150 are compared
to the full-order Navier–Stokes simulation in figure 15(a). Note that for all states
and all approaches, approximated solutions have reached their attractors after this
extended integration time. The first-order Taylor series of the DNS is also shown in
this figure for comparison

St(Re) = St(Re0) +
∂St

∂Re
(Re − Re0) with

∂St

∂Re
= − μ

Re

∂St

∂μ
, (4.6)

where the sensitivity of the Strouhal number is evaluated from the rate of growth
of the amplitude of the sensitivity of the lift coefficient (see figure 8). Thus, it only
uses DNS flow and sensitivity data at the baseline. Note that the complete first-order
extrapolation of the flow from the sensitivity solution is only accurate for short
integration time and rapidly deteriorates subsequently indicating the need for second-
order Taylor series (see Ilinca et al. 2008). However, the sensitivity frequency can be
accurately predicted. Figure 15(b) shows the envelopes of the normal component of
the flow signals at a location in the cylinder wake (x =3.152 and y = 0.064).

As can be seen in figure 15(a), the classical baseline approach gives poor prediction
of the correct vortex shedding for Reynolds number other than the one for which the
model has been built. The model predicts no change in the Strouhal number when
reducing the Reynolds number. Furthermore, the amplitude of the signal decreases
much too quickly compared to DNS data and reaches a steady-state solution for
Re � 75. At these parameter values the solutions of the baseline dynamical systems
are attracted to their stable fixed point which is approximately, though not exactly,
the mean flow centring. Thus, the frequency of the signal is zero (note that zero
frequencies are not shown in figure 15(a) for scaling reasons). This result has already
been observed in the literature (cf. Noack et al. 2003). When the Reynolds number
increases (i.e. the viscosity coefficient is reduced), the opposite effect is observed and
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Figure 16. Reynolds number dependence of ROM for q = 6.

the approximated flow response grows rapidly with Re. A periodic limit cycle is
still reached (except for Re = 150 where the approximated solution exhibits chaotic
fluctuations) but the amplitude of the signal is two orders of magnitude larger than
for DNS data (again, these signal envelopes are not plotted in figure 15b for scaling
reasons). We insist that these poor predictions of the baseline approach are not due to
the truncation in the basis but to inappropriate global spatial functions in the model.

The extrapolated approach provides few improvements since a steady state is
reached for Re � 75 and Re � 111. The transient of the solutions simply shows a
decrease of the amplitude in time and converges to the final steady solutions. This
transient requires a long time to be reached. Again, these results show that this
approach is only valid locally close to the baseline (75 � Re � 111). In this part of the
parameter space, the predictions of the Strouhal number are accurate.

However, the expanded approach approximates the full-order flow responses much
better, bringing essentially a linear improvement in the predictions with the Reynolds
number (that can be compared to direct first-order extrapolation of the DNS data
in the parameter space for the Strouhal number, dashed line in figure 15a). The
expanded approach clearly leads to the best results especially for large parameter
perturbations. As for DNS data, the attractor of the expanded dynamical system is
always a periodic limit cycle. In all cases, it takes less than 50 periods to reach it.
Furthermore, these limit cycles are very close to the corresponding full-order limit
cycles both in amplitude and frequency. Obviously, the closer to the baseline, the
better the accuracy. Yet the improvements of the results is observed over the entire
parameter range considered here. The price to pay for these improvements is the
doubling of the dynamical system dimension. Better predictions are obtained when
the Reynolds number is increased since the flow dependency on this parameter is
clearly more linear on this side of the parameter range.

