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a b s t r a c t 

The price adjustment hazard function - the probability of a good’s price changing as a 

function of its price misalignment - enables the examination of the relationship between 

price stickiness and monetary non-neutrality without specifying a micro-founded model, 

as discussed by Caballero and Engel (1993a, 2007). Using the micro data underlying the 

U.S. Consumer Price Index going back to the 1970s, we estimate the hazard function re- 

lying on empirical patterns from high and low inflation periods. We find that the rela- 

tion between inflation and higher moments of the price change distribution is particularly 

informative for the shape of the hazard function. Our estimated hazard function is rela- 

tively flat with positive values at zero. It implies weak price selection and a high degree of 

monetary non-neutrality: about 60% of the degree implied by the Calvo model, and much 

higher than what menu cost models imply. In addition, our estimated function is asym- 

metric: price increases are considerably more likely to occur than price decreases of the 

same magnitude. 
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1. Introduction 

It has long been established that monetary policy has real effects (or is non-neutral) if firms face constraints in changing

the prices of their goods and services (i.e. if prices are “sticky”). This has led to a proliferation of micro-founded models of

price-setting that feature various nominal rigidities ( Caplin and Spulber, 1987; Golosov and Lucas, 2007; Midrigan, 2011 ). 

These studies have notably shown that a key determinant of monetary non-neutrality is the extent to which the prices that

change are selected based on their misalignment, the selection effect. While most work in this field has involved micro- 

founded models, Caballero and Engel (1993) proposed an alternative, model-free approach to analyze the relation between 

sticky prices and non-neutrality. They introduced the state-dependent price adjustment hazard function: the probability of 

an individual price changing, as a function of the gap between a firm’s current and desired price. This model-free approach

also provides a way to determine monetary non-neutrality through the mapping between the hazard function and the flex- 
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ibility of the price level (as derived in Caballero and Engel, 2007 ). In particular, every price setting model implies a certain

hazard function, thus this general approach does not require formulating and solving a specific model. 

In this paper, we estimate the state-dependent price adjustment hazard function using the micro data that underlies 

the U.S. Consumer Price Index (CPI) from 1977 to 2014. 1 While other studies have offered estimates of the hazard function

(such as Berger and Vavra, 2018; Caballero and Engel, 1993; Gagnon et al., 2012; Caballero and Engel, 2006 ), our estimation

is based on a richer data set covering high inflation periods and novel empirical moments, notably the correlation between 

inflation and the skewness of the price change distribution. Our estimates uncover two features of the hazad function that 

have important implications for monetary policy and inflation dynamics. First, we find that the slope of the hazard function 

is small. As we will show, using the correlation between inflation and price change skewness is what enables us to deter-

mine the slope of the hazard function. This property also implies a high degree of monetary non-neutrality: about 60% of

the degree implied by the Calvo model. Second, the hazard function is asymmetric: price increases are considerably more 

likely to occur than price decreases of the same magnitude. 

The slope of the hazard function is particularly important because of its close relation to the selection effect in price

setting. Caballero and Engel (2007) , in deriving the mapping between the hazard function and aggregate flexibility, made 

explicit how the selection effect depends critically on the slope of the hazard function. A large slope means that more

misaligned prices have a much higher probability of changing. Consider the standard menu cost model as an extreme state- 

dependent example: firms decide to change their price if and only if the price misalignment is large enough to justify the

fixed adjustment cost. The hazard is zero within the inaction region, and one elsewhere, which implies an infinite slope at

the inaction thresholds. Consequently, the model implies a large aggregate price response and small real effects of monetary 

shocks, given that adjusting firms are the ones that react strongly to nominal shocks. Conversely, a model (such as a Calvo

model) with a small hazard function slope generates weak aggregate price responses to nominal shocks, thus high monetary 

non-neutrality. 

In order to infer the slope of the hazard function, we use patterns related to the skewness of price change that are

not considered by previous attempts to estimate the hazard function. If the hazard function slope is large, the resulting 

price dynamics will imply that the skewness of price changes falls with inflation. Price change skewness does not fall with

inflation in our data, which leads us to conclude that the hazard function must have a small slope (and that non-neutrality is

high). In order to determine the empirical relation between inflation and skewness, it is necessary to observe the skewness 

in periods of intermediate or high inflation. Most price data sets used in the literature only cover recent periods in which

inflation has been low and stable (such as the U.S. CPI data from 1988 onwards, Dominicks and the Nielsen Homescan

Dataset), making them unsuitable for our approach. Instead we use the U.S. CPI micro data extended back to 1977, which

covers periods of high and intermediate inflation. 

The skewness patterns that help identify the hazard function slope has been discussed throughly in Luo and Villar (2020) ,

where we showed that a broad class of menu cost models predict that skewness falls with inflation. Only models that

are weakly state-dependent could match the non-negative inflation-skewness correlation, and such models predict a high 

degree of non-neutrality. While we conclude that non-neutrality is high in both papers, the results in this paper are, in a

sense more general. In Luo and Villar (2020) , we present a random menu cost model characterized by firm-level random

menu cost draws from a calibrated distribution in every period (as in Dotsey et al., 1999 ). Instead, this paper uses a hazard

function approach, which is model-free. Our results here reject hazard functions with a large slope, and thus all models that

would imply such a hazard function. 

We want to highlight that our results also offer insight into the price setting process beyond the magnitude of the hazard

function slope. For instance, our estimated hazard function takes a significantly positive value at zero. Thus, even extremely 

small price imbalances have a positive probability of occurring (so there are no inaction regions). In addition, the hazard 

function makes it clear that the probability of price adjustment stays far below one even for large price misalignments. This

is related to the small slope feature of the hazard function and is contrary to what would be obtained from menu cost, or

hybrid menu cost models. These two features together mean that the hazard function implies a high degree of monetary 

non-neutrality. As we will show, this is because our estimated hazard function features a small amount of price selection 

compared to menu cost models. This result is consistent with other studies that find that non-neutrality is high, such as

Costain and Nakov (2011) , Luo and Villar (2020) or Karadi et al. (2020) . 

Another interesting feature of our estimated hazard function that is that the hazard function is asymmetric around zero. 

Specifically, for an equivalent magnitude, price increases are more likely to occur than price decreases. We show that the 

asymmetry of the hazard function implies that inflation responds more quickly to expansionary aggregate shocks than to 

contractionary shocks, which could have important implications for the effectiveness of monetary policy and for inflation 

dynamics. These findings are relevant for attempts to model the constraints faced by firms in setting and changing their 

prices. 
1 It is important to draw a distinction with another hazard function that has received attention in the sticky price literature: the time-dependent hazard 

function. The time-dependent hazard function gives the probability of a price change occurring at time t , given that t periods have passed since the last 

price adjustment. Different models also imply different types of time-dependent hazard functions, and some work has been done to estimate these using 

micro price data (such as Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008 ). However, in this paper we only investigate the state-dependent 

price adjustment hazard function. 
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The fact that the hazard function involves an unobserved variable (the desired price gap) makes it particularly difficult 

to estimate. An estimation strategy must make assumptions about the desired price gap to relate different hazard func- 

tions to observable facts about prices and price changes. Two recent papers ( Berger and Vavra, 2018; Petrella et al., 2018 )

also attempt to estimate the price adjustment hazard function with assumptions that differ from those in our paper. One 

difference is that both of those papers estimate a flexible functional form for the distribution of desired price gaps and a

quadratic hazard function. In contrast, we estimate a more restricted form for the distribution of desired price gaps, but a

more flexible form for the hazard function. Perhaps more importantly, we use a broader set of empirical moments in our

estimation. Our approach has the advantage of using information from the variation of price change moments over time 

(mainly in the form of the skewness correlation previously discussed) to identify the key parameters of the hazard func- 

tion. As we will show, these moments provide a considerable amount of information that identifies the slope of the hazard

function. 2 In addition, it is also the moment correlations that allow us to determine the asymmetry of the hazard function.

Finally, our data sample includes the high inflation periods of the U.S. going back to 1977, which gives us a more reliable

estimate of the moment correlations with inflation. 

