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Abstract

The MARIAN online public access catalog system at Virginia Tech has been
developed to apply advanced information retrieval methods and object-oriented
technology to the needs of library patrons. We give a description of our data model,
design, processing, data representations, and retrieval operation. By identifying objects
of interest during the indexing process, storing them according to our “information
graph” model, and applying weighting schemes that seem appropriate for this large
collection of small text records, we hope to better serve user needs. Since every text
word is important in this domain, we employ opportunistic matching algorithms and a
mix of data structures to support searching, that will give good performance for a large
campus community, even though MARIAN runs on a distributed collection of small
workstations. An initial small experiment indicates that our new ad hoc weighting
scheme is more effective than a more standard approach.
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I ntroduction

Thelibrary isthe archetype for information retrieval systems. On-line public access
catalogs (OPACs) were an early application for automated IR systems, and have been
widely studied (Hildreth, 1985, 1987; Yee, 1991). There has, however, been relatively
little interpenetration between the OPAC community and that portion of the IR
community concerned with text retrieval (Borgman, 1986), in part perhaps because
library catalog records have so little text and so many other aspects. Nonetheless, there
are many problemsrelated to current OPACs that could be solved by advanced retrieval



techniques, we consider but five obvious ones. First, current OPACs tend to respond
poorly to vague queries, retrieving either too few or too many works. Second, they
provide few or no paths for users to move from arelevant work to other similar works ---
they fail to provide a clear context in the space of works, and hence cannot support the
type of simple browsing encouraged by library stacks. Third, by adopting the standard
Boolean query paradigm, they make it difficult for most usersto make use of fragmented
recollections, such as when one vaguely remembers part of an author’s name and parts of
several subject descriptors. Fourth, they lack any understanding of English morphology,
and so cannot help users who do not give the exact form of words in titles. Fifth, most
current OPACs operate on expensive mainframes or minicomputers, even though a more
cost effective solution would be to use (a small cluster of) workstations. The MARIAN
library catalog system at Virginia Tech is designed to address these problems in a
production system through the use of advanced information representation and retrieval
techniques (Fox et al., 1993). This paper discusses the data models and indexing
techniques that support the system.

The MARC record (Library of Congress, 1988a) is a specialized data structure for
the interchange of library catalog data. In form it is a short but extremely bushy tree: a
collection of some subset of over a hundred possible fields, each of which includes some
selection of subfields. The set of possible subfields varies from field to field; typically a
field may contain a handful of subfields drawn from a few dozen possible. Some
subfields are composed of free text. These texts are usually very short: average length
for atitle in the Virginia Tech library catalog, for example, is 9.19 words. The longest
textsin our catalog are in note fields, with an average length of 13.37 words. Other fields
and subfields, while represented as text in the record, are actually fixed items chosen
from controlled categories. Most subject descriptors, for instance, are points chosen from
the hierarchical Library of Congress Subject Headings (Library of Congress, 1988b).
Author names are similarly controlled, as are classification numbers, language codes, and
standard titles.

For al their domain specificity, MARC records are typical of a wider class of
information objects. More and more information retrieval applications now must deal
with composite documents: objects where text is important, but is only one part of a
complex structure, and where other types of data and indeed the structure itself affect the
retrieval task. As authoring systems and standard document interchange formats
facilitate more and more highly marked-up documents, the texts that make up individual
objects get smaller and smaller, and the structure more and more important. This is
nowhere more true than in hypertext systems, where the relevant text objects — the
hypertext nodes — may be as small as the titles and notes in a collection of MARC
records. Even in purely text-based retrieval systems, attention is again being given to
users needs for answer-passage retrieval: finding useful sentences or paragraphs from a
larger text (O’ Connor, 1980). Because of these and other applications we consider the
problem of retrieval in large databases of small text records to be an important one, and
our experience in representing and indexing MARC records to be germane.

Data M oddl



The overt purpose of a MARC record is to describe a work in a library catalog.
Nonetheless, not al fields and subfields of a MARC record describe attributes of the
cataloged work. Many are concerned with detailed descriptions of authors, series,
publishers — entities in the conceptual world in which the work has its place. This
information is often redundant: a person’s name, title, birth and death dates and major
works may occur dozens of times throughout a collection; a publisher’'s address
thousands of times. The controlled phrases that identify subject headings have even
greater redundancy: in the Virginia Tech collection, 90 subject headings occur 1000
times or more, and the most common (* Europe, Eastern”) occurs over 23,000 times.

Eliminating Redundancy through Classes of Entities. There are both practical and
conceptual reasons to eliminate this redundancy. On the practical side, it takes a fair
number of charactersto store

Shakespeare, William, 1564-1616
842 times. More importantly, if every work with Shakespeare as author results in an
index entry for “William,” the already non-trivial problems of finding William Smith by
merging the index for “William” with that for “Smith” take on heroic proportions.
Similarly, if our task isto find works matching

Wordsin Subject: number theory
we have a much easier job if we can merge indexes over the class of unique subject
headings than over the class of MARC records. There are only 47 unique subject
headings in all the Virginia Tech collection that use the word “number,” and 285 that use
“theory.” On the other hand, there are over 6,000 works in the collection that have some
subject descriptor with the word “theory” in it. The problems faced here are similar to
those in non-normalized relational databases. Although detaching categories of entities
from the MARC class does not result in classes that are normalized in the RDBMS sense
—in particular, the residue classes of authoring and describing relations are not at al
normalized — the impulse and the practical advantages are the same.

On the conceptual side, breaking the classes of authors and subject headings out of
the MARC records makes for both a cleaner and a more accurate representation of the
bibliographic world. It permits usto treat these classes of entities in ways appropriate to
their essentia character. A partia match between persons’ names, for instance, can be
defined in such away asto take into account the different weight we assign to a match in
last, first, and middle names, and to our use of initials for first and middle (but not last!)
names. Thisin turn helps maintainers exercise some control over the data in the classes,
identifying possible misspelled subject headings, for instance, or names that may well be
less complete versions of other names. Nor is this conceptual advantage without its
practical side. Having distinct classes for persons or subjects makes it possible for the
user to browse these classes, and thus answer questions that could not be answered by
looking at the catalog alone.

The primary class of entities in MARIAN is nonetheless library catalog data:
descriptions of books, music, videos, serials, documents, and al the other sorts of works
that make up a library collection (Fig. 1). In the current verson of MARIAN we
recognize four other classes of entities from the bibliographic world. Descriptions of
people occur as authors, editors, performers, and so forth, as well as subjects of
biographical or critical works. So in the same way do organizations, like Association for
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Fig. 1. Entitiesand linksin MARIAN. Composite entities are shown as rectangles, links
as lines with circles, and text fields as |ozenge shapes.



Computing Machinery — SGPLAN — Greater Boston Chapter, and events, like ASS
Midyear Conference’92. The controlled subject headings form another class. In future
versions, we expect to recognize abstract works like Hamlet in a category distinct from
the catalog records of a particular collection, and to add other controlled classes like dates
and call numbers. Finally, the elements out of which free text is composed — words,
numbers, and so forth — make up a partitioned class, generally referred to communally as
terms.