In figure 16, similar behaviour is observed for q = 6 models constructed using either
the baseline or expanded basis approaches. However, even with this low-dimensional
system, the expanded approach still reproduces the trend in the flow response with
changing Reynolds number and provides a dynamical system that has periodic limit
cycles for all the parameter range. Note that at the baseline value Re = 100, the long-
term dynamics of the system show some discrepancies with the baseline approach
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Figure 17. Time signature of the sensitivity of the centring with parameter perturbations.

although the sensitivity components (modes and centring) should not be active.
Similar results apply for the short-term dynamics in § 4.2. The extrapolated approach
does not exhibit such a behaviour since it converges to the baseline approach when
the parameter perturbation tends to zero. Due to a very sharp truncation in the
spectrum, the baseline approach model does not exactly reproduce the DNS data in
figure 16(b).

To shed some light on the difference between the extrapolated and expanded
approaches, we compare the contributions of the baseline sensitivity of the centring
in the approximations (4.4) and (4.5). For the extrapolated approach, the weight of cα

μ0

in (4.4) is the parameter perturbation 
μ for all times. For the expanded approach,
the weight of cα

μ0
is the time coefficient a2q+1 = a25 for q = 12 that is computed by

integration of the dynamical system built from the approximation (4.5). Once the
stable limit cycle of the expanded dynamical system is reached, we compare the
extreme values of a25 and the parameter perturbation 
μ over the parameter range
in figure 17 (all quantities are normalised by μ0). As can be seen, the time coefficient
of the sensitivity of the centring in the expanded model is almost constant in time
since the differences between its extreme values are negligible. Now, in the vicinity
of the baseline, a25 values track the parameter perturbation 
μ, indicating that the
dependency of the centring with the parameter is linear. In this range, the rationale
behind the extrapolated approach is validated. In this linear range, enlarging the basis
by including the centring sensitivity is unnecessary. This motivates the choice of the
extrapolated basis in this parameter range. However, for larger parameter changes
the departure from the linearity becomes more and more pronounced. In this case,
the expanded approach offers more flexibility in defining the weight of cα

μ0
in the

reduced-order solution and leads to better models. Though such a simple analysis is
not possible for the sensitivity modes, this phenomena may help explain the better
behaviour of the expanded basis away from the baseline.

We now look at the long-term behaviour (last 10 shedding periods) of the dynamical
systems in the phase planes a1–a2 and a1–a3 for the baseline and expanded approaches
in figures 18 and 19 for Re = 111.11 (
μ/μ0 = − 10 %) and Re =150 (
μ/μ0 =
− 33 %), respectively (again for q =12). In these figures, the solid lines are the
predictions of the low-dimensional models and the dashed lines are the projection of
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Figure 18. Re = 111.11, q = 12 (solid lines: ROM, dashed lines: DNS).

the modes on the full-order simulation at the corresponding states. As can be seen,
the baseline approach brings very poor predictions. For Re ≈ 111, a stable limit cycle
is reached but it is far from the attractor of the full-order simulation. For Re ≈ 150,
the shape of the attractors are significantly different. However, the attractor of the
dynamical system built from the expanded approach approximates the full-order one
fairly well even for the largest parameter perturbation.

For the sake of completeness, figure 20 shows the same results for the expanded
approach with q = 6. With fewer components, the model is not as accurate but the
attractor of the low-dimensional system has still the same qualitative shape as the
full-order attractor.

5. Conclusion
This paper studies the robustness of low-dimensional models for fluid flows. These

models are obtained by the Galerkin projection of the Navier–Stokes equations onto
a reduced basis. The proper orthogonal decomposition is the prevailing method to
generate low-dimensional bases. It has an interpretation of providing optimal reduced
bases in terms of kinetic energy representation. Since it requires computationally
demanding DNS data, the basis generation is the most expensive step in building
reduced-order models. The classical approach is to build the basis for a particular set
of the parameters defining the problem at hand. However, the resulting reduced basis
is only optimal at these particular states and may perform poorly in representing
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Figure 19. Re = 150, q = 12 (solid lines: ROM, dashed lines: DNS).

flow solutions for different sets of parameters. This drawback was reported in the
literature for laminar flows over obstacles for a range of Reynolds numbers.

