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Optimization of Color Conversion for Face Recognition
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This paper concerns the conversion of color images to monochromatic form for the purpose of human face recognition. Many
face recognition systems operate using monochromatic information alone even when color images are available. In such cases,
simple color transformations are commonly used that are not optimal for the face recognition task. We present a framework
for selecting the transformation from face imagery using one of three methods: Karhunen-Loeéve analysis, linear regression of
color distribution, and a genetic algorithm. Experimental results are presented for both the well-known eigenface method and for
extraction of Gabor-based face features to demonstrate the potential for improved overall system performance. Using a database
of 280 images, our experiments using these methods resulted in performance improvements of approximately 4% to 14%.
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1. INTRODUCTION

Most single-view face recognition systems operate using in-
tensity (monochromatic) information alone. This is true
even for systems that accept color imagery as input. The
reason for this is not that multispectral data is lack-
ing in information content, but often because of practical
considerations—difficulties associated with illumination and
color balancing, for example, as well as compatibility with
legacy systems. Associated with this is a lack of color image
databases with which to develop and test new algorithms. Al-
though work is in progress that will eventually aid in color-
based tasks (e.g., through color constancy [1]), those efforts
are still in the research stage.

When color information is present, most of today’s face
recognition systems convert the image to monochromatic
form using simple transformations. For example, a common
mapping [2, 3] produces an intensity value I; by taking the
average of red, green, and blue (RGB) values (I, I, and I,
resp.):

_ I (%, p) + I (x, y) + Ip(x, y)

Ii(x, y) 3

(1)

The resulting image is then used for feature extraction and
analysis.

We argue that more effective system performance is pos-
sible if a color transformation is chosen that better matches
the task at hand. For example, the mapping in (1) implic-
itly assumes a uniform distribution of color values over the
entire color space. For a task such as face recognition, color
values tend to be more tightly confined to a small portion of
the color space, and it is possible to exploit this narrow con-
centration during color conversion. If the transformation is
selected based on the expected color distribution, then it is
reasonable to expect improved recognition accuracies.

This paper presents a task-oriented approach for select-
ing the color-to-grayscale image transformation. Our in-
tended application is face recognition, although the frame-
work that we present is applicable to other problem domains.

We assume that frontal color views of the human face
are available, and we develop a method for selecting alter-
nate weightings of the separate color values in computing a
single monochromatic value. Given the rich color content
of the human face, it is desirable to maximize the use of
this content even when full-color computation and match-
ing is not used. As an illustration of this framework, we
have used the Karhunen-Loéve (KL) transformation (also
known as principal components analysis) of observed distri-
butions in the color space to determine the improved map-

ping.
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Other work [4] has suggested that alternative color spaces
provide no real benefit for locating skin in images because
these spaces do not increase the separability of the skin and
nonskin classes. However, to extract features for face recog-
nition, we do not wish to discriminate skin from nonskin re-
gions, but rather to extract meaningful image features within
the skin area. Queisser [5] used the properties of color distri-
butions of a set of similar images to select a new color space
for object classification. Abbott and Zhao [6, 7] developed
a color-space quantization approach for the recognition of
naturally textured objects, but did not consider that for face
recognition. Torres has demonstrated that color information
can provide additional accuracy for the “eigenface” approach
[8], although there is no discussion of optimal color rep-
resentation. Heseltine et al. [9] measured the performance
effect on eigenface-based face recognition of a number of
preprocessing techniques, including several color transfor-
mations (RGB to hue, brightness-insensitive hue, etc.) and
found that these color methods actually degraded the recog-
nition accuracy. However, the techniques that they explored
were general color transformations that were not based on
the content of the images.

The remainder of this paper is organized as follows.
Section 2 presents our approach for using KL analysis to de-
termine a suitable single color axis for a given set of RGB
images, and Section 3 presents experimentally derived color
transformation data using this method. In Section 4, we in-
vestigate the use of KL analysis on color data in CIE L-a-b
format. Section 5 describes an alternative method based on
linear regression analysis of RGB pixel data, while Section 6
discusses our experimental use of a genetic algorithm to se-
lect the color conversion. Section 7 presents the face recog-
nition accuracy improvement observed with the eigenface
method from using the KL derived color transformation, and
Section 8 describes the effect of the optimal color conversion
on feature vectors (“jets”) extracted using complex Gabor fil-
ters. Finally, Section 9 presents concluding remarks.