Links. To connect these entities MARIAN relies on alink construct provided by the
underlying database software (Chen, 1992). Links are typed, directed arcs of the sort
used by both semantic network and hypermedia systems. MARIAN uses several classes
of links, most notably the hasAuthor and isAbout link classes. Thefirst of these connects
awork to one of its authors, and the second to an entity that it can be said to be about.
Links can be followed both from source to sink and from sink to source. The relevance
feedback engine that we expect to add in the next year will use the hasAuthor class in
both directions when it moves from awork in which the user has shown interest to all the
other works by the same author. Preparing indexes for each direction is straightforward,
but the dual directionality presents problems for the efficient storage and retrieval of the
links. We discuss the problems and some solutions in the section on Data Processing and
Characteristics.

A more interesting problem is posed by the single largest collection of links: the
occursin links that connect terms with the texts that contain them. These associations
underlie our ability to identify a text object based on a few words, and as such are also
the most frequently accessed data in the system. Thus, a paramount concern in storing
and indexing them is efficiency of access. Not every mode of access is equally used,
however; by far the most common is moving from a particular term to the set of textsin
which the term occurs. Accordingly we invert this category of links, and store the
information not as links between individual terms and individual texts but as one-way
links from aterm to a set of texts. The opposite access mode — going from a text to its
decomposition as a set of terms—is used in relevance feedback, and can be supported by
asimilar scheme when we bring feedback on-line.

Information Graph Model: The situation in MARIAN is an example of the
information graph model (Fox, Chen, and France, 1991). The information graph model
is a set of representation principles designed for unifying divergent data models in a
retrieval setting. Without going too far into the underlying formalism, it takes the
concepts of node —which in this paper always means entity — and link as a lingua franca
for relating different organizations in a common framework. In particular, we seek to
integrate information retrieval, hypertext, hypermedia, semantic network, and
conventional database applications by representing their data in a single information
graph of objects, and supporting their operations with an object-oriented DBMS. LEND,
our Large Externa object-oriented Network Database (Chen, 1992). Representing
information retrieval dataisin part the subject of this paper. By design, an information
graph can represent the nodes and links (or relationships) that make up hypertext,
hypermedia, and semantic networks. Likewise, our OODBMS can easily represent
relational DBMS contents: a relation is really just a collection of tuple objects, each of
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which can be thought of as a collection of attribute objects. Collections can be viewed as
distinguished subgraphs, or can be explicitly stored by having (numbered) links between
collection and collection content objects.

Regarding operations, we support the information graph with severa levels of
software. At the lowest level, we manage storage and provide indexes through various
sorts of minimum perfect hash functions (Fox, Heath, Chen, and Daoud, 1992). The next
level manages the underlying graph. Above that layer we consider various views, with
special interfaces, such as for information retrieval applications. In particular, the view
level supports access to composite objects whose parts are represented in the graph layer
as separate but linked objects. LEND also supports composite objects defined as classes
of nodes, with their parts hidden by their object definition. The view layer conceals this
distinction to users where they do not ned to know about it. MARC records in MARIAN
make use of both constructs. The author and subject attributes of arecord are represented
at the graph layer by links to other entities. The title and note parts are concealed within
the MARC node in the graph, where they can be addressed only by class-specific
retrieval and display methods.

Composite Objects. The MARC records are an example of acommon object in any
information-retrieval environment: the composite document or composite object (Fox,
1987). Other examples in the bibliographic world include persons, whose MARC data
includes name, numeration, title, life dates, affiliation, maor works, and more;
publishers; series; and dates. In the abstract, a composite object is a constrained set of
attribute-value pairs. a description that associates values with some or al of the
distinguishing characteristics for an object of its class. A match between two composite
objects, or a directed match between a composite query and a composite object, must
therefore be a function that combines the matches of each object or query attribute.

[[ Matching functions for composite objects are thus similar to the set-based
matching functions used for texts. There are two important differences, however.
Matching text objects relies on the semantics of sets, while matching composite objects
relies on the semantics of description. When matching text, we want to know how
similar one linear combination is to another: how closely the distribution of termsin a
text object matches the distribution in another, usualy the query. When matching
composite objects, we treat the query as a description of the object we are searching for,
and measure instead how closely that description fits a particular composite object. In
particular, this means that we are less concerned with noise in the case of composite
objects. In the case of atext object, we care not only whether the terms in our query are
present in the text; we also care how much of the text they account for: are they drowned
by a prohibitive amount of noise? In the case of a composite object, we only care
whether the parts of the description given in the query are also present in the object. If a
MARC record matches:

Author: McCoy Wordsin Title: agebra
it is immaterial to us whether it also has subject headings, notes, or any of the other
panoply of bibliographic description.

The second difference is that we cannot scale (weight) the dimensions of composite
objects aswe can text. The dimensions of atext object — the termsthat occur within it —
have an implicit information content that can be derived from their global frequency.
The dimensions of a composite object have importance that do not appear to be at all



related to their statistics. For instance, we have scaled MARC records in MARIAN so
that a match in a note field counts less in the combined match than a match in the title
field. Thisstruck us as areasonable thing to do, not because of any objective properties
of the data, but because of a semantic judgement that the title was a more important part
of the description of awork than any notes it might have. ]|

Design

MARIAN is designed to perform well with vague and incomplete descriptions of
works. The system can also function with complete descriptions, and will generaly
present the described work as the “best match” when the work isin the collection. But it
isan important feature of the system that when presented with a request like:

Author: McCoy Wordsin Title: algebra

it will be able to discover Neal McCoy’s Introduction to Modern Algebra. We believe
that many people remember many books using these sorts of cues, and that a library
catalog system should be designed to work directly from such arequest. This means two
things: the system should be able to recognize an author from alast name and atext from
a few words, and it should allow the users to combine them in a single request. In
particular, users should be able to do this without choosing Boolean operators or handling
intermediate result sets.

Matching Functions: MARIAN is designed to provide best matches to partial
descriptions, whether the description is of a person’s name, a piece of text, or a catalog
record. MARIAN is further designed to discover multiple matches to queries, and to
present them ranked by goodness of fit. Thus measures of similarity are required at every
level and class of object. These measures do not have to work all in the same way, as
they would in an n-gram system, but they must all be comparable: the numbers produced
by one must agree with those produced by another both in absolute magnitude and in rate
of growth. A full discussion of similarity measures and weighting is a topic for another
paper. Herewewill say only that the category weight, together with its own operations
and methods of generating weights by comparing objects, forms a foundational class for
the system.

Weighted Sets: From the concept of aweight, we define the concepts of ranked and
weighted object sets. A ranked set isaset of objectsin a well-defined order. In the case
of probabilistic retrieval thisranking is based on partial matches, with the best matching
documents presented in the top ranks. A weighted set — a set where each element has an
associated weight — is a refinement of a ranked set where the ranking is also metric.
Weighted sets support the usual set operations: adding an element, testing for inclusion,
and so forth. They also support operations based on the members’ weights: iterating
through the set in order of weight, obtaining a subset of all elements with weight greater
than some minimum, and so forth. Some of the normal set operations are changed in
weighted sets: the isElement() function, for instance, is Boolean for normal sets but
weight-valued for weighted sets.
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Ranked and weighted sets are used in several places by MARIAN. The most
obvious application involving ranked sets, is to provide ranked results from a retrieval.
In that case, the objects are documents (or document surrogates) and the weights are the
result of some matching operation. Weighted sets, on the other hand, most often are used
to describe the collections of documents that are indexed by different terms. In that case,
to process a query that has several terms, one must apply various weighted set
combination operations to handle the sets associated with each query term.