To partially circumvent this issue, we have presented a method for computing
the sensitivity of the POD. It consists of differentiating the eigenvalue problem
corresponding to the POD with respect to the parameters and involves the sensitivity
of the DNS data. The latter has been obtained by the sensitivity equation method
and requires the solution of a set of PDEs for the sensitivity of the flow variables. The
main advantage of this approach is that the sensitivity of the data are obtained for a
fraction of the cost of the flow data since the sensitivity equations are always linear.
The solution of the differentiated eigenvalue problem provides both the sensitivity of
the eigenvalues and the POD modes. They first provide information on how these
temporal and spatial modes vary with changes in the parameter. This information
is valuable because the POD is not only used for model building purposes but also
for flow characterization. For the flows over a square cylinder, the sensitivity of the
eigenvalues with respect to the fluid viscosity are almost all negative, indicating that
an increase in this parameter will lead to a reduction of the total kinetic energy of the
flow. This is consistent with our understanding of these well-known flows. Secondly,
the POD mode sensitivities can be used in the basis selection process to enlarge the set
of solutions that can be accurately represented in the parameter space. To this end, we
have examined two different approaches. The first one extrapolates the POD modes
in the parameter space to the corresponding state to be modelled. It relies on the
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Figure 20. Expanded approach, q =6 (solid lines: ROM, dashed lines: DNS).

assumption that these eigenfunctions have a linear dependency on the parameters that
can only be validated locally. The second one expands the reduced basis by adding
the sensitivity of the original modes to the original POD basis. The underlying idea
behind this approach is that the POD mode sensitivities span a different subspace
than those generated by the POD eigenfunctions and point in relevant directions
when considering parameter changes. This property has been demonstrated for the
case of flows over a square cylinder.

The new bases have each led to an improvement in representing the data for a
range of Reynolds numbers. However, the extrapolation approach offers only limited
improvements very locally around the baseline. For larger variations in the parameter
space, it quickly loses accuracy. Clearly, the expanded approach provides a better and
more robust alternative but essentially doubles the basis dimension. The short-term
solution of the resulting ROMs approximates the DNS data fairly well given the
inclusion of sufficient components in the basis. Using only data extracted at a single
Reynolds number (initial conditions, mean flow, modes and their sensitivities), the
long-term dynamics of the low-dimensional model is in good agreement with the DNS
data both in terms of amplitude and frequency. It has been shown that the attractors
of the ROMs are close to the full-order attractor. However, the expansion also
constitutes a linear approach in essence and loses accuracy for the largest parameter



70 A. Hay, J. T. Borggaard and D. Pelletier

perturbations examined in this study. Thus, the efficiency of this approach depends
on how linear the flow dynamics are with respect to parameter changes.

Our future research will aim at extending these ideas to shape parameters with the
aim of producing reduced-order models for parameter-dependent geometries.

This research was supported in part by the Air Force Office of Scientific Research
(under contract FA9550-08-1-0136), the National Science Foundation (under contract
DMS-0513542), the National Science and Engineering Council of Canada and the
Canadian Research Chair Program.

REFERENCES

Antoulas, A. C. 2005 Approximation of Large-Scale Dynamical Systems . Advances in Design and
Control . SIAM.

Antoulas, A. C., Sorensen, D. C. & Gugercin, S. 2001 A survey of model reduction methods for
large-scale systems. Contemp. Math. 280, 193–219.

Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the
wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

Bangia, A. K., Batcho, P. F., Kevrekidis, I. G. & Karniadakis, G. E. 1997 Unsteady two-
dimensional flows in complex geometries: comparative bifurcation studies with global
eigenfunction expansions. SIAM J. Sci. Comput. 18, 775–805.

Bergmann, M., Cordier, L. & Brancher, J.-P. 2005 Optimal rotary control of the cylinder wake
using proper orthogonal decomposition reduced-order model. Phys. Fluids 17 (9), 097101:1–
21.

Borggaard, J. & Burns, J. 1997 A PDE sensitivity equation method for optimal aerodynamic
design. J. Comput. Phys. 136 (2), 367–384.