2. KL COLOR CONVERSION—RGB

Pixels in the original color image can be represented as
the vector I(x,y) = [I:(xy) L(x,y) Iy(x,»)]T, where
the 7, g, and b subscripts denote the red, green, and blue
color planes, respectively. As described in (1), face recog-
nition systems typically use an intensity plane derived as
Li(x,y) = 1/3[1 1 1]I(x,y). We propose that human face
images exhibit common characteristics that can be exploited
in the conversion from a full-color representation to a
monochrome image. In the hue-saturation plane, for exam-
ple, face pixels from a mixture of ethnic groups are well clus-
tered [10], with only the intensity plane varying markedly.
This suggests that the standard intensity plane is in fact more
sensitive to variation due to ethnic type, which is undesirable.

To determine an improved linear transformation, we
want to find the optimum transformation vector w such that
M(x,y) = wl'(x, y), where I is the original color image and
M is the resulting single-plane image. We make the assump-
tion that the optimum transformation corresponds closely to

the expected distribution of pixel values within the original
color space. With this in mind, it is possible to select w by us-
ing the KL transformation to determine the projection with
uncorrelated axes. The resulting color space has been called
the “Karhunen-Loeve color space” for an unspecified pixel
population [11, 12]; here, we specifically restrict it to the face
area. For a given distribution of pixel values, the eigenvec-
tor corresponding to the largest eigenvalue defines the direc-
tion along which the data is the least correlated, and therefore
most likely to be of use in recognition tasks.

The KL transformation is determined from the covari-
ance matrix of the distribution. For this application, the in-
put datum is the ensemble of pixel values from a set of train-
ing images, taken from the region containing the face. We
form the covariance matrix S as follows:

> b D.pebg D.peby
S = % ZPgPr Zpg2 ZPng
D pubr > pupr . Py

T (2)
(20)|[(20)

(5| (30
(0] |(0)

where p is the collection of N color pixel vectors. The KL
transformation is then given by the eigenvectors {u;} of S,
concatenated into the matrix U = [u1 up u3]. The eigen-
vector uy, associated with the largest eigenvalue, is of primary
interest here; it represents the direction of most variability in
the data within the original space. Projection of RGB values
onto this axis represents a color-to-grayscale conversion with
the highest potential for discrimination.

The normalization of the conversion vector w requires
consideration. A unit vector will, by definition, not change
the magnitude of the vector quantity that it operates on.
However, this is not appropriate for conversion of three-
component color quantities (where each component can
range up to full scale) to monochrome, since any three-color
vector with magnitude greater than unity will saturate in the
monochrome plane. We prevent saturation by normalizing
the vector having RGB components at full scale to a magni-
tude of 1. Therefore, the conversion vectors that we compute
are normalized by /3.

3. RESULTS OF KL ANALYSIS ON RGB DATA

The images used in this study are frontal-view, color face
images from two databases (described in [13, 14]). Each
image is of size 240 rows by 300 columns. Prior to this
study, the images were spatially registered so that the cen-
ters of the eye sockets are at fixed locations, the line be-
tween the eye centers is horizontal, and the distance between
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eye centers is 60 pixels, in accordance with developing stan-
dards for face recognition image interchange [15]. No ef-
fort was made to color-correct or contrast-equalize the im-
ages. To determine the color conversion that is most suited
for the face features, we process only a portion of the face
image that represents the area of the face with minimal in-
cluded background and hair. The extent to be processed,
a region 90 pixels wide by 140 pixels high, is indicated in
Figure 1.

The KL analysis described in Section 2 yields an eigenvec-
tor u; describing the axis of projection with the largest vari-
ance in the original data, which we call the conversion vec-
tor. Let the three components of this vector be represented
by u; = [un1 w1, u13]7. Because this vector has unit length

r = Jul, +ul, + uly; = 1, we can represent it using spher-

ical coordinates and completely describe the color mapping
by the two angular quantities 6 and ¢:

_ Ui
0 = arccos (sin(¢) ) (3)

To illustrate the meaningfulness of the transformation,
several scatter diagrams are shown in Figure 2. Four collec-
tions of face images are represented as well as some nat-
ural images of random content. For each image, the color
histogram was computed and the conversion vector u; ob-
tained. The resulting conversion vectors are indicated as
points in [¢, 0] space. Each face image collection consists of
several sets of 21 images, each for a single individual. The
natural images contain a mix of object types including land-
scapes, photographs of sporting events, and astronomy im-
ages.