Another recent paper, Alvarez et al. (2020) , presents a theoretical framework that provides a mapping between the haz-

ard function and the observable distribution of realized price changes, which is closely related to this paper. An important 

difference of that framework from ours is that it is based on a hazard function that is symmetric around zero. In contrast,

our approach allows for a more flexible hazard function. Furthermore, we find evidence suggesting that the hazard function 

is considerably asymmetric, which appears to be robust under various specifications. Finally, while Alvarez et al. (2020) and 

Alvarez et al. (2016) emphasize the kurtosis of price change distribution being one key component in the sufficient statistics 

to assess monetary non-neutrality, in this paper and Luo and Villar (2020) , we show that the correlation between skewness

and inflation plays an important role at identifying the properties of the random menu cost distribution, the hazard func- 

tion and monetary non-neutrality. It is also interesting to notice that our finding is related to the discussion by Baley and

Blanco (2021) . They present a theoretical framework that can generalize the Alvarez et al. (2016) result to lumpy price

adjustment environment with non-zero drifts. They find that the sufficient statistics assessing non-neutrality switch from 

kurtosis to skewness of the price change distribution,which relates to our discussion here. 3 

This paper (as well as Berger and Vavra, 2018; Petrella et al., 2018 ) contribute the sticky price literature with non-

structual estimates of price changes following Caballero and Engel (1993, 2007) using high order moments of price changes. 

An important finding in our work is that an asymmetric hazard function fits the data best, which implies a stronger mone-

tary non-neutrality during deflationary episodes. Berger and Vavra (2018) , in contrast, estimate a symmetric quadratic hazard 

function that can not generate this result. Petrella et al. (2018) estimate a hazard function that is potentially asymmetric, 

but they do not seem to find a major role for asymmetry. 

The rest of this paper is organized as follows. Section 2 formalizes the hazard function approach, illustrates it with

various examples, and describes our estimating method. Section 3 presents our main results: the general hazard function 

estimates (parametric and non-parametric), and an illustration of how different key features of the hazard function are 

identified by our set of moments. In Section 4 , we derive results on monetary non-neutrality from the estimated hazard

function. Finally, we provide some concluding remarks in Section 5 . 

2. Price adjustment hazard function and monetary non-neutrality 

The basic framework of the model is that firms adjust their prices infrequent and the adjustment probability is state 

dependent. 

In this section, we propose a simple price adjustment framework similar to that in Caballero and Engel (2007) , in which

the price adjustment policy of a firm depends on a state-dependent continuous hazard function. We do not explicitly model 

the underlying microeconomic optimization problem of firms or the general equilibrium aspects. Despite the absence of 

micro-foundations, this approach can be viewed as an empirical-theoretical strategy to shed some light on and complement 

the structural sticky price models as Caballero and Engel (1993) had suggested. 

In this economy, a continuum of firms indexed by i ∈ [0 , 1] face idiosyncratic and aggregate shocks. Let p it denote the

log of the price for firm i in period t , and p ∗
it 

denote the log of the target price. The target is the sum of two components,

which changes stochastically as follows, 

p ∗it = z it + m t , 

where z it is the idiosyncratic component and m t is the aggregate component, and both are subject to shocks over time. The

idiosyncratic component is important in order to match the fact that, even within a given period, there is a wide variation
2 Another significant difference is that both Berger and Vavra (2018) and Petrella et al. (2018) estimate the parameters of the hazard function for every 

period of time (which gives them, among other things, a time-varying measure for the degree of monetary non-neutrality), while we estimate a hazard 

function that is static over time. Note that estimating the hazard function period by period makes it impossible to use the correlations of inflation with 

price change moments over time, and thus discarding the valuable information those correlations provide. 
3 The model of Baley and Blanco (2021) can be applied to a non-zero inflation and asymmetric menu costs environment with the output response to 

nominal shocks being functions of the average duration, duration dispersion, the ratio of the third to second moment of price changes (which is closely 

related to skewness) and covariance between duration and price changes. 

3 
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of price changes (as shown notably by Bils and Klenow, 2004; Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008 ).

In addition, we follow Midrigan (2011) and Gertler and Leahy (2008) by assuming that the idiosyncratic shocks arrive infre-

quently, in order to match a number of moments of the distribution of price changes in the data (such as the fat tails of the

realized price change distribution). Thus, the idiosyncratic component follows a Poisson process: 

z it = 

{
ρz i,t−1 + εit , Probability = p ε
z i,t−1 , Probability = 1 − p ε

. (1) 

Conditional on their arrival, the idiosyncratic shock εit follows a Gausian distribution εit ∼ N (0 , σ 2 
ε ) . In addition, the aggre-

gate component of shocks follows a random walk with drift: 

m t = μ + m t−1 + ηt , ηt ∼ N(0 , ση) , 

where the drift parameter ( μ) accounts for the fact that inflation is positive, on average (as over the long run, price changes

will average μ). The aggregate shocks lead to variations in inflation period by period and represent monetary or aggregate 

demand shocks. 

Firms adjust the prices of their products infrequently due to adjustment costs (e.g. menu cost or information cost, which 

are not modeled here) and follows an adjustment hazard function. Furthermore, when a price adjusts, it is set to its cur-

rent optimal level ( p ∗
it 

), such that the desired price gap (or price imbalance) is closed. Thus, the hazard function gives the

probability of a firm’s price adjusting given the difference between the current price and the optimal price, i.e. 

H(x ) = P (�p it = x | x ≡ p ∗it − p i,t−1 ) . 

This set-up is extremely general, and nests existing sticky price models. For instance, in the frictionless case, it would be

optimal for firms to set their price equal to the target at all times (i.e. H(x ) = 1 , ∀ x ). 

While we are not modeling firms’ optimal response to these shocks, the hazard function (along with the distribution 

of idiosyncratic shocks) will determine how the aggregate price level responds to them. It is in this way that the hazard

function allows us to assess the degree of aggregate price flexibility, or the inverse of monetary non-neutrality. In what 

follows, we denote the cross-sectional density of price imbalances ( x ) at time t as f t (x ) . Although we have made assumptions

about the distribution of the imbalance’s components, the theoretical results apply to a general distribution. The change in 

the aggregate price level (or the average price change, or inflation) can therefore be expressed as: 

�p t = 

∫ 
xH(x ) f t (x ) dx. 

In particular, we are interested in how this change will depend on the aggregate shock, and so we consider the change in

the price level as a function of the change in m t . As presented by Caballero and Engel (2007) , inflation as a function of the

aggregate shock, �m t , can be written as, 

�p t (�m t ) = 

∫ 
(x + �m t ) H(x + �m t ) f t (x ) dx. 

Aggregate flexibility is then defined as the derivative of inflation with respect to �m , evaluated at ( �m = 0 ), which is equal

to: 4 

�p ′ t (�m = 0) = 

∫ 
H(x ) f t (x ) dx ︸ ︷︷ ︸ 

frequency of price change 

+ 

∫ 
xH 

′ (x ) f t (x ) dx ︸ ︷︷ ︸ 
extensive margin 

. (2) 

This illustrates the importance of having a precise estimate of the hazard function, and of knowing what shape it takes,

in particular. The first term in this expression is simply the frequency of price change in period t . Although the hazard

function clearly plays a role, the frequency of price change can be observed directly from price micro data, and can therefore

be assessed independently of the hazard function. However, the second term does not have a simple relation to anything 

measurable in the data. Caballero and Engel (2007) refer to this term as the role of the extensive margin, and show that

it is typically twice as large as the frequency, in a wide variety of models associated with increasing hazard functions.

This incorporates the role for the “selection effect” induced by state-dependent pricing, which makes the price level more 

responsive to aggregate shocks. Since the derivative of the hazard function enters the extensive margin, its shape has an 

important influence on monetary non-neutrality. Also important is whether the density of price imbalances is high in the 

regions where the slope is large. 