Weighted Set Combination. Weighted sets can be combined through the usual
operations of union and intersection. Other forms of merging have been advanced in the
context of document retrieval systems and pattern recognition. For example, a document
can be represented by aweighted set of terms, often referred to as a document vector; in
that case we can compare two documents, that is combine two weighted sets, by use of
the cosine function. If we use an extended vector representation, whereby a document is
represented by a number of subvectors, and want to compare such documents (Fox,
1983), we are in a quandary as to how best to combine the similarities that arise from
pairwise combination of subvectors. The Kullback-Leibler minimum cross-entropy
function, used in quantum theory and pattern recognition, avoids this problem, but gives
non-intuitive results when the set intersection is small (Kapur, 1992). Van Rijsbergen
has suggested a measure called information radius which provides yet another figure of
merit (Van Rijsbergen, 1979). Itislikely that different formulas work better for different
classes of objects. We have some tentative evidence that this is in fact the case, which
we present in the section on Operation.

Merging algorithms. Whatever formula we choose will be applied within the
context of a merging algorithm. And while the formula has some influence on how we
index and organize our data (e.g., whether we assign weights during indexing), the
algorithm has a great deal of effect on our index structures. All the merging functions
mentioned above are summative in nature: they take the form of a (sometimes
normalized) sum over the common elements of al the sets being merged. Clearly this
summation can be performed only during retrieval. Accordingly, the task during
indexing is limited to pre-computing as much of the measure as possible for storage in
the indexes for individual elements. However, the very shape of the indexes is
determined by our choice of merging algorithm.

We have investigated three merging agorithms during the construction of
MARIAN: exhaustive combination, opportunistic combination, and probing. The first
creates a complete ranking of al the elements in any of the sets being combined. The
second uses “stopping rules’ to limit the computation and find a small set of best
matches, e.g., one of size 10, or those with weight greater than some high number. The
third is relevant in situations where query terms vary widely in frequency of occurrence -
-- in that case merging of a short and long set is fastest if a quick probe can take place
into the long set for each term in the short set.

Exhaustive combination is the ssmplest, and probably the most commonly used in
text retrieval systems. In an efficient implementation of exhaustive search, the search
routine creates a table capable of storing any element in the collection of sets, eqg.,
allocates atable of n zeroes when n documents are involved (Harman, 1992). It then runs
through each set, adding the elements to the table. Where a table cell is occupied, the



element having been a member of some set already covered, the summative formula is
applied. When the last set has been completed, the table is scaled as needed, and
becomes the resultant weighted set. Various refinements include using some sort of hash
table to conserve space, and maintaining the table in weight order to prepare for weight-
based set operations.

Opportunistic combination is a variant on this approach where the result set is
constructed so that the most highly weighted elements are established early on in the
process (Harman, 1992). Aslong as lazy evaluation of the result set is appropriate, as
when only the best matches are needed, it may be possible to avoid establishing the low-
weight elementsin the set. The weighted sets that occur in document matching are often
composed of afew good elements followed by a long tail of relatively poor matches, so
this algorithm has the potential for large savingsin computation time. It usually involves
a noticeable amount of overhead, though, in computing the “stopping rules’ that
determine whether the top elements are stable.

Probing is most often used in combination with one of the above combination
algorithms. A probing search routine makes use of the fact that the sets used in
document retrieval vary widely in size. If a search routine hasa few small sets and other
sets much larger, the most efficient algorithm is often to combine the short sets, then
probe the larger sets to determine the overlap. Thisworkswell in cases where the weight
of set elements is related to the size of the set, as they are in IDF text systems (see
below). In that case, the top elements of the result set will be made up of elements from
the small sets. Thus the top segment can be established with great confidence, and all
that is needed to present it is to determine precise weights for its members. This can be
done through probing.

Index Organization for Weighted Sets. To a large extent, preparing the indexes for
MARIAN consists of creating and storing various sorts of weighted sets. These pre-
computed sets may be optimized for iteration, for merging, or for probing for individual
elements. In particular, two sorts of pre-processed sets are used in inverting the occurslin
link class. Werefer to these as posting lists and posting sets.

In aclassical inverted file, aposting list is a stored collection of weighted document
IDs: pairings of the ID for a document with the weight of its association to the indexing
term. Posting lists in MARIAN are similar collections of postings with the added
constraint that they are stored in non-increasing order by weight. This means that they
are optimized for opportunistic combination. In each posting list, the highest-weighted
elements are retrieved first from the collection. Therefore by exploring several posting
lists simultaneously, it is possible to establish afrontier beyond which every element has
no more than some minimum weight. This is the data from which the opportunistic
“stopping rules” work. Posting lists are also effective in exhaustive combination. The
MARIAN exhaustive search routine proceeds like an opportunistic search routine,
establishing frontiers across the lists to be merged and always adding the highest-weight
elements to the holding table first. The table thus constructed is already in weight order
except where the sets intersect and weights must be summed. In the common case where
merged sets are mostly digoint, very little extra work must be done to turn the holding
table into a new weighted set.

Posting sets are like posting lists except that they are optimized for probing. In the
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current implementation, posting lists are stored in MARIAN in order by text ID. Probing
is by binary search. Other possibilities include using a minimum perfect hash function to
determine the order of the postings, and using some sort of partially-ordered data
structure as a heap. Iteration on posting sets is possible, but costly. Finding al the
elementsin a set above a certain weight, however, isan O(n « log(k)) process, where n is
the number of elementsin the set and k the size of the resultant subset. Posting sets can
thus be effectively used by an opportunistic search routine as well, so long as the search
routine stops before much of the set has been explored.

Data Processing and Char acteristics

There are three major stepsin preparing MARC records for retrieval (Fig. 2). Inthe
first, the records are split into fields and subfields. Members of controlled entity classes
— subject headings, persons, organizations, and named events — are checked against
existing class databases and added to the database if they have not been seen before.
Links between the controlled classes and MARC records are generated. Free text
components of the MARC records — titles and notes — and of the new controlled objects —
names and descriptors — are collected. The remaining two processing steps deal
exclusively with the text collections. In the first, each text object in a collection is
analyzed into component terms. In the second, the components are collected to form an
index into the collection by term.

MARC Analysis: The first processing step is handled by a single filter driven by a
table that associates individual MARC fields and subfields with processing routines. The
routines include both pre- and post-processing so that field processing can be sensitive to
the subfield processing and vice versa. Setting the main routine up to be driven by a
table has proved to be a fortunate decision: as a bunch of computer scientists slowly
learn the semantics of the more obscure MARC fields, we have had to change our
processing actions many times. Keeping al the MARC analysis in a single table-driven
step has made adaptation very easy.