It can be seen that the optimal color conversion vectors
u; computed for the face images are distinct from those for
more general natural images, indicating that the red, green,
and blue color planes carry different degrees of information
for the specific class of face images. The figure also indicates
the position in this space of an equal-weighted color conver-
sion, which appears to represent a good estimate for the op-
timal conversion for general natural images, but is not well
suited for the face image collections. The selection of face
databases used in our testing contain color distributions that
generally correspond to [¢ = 1.01, 8 = 0.662], which in turn
corresponds to a conversion vector of

¢ = arccos (u13),

sin¢ cos 0 0.3858
up = —= | singsinf | = | 0.3004 | . (4)
V3 cos ¢ 0.3070

This should be compared with the equal-weighted values of
[0.333 0.333 0.333]”. We observe that the KL procedure
for these images results in a color space that more heavily
weights the red color component than the green and blue.
This indicates that face images contain more uncorrelated
variation in the red plane than in the green or blue planes.
Note that the preceding eigenvalue-eigenvector analysis
concerns only the color-to-monochrome conversion process,
and is independent of the face recognition approach that is

Y

FiGure 1: Illustration of image extent to be processed for color con-
version and recognition. This monochrome image is an “average”
image.
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FIGURE 2: Principal component directions, using spherical coordi-
nates [¢, 0], for several histograms in RGB space. Each point in the
diagram represents the orientation of greatest variability in the ag-
gregate color histogram of a complete image database. The “line-fit”
cases listed in the legend are described in Section 5.

used. We propose that any face recognition technique could
benefit from a careful examination of the initial conversion
from color to monochrome images.

4. KL COLOR CONVERSION—L-a-b

RGB is not always the most convenient space in which to
process color information. The CIE tristimulus system rep-
resents a color in terms of its three coordinates relative to a
reference color, usually a standard illuminant [16]. However,
equal distances in the XYZ space are perceived as unequal,
so the L-a-b color space is defined so that color distances are
perceived as linear.
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The L-a-b space is defined as follows [16]:

1/3
pL= 116(%) —~ 16,
0

B px 1/3_<
e ()

py

Yo

= ()"

S
~

1/3

) ] (5)
)1/3:|
Ix 0.412453 0.357580 0.189423

Iy | =10.212671 0.715160 0.072169
Iz 0.019334 0.119193 0.950227

=
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where

(6)

SHog™ 5

for the D65 standard illuminant used as the color reference
point ([Xo Yo Zo] = [1004.26 1056.79 1150.71]).

Our KL-based approach for selecting the color conver-
sion produces a linear transformation of the RGB color val-
ues; thus, we could expect that using the KL process on the
XYZ values would produce the same result within compu-
tation accuracy. However, the relation between RGB and L-
a-b is nonlinear, and the L-a-b space is in some sense more
relevant to human perception, so that application of the KL
procedure defined in Section 2 would be expected to produce
useful results.

In fact, as can be seen in Figure 3, the KL transformation
on L-a-b data does not yield distinctive data for face pixels
as opposed to image pixels from more general scenes. This
suggested that the “optimal” color conversion obtained from
L-a-b data does not provide any beneficial added feature con-
tent. Experimentation with the eigenvalues of face images
converted to L-a-b representation, and then projected onto
the axis found by using KL on the resulting histogram data
(as described in Section 7) showed that this was the case; in-
formation contained in the most significant n axes was not
greater (and in fact frequently less) than that for the L plane
of the corresponding L-a-b images. It is possible that a trans-
formation resulting in a linear perception of color distance
inherently concentrates useful detail information in the L
plane.

5. COLOR CONVERSION THROUGH LINEAR
REGRESSION

Queisser discusses (in [5]) the use of a least-squared-error
line-fit to RGB data to define a new color axis that is best
suited to images of a particular class of object. In his study,
images of wood panels and food products were shown to be
more suited for object detection and inspection in the re-
sulting single-color plane than in any of the hue-saturation-
intensity (HSI) axes. The other axes relate to additional mag-
nitude and chromaticity information.