Table 1 illustrates the importance of these concepts with a few examples of hazard functions implied by different sticky 

price models. The simplest and perhaps most used sticky price model, Calvo (1983) , has a constant hazard function with p z 
representing the frequency of price change. Consequently, the derivative is zero everywhere, meaning that the contribution 

of the extensive margin to aggregate flexibility is zero. At the other extreme in terms of flexibility is the class of menu cost,

or Ss, models (such as Golosov and Lucas, 2007 ). When firms have to pay a fixed cost to change their nominal price, they
4 Note that the average sensitivity of the price level to the change in the aggregate component takes the same expression, with the ergodic density of 

price imbalances, f E (x ) replacing f t (x ) . 

4 
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Table 1 

Examples from existing models. 

H(x ) Extensive margin 

Calvo p z None 

Menu cost 

{
0 , x ∈ (L, U) 

1 , otherwise 
| L | f t (L ) + U f t (U ) 

Calvo & menu cost hybrid 

{
p z , x ∈ (L, U) 

1 , otherwise 
(1 − p z )[ | L | f t (L ) + U f t (U )] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimally choose a threshold rule, under which they re-set their optimal price if and only if their price mis-alignment is

outside of some interval (L, U) . Thus, its extensive margin term is clearly positive as shown in the second row. In addition,

some advanced sticky price models are close to a hybrid of Calvo and menu cost, such as Midrigan (2011) ’s menu cost model

or the CalvoPlus model presented by Nakamura and Steinsson (2010) . In each case, firms will occasionally and randomly 

receive the opportunity to change their price for free or for a relatively low menu cost. The common feature shared by

these models is that firms occasionally have the chance to change their price for free or low cost with a hazard function

and the extensive margin as presented in the last row. 5 

A comparison of the extensive margin generated by various models clearly infers their levels of monetary non-neutrality. 

A menu cost has an extreme extensive margin, because only the most mis-aligned prices adjust. Since they adjust by a large

amount, the average price response to monetary shocks is very large, leading to high aggregate flexibility and monetary 

neutrality. On the other hand, the Calvo model has a much lower degree of monetary neutrality than the menu cost. 

The models that we have presented so far yield hazard functions that are extremely simple. However, richer and 

more interesting hazard functions can be obtained from models of imperfect information (e.g. Alvarez et al., 2011; 

Costain and Nakov, 2018; Woodford, 2009 ). For instance, the hazard function of the rational inattention model in 

Woodford (2009) change drastically for different levels of tightness of the information constraint. 6 Indeed, the model can 

nest the Calvo model (in the no information case) and the menu cost model (free information, or no constraint), as well as

intermediate cases. This can be seen in the different hazard functions implied by different values for the cost of information,

shown in Appendix A Fig. 7 . Thus, the extensive margin effect depends on the exact shape of the hazard function. 

There are of course different ways of decomposing inflation into different margins of adjustment that emphasize the 

relevance of the hazard function. Costain and Nakov (2011) present a similar decomposition that further breaks up the 

extensive margin into the response of the frequency of price change (what Costain and Nakov (2011) , call the extensive

margin), and the relation between the size of desired price changes and price change hazard (what they call the “selection

effect”). In Section 4 , we will show numerical results of the Costain and Nakov (2011) decomposition and of the flexibility 

measure given by Eq. 2 to illustrate how the hazard function affects aggregate flexibility. 

As the examples from models shown in this section illustrate, various sticky price models can be analyzed under the 

hazard function approach. This makes it possible to clearly see and understand the differences in the degree of aggregate 

flexibility that they imply. In the following section, we present the estimation of the hazard function, which will then be

used to revisit the aggregate flexibility results of different models. 

3. Hazard function estimation 

3.1. The set of hazard functions 

In this section, we describe the estimation of the hazard function. The estimation is carried out by comparing the price

change moments implied by different guesses of the hazard function (obtained from simulations) with the moments from 

the data, and choosing the hazard function that matches these moments best. For this to be feasible, the hazard function is

characterized by a finite number of parameters. One way to do this is to impose a functional form on the hazard function,

and to estimate the parameters that characterize it. This can be applied to the existing sticky price models, as most of them

imply hazard functions that are summarized by a small number of parameters. The resulting estimates do not recover the 

structural parameters of the models, but they do make it possible to assess the model’s implications for various empirical 

patterns, and the degree of aggregate flexibility. 

Our focus, however, is on producing more flexible estimates that are not tied to a particular model. The first way in which

we will carry this out will be by proposing flexible parametric forms for the hazard function, and estimating the parameters
5 In the Midrigan (2011) model, each firm produces multiple products, but once it pays the menu cost, it can change the price of all its products. Once a 

particular product’s price is mis-aligned beyond a certain amount, the firm pays the menu cost to re-set the price. When this occurs, however, the firm’s 

other prices will also be re-set, essentially for free, and these will not necessarily be very mis-aligned. This means that all prices will have a positive 

probability of adjusting, no matter how small their imbalance. In the CalvoPlus model, every period firms face either a high menu cost or a low menu cost, 

with a fixed probability (typically higher for the high menu cost). 
6 In this model, firms face a cost to processing relevant information (measured in terms of entropy reduction) to making their pricing decisions. A related 

discrete-choice model is presented in Costain and Nakov (2015, 2018) , in which price stickiness is the result of errors due to costly decision-making. 

5 
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of the parametric form. One such form that we consider is an asymmetric quadratic function with discrete jumps in the

probability of price change: 

H(x ) quad = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if x < c −

p 0 + a −x + b −x 2 , if c − ≤ x < 0 

p 0 , if x = 0 

p 0 + a + x + b + x 2 , if 0 < x ≤ c + 

1 , if x > c + 

. (3) 

The discrete jumps in probability enable this functional form to nest the menu cost and CalvoSs hazard functions. The 

coefficients on x determine the slope of the hazard function, and therefore to a large extent the size of the extensive margin

effect. As in the CalvoSs hazard function, this form allows for a positive probability at an output gap of 0, which also nests

the Calvo hazard function. The positive probability at 0 and the thresholds at which the probability switches to one can

generalize the simple quadratic form that Caballero and Engel (2006) estimated. 

A second functional form that we use is the following logistic function: 

H(x ) logit = 

{ 

a −·exp (b −(| x |−c −)) 
1+ exp (b −(| x |−c −)) 

, if x < 0 ;
a + ·exp (b + (| x |−c + )) 
1+ exp (b + (| x |−c + )) , if x ≥ 0 . 

(4) 

This functional form has the interesting feature that a discrete choice problem in a rational inattention framework implies 

a logit specification like this in general (see Woodford, 2009; Yang, 2015; Woodford, 2008 ). 7 

Last but not least, we estimate the hazard function in a non-parametric way as an alternative. Specifically, we select nine

“points” on the grid of price imbalances, equally spaced between -0.5 and 0.5. We then search for the value of the candidate

function at the nine grid points, and assign the values between the grid points by linearly interpolating between them. In

other words, the non-parametric hazard functions we are considering are a subset of the space of real-valued functions 

spanned by a basis consisting of the nine grid points on the space of price imbalances. The hazard function is then based

on the candidate function h (x ) in the following way: 

H ( x ) 
non-param = 

{ 

h ( −0 . 5 ) , if x < −0 . 5 , 

h ( x ) , if x ∈ [ −0 . 5 , 0 . 5 ] , 
h ( 0 . 5 ) , if x > 0 . 5 . 

(5) 

We further assume that h ′ (x ) ≤ 0 if x < 0 and h ′ (x ) ≥ 0 if x ≥ 0 . However, we notably do not impose that the hazard func-

tion be symmetric around zero. While the functional forms that we are considering are very flexible, the non-parametric 

approach naturally imposes even fewer restrictions on the shape of the function. 

3.2. Data and moments 

As in Luo and Villar (2020) , we use the micro data underlying the U.S. Consumer Price Index for the period 1977–2014.

Since it contains a very large number of individual prices tracked over time at monthly frequency, this data set enables us to

construct statistics related to individual price changes. These statistics can then be compared with the results of simulating 

firms adjusting prices according to various hazard functions. 