The products of the first step, then, are threefold: updates to the class databases for
subjects, persons, organizations, events, and of course MARC objects; links connecting
these classes into relationships of authoring or being about; and collections of free text
objects. The free text collections are passed to the next step; entity and link classes are
ready to be stored in the database. Figure 3 shows the sizes of the entity and link classes
produced from the Virginia Tech catalog. Note that the number of links generated is
large, larger in total than the total number of objects. This is typical of network-style
representation systems. In particular, the number of hasAuthor links is much larger than
the number of possible authors — persons, organizations, and events — and the number of
isAbout links is much larger than the number of possible subjects. These two situations
actually have quite different semantics, mirrored by the different connectivity of the two
link classes.

In the case of hasAuthor, only 15% of all MARC records have no author. The
author class is small because the number of actual authors is small compared to the
number of books written. The subject heading class, on the other hand, is small by
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design. It would be smaller still if it contained only official Library of Congress subject
headings, but we have expanded the category in MARIAN to aso include entities and
works listed as subjects in the collection records. In this case, though, only haf the
works in the collection are catal oged with a subject; instead, works tend to have either no
subjects or an average of two.

Both link classes have similar patterns of connectivity overall (Fig. 4). In both
cases, the number of links attached to the average work is lower than those attached to
the average author or subject. Furthermore, in both classes and at each end of the link,
most entities with any link have only one. From that point, the number of entities with k
links drops off as a negative power of k in afashion reminiscent of the Zipf “principle of
least effort.” The only violation of this pattern is in the number of subject headings
assigned to awork, where the drop-off is less steep. This deviation can be explained by
standard cataloging practices, which encourage works to be given two or three subject
access points when they are given any at al.

The difference in connectivity comes in the power of k on the side of the link
connected to the appropriate controlled entity class. From the point in the hasAuthor
classwhere fully half the authors are linked to only a single work, the distribution curve

drops off from that point at a rate of 1/k3 until it reaches Isaac Asimov with 137 works
and Shakespeare with 842. TheisAbout class, constrained again by its design, has a drop
off of only about 1/k1-7. This meansin practice that while there are few authors linked to
more than 20 or 30 works, there are many subjects linked to hundreds or thousands of
works.

The difference between classes makes a large difference in retrieval, but no real
difference in storing or indexing. The classes are stored like any LEND class: the
objects are compressed and packed consecutively into a disk file. Then the classes are
indexed like any other LEND link class. a minimum perfect hash function (Fox, Chen,
and Heath, 1992; Fox, Chen, Daoud, and Heath, 1991) is built for the IDs of all unique
source objects, and one for the IDs of al sink objects. These hash functions allow direct
computation of the address and size of an entry in an indirection file specifying the
physical addressin the disk file of al links with the given source or sink. The important
difference for indexing is between the connectivity at the source side — the MARC
records — and that at the sink side — the controlled entity class. In both link classes, there
is much lower connectivity at the source side than at the sink. In other words, a
controlled entity is likely to retrieve a larger set than a MARC object. This is turn
implies that when the links are packed into their file, they should be packed so that those
with acommon sink are placed together and can be retrieved with minimum disk access.
Thisis easily achieved by putting the linksin order by sink ID.

Since both the average and maximum number of links connected to a given source
is low, we hypothesize that this unsophisticated solution will carry the day. When link
classes have more balanced connectivity, LEND includes clustering algorithms that
optimize storage organization so that links that are retrieved together will be as much as
possible on the same page (Chen, 1992). These algorithms have some cost, though, so
for the moment we are staying with the simple solution.

Text Analysis.  The text collections produced by the first step are: from MARC
objects, titles and notes; from person, organization, and event objects, names; and from
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subject headings, controlled descriptors. Each text collection is indexed first by
analyzing the texts into the terms that occur in them, then collecting the texts associated
with unique terms. These steps are thus respectively local explosion and global re-
combination. More specifically, each text is analyzed into a set of atomic occursIn links,
each connecting a unique term with a unique text; then the entire class of links is
restructured into relations between terms and weighted sets of the texts in which each
occurs. These two steps are respectively the domain of the text analyzer and the inverter.

The goal of the text analyzer isto identify the components of a piece of text so that
they can be matched during retrieval. Simply put, the analyzer breaks piece of text
independently into tokens, then assembles the tokens into recognizable terms. In redlity,
this process is anything but simple.

As each text is accepted by the analyzer, it is broken up into tokens. Tokens are
distinguished lexically, as uninterrupted strings of digits, punctuation characters, lower-
case |etters, mixed-case letters, and so on. This situation is somewhat complicated by the
presence of diacritics and European letters in the ANSEL system (ANSI Z39.47), but a
program switch alows us to treat non-ASCII characters as either ANSEL or unknown.
The token stream is fed to an augmented transition network (ATN) that encodes rules of
capitalization, amalgamation, and punctuation. It is the role of the ATN to answer such
guestions as. Isaperiod at the end of aletter string likely to signal an abbreviation or an
end of sentence? Is a hyphen part of a hyphenated phrase, a number range, or a word
broken between syllables at the end of a line? Has a given letter string been capitalized
for grammatical reasons, or isit probably a name?

To help it answer these questions and identify terms from the token stream, the
ATN draws on recognizers for English words and numbers. The English word
recognizer combines arecursive descent parser recognizing common regular affixes and
transformations with an 80,000-root lexicon derived from the machine-readable Collins
English Dictionary. This combination, which we term Lexicaly Intensive
Morphological Anaysis (LIMA), allows us to recognize both regular and irregular
variant forms of English words while avoiding some of the conflations of unrelated terms
that occur with classical stemmers. LIMA also represents a compromise between fast
stemmers with little respect for English word formation and true morphological parsers
like the well-known KIMMO family (Kostennieme, 1984). The recursive descent
component is fast and uses no backtracking, and the lexicon is small enough that most or
al of it can be cached in fast memory. We have been using LIMA for severa years
(France, 1991), and find that it provides good coverage of words in free text. Krovetz
(Krovetz, 1993) has reported on a similar but more sophisticated system. His results are
also encouraging for this approach.

The MARIAN text analyzer recognizes various forms of numbers, including
integers, decima numbers in various notations, and fractions, as well as numeric codes
like ISBNs and social security numbers. Thanks to the completeness of the Collins
lexicographers, some names, acronyms, and amalgamated phrases (phrases tied together
with hyphens or dlashes) are also recognized as words. Other acronyms and
amalgamated phrases are identified contextualy by the driving ATN. Finaly, the
inevitable residue of unrecognized strings, including amalgamated phrases not in the
lexicon, is assigned to adefault category. Amalgamated phrases make up about 55% of
the unrecognized string class, and strings involving ANSEL characters another 6%. Of
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the 39% remaining, the vast majority are names or non-English words (Fig. 5). This
confirms our confidence in the effectiveness of LIMA.

Figure 6 shows how terms are assigned to classes. Figure 7 shows the distribution
of recognized terms among classes for three text collections. As could be predicted from
former indexing efforts, unrecognized strings always predominate in the set of all unique
terms found in all three cases. If weinstead count all terms found in a collection, though,
recognized English words predominate. In all cases, recognized integers form a small
fraction of the total, and the other categories are too small to graph. There are interesting
differences between collections: in personal names, for instance, relatively few of the
unique terms were recognized as English roots, although even here roots occurred most
commonly intext. Among subject headings, roots make up a relatively high proportion
of the unique terms. This may be an effect of the care with which the Library of
Congress chooses the phrases, but then how are we to explain that the unrecognized
strings that do occur account for such alarge proportion of the terms found?