We consider a similar approach in the RGB space. We
performed least-squared-error fits to our RGB data with the
added constraint that the new axis of projection should pass
through the RGB origin. The purpose of this is to force a pixel
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2.8
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« Face DB 1 - Face DB 4
» Face DB 2 = Natural images
* Face DB 3 ¢ Equal-weighted RGB

F1GURE 3: Principal component directions, using spherical coordi-
nates [¢, 0], for several histograms in L-a-b space. Each point in the
diagram represents the orientation of greatest variability in the ag-
gregate color histogram of a complete image database. The “line-fit”
cases listed in the legend are described in Section 5.

with zero in all color planes to map to a black pixel in the new
space. The transformation matrix is as follows:

7 g b
B 8 ’ o |[R
s| = | AfP+g2 P+ Gl. (7)
t —7b -gb  P+g | LB

JPR+g (R+g PR+

Applying (7) to the pixel data from the face box areas of the
sample databases, we obtain the data presented in Figure 2
as the “line-fit” data. As before, we are only interested in the
primary axis, § in this transformation. The results are very
similar to those obtained by the KL method, but with much
lower computational cost because only the red, green, and
blue sample means are required.

6. COLOR CONVERSION THROUGH GENETIC
ALGORITHM SEARCH

To further investigate the determination of the color projec-
tion by optimizing the face recognition accuracy, we applied
a genetic algorithm to the color vector selection process. Each
individual in the population consisted of a [¢, 0] pair as de-
fined in (3). The optimization algorithm had the following
properties:

(i) population size of 100;
(ii) breeding by averaging of [¢, 0] values;
(iii) population initialized with random values;
(iv) “roulette wheel” selection model with elitism (the best
two candidates in each generation will persist [17]);
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TaBLE 1: Results of genetic algorithm.

Iteration 1 2 ce 99 100
Best¢ 1.5069 1.3899 1.1072 1.1072
Best 6 0.7341 0.4707 0.6496 0.6496
Error  0.0965 0.0961 0.0948 0.0948

(v) mutation by perturbation of a random individual
(probability of mutation was 0.005);

(vi) error function to be minimized was the difference be-
tween 1.0 and the sum of the first 8 normalized eigen-
values.

This study therefore attempted to maximize the performance
of the face recognition system as simulated by the sum of the
largest 8 eigenvalues.

The results of 100 generations of testing on one sam-
ple database are summarized in Table 1. The testing data
suggested that the error surface was slowly changing and
not unimodal. After only 100 iterations, the convergence
is clearly dominated by the effect of mutation rather than
breeding. The resulting vector differs in error from the re-
sults obtained by KL computation by only 0.00077.

The advantage of the genetic algorithm for this purpose
is its flexibility in that it is possible to define the error func-
tion in terms of any computable metric of overall system per-
formance. For example, this could be biased toward a par-
ticular combination of Type I (false positive) and Type 1I
(false negative) errors of recognition on a given database. The
major disadvantage of this method is its computational re-
quirements. For a relatively modest database of fifty individ-
uals, 100 generations took more than six hours to run on a
1 GHz Pentium III machine. In addition, the genetic algo-
rithm has unpredictable convergence behavior and a set of
performance parameters that may require tuning. Our ex-
perimentation with a GA roughly confirmed the earlier com-
puted results.

7. EFFECT OF OPTIMIZED COLOR CONVERSION
ON FACE RECOGNITION ACCURACY

To evaluate the effect of our color conversion method on
face recognition accuracy, we considered the effect on per-
formance of the well-known eigenface method [18, 19]. This
technique uses principal components analysis of a collection
of face images, treated as one-dimensional vectors, to deter-
mine the linear combinations of pixel locations that form
the best projective axes for the collection. Early work in this
area focused on the use of a small set of these projections to
adequately represent a face image, while later work (begin-
ning around 1990) applied this same technique to recogni-
tion. The new “face space” defined by the most significant
basis vectors, called “eigenfaces,” is used for pattern recogni-
tion based on a distance measure.

For any principal component analysis, the ratio of an
eigenvalue to the sum of all the eigenvalues is proportional
to the mean squared error implied by exclusion of the cor-

responding eigenvector [20]. Thus, we can examine the cu-
mulative sum of eigenvalues 1 through n, plotted versus #, to
compare the information contained in the first n eigenfaces
(the “principal components”). In this way, we can predict the
performance of the eigenface method on the two databases.
Table 2 shows the individual and cumulative eigenvalues for
a typical database of face images.