The first key moment in the estimation is the average frequency of price change. As shown in Eq. 2 , monetary non-

neutrality depends on the frequency of price change, and on the extensive margin effect. The latter has to do with the

extent to which prices that are more mis-aligned are more likely to change, but the size of this effect cannot be observed.

That is why a model, or a hazard function, is needed, and this is the focus of our exercise. However, the frequency of price

change can be directly observed and estimated with the micro data, and we ensure that our estimated hazard function 

matches its correct value. The second moment used is the average absolute value of price changes (measured as a percentage

change, conditional on a non-zero change occurring). While this statistic does not enter directly into the expressions for 

aggregate flexibility, it is key to discipline the variance of the idiosyncratic component of desired price changes. It has also

been consistently found that price changes are large on average (e.g. Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 

2008 ). 8 These are the basic moments that all sticky price models or hazard functions should match. And while they are

necessary to place restrictions on the parameters of these models (such as the price adjustment probability, or the width of

the inaction bands), it is also worth noting that almost any model can match these. 

Another moment that can provide additional information is the fraction of price changes that are smaller than a certain 

threshold. Midrigan (2011) had shown that the standard menu cost model cannot match this moment, as under a fixed 

menu cost firms will never be willing to pay the cost to carry out small changes. Midrigan’s model provides additional

flexibility that allows it to match this, and this leads it to predict a much higher degree of monetary non-neutrality than
7 The discrete choice problem (as presented by Woodford, 2009; Yang, 2015; Woodford, 2008 ) departs from the linear-quadratic-Guassian framework 

used by Sims (1998, 2003) . 
8 Caballero and Engel, 2006 only used the frequency and size moments to estimate the hazard function. They were able to do this by restricting the 

function to a quadratic function that is potentially asymmetric around 0. 
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Table 2 

Target moments. 

Full sample 1977–1984 1985 onwards 

Avg. Frequency 10.7% 13.1% 10.1% 

Avg. Frequency of Increases 7.64% 10.3% 6.93% 

Avg. Frequency of Decreases 2.97% 2.5% 3.1% 

Avg. Size 7.5% 7.6% 7.5% 

Avg. Size of Increases 7.2% 7.5% 7.1% 

Avg. Size of Decreases 7.9% 6.7% 8.2% 

Fraction of Small Changes 13.2% 14.8% 12.8% 

Avg. Dispersion (IQR) 0.099 0.085 0.103 

Dispersion of Increases 0.077 0.073 0.078 

Dispersion of Decreases 0.087 0.084 0.088 

Avg. Skewness –0.14 –0.02 –0.171 

Corr(Frequency, π ) 0.69 0.713 0.389 

Corr(IQR, π ) –0.676 –0.432 –0.498 

Corr(Skewness, π ) 0.361 0.425 0.023 

 

 

 

 

 

 

 

 

 

 

the standard menu cost model. Our hazard function will also match this fraction, with the threshold for a price change

being small set at 1% (in absolute value). All the moments described thus far (the frequency, size, and fraction of small price

changes) are what we denote “unconditional” moments, as they are all averages across time, and do not capture any time 

variation in price change behavior. 

In Luo and Villar, 2020 , we had argued that the unconditional moments do not provide enough information to conclu-

sively discriminate between models that predict very different degrees of monetary non-neutrality. However, conditional 

moments that describe the relationship between inflation and the shape of the price change distribution can be much more 

informative, especially the non-negative inflation-skewness correlation. 9 Indeed, Luo and Villar (2020) showed that menu 

cost models predict that the distribution of price changes should become less dispersed and more negatively skewed as 

inflation increases, while other models (such as the Calvo model, or the rational inattention model under certain parame- 

ter values for the cost of information) do not make these predictions. Our estimation therefore includes these correlations 

among the moments to be matched, and we will show that it is precisely these moments that allow us to reject several

types of hazard functions. In addition, we will include the correlation between inflation and the frequency of price change, 

as it creates a very clear and simple distinction between state-dependent models (in which more firms choose to change 

their prices when inflation is high) and the Calvo model (in which the same fraction of firms change their prices in every

period, by assumption). 

All of the moments mentioned are used as targets to estimate the hazard function. We also include the average over

time of the dispersion and skewness of price changes, the average frequency, size and dispersion of increase and decrease, 

to add further discipline to the shape of the hazard function. Our main results will show that while our different hazard

function estimates match the unconditional moments that have been considered by the literature before us, they also match 

the correlations that we have emphasized here and in Luo and Villar (2020) , in a way that no existing model has. In Table 2 ,

we list the moments that we will target, as well as their values in the data (for the whole sample and two sub-samples). 

Using these moments, we estimate the hazard function according to the functional forms specified in the previous sec- 

tion, and the non-parametric form, as well as σε and p ε . We do this by running simulations for 50,0 0 0 firms and 10 0 0

periods, with choices of μ = 0 . 02 , ση = 0 . 0037 , and ρ = 0 . 7 . 10 Based on the simulated shocks for the firms, a candidate

hazard function determines the simulated price changes. We then calculate moments based on the price change distribu- 

tion, and compare them to their empirical counterparts. The estimated parameters of the hazard function then solve the 

following optimization problem: 

min 

H(x ) 

∑ 

q ∈{ moments } 

(
1 − q 

q ∗

)2 

, (6) 

where q is the value of a given moment by a particular hazard function H(x ) and q ∗ is the empirical value. 11 
9 The non-negative inflation-skewness relation is robust to using the Kelly measure of skewness. Kelly skewness, an alternative quantile-based measure 

of skewness, is less sensitive to outliers as the standard measure. As presented by Luo and Villar (2020) , the correlation of inflation and the Kelly skewness 

is also significantly positive. 
10 We choose μ and ση based on the behavior of U.S. nominal GDP (as in Nakamura and Steinsson, 2010 ). Further, the level of the autocorrelation of the 

idiosyncratic component ( ρ = 0 . 7 ) we pick is similar to the level in Nakamura and Steinsson (2008, 2010) , since we use the same micro price dataset as 

these two papers. In a more recent example, Berger and Vavra, 2018 assume the change of the idiosyncratic component follows a random walk (i.e. ρ = 1 ). 

In the appendix, we present estimated hazard functions under two extreme values of ρ , i.e. ρ = 1 and ρ = 0 for robustness checks. As illustrated in Fig. 8 , 

the estimated hazard functions are very close to our benchmark estimates when ρ is at an intermediate level. And the simulated moments reported in 

Tables 12 - 13 are virtually the same as our benchmark results presented in this section. 
11 When implementing this procedure, we place a higher weight on the frequency and size of price change moments. The reason for this is that we are 

particularly interested in making the hazard function imply values of these moments that match the empirical values as accurately as possible. In contrast, 
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Fig. 1. All estimates of the price adjustment hazard function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we will use a subset of the moments to estimate parametric functions related to some of the existing models.

Although the main result of this paper is the estimates not based on models, the model estimates illustrate what moments

can be matched by hazard functions with different restrictions. Furthermore, they can be used to evaluate the degree of 

monetary non-neutrality that they imply (with which we compare the non-neutrality from our general estimates). 

3.3. General Hazard function 

Here we present the main result of our paper: the price adjustment hazard function estimated using both unconditional 

and conditional price change moments. 

In all the different cases (the quadratic, logistic, and the non-parametric forms), this is implemented by searching for 

parameters that minimize the distance between the simulated and empirical moments. We solve the minimization problem 

in Eq. 6 under various functional forms of H(x ) (according to Eqs. 3 - 5 ). Specifically, we use the pattern search optimiza-

tion procedure, which is intended for optimization problems in which the gradient of the objective is not defined. This 

is exactly the case for our problem, as the values of the model-implied moments can only be computed by simulation.

Davidon (1991) describes this specific procedure in more detail, and we stop the process once the value of the objective

function changes by less than 10 −6 across successive iterations. 

Our procedure is in practice a calibration, as we cannot be certain that the parameter values that we settle on are the

only ones that match the data. Nevertheless, in searching for the values that best match the moments that we target, we can

rule out several types of hazard functions. In the following sub-section we will explain how the moments that we target,

including the sign restrictions on the moment correlations, make it possible to set values for the parameters of the hazard

function. 