The ATN can be switched to handle several different types of text, including
English and non-English text using several styles of capitalization: normal English
capitalization, text composed exclusively of capital letters, and text with random words
capitalized. Thislast is useful for titles, where capitalization conventions have varied
widely — and have been observed irregularly — over the last few decades, and for user
input, which runs from no capitalization, through only proper nouns capitalized, to all
words capitalized, to no lower case at al. Asthe ATN produces its links, it associates
each one with the frequency of the term in the text. This information is used in the
inversion step in calculating the importance of the term in the text. These calculations
cannot be made, however, until all texts in a collection have been passed through the
analysis step.

Inversion: The inversion step of MARIAN processing involves two independent
actions. Theindividual occursln links produced during text analysis are re-combined to
form sets with a single unique term at the source, then stored in forms that favor efficient
access of the set of texts at the sink. While thisis going on, weights are being computed
that measure the strength of association between the terms and texts. These weights are
so calculated and normalized that they can be used with a minimum of additional
computation during retrieval calculations of how well the text matches a query. The
weights are stored with the textsin the resulting inverted sets.

Many weighting schemes are possible — at least as many as the possible similarity
functions between two text objects. MARIAN has been built to allow different schemes
to be used and tuned; we will describe two in the next section. Most of the schemes
make use of globa information about the information graph. Such information is
typicaly expensive to gather and sometimes expensive even to compute, so it is
important not to realize it during retrieval. Being global, though, it has wide application,
and can be re-used during the inversion step. As aresult, inversion is a relatively quick
process.

Whatever weighting scheme is chosen, inversion reduces a collection of occursin
links to a collection of weighted sets. These sets are not all equal. Among the 500,180
unigue words found among the Virginia Tech MARC records, about 2/3 (337,407) occur
only once. Most of the remaining occur only a few times each, and only 58 occur more



JZ. Meuharim
Bockle Monacensia
Burobauten ungefahr
L ubecker erzahlerischen
circonstanciee B.II
flotenspiel L’ Orfeverie
Rocenka L’A.SB.L
Chabrovice Binimat
Beliak Winzentsen
Bunrigakubu Schwingungstechnik
Dugdale Pribil
R.JF. Jamvikt
Tsadasy Macrophylla
Lunsford Cebysev
Ajuria Ulunian
Muenscher d’ aerodynamique
Degommage Modjokerto
D’'Ap proviemata
SARON geraldika
Jicoteitat aromnaia
T.13 inozemtsev

Fig. 5: Random sample of unrecognized strings,
excluding amalgamated phrases and terms using
ANSEL characters.



Class Example in Text Recognized As Object

word: root man #ROOT:52080#

- regular inflection manliness #ROOT:52080# + [ly, ness]

- irregular form men #ROOT:520-80# + [irrPlural]
number: integer 1952 #INTEGER:1952#

: decimal 19.52 #REAL :<19.52># *

: fraction 19/52 #RATIONAL:<19/52># *
code number 077-24-3593 #CODE_NUM:2347890#
amalgamated phrase and/or #ROOT:20406#

object-oriented #UNREC_STR:2347891#
unrecognized string Asimov #UNREC_STR:4261760#

* NOTE: Theinstance ID of areal or rational number is adirect encoding of the number.

Fig 6. Example text components and how they are categorized
during text analysis. Objects are represented by ID pairs:
classID (here written as a symbolic constant) and instance
|D within that class.



Distribution of Distribution of Term
Unique Terms: Occurrences:

-
Headings: e
Persons

Names:

Fig 7. Distribution of terms by type for three categories of
data, showing relative numbers of integers, English roots,
and unrecognized strings. Other categories were too small
to be significant.
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than 20,000 times each. Thisis in accordance with Zipf's well-known Law (Zipf, 1949;
Miller, 1957), which predicts that in any sufficiently large body of text the rank of a term
in descending frequency order isinversely proportional to its frequency. As can be seen
from Figure 8, thisrelationship holdsin al the text collections derived from the Virginia
Tech MARC records, even though the high-frequency terms vary widely between
collections. Inthetitle collection, for example, function words occupy the top positions,
while in the collection of persons names these positions are filled by initials and
common first names (Fig. 9). Zipf's Law further applies whether we are counting
number of occurrences of aterm, as we have above, or number of documents that contain
aterm.

We exploit Zipf’sLaw in MARIAN in several ways. |In constructing a text index,
we take advantage of the effect by using different sorts of weighted sets for different
portions of the Zipf curve. Specifically, we divide the curve into threeregions: the steep
region in the top ranks, where each term occurs in many texts; the middle region where
each term occursin only afew texts; and the long tail, where each term occurs in only a
single text.

Thetermsthat occur in only a single text each are converted to singleton weighted
sets. Where a term occurs in only a few texts, the texts are sorted into order by
decreasing weight and stored as a posting list. Where a term occurs in many texts, the
texts are stored as posting sets, in order by ID. In the usua flow of processing, this last
involves little or no sorting. Text IDs are usually assigned consecutively to new texts,
which when fed through the text analysis filter produce a stream of occursin links in text
ID order. The sub-sequence of the stream of links with a common term will thus also be
in text 1D order, ready for storing as a posting set. This also works for composite objects
with multiple text fields. The stream of titles from the MARC analyzer, for instance, take
the form of a sequence of associations between MARC IDs — assigned consecutively by
default — and title texts. When the texts are analyzed, the resulting file of linksisin order
by MARC ID. Thus the only inverted sets that need to be sorted are the posting lists,
which by selection are always relatively short.

Posting lists and posting sets are stored directly on disk by the inversion program.
When common information is removed from the postings it is possible to pack these files
very densely. Offsets in the packed files and the lengths of lists or sets are stored in a
master index of inverted sets. Singleton sets are stored directly into the master index
with the weight and ID of the single text packed to fit the same size field as the offset and
length for the larger sets. This master inverted index has the form of alink class between
term objects and weighted set objects, where the weighted sets are tagged to determine
their interpretation as singleton sets, posting set, or posting lists. Unlike our other classes
of links, this class need only be indexed on the term side, since no retrieval operation
takes an entire weighted set to the term associated with it.

Figure 10 shows the relative sizes of files produced during processing of the MARC
title field collection. Beginning from a file of close to 900,000 texts in 64.5 Megabytes,
the text analyzer produces a file of 7.5 million occursin link objects in 216 Mb. By
comparison, recall that the same body of MARC records produced only about 1.4 million
hasAuthor links and 1.3 million isAbout links. To complete the picture, MARC note
texts produced another 4.5 million links, and texts from the controlled entity classes
together produced about 2.1 million. If stored in this form, the occursin links would
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Fig. 8. Observed rank/frequency curves for text in the title and note fields of Virginia Tech MARC
records, the names of unigue persons, and for unique subject descriptors. The left-hand graph, with linear
axes, shows the characteristic shape for the central portion of the data set. When the entire data set is
graphed, very little of the curves can be seen, as they are forced by their extended tails to hug the axes.
The right-hand graph shows the same datain alog-log plot. In thisformat, a distribution that followed
Zipf's Law exactly would be represented by a straight line.