Figure 4 shows a plot of the cumulative eigenvalues,
which gives a measure of the accuracy achievable by truncat-
ing all higher eigenvalues. Using the optimized color conver-
sion produces a modest, yet consistent, improvement in the
potential accuracy. The increased information is more pro-
nounced for the more significant eigenvalues.

By comparison, we also evaluated the magnitude of the
initial eigenvectors for the eigenface method when using the
line-fit method described in Section 5. The cumulative eigen-
values computed by using the  axis as the new image plane
are shown in Table 3 and exhibit a similar increase in in-
formation in the lowest eigenfaces. In fact, for all of the
databases we examined, the use of the line fit gave essentially
equal performance as measured by the normalized eigenval-
ues.

For confirmation of these predictions of increased per-
formance, we measured the face recognition accuracy on a
complete eigenface recognition implementation. We will not
describe the specifics of the eigenface method here as they are
covered well in [18, 19]. For our test, a training phase and a
test phase were implemented. The training phase computes
the desired transformation by solving for the eigenvalues of
the matrix composed of the concatenation of the training im-
ages. Testing is performed by applying this transformation to
a set of probe images of the same individuals and measur-
ing the Euclidean distance from the probe image data to the
exemplars of each individual, defined as the average in “face
space” of each training image of that individual. The probe
images were not present in the training set. Note that the
eigenface implementation was fairly simplistic; our objective
was not to achieve overall high recognition accuracy but to
measure the effect of using our color conversion.

To measure the performance in a consistent fashion, we
adopted the method used in the NIST FERET studies [21].
The results for each probe image are ranked in order of in-
creasing Euclidean distance. The performance score for a
particular experiment R, is defined to be the ratio of the
number of times that the correct identity is in the top # can-
didates (the #n nearest exemplars to the probe image) to the
total number of probe images tested.

Table 4 summarizes the eigenface performance for three
values of n (2, 5, and 10) for a particularly difficult database
of 280 images. Many of the images exhibit poor contrast,
and there is significant variation in expression by the human
subjects. Two sets of results are shown: the first for a typ-
ical equal-weighted conversion from RGB to monochrome
and the second for a transformation vector derived using the
KL procedure described above. The results show significant
improvements in performance scores (roughly in the range
of 6% to 14%) when the KL conversion was used. Although
the database was relatively small, and therefore care must be
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TaBLE 2: Eigenvalues for a typical face database using the KL method to determine the RGB conversion.
Index; 1 2 3 4 5 6 7 8
Equal-weighted Eigenvalue A; 0.51613 0.13616 0.06179 0.05184 0.04326 0.03875 0.02879 0.02683
RGB conversion Cumulative >'\; 0.51613 0.65229 0.71408 0.76592 0.80918 0.84793 0.87672 0.90354
KL-computed RGB Eigenvalue A; 0.53441 0.13210 0.05929 0.05223 0.04181 0.03812 0.02850 0.02488
conversion Cumulative >’ A; 0.53441 0.66651 0.72580 0.77803 0.81984 0.85796 0.88646 0.91134
TaBLE 3: Eigenvalues for a typical face database using the line-fit method to determine the RGB conversion.
Index; 1 2 3 4 5 6 7 8
Equal-weighted Eigenvalue A, 0.51613 0.13616 0.06179 0.05184 0.04326 0.03875 0.02879 0.02683
RGB conversion Cumulative >’A; 0.51613 0.65229 0.71408 0.76592 0.80918 0.84793 0.87672 0.90354
Line-fit RGB Eigenvalue A; 0.53280 0.13175 0.05801 0.05210 0.04064 0.03644 0.02898 0.02512
conversion Cumulative >’ A; 0.53280 0.66445 0.72256 0.77467 0.81531 0.85174 0.88073 0.90585
0.95 . severe decrease in accuracy. It is believed that this is due to
0.9 // the global nature of the process, which may have resulted in
¥ 0.85 = a suppression of the facial features that are useful for recog-
E“ 0.8 / nition. We conclude that color histogram equalization is not
L Jp— // a useful preprocessing step for eigenface face recognition, re-
o / gardless of the choice of method for color transformation.
5 0.7
é 0.65 z
3 o6 8. EFFECT ON FACE FEATURE DISCRIMINABILITY
USING GABOR FILTERS
0.55 7
0.5 - 5 Another technique for face recognition is based on the appli-
1

Eigenvalue index;

- Equal-weighted RGB to I
-= Optimized conversion RGB to I

FIGURE 4: Comparison of cumulative eigenvalues for the eigenface
procedure. The optimized RGB to monochrome conversion results
in more significant information in the first n eigenfaces.

taken in extrapolating these accuracy values to larger sets,
they provide a strong indication that the color conversion
process can have a sizable impact on face recognition per-
formance.