In Fig. 1 , we plot the three different (quadratic, logistic and non-parametric) hazard function estimates that best matches 

the moments we had set as targets as well as the distribution of price misalignment. 12 , 13 According to our estimate, there

is a significant probability of price adjustment ( 7% ) at a price gap of 0, which gives the hazard function a strong “Calvo

feature”. The same was true for the CalvoSs hazard function as we estimated in Section 3.5 , but the estimated probability of

zero was lower in that case (because a higher probability at 0 helps to match the non-negative correlation between inflation

and price change skewness). The function is also considerably asymmetric around 0: for a given absolute value of the price

gap, a price increase is considerably more likely to occur than a price decrease (the slope over the positive region is much

larger than over the negative region). For example, a desired price cut of 10% only has a 10% probability of occurring, while

a 10% price increase has a probability of over 20% in the quadratic hazard function. 
for the correlations between inflation and the different price change moments, we are more interested in matching the sign and the general magnitude. 

This is because we believe that it is the signs of the correlations that are informative about the price setting process, while the exact values are likely to 

be affected by variables that we do not consider in our framework. 
12 The estimated functions go with the following parameter values for the idiosyncratic shock process: 1) quadratic function with σε = 0 . 055 , p ε = 0 . 485 , 

2) non-parametric function with σε = 0 . 058 , p ε = 0 . 338 , 3) logit function with σε = 0 . 058 , p ε = 0 . 400 . 
13 Even though they are estimated with different specifications, the functions are quite similar. While there are some noticeable differences in the values 

over certain regions, this occurs at values of the price gap that have a very low probability density. As we will show, this means that the different functions 

will imply very similar degrees of monetary non-neutrality, which is high in all of them. 
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Table 3 

Empirical and simulated moments - full sample. 

Moment Data Quadratic Logistic Non-Parametric 

Avg. Frequency 0.107 0.107 0.108 0.103 

Avg. Frequency of Increases 0.076 0.066 0.068 0.067 

Avg. Frequency of Decreases 0.030 0.041 0.040 0.037 

Avg. Size 0.075 0.075 0.077 0.071 

Avg. Size of Increases 0.072 0.075 0.076 0.070 

Avg. Size of Decreases 0.079 0.076 0.080 0.072 

Fraction of Small Changes 0.132 0.125 0.130 0.153 

Avg. Dispersion (IQR) 0.099 0.122 0.116 0.108 

Dispersion of Increases 0.077 0.081 0.089 0.085 

Dispersion of Decreases 0.087 0.084 0.084 0.080 

Avg. Skewness –0.14 –0.24 –0.14 –0.23 

Corr(Frequency, π ) 0.70 0.91 0.82 0.90 

Corr(IQR, π ) –0.68 –0.91 –0.88 –0.89 

Corr(Skewness, π ) 0.36 0.16 0.31 0.21 

Fig. 2. Sub-sample estimates of the price adjustment hazard function. 

 

 

 

 

 

 

 

 

 

 

 

 

What is also striking about this function is that the probability of price adjustment stays relatively low even for large

desired price adjustments. Our specification allows for a steep hazard function, and even for discrete jumps in the probability 

of price adjustment, but the data rejects parameter values that yielded high probabilities of price adjustment for small or 

intermediate values of the price gap. It is also worth noting that because of the variance of the idiosyncratic shocks, the price

gap will lie between -0.2 and 0.2 in the vast majority of cases, and in this region the probability of price adjustment never

exceeds 0.4. This is in stark contrast to all menu cost models, under which the probability of adjustment rises to 1 very

quickly. For example, according to our estimate of the hazard function associated with the CalvoSs model, the thresholds 

of the adjustment probability being one are -0.09 and 0.044. As we will show, this feature of the estimate results from

the restriction that the correlation between inflation and price change skewness be non-negative. Furthermore, it leads the 

hazard function to imply a very high degree of monetary non-neutrality. 

Fig. 2 plots the hazard function estimates for the two sub-samples, 1977–1984 and 1985 onwards. Although price changes 

(especially price increases) were more frequent before the Great Moderation, the shape of the estimated hazard functions 

for the two sub-periods is quite similar. This is at least in part because the values of the moment correlations are also

similar. 

In summary, the main features of our estimated hazard function are therefore: 1) a significant probability of price ad- 

justment at 0 (there is no inaction region), 2) asymmetry around 0, making price cuts less likely than price increases, and

3) positive slope (implying some state-dependence), but small enough that the adjustment probability remains low in the 

region over which price gaps are concentrated. These results are consistent with the findings of Karadi et al. (2020) , who

estimate the price gap at the product level directly based on the prices of similar products. It is notable that while these

authors use different data and a different approach, they find a hazard function with the same features as the one that we

estimate. 

Table 3 presents the moments implied by the estimated hazard functions using the full sample. The three different 

estimates match almost all the moments very closely. The main shortcoming is in matching the large difference between 

the frequency of price increases and decreases. However, the estimates all imply a frequency of increases that is much larger

than the frequency of decreases. In the next subsection, we explain in more detail how the key parameters of the hazard

function are identified by different moments. 
9 
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Fig. 3. Effect of varying asymmetry and free price adjustment opportunity. 

 

 

 

 

 

 

 

As mentioned before, an advantage of using the hazard function to evaluate non-neutrality is that doing so does not 

require specifying the price setting constraints faced by firms, nor does it require solving for firms’ optimal decisions given 

those constraints. Once the empirical values required to estimate the function are known, it is a relatively simple procedure 

to carry out. One way that we exploit the simplicity of this procedure is by implement it for individual sectors. Nakamura

and Steinsson (2008, 2010) showed that the frequency of price change differs markedly across sectors, and it would not be

surprising if other aspects of the price setting process (captured by the shape of the hazard function) also differed across

sectors. We estimate sector-specific hazard functions by targeting the values of price change moments by sector. According 

to our results presented in Appendix C , different sectors have considerably different degrees of state dependence in pricing 

and of aggregate flexibility. 

3.4. Identification of key parameters 

As presented, the most important features of our estimated hazard function are a positive probability of free price 

changes, the asymmetry around zero and a small (but positive) slope on both sides. In this subsection, we explain how

the moments enable us to set values for the parameters of the hazard function, and why the hazard function must satisfy

the aforementioned properties in order to be consistent with the data. 14 We will focus on the flexible quadratic form of the

hazard function, as the parameters have a clear intuitive interpretation in that case. 

As the most important moment that distinguishes our estimation procedure from existing ones is the inflation-skewness 

correlation, we mainly focus on the discussion about function characteristics that deliver a positive inflation-skewness cor- 

relation. To disentangle the effect of asymmetry and positive probability of free adjustments from other features, consider a 

linear version of the quadratic hazard function (i.e. set b + = b − = 0 in Eq. 3 ). Fig. 3 plots the inflation-skewness correlation

under different parameter combinations. The first row illustrates the level of inflation-skewness correlation through color 
14 The value of the moments implied by a specific hazard function and idiosyncratic shock process (and how those values change with the parameters of 

the hazard function and shock process) can only be evaluated by simulation. It is therefore not possible to analytically derive the relationship between the 

moments and parameters. That is why, to illustrate how our approach is able to pin down the key parameters, we show here how the moments vary in 

simulations for different values of the parameters. 

10 
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plots, in which blue represents negative values and yellow represents positive values. The second row illustrates correspond- 

ing hazard functions of the parameter combinations in the first row, while fixing one x-variable or one y-variable (with the

color of the function again indicating the value it implies for the skewness correlation). 