Title Persons Name

RANK TERM  %TEXTS %TERMS TERM  %TEXTS %TERMS
1 of 38.5 5.6 J 4.7 1.8
2 the 38.2 5.8 A 4.3 1.6
3 and 31.2 4.1 John 3.8 14
4 in 21.2 2.6 M 35 1.3
5 a 16.7 1.9 R 3.0 1.1

Fig. 9: Top-ranked five termsin MARC Title and Persons Name text
collections, together with the percentage of texts containing the term and
the percentage of all the term instances in the collection that it accounts
for.



texts:
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objects;
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Megabytes

Text Analysis >
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Megabytes
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occursinTextSet
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Fig. 10: Expansion and contraction of data during text indexing.
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arefor title collection, but are typical.
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make up almost three quarters of al the objects in the information graph, and account for
as much storage as the complete unprocessed MARC data.  After inversion, in contrast,
they take up barely more space than the text that produced them, distributed among less
than 0.8 million objects. In fact, only a small fraction of the storage (the inverted link
objects— 7.5 Mb in the case of thetitle collection) must actually be indexed and stored as
adatabase: the other 59.3 Mb consists of packed weighted set objects.

Sop Lists: A fourth region of the Zipf curve should also be possible. Zipf's Law
predicts that the most frequent few terms each occur a huge number of times. For
instance, among terms occurring in titles in the collection, the top-ranking 5 terms
account for 20% of al the tokens in the collection, and the top-ranking word occurs in
two out of every five titles (Fig. 9). These high-frequency terms have correspondingly
low information content, as they do not serve to distinguish one text from another as well
as do lower-frequency terms. This effect is often exploited in information retrieval
systems by putting most or all of the high-frequency words on a “stop list” of unindexed
terms. Other candidates for the stop list include low-frequency prepositions and
connectives, numbers, and words like “not” whose effect on the meaning of a text is
considered problematic.

In the case where texts are large and include many different terms, the use of a stop
list appearsto have little effect on retrieval effectiveness. Moreover, a stop list of high-
frequency words has a salutary effect on system performance. After all, the five words in
Figure 9 together account for 1/5 of all the term-text associations in the collection.
Ignoring that fraction both shrinks the total size of the generated indexes and reduces the
largest set of texts associated with aterm to asize that can be handled with ease.

Stop lists are not without cost, however. Although the terms on stop lists are
selected to have very low information content, they are not totally without differentiating
ability. This is well known in the OPAC community, and a few examples will
demonstrate why. First, consider the search request:

Wordsin Title: to be or not to be.
In many retrieval systems, both statistical and Boolean, and in many keyword-based
OPACs, this query will draw acomplete blank: all the words used are on the stop list. In
point of fact, though, there are 11 books in the Virginia Tech catalog with the phrase “to
be or not to be” in thetitle. Next, consider the request:
Wordsin Title: On the beach.

The non-stop word “beach” occurs in 388 titles in the Virginia Tech catalog. Only
twenty works, however, also contain the words “on” and “the,” and only Nevil Shute's
novel and the film made from it match the request exactly (Fig. 11).

Classical OPACs approach this difficulty by constructing “title keys’ as surrogates
for titleindexing. Typicaly, the key isbuilt out of the first few characters from the first
few words of the title, skipping certain leading words like “the” and “a” The
disadvantage of title key indexes is that they are only effective when the user can
remember and enter the title exactly. If the user gets word order wrong, misremembers
prepositions, or drops significant words from the beginning of a title, her query will no
longer match the key in the index.

In the case of collections of short texts, stop lists become even more problematic.
The function of the word “of” in differentiating the title Theory of Numbers from Number
Theory cannot be predicted from its information content in the language as a whole. To



Results for Query 2

| Bestzo works found [ setwore |

O Shute, Newil,: On the beach (New York,: W. Morrow,, 1957.)

CATLL WUMEBEE: PRGO0OZ7T.054 On 1957
AUTHOE: Shute, MNewvil, 1899-1960.
TITLE: Cn the bkeach / [by] Nevil Shute.
IMPEINT: HNew York, W. Morrow, 1957.
DEZCRIPTION: 320 p. 22 om.

Fig. 11: Resultsfrom MARIAN for the query "Wordsin Title: On the beach."
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clarify this, we need to differentiate the information carried by atermin the text from the
information the term carries about the text. Thefirst isa measure of how much the term
contributes to the content of the text; the second a measure of how well it differentiates
the text from others like it. All terms carry information in the text, how much
information being a function of their frequency in the language as awhole. Not all terms
in a text carry information about the text, however. It is only when a term frequency
differs from its value in the language as awhole that it carries information about the text.
How much information it carries is afunction of the deviation of its frequency in the text
from the average or expected value of atext in the collection. The more wildly it differs,
the more information.

In longer texts, high-frequency terms — terms low in information in the text — tend
to approach their statistically expected value and thus contribute little to our information
about the text. When a text contains only a handful of words, however, any non-zero
term frequency will differ wildly from its expected value. This is because, except
possibly for the top-ranked word or two, all expected frequencies are less than 0.1. To
put it another way, if an instance of “of” ismissing in a paragraph, or even if all instances
of “of” are missing, we can still make perfectly good sense of the paragraph. If the
middle word is missing from the phrase “theory — numbers,” we don’'t know if the
phraseis “theory of numbers,” “theory and numbers,” or “theory without numbers.” In
small texts, every term must be regarded as significant.

Operation

Searching in a collection of complex objects presents its own problems, both in the
search engine and in the usability of the system. The user must be able to easily create
gueries that refer to composite objects in such a way that the underlying system can
recognize what sort(s) of object(s) will satisfy the user’s request and what parts of the
query apply to what parts of those objects. Doing this in a general way is difficult.
Moreover, MARIAN isintended to serve as a production OPAC. Library patrons do not
typically use OPACs often enough to become proficient, and have little patience with
figuring out the details of a complex system. Accordingly, MARIAN query objects are
not general, but are specialized to the sort of object being searched.

When a user submits a query for aMARC object (Fig. 12), she does so by filling in
a set of fields with text. MARIAN then converts the query form into an object in the
underlying datamodel. Text fields are passed through the same ATN parser and LIMA
recognizer as the original data. The resulting query object is collected by a composite
object search routine specialized to MARC objects.

In the case of the query illustrated:

Wordsin Titlee number theory Wordsin Subject: number theory
the search routine is looking for MARC records whose titles match the text object
“number theory” and which are connected by an isAbout link to a subject object whose
descriptor matches the same text object. Whether the search routine chooses to merge the
weighted set resulting from the title match with the weighted set resulting from the linked
object match, or chooses to perform one match and then probe the other weighted set for
values depends on the relative sizes of the two sets.