Because the face images had a noticeable increase in con-
trast as a result of the KL derived RGB to monochrome trans-
formation, there was a concern that the KL derived method
was doing no more than could be obtained from a com-
mon histogram equalization on the color image. To explore
this idea, the eigenface performance was also measured with
and without the use of a histogram equalization preprocess-
ing step. Each color plane in the original RGB space was en-
hanced using a standard 256-to-64-bin histogram flattening
procedure. The results show that, rather than a performance
increase similar to that obtained from the optimized color
conversion, the histogram equalization actually produced a

cation of a family of Gabor filters to monochrome face im-
ages [22, 23, 24]. A two-dimensional Gabor filter is a directed
complex sinusoid in the image plane, decaying exponentially
as a function of distance from the filter’s origin. At a set of
preselected locations on the face, Gabor filters at various re-
lated directions and sinusoidal frequencies are applied and
the complex responses are assembled into a feature vector
known as a “jet.” Several techniques exist for performing face
recognition using these jets.

We have evaluated the potential improvement in Gabor-
based methods from the use of an optimized color transfor-
mation by evaluating the relative distances between the Ga-
bor jets from the same point on different faces, with and
without the use of the KL derived color transformation.
To obtain the interjet distances, we consider the jets as 80-
element vectors and determine the Mahalanobis distance by
the usual method. To measure the effectiveness of a set of jets
for face discrimination, we consider (at each facial landmark)
the ratio of the minimum interjet distance between two dif-
ferent faces to the maximum interjet distance, as well as the
ratio of the minimum interjet distance to the average of all
interjet distances for that landmark. Ratios were used to pro-
vide some normalization.

When the KL derived color transformation is used, the
min-to-max ratio improved by 4.4% on a set of ten facial
landmarks over the test database, while the min-to-average
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TaBLE 4: Improvement in face recognition performance with new color conversion procedure. The monochrome eigenface recognition
procedure was used on a database of 280 color images. The second and third columns show the recognition accuracy values that were
obtained when the images were color-converted with the standard equal-weight method and with our KL method, respectively.

Equal-weighted RGB KL RGB Improvement
R,—probe in top 2 0.343 0.371 8.3%
Rs—probe in top 5 0.514 0.600 13.8%
Ryp—probe in top 10 0.686 0.728 6.2%

ratio increased by 6%. Interestingly, the average interjet dis-
tance actually decreased slightly, indicating that the min-
imum interjet distances were larger than when the usual
monochrome intensity images were used. This is an initial
indication that Gabor-based methods may have greater dis-
crimination between different individuals when the KL de-
rived color-to-monochrome transformation is used, since
the underlying features are more distinctive.

9. CONCLUSIONS

This paper has presented a new approach for converting
color images to monochromatic form. By tailoring the con-
version process to the needs of a particular task, such as hu-
man face recognition, it is possible to improve the overall sys-
tem performance.

Most existing face recognition systems operate using
monochromatic information alone, even when color infor-
mation is available. In such cases, a simple and suboptimal
conversion process is typically used. We argue that recogni-
tion accuracies can be improved if the color-conversion pro-
cess is selected based on the expected color distributions.
We explored three such approaches to determine an im-
proved mapping empirically: Karhunen-Loeéve analysis of the
color pixel distributions, a least-squared-error line fit in RGB
space, and a genetic algorithm.

The color-conversion method presented in this paper is
independent of the actual face recognition approach that is
used. For testing purposes, however, we have used the well-
known eigenface method. Our experiments using the eigen-
face method for recognition resulted in performance im-
provements in the range of approximately 6% to 14% for
a database of 280 color images. Relative distance measure-
ments of Gabor jets of the face area also showed an increase
in discriminability of 4% to 6%. Evaluation of the cumula-
tive eigenvalues produced by an eigenface analysis of inten-
sity images and images converted to grayscale form using the
computed conversion vector showed a modest yet consistent
improvement in the potential accuracy in retaining only the
most important # basis vectors.
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