In the first two columns of Fig. 3 , the probability at 0 ( p 0 ) varies along the x-axis, and the positive linear term ( a + )
varies along the y-axis. The negative linear term ( a −) is set to vary with a + in the first column, such that hazard functions

are symmetric. As illustrated in the figure, the inflation-skewness correlation rises as the linear terms fall or p 0 rises. It is

relatively difficult to generate a positive inflation-skewness correlation with symmetric hazard functions unless the adjust- 

ment policy has strong Calvo feature (i.e. the linear terms are very small). However, these features would, in turn, generate

a very low frequency of price change and a very large fraction of small price changes. In the second column, a − is fixed at

a constant value, -0.5, so that the slope of the hazard function is asymmetric. Here, an intermediate value of p 0 makes it

possible to match the non-negative correlation, as the non-negative region has been considerably expanded. This can also 

be seen in the last column, where a − is also allowed to vary (allowing for asymmetry) and p 0 is set at the value that we

estimate (0.069). Here, if a − is set to be small, a + can be quite high (making it easier to match the overall frequency of price

change) while maintaining a non-negative correlation. That is why our estimation procedure settles on an asymmetric haz- 

ard function with a positive probability of free price change. In addition, this is consistent with the fact that the frequency

of price increases is much larger than that of price decreases in the data. 

As presented in Appendix D , other patterns in addition to the frequency and size of price change respond to changes in

the hazard function parameter values and are important determinants of monetary non-neutrality, such as the fraction of 

small price changes and the inflation-frequency or inflation-dispersion correlations which provide information on the slope 

of the hazard function. For instance, a + raises the frequency of price increases, but a higher a + also decreases the average

size of price change (because the density of x is highest for relatively small values). Non-linear parameters, b + and b −, on

the other hand, raise the slope of the hazard function, but more so for larger values of x and affect the probability of large

price changes occurring; the inflation-skewness correlation is quite sensitive to them. Finally, the patterns for c + and c −

show that the skewness correlation is negative whenever these parameters are set to small or intermediate values (less 

than 0.15 in absolute value). This means that the probability of price adjustment cannot rise sharply for low values of the

price gap (as it does in menu cost models) to be consistent with the data. 

This analysis has shown how the different parameters of the hazard function can be identified from the moments that we

use. In particular, matching the fact that the inflation-skewness correlation is non-negative, while simultaneously matching 

the empirical value of the frequency and size of price change, places strong restrictions on the slope of the hazard function,

and on how high the probability of price adjustment can be for small and intermediate values of the desired price gap. These

restrictions are such that the slope of the hazard function cannot be too high, and that there cannot be a large jump in the

hazard function for relatively small values of the price gap (as in menu cost models). Finally, it is worth noting that these

restrictions can only be inferred using the information from the inflation-skewness correlation. Conversely, disregarding the 

inflation-skewness correlation, and focusing only on unconditional moments (like the average frequency or average size of 

price change) would mean that a much larger range of hazard function slopes could be consistent with those moments. 

That can be seen, for example, in the fact CalvoSs or quadratic Caballero and Engel style hazard functions can match many

of these unconditional moments, and yet imply much higher slopes than our estimated hazard function. The ability to use 

the inflation-skewness correlation to rule out hazard functions with a large slope is, we believe, a significant advantage of 

our estimation approach, relative to those that estimate a hazard function for each time period and thus cannot use the

correlation of moments across time (such as Berger and Vavra, 2018; Petrella et al., 2018 ). Of course, our approach has the

disadvantage of not being implementable period by period. 

In Appendix E , we present two hazard functions with different shapes and different im plications for non-neutrality that 

match the same set of static moments for a particular time period. This illustrates how the static moments alone may not

be sufficient to pin down the key features of the hazard function. 

3.5. A Hazard Function approach to existing models 

To illustrate the connection between the hazard function and sticky price models, we take the hazard function ap- 

proach to five existing models, namely Calvo, menu cost, the CalvoSS or CalvoPlus model of Nakamura and Steinsson (2010) ,

Woodford (2009) and Caballero and Engel (2006) . Detailed discussions on these estimates are provided in Appendix A . 

Fig. 4 illustrates the hazard functions estimated. Table 4 reports selected price change moments from the simulations 

under these estimates. The complete simulation results of the targeted moments of each model are listed in Appendix 

Tables 7 –11 . As the results make clear, these hazard functions are quite successful at matching the targeted unconditional

moments, which have been the focus of most of the literature on sticky prices until now. Indeed, they can all exactly

match the overall frequency and absolute value of price changes, and it is mostly in matching the averages decomposed 

into increases and decreases that there are marginal differences between the hazard functions (as well as the fraction of 

small price changes). In addition, all the hazard functions (except for the constant function corresponding to Calvo price 

setting) feature a very high degree of state-dependence, which can be seen in the large slope of the hazard functions for

small values of the price gap. However, following our findings in Luo and Villar (2020) , the correlations between inflation

and various price change statistics show striking differences between some of the hazard functions. 
11 
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Fig. 4. Existing model hazard functions. 

Table 4 

Moments for existing model hazard functions. 

Avg. Freq Size Corr(Frequency, π ) Corr(IQR, π ) Corr(Skewness, π ) 

Calvo 0.107 0.074 0.03 0.49 0.61 

Golosov & Lucas 0.108 0.070 0.85 –0.77 –0.99 

CalvoSs 0.106 0.074 0.88 –0.94 –0.98 

Woodford 0.104 0.152 0.17 –0.11 –0.29 

Caballero & Engel 0.107 0.077 0.95 –0.92 –0.99 

Data 0.107 0.075 0.70 –0.68 0.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This general insight has already been known before our results. Indeed, a common criticism of the Calvo model is the

assumption that firms are randomly assigned the opportunity to change their price, with a constant probability of price ad- 

justment. While the Calvo model can easily match the frequency of price change, and even the average size of price changes

(once the model is augmented with idiosyncratic shocks, as we have done), it was understood that a simple way to reject

this assumption would be to show that the frequency of price change rises with inflation. This has indeed been shown by

Gagnon (2009) and Alvarez et al. (2019) , among others. In this way, the implications of models at different rates of inflation

can provide important information about how they work and how plausible the assumptions underlying them are. The result 

on the frequency-inflation correlation has, on its own, indicated the general class of menu cost models by highlighting the 

necessity for state-dependence. However, we show that by looking at the higher moments of the price change distribution, 

in particular the skewness, we can find important information on how much state-dependence is realistic. 

One point related to the derivation of the correlations bears clarifying. These correlations are based on the period-by- 

period variations in inflation and price change moments in the simulations. The variations are the result of the shock ηt to

the aggregate component m t , and all occur with the trend in the aggregate component μ held constant. That is why we

think of these as short-run variations in inflation induced by temporary shocks around a stable trend. This is the simplest

way to evaluate the relationship between inflation and the price change moments. However, we verify that these relation- 

ships are qualitatively the same if, instead of comparing different periods within the same inflation regime (with constant 

μ), we instead compare the values of the price change moments across different inflation regimes. We implement the latter 

by running simulations under different values of μ (in each case, simulating the economy for many firms and periods). 

Under this analysis, it is again true that the dispersion and skewness of price change are lower in simulations with higher

values of μ under the menu cost and CalvoSs hazard functions. That is, the hazard functions implied by menu cost models

also imply that price change skewness and dispersion will be on average lower in periods of high average inflation. There-

fore, whether the variations in inflation in the data are driven by short-run fluctuations or different regimes (with the latter

seeming very likely when comparing the period before and after the Great Moderation), the fact that we observe a positive

inflation-skewness correlation allows us to rule out the menu-cost based hazard functions. 

None of the hazard functions (presented in Table 4 ) are able to match all three correlations. In particular, while the

menu cost hazard functions match the positive frequency correlation and the negative dispersion correlation, they imply 

a counter-factual skewness correlation. As we explain in Luo and Villar (2020) , this has to do with the fact that, in these
12 
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Table 5 

Monetary non-neutrality. 

Hazard Function Var(c t ) × 10 4 

Calvo 0.557 

Non-Parametric 0.349 

Logistic 0.356 

Flexible Quadratic 0.327 

CalvoSs 0.195 

Caballero & Engel 0.176 

Golosov & Lucas 0.064 

Table 6 

Inflation decomposition following Caballero and Engel (2007) . 