Fig. 12: A multi-part MARIAN query. Equivalent queries could
be constructed using this form in a number of ways, most ssmply
by setting the coverage of the text field to "Title" and copying the
text to the field below.
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In either case, the linked object set will be constructed in the same way. The text
object corresponding to “number theory” (two object IDs of classroot with equal relative
weights) is sent to atext search routine with instructions to search against the descriptor
field of the subject class. The text search routine returns a weighted set composed of the
subject “Number theory” with a perfect match value, followed by (in some order) other
subjects that contain the two words with some “noise” and subjects that contain only one
of the words, with first less and then more noise. The first group includes subjects like
“Algebraic number theory” and “Number theory — Congresses,” while the second
includes “Surreal numbers,” “Million — the number,” and eventually the music subject
called smply “Theory.” How these two groups are ranked depends on the weighting
function used for text objects, as discussed below. From the returned weighted set, the
link search routine constructs aweighted set of MARC objects with at least one isAbout
link to at least one subject object in the set.

The composite object search routine for MARCs has sent a concurrent request to a
text search routine to perform the same text search against the title field of the MARC
class. Thisproducesasimilar, but larger weighted set of MARC objects with the text in
their title. This set is larger than that for the subject descriptor, and includes texts with
larger amounts of noise, but is otherwise similar. The MARC search routine then
chooses an algorithm based on the sizes of the two sets and merges them to form a single
set of MARC objectsfor display to the user. Thisset (Fig. 13) is presented to the user in
order of decreasing weight. The top of the order includes works with “number theory” in
both title and subject, as requested, and with minimal noise. Further down in the set,
works occur with greater noise, as do works that lack one of the words in title or subject.
Again, how these are ranked depends on the specifics of the weighting functions used.

Smilarity Functions: As mentioned above, MARIAN is designed so that different
weighting functions can be used during similarity computations. There are three places
where similarity functions are needed: between texts (sets of terms), between linked
objects (objects tied together by alink or series of links), and between composite objects.
As yet we have no conclusion on similarity functions for composite objects. We have
tried vector cosine, which has been suggested both by Fox (Fox, 1983) and by Tuevo
Kohonen (Kohonen, 1977). We have aso tried a simple weighted average of the
component similarities. Both work well. In fact, the two agree often enough, and
disagree in such obscure cases, that we have not pursued the question further.

Linked Objects: It isthe nature of links to be binary in weight: two objects either
arelinked or arenot. Thisis particularly true of the hasAuthor and isAbout links: every
book authored by a person is equally connected to that person; every subject of a book is
(at least, in the abstraction of a catalog record) equally the subject. The similarities
between link classes, however, are not binary, but are based on the semantics of the two
classes. A request for:

Author: Lillian Hoban
certainly matches best the books that Hoban actually wrote. But books she illustrated or
edited are not irrelevant to the query. We express thisin the information graph model by
saying that a hasAuthor link matches another hasAuthor link perfectly, matches a
haslllustrator or hasEditor link less well, and matches other links not at all.



Results for Query 1

HNumber theorv. [(Amsterdam,: North-Holland Pub. Co., [1970])

Davenport, Harcld,: Multiplicative number thecry / (New York :: Springer-Verlag
Mann, Henry B.: Addition theorems; (New ¥York,: Interscience Publishers, [1903])
Jones, Burton Wadsworth, : The theory of numbers. (New ¥York,: Rinehart, [1955])
McCoy, Neal Henry,: The theory of numbers (New York,: Macmillan, [1963])

CALL NUMBER: Q&2d41 .ME8
AUTHOE: Mann, Henrv B. (Henry Berthold)
TITLE: &dditicon theorems; / the addition theorems of group thecory and number
theory / [by] Henry B. Mann.
IMPEINT: MNew York, Interscience Publishers [1965]
DESCRIPTION: =i, 114 p. 24 om.
SERIES: Interscience tracts in pure and applied mathematics ; no. 18
NOTE: Bibkliographv: p. 103-111.
SUBJECT: Nombres, thiecrie des -- ram
SUBJECT: Groupes, thiecorie des -- ram
SUBJECT: Number theory.
SUBJECT: Group theory.

Alcary NUMBER: Qazdl T4
AUTHOE: Jones, Burton Wadsworth,

Fig. 13: Resultsof the query in Figure 11.
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Our current matching function for linked objects takes the product of the link match
value with the object match value. In other words, if we are matching an object one link
away from our target object, we multiply how well the linked object matches our query
with how well the link matches the relationship in the query. Thisisarecursive measure:
if an object is two links away, and the intermediate object is a perfect match (or more
commonly is not specified in the query), then the match of the complete path is the
product of the second link with the combined match of the initial link and object. More
generaly, if a path is defined as a linear sequence of object and links with the last link
dangling, the formula for adding another object and dangling link to the end of the path is
the product of how well the path matches, how well the new object matches, and how
well the new link matches. This alows us to calculate closeness of fit for linear
sequences of links. Situations where two or more different links converge on the same
object are treated as composite objects; that is, how closely the object matches a query is
a summative function of how well the one path matches the corresponding path in the
guery with how well the other matches its corresponding path.

One situation that is not covered by the cases above turns out to be fairly common
in MARIAN. Let ussay that we are searching for

Author: Lillian Hoban
There are many authorsin the Virginia Tech collection that match this request at a non-
zero level: Lillian Hoban herself matches it perfectly, but any other Lillian or Hoban
match it to alesser extent. In particular, her frequent co-author Russell Hoban counts as
a partial match. Thus a book by the two Hobans has two incoming paths with positive
matches, each of which satisfies the query.

Initsfirst implementation, MARIAN treated this situation under the rubric sketched
above for composite objects, and set the overall match of such an object at the (weighted)
sum of the two path similarities. This produced very odd results. In particular, books
written by Russell and illustrated by Lillian got higher marks than those that Lillian had
written herself. Similarly, a search on

Wordsin Subject: model theory
found works with many isAbout links to different sorts of modeling; these got higher
ranks than those with only a single link to the subject “model theory.” Our response to
this problem was to replace the summative function with a function that smply returned
the maximum of the possible matching values.

Thereis semantic justification for this. A link can be interpreted as an attribute of
the linked object. Thisis clearly the case with our hasAuthor and isAbout links, and it is
equally true of their inverses isAuthorOf and describes. For links that can be so
interpreted, if an object is linked by the same class of link to two objects of a common
class—if it has two acceptable values for a given attribute — it is reasonable to claim that
aquery object with a single value for that attribute can match either, but not both. If it
has non-zero similarity to each, we can optimistically choose the best. But we cannot
somehow claim extra points for matching both. Similarly, in the case of a two-value
query matching apair of linked objects — say, matching

Author: Francis  Author: Kucera
against W. Nelson Francis and Henry Ku“cera, we will only believe that the matching
formula is well-behaved if it matches “Francis’ against Francis, and “Kucera’ against
Ku“cera; which is, in fact, the maximal match among the four possible.



18

In the end, though, the real justification for using the maxima match rather than a
sum or average is operational: it is universally agreed by all users of MARIAN that
using a summative measure in this case promotes the wrong books.