Borggaard, J., Hay, A. & Pelletier, D. 2007 Interval-based reduced-order models for unsteady
fluid flow. Intl J. Numer. Anal. Model. 4 (3–4), 353–367.

Couplet, M., Basdevant, C. & Sagaut, P. 2005 Calibrated reduced-order POD-Galerkin system
for fluid flow modeling. J. Comput. Phys. 207 (1), 192–220.

Davis, R. W. & Moore, E. F. 1982 A numerical study of vortex shedding from rectangles. J. Fluid
Mech. 116, 475–506.

Deane, E. A., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional
models for complex geometry flows: application to grooved channels and circular cylinders.
Phys. Fluids A 3 (10), 2337–2354.

Fahl, M. 2000 Trust-region methods for flow control based on reduced order modelling. PhD thesis,
Universität Trier, Germany.

Fox, R. L. & Kapoor, M. P. 1968 Rates of change of eigenvalues and eigenvectors. AIAA J. 6 (12),
2426–2429.

Franke, R., Rodi, W. & Schoaconung, B. 1990 Numerical calculation of laminar vortex-shedding
flow past cylinders. J. Wind Engng Ind. Aerodyn. 35, 237–257.

Galletti, B., Bruneau, C. H., Zannetti, L. & Iollo, A. 2004 Low-order modelling of laminar flow
regimes past a confined square cylinder. J. Fluid Mech. 503, 161–170.

Ganapathysubramanian, S. & Zabaras, N. 2004 Design across length scales: a reduced-order
model of polycrystal plasticity for the control of microstructure-sensitive material properties.
Comput. Meth. Appl. Mech. Engng 193, 5017–5034.

Graham, W. R., Peraire, J. & Tang, K. T. 1999a Optimal control of vortex shedding using low
order models. Part 1. Open-loop model development. Intl J. Numer. Methods Engng 44 (7),
945–972.

Graham, W. R., Peraire, J. & Tang, K. T. 1999b Optimal control of vortex shedding using low
order models. Part 2. Model-based control. Intl J. Numer. Methods Engng 44 (7), 973–990.

Hay, A., Borggaard, J. & Pelletier, D. 2008 On the use of sensitivity analysis to improve reduced-
order models. In 4th AIAA Flow Control Conference, Seattle, Washington, AIAA-2008–4192.

Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems
and Symmetry . Cambridge University.



Local improvements to reduced-order models using sensitivity analysis of POD 71

Hotelling, H. 1933 Analysis of a complex of statistical variables with principal components.
J. Educat. Psych. 24, 417–441.

Hristova, H., Etienne, S., Pelletier, D. & Borggaard, J. 2006 A continuous sensitivity equation
method for time-dependent incompressible laminar flows. Intl J. Numer. Meth. Fluids 50 (7),
817–844.

Ilinca, F., Pelletier, D. & Hay, A. 2008 First- and second-order sensitivity equation methods for
value and shape parameters. Intl J. Numer. Meth. Fluids 57 (9), 1349–1370.

Ito, K. & Ravindran, S. 1996 Reduced basis method for flow control. Tech Rep. CRSC-TR96-25,
Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC.

Karhunen, K. 1946 Zur Spektraltheorie stochastischer Prozesse. Annales Academiae Scientiarum
Fennicae 37.

Kunisch, K. & Volkwein, S. 1999 Control of Burgers’ equation by a reduced order approach using
proper orthogonal decomposition. J. Optim. Theor. Appl. 102, 345–371.

Kunisch, K., Volkwein, S. & Xie, L. 2004 HJB-POD-based feedback design for the optimal control
of evolution problems. SIAM J. Appl. Dyn. Syst. 3 (4), 701–722.

Lancaster, P. 1964 On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377–
387.

Lehmann, O., Luchtenburg, D. M., Noack, B. R., King, R., Morzyński, M. & Tadmor, G.
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