Flexibility Index Frequency Extensive margin 

�p 
′ 
t (�m = 0) 

∫ 
H(x ) f t (x ) dx 

∫ 
xH ′ (x ) f t (x ) dx 

Calvo 0.107 0.107 0 

Flexible Quadratic 0.156 0.104 0.052 

CalvoSs 0.300 0.109 0.191 

Caballero & Engel 0.335 0.106 0.229 

Golosov & Lucas 0.432 0.106 0.327 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

models, prices adjust with certainty once they reach a threshold for the mis-alignment. This is a natural consequence of 

a menu cost, as there will always be a point beyond which it is worth paying the fixed menu cost to adjust a price. This

means that as the average of the desired price change distribution rises, a big share of the mass of realized price changes

concentrate right beyond the edges of the positive adjustment threshold, inducing more negative skewness. The negative 

inflation-skewness correlation predicted is not supported by the data. The Calvo model does not feature this kind of effect, 

as the hazard function implied by it is flat. While this allows it to match the right sign of the skewness correlation, it fails

(by assumption) to match the fact that the frequency rises with inflation. 

4. Monetary non-neutrality and aggregate flexibility 

The degree of monetary non-neutrality, or aggregate flexibility, can be computed given a hazard function and parameters 

for the shock processes. The first measure of non-neutrality that we present is the variance (across time) of log real con-

sumption, where log real consumption is defined as c t = m t − p t 
15 The aggregate component of the desired price, m t , simply

follows the random walk process described above, and the aggregate price level is solved for using the hazard function. This

is the measure for monetary non-neutrality (the inverse of aggregate flexibility) most commonly used in the sticky price 

literature (e.g. Golosov and Lucas, 2007; Midrigan, 2011; Nakamura and Steinsson, 2010 ), as it measures the variation in real

activity induced by aggregate nominal shocks. With full price flexibility, real activity should not vary as prices would re- 

spond one-for-one to aggregate shocks. In the hazard function framework, that would be the case if the probability of price

adjustment was always 1. In Table 5 , we present the results for the Calvo and menu cost hazard functions, the asymmetric

quadratic hazard function based on Caballero and Engel (2006) as well as our estimates. 

The degree of monetary non-neutrality implied by our estimated hazard function is relatively high: it is considerably 

higher than those based on menu cost models, and it is about 60% as that of the Calvo hazard function. These results are

generally in line with our findings in Luo and Villar (2020) , which showed that the non-neutrality predicted by the random

menu cost model was also between that in the Calvo and Midrigan models. Our results here reiterate the fact that taking

into account how the shape of the price change distribution varies with inflation provides evidence in favor of greater 

non-neutrality than would be expected by simply looking at unconditional moments. 

One way to make sense of the stark difference in non-neutrality between the Ss-type hazard functions and the ones 

that we estimate is to consider a decomposition of inflation into different margins of adjustment. First, following Eq. 2 , the

inflation response to an aggregate nominal shock can be decomposed into the frequency of price change and the extensive 

margin as presented by Caballero and Engel (2007) . Table 6 presents the decomposition result for our estimated standard

menu cost and quadratic hazard functions to illustrate how the margins of adjustment operate under these different hazard 

functions. Our quadratic hazard function framework features only around a third of the price flexibility that the menu cost 

model features, and it is the extensive margin that accounts for the difference. This result helps make sense of the results

in Table 5 . The extensive margin term is relatively small under our estimated function, because this hazard functions are

relatively flat (with a small H 

′ (x ) ) at the imbalances that have the most density (which are mostly those such that | x | ≤ 0 . 1 ).

In contrast, the “Ss” type hazard functions feature a very large increase in the price adjustment probability at smaller values 

of x , for which there is a high density, giving them a very strong extensive margin effect. This is why monetary non-
15 This would be consistent with thinking about m t as the money supply, or as nominal aggregate demand. 
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Fig. 5. Inflation decomposition following Costain and Nakov (2011) . 
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neutrality is high under the estimated hazard functions, and this result comes from the features of the hazard function that

are captured by our estimation. 

Second, Costain and Nakov (2011) , in a general price adjustment framework, present a decomposition of inflation into an 

intensive margin (changes in the average desired price change), an extensive margin (changes in the overall probability of 

price adjustment), and a selection effect (changes in who adjusts) 16 . The decomposition is shown in the equation below: 

�πt = h̄ t �x̄ t ︸ ︷︷ ︸ 
intensi v e 

+ x̄ �h̄ t ︸ ︷︷ ︸ 
extensi v e 

+ �
∑ 

i 

x it (h it − h̄ t ) f it ︸ ︷︷ ︸ 
selection 

, 

where h̄ t = 

∑ 

i h it f it , and x̄ t = 

∑ 

i x it f it . The � operator denotes deviations from steady-state, and h it and f it are firm i ’s adjust-

ment probability and probability mass in period t, respectively. Again, we implement this decomposition for our estimated 

menu cost model and quadratic hazard functions. Fig. 5 shows the response of each margin to an aggregate shock under the

different hazard functions that we estimate; note that the sum of the margin responses would add up to the response of

inflation. A few things stand out. First, the extensive margin is negligible in both cases, while both hazard functions feature

a moderate intensive margin. 17 However, while the Ss hazard function induces a very strong selection effect, this margin is 

small under the quadratic hazard function. The strong selection effect gives the Ss function such a high inflation response, 

and such a low level of monetary non-neutrality. In contrast, under the quadratic hazard function there is little selection, as

a large share of price gaps face very similar probabilities of price adjustment (the flat portion of the hazard function). As a

result, the response of inflation in this case is much more muted, and non-neutrality is high. Note also that the results of

this decomposition are qualitatively similar to those found by Costain and Nakov (2011) , both for their menu cost and more

general “smoothly state-dependent pricing” model. 

Finally, the asymmetry of our estimated hazard functions suggests a possible asymmetry in aggregate inflation dynamics. 

We investigate this by estimating the response of inflation to positive and negative aggregate shocks separately. Fig. 6 shows

the cumulative response of the price level over the twelve months following an aggregate shock. Almost 90 percent of the
16 Note that here, the extensive margin and selection effects combined roughly correspond to the extensive margin in the Caballero and En- 

gel (2007) framework 
17 Notice that the extensive margin defined by Costain and Nakov (2011) is different from that by Caballero and Engel (2007) . 
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positive shock passes through to the price level within a year, while only around 80 percent of a negative shock of the

same magnitude passes. In short, the price level response to a positive aggregate shock is about 10 percent larger than the

response to a negative shock. 

The simplicity of our aggregate shock process limits what we can conclude about broader implications for business cycle 

dynamics and the effectiveness of monetary policy. However, the implications of these results are potentially very significant. 

Indeed, asymmetry in the price adjustment hazard function could blunt the effectiveness of stimulative monetary policy, and 

could mean that deflation is generally less likely to occur. Furthermore, the causes for this asymmetry could similarly be 

important, whether those have to do with firms belief in stable, positive trend inflation, or with informational frictions of 

some kind. We believe that both the causes and implications of this asymmetry for macro dynamics and policy are worthy

of further study in future research. 

5. Conclusion 

As has been shown by Caballero and Engel (2007) , the shape of the price adjustment hazard function is closely related to,

and provides important information on, the degree of aggregate flexibility (or monetary non-neutrality) implied by micro- 

level price stickiness. While the question of the significance of monetary non-neutrality has been extensively studied using 

sticky price models, less attention has been paid to the hazard function approach to this question. This may be in part

due to the fact that, since it is not grounded in optimizing firm-level behavior, there are very few restrictions that can be

placed on the shape of the hazard function a priori. Furthermore, while Caballero and Engel (2007) have derived the exact

relationship between the hazard function and aggregate flexibility, they did not consider what empirical patterns could be 

used to discipline the key features of the hazard function. In this paper, we have attempted to fill this gap, by showing

which moments can be used to estimate this function. In particular, we have emphasized that the relationship between 

inflation and the shape of the price change distribution provides a great amount of information on what shape the hazard

function can take, and how much aggregate flexibility it can realistically imply. 

We have found that while “Ss” type hazard functions (featuring an inaction region, and a threshold beyond which desired 

price changes occur with certainty) can successfully match statistics related to the average frequency and size of price 

changes, they imply a very strong, and counter-factual, negative relationship between inflation and price change skewness. 