Text: Following the “vector space model” (Salton and McGill, 1983), we represent
texts as linear combinations of terms. During text analysis, each text is mapped to a set
of occursin links from all unique terms that occur withinit. Aspart of the mapping, each
link is assigned a local weight based on the proportion of the text accounted for by the
term. In the inversion phase, each term is assigned a global weight based on its
frequency within the whole class of texts. Loca weights allow us to match the
distribution of termsin a query to that in a candidate document: to discover how much of
the query the document covers, and how much of the document is “noise” not accounted
for by the query. Global weights express the information-carrying power of the termsin
the context of the text collection. The match between a query and a text can be expressed
as afunction of the two.

Severa such functions are available, and MARIAN has been designed so that we
can easily change the function used. To date we have tried a cosine similarity function
with TF and IDF weights, and an information-theoretic measure with initial weights
derived from the TF and IDF values. Somewhat to our surprise, the ad hoc information-
theoretic function performed better at ranking retrieved documents.

Many functions pass under the rubric of vector cosine and weighting using TF and
IDF. For the MARIAN text similarity function we tried to use a theoretically defensible
version that is similar to one use with extended Boolean retrieval (Fox, 1983). In
particular, we used the TF formula:

TF(i,j) =05+ 0.5« Ctjj / Toy
where Ct;; is the number of times term i occurs in text j and Totj = 2 Ct;; is the total

number of termsin thetext. Thisformula has the property that it varies only through half
its magnitude, so that the difference between the least possible TF value and the highest
possibleisless than the difference between the least possible and zero.

The IDF (Inverse Document Frequency) component of our weighting scheme
conditions terms with lower information content to have smaller impact on text
similarity. In effect, we weight terms by their information carrying ability in the context
of the text collection asawhole. This purpose is shown by the classical IDF formula

IDF(i) = log(N / ny)
where N is the number of texts in the collection and n; the number of texts containing
termi. Thisis equivalent modulo the unit of measurement to the instantaneous entropy
of theterm
Si = - log(py)
which measures the amount of information term i carriesin the language.

Our similarity function uses both of these measures. First we define the weighted

inner product of two vectors <g> and <b;> as the real number produced by the sum:

(<g>, <bj>) = % (IDF() * & * by)
This measure differs from the standard Cartesian inner product by its use of scaling

constants — here, the IDF values — once in each of the components of the sum. It is
nonetheless a valid inner product function, and satisfies the appropriate axioms. The
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norm (or vector length) of a vector is the square root of the inner product of the vector
with itself:
I<g> |l = (<g>, <g>)1/2

If we regard the vector for text j to be <TF(i, j)> and that of the query g to be

<TF(i, 9)>, then the similarity betweengandj is:
(@.))
Sm(q, j) = ———
eIl

As an dternative to vector cosine, we have also configured MARIAN using a
simpler, if rather ad hoc function. In this configuration, the similarity function is ssimply
the weighted inner product described above, without the norms, and with a dlightly
different TF function:

ITHG, j) = 1.0 - logg(Tot; / Ct;;)
where s = (Totygy)?2, the maximum number of termsin any text in the collection squared,

isanormalizing metric chosen to make sure that ITF(, j) varies between 0.5 and 1.0 as
does the TF function above. The term IogS(Totj / Ctij) = -IogS(Ctij / Totj) is the

instantaneous entropy of the term in the text, modulo the unit s. It varies from 0.0 when
Ctj; = Totj to aminimum of 0.5 when termi occurs only asingletimein text j and j isa
longest text in the collection.

Since the ITF measure varies from 0.5 to 1.0 and the IDF measure used in the
weighted inner product is normalized to vary from 0.0 to 1.0, the maximum possible
value for any component of the similarity measure is the relevant query weight. We thus
scale the sum by the sum of the query weights to obtain afigure of merit for the match.

Experiment

To test the appropriateness of the weighting schemes used during indexing of the
catalog data, we have performed two types of studies. The first was an informal
solicitation of comments from users testing our system. From a variety of discussions, it
seemed that users were surprised by the rankings that resulted from using our relatively
standard weighting involving TF and IDF, with cosine correlation. On the other hand,
they seemed to like the results when our ad hoc function was used.

Therefore, we decided to undertake a second study: a simple experiment to compare
the effectiveness for the two weighting schemes. For thiswe desired a representative set
of user information needs. Having recently completed the analysis of alarge scale library
catalog experiment in which we solicited information needs from patrons of our library
(Fox and Wilson, 1991; Daoud, 1993), we elected to use queries taken from that
experimental effort.

Our design was relatively simple. We worked with 16 students in the Fall 1993
class of CS5604, Information Storage & Retrieval, asking each to make relevance
judgments related to five queries. From our earlier experiment, we selected 16 queries,
and then randomly assigned the results for five queries to each student. Thus, we could
determine relevance as afunction of the judgments of five different “experts’ for each of
16 queries.
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For each query we retrieved the top 20 documents using MARIAN ranking, on two
versions of our catalog database of approximately 900,000 records. As discussed in the
previous section, one version uses “Cosine - TF*IDF’ and the other “Weighted Inner
Product - Ad Hoc.” For each query we constructed the union of the documents that were
found by the searches for each version, randomized the results, obtained relevance
judgments on a Likert scale from five students, and then used averaging to develop an
overall binary relevance score.

Figure 14 shows the recall-precision results using the SMART evaluation package
for the two weighting methods studied. Other measures of overall performance gave
similar conclusions regarding the superiority of the ad hoc approach. We plan on
repeating this study with other weighting schemes and to carry out statistical and
document preference relation comparisons on the results in the future.

Conclusion

This paper deals with a variety of issues relating to the indexing of small text
records in preparation for ranked retrieval. While we focus on one particular OPAC
system, MARIAN, we believe our results are of interest as other OPACs that do or will
support ranked retrieval. Further, we believe our approach and findings are of interest to
developers of ranked retrieval systems that at some point must deal with small text
records, such aswould be found in a highly tagged SGML database, or in a collection of
small hypertext nodes.

MARIAN is an object-oriented system, from its design, to its programming, to its
use of our LEND object-oriented DBMS. Accordingly, we have re-formulated the data
modeling, indexing, weighting, and ranking problems from an object-oriented
perspective, and make use of the abstract concept of weighted sets to optimize our data
structures and retrieval processing. By applying our information graph model, we have
been able to more carefully describe our indexing process and the resulting
representation, which is designed to facilitate partial, flexible matching at al levels. We
believe that the result is not only good system performance for retrieval, and relatively
compact storage of our collection data, but more careful and accurate identification and
utilization of the “objects’ that are of interest to our users (and to librarians). By
studying the resulting classes of objects we were led to a new ad hoc weighting scheme
that seemsto give better retrieval performance than another, relatively standard scheme,
that we considered initially. Presumably, this occurs because we are beginning to learn
where “noise” in the documents can be ignored -- that is, where satisfying a query is
more important than matching it.

We have found that in the case of small texts, every word is important, and so do
not make use of stop lists. While this can cause problems with response time in a search
system based on posting lists, using a mixed set of search strategies usually provides
acceptable performance. Thisis sometimes aso true of opportunistic search methods.
Preliminary results indicate that these do not work well on collections of small texts, but
they may still be of merit for searching collections of linked or composite objects. We
plan on continuing to study the interplay between effectiveness, search time, and
indexing methods in this very interesting domain of online catalogs.
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