Starting from a very general form for the hazard function, we find one that is able to match both the average size and

frequency moments, and the correlations with inflation. In order to match the correlations, and the non-negative inflation- 

skewness correlation in particular, the hazard function has to include three important properties. First, the probability of a 

price adjustment at a price imbalance of zero must be positive. Second, even for relatively large price imbalances (of up to

20%), the probability of price adjustment must be considerably lower than 50%. Put differently, this means that the threshold 

beyond which price changes are very likely is high. Finally, and importantly, price increases are overall somewhat more likely 

than price decreases, for an equal size of the price imbalance. The first two properties, in particular, imply that aggregate

flexibility is relatively low, and much lower than what would be predicted by “Ss” type hazard functions. The third property 

(asymmetry) implies that the price level responds more flexibly to expansionary aggregate shocks than to contractionary 

ones. This could have further implications for the effectiveness of monetary policy and for inflation dynamics, implications 

that we believe merit further study. 

The main contribution of this paper has been to provide a new estimate for the price adjustment hazard function using

a richer set of data and empirical moments than in Caballero and Engel (2006) , yielding different results on aggregate flex-

ibility. While the hazard function framework that we have been working under is very flexible, there are several variations 

to our estimation procedure that we could attempt. Indeed, a richer set of processes for the idiosyncratic shocks could be

considered, as it would be helpful to know how sensitive the hazard function estimates are to changes in the shock process.

Specifically, we have shown that the skewness of the price change distribution can provide important information on what 

shape the hazard function should take, so it would make sense to work with asymmetric distribution of the desired price

change distribution to see what that could mean for the results. Finally, one could also derive the hazard functions implied

by other sticky price models (in particular imperfect information models other than the rational inattention model) that 

have been proposed, and use these to empirically evaluate the models. 

Declaration of Competing Interest 

None. 

Appendix A. Estimated hazard function of existing models 

The simplest sticky price model is the Calvo model, which yields a constant hazard function. The only parameter of 

the hazard function that needs to be set is the adjustment probability. This can simply be set equal to the overall price

adjustment frequency, which in our data is 0.107. While this fully describes the hazard function, the shock parameters must 

also be specified. We set the aggregate shock process to have a drift parameter ( μ) of 0.002 and a standard deviation of

0.0037 (to match the time series properties of U.S. nominal GDP). We assume the idiosyncratic component follows an AR(1) 

process: z it = ρz i,t−1 + εit with εit ∼ N (0 , σ 2 
ε ) . There is no clear reference to calibrate the parameters of the idiosyncratic
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Table 7 

Calvo hazard function. 

Parameter Value Moments 

p z 0.107 Avg. frequency 0.107 

σε 0.055 Avg. absolute price change 0.074 

ρ 0.6 

Table 8 

Ss hazard function. 

Parameter Value Moments 

L(lower bound) –0.0827 Avg. frequency of increases 0.077 

U(upper bound) 0.0485 Avg. frequency of decreases 0.032 

σε 0.028 Avg. size of increases 0.07 

ρ 0.7 Avg. size of decreases 0.1 

Avg. frequency 0.108 

Avg. absolute price change 0.07 

Table 9 

CalvoSs hazard function. 

Parameter Value Moments 

L (left bound) –0.09 Avg. frequency 0.106 

U (right bound) 0.044 Avg. absolute price change 0.074 

p z 0.037 Fraction of small changes 0.128 

p ε 0.15 Avg. frequency of increases 0.075 

σε 0.071 Avg. frequency of decreases 0.032 

ρ 0.7 Avg. size of increases 0.067 

Avg. size of decreases 0.093 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shock process (the persistence ρ , and the standard deviation σε ), so we set them to match the average size of price changes

and the ratio between price increases and decreases. The size of price changes, in particular, is largely determined by σε . In

Table 7 , we show the parameter values for the Calvo hazard function, and the moments that they imply. This hazard function

can easily match the overall frequency of price change, and the average absolute value of all price changes. However, when

the frequency and average size are decomposed into increases and decreases, the match is no longer as good. 

We next consider the hazard function corresponding to the Golosov and Lucas menu cost model, featuring an inaction 

region. The parameters to estimate here are the bounds of the inaction region (L and U), and again the idiosyncratic shock

parameters. Table 8 shows the parameters we set, and the moments obtained. This hazard function matches the overall 

frequency and average size of all increases quite closely. The frequency and size of price decreases are slightly too high, but

the fact that price increases are considerably more frequent and slightly smaller on average is captured. Note that in order

to achieve this, the inaction region is very asymmetric around zero, which is also a common feature in the solution to menu

cost models. 

We also present the CalvoSs hazard function. This function has one additional parameter relative to the previous one, 

as the function features a positive probability of price adjustment for small price imbalances, which will lead the model 

to predict the occurrence of small price changes. Another extension introduced in Midrigan (2011) ’s model is that the id-

iosyncratic variable (firm productivity, in the model) follows a Poisson process. We follow this assumption and impose that 

the idiosyncratic component follows Eq. 1 . This extension allows the model to match the fact that the distribution of price

changes in the data has fat tails, and extending the hazard function set-up in this way has the same effect. This also adds

one parameter to set: the probability of a shock occurring ( p ε ). Table 9 shows the parameter values resulting from our

calibration, and the implied moments. 

This hazard function matches the frequency of price increases and decreases quite closely, and the fraction of price 

changes that are small (less than 1% in absolute value). In order to achieve this, the bounds beyond which price changes

are certain to occur are asymmetric around zero. The difference between the average size of price increases and decrease 

is again larger than in the data, but the average size of all price changes is as in the data. In addition, the kurtosis of price

changes (around 4 on average) is closer to the empirical value than the Golosov and Lucas simulations. 

Next, we consider the hazard function corresponding to the rational inattention model by Woodford (2009) . An infinite 

cost of information corresponds to a Calvo-like hazard function, while free information leads to a trough-shaped one, as 

in the standard menu cost model. 18 Intermediate values for the cost of information yield smooth functions increasing in 

the absolute value of the price imbalance, as illustrated in Fig. 7 . It is also noteworthy that these functions are asymmetric
18 Firms must also pay a fixed cost to conducting price reviews, which means that even when processing information is free, they will not change prices 

every period, and there will be an inaction region. 

16 



S. Luo and D. Villar Journal of Economic Dynamics & Control 130 (2021) 104135 

Fig. 7. Rational inattention hazard functions. 

Table 10 

Woodford hazard function. 

Parameter Value Moments 

Information cost θ 1 Avg. frequency 0.104 

Menu cost κ 0.6 Avg. absolute price change 0.152 

σε 0.07 Fraction of small changes 0.04 

Table 11 

Caballero-engel hazard function. 

Parameter Value Moments 

λn 10.2 Avg. frequency 0.107 

λp 131.5 Avg. absolute price change 0.077 

σε 0.065 Avg. frequency of increases 0.077 

ρ 0.7 Avg. frequency of decreases 0.03 

Avg. size of increases 0.07 

Avg. size of decreases 0.10 

 

 

 

 

 

 

 

 

around zero, so that for a given size of the price imbalance, a price increase is more likely than a decrease. In this model,

this is due to the asymmetry of the profit function, which makes it more costly to the firm to have its price be too low. This

is consistent with the hazard function estimated by Caballero and Engel (2006) . 

The parameters to estimate are the menu cost variable κ , a cost per unit of information θ and the standard deviation

of the idiosyncratic shock σε (with the idiosyncratic component follows a random walk as in Woodford, 2009 )). Table 10

shows the estimated parameters and the moments obtained. While the overall frequency of price change is matched quite 

closely, the moments related to the size of price changes are not. 

Finally, we re-visit the hazard function estimate of Caballero and Engel (2006) . Their approach was to use the frequency

and average size of price increases and decreases to estimate a simple asymmetric, quadratic hazard function: 

H(x ) CE = 

{
λn x 

2 , if x ≤ 0 

λp x 
2 , if x > 0 

. 

This form of the hazard function is estimated using the relevant moments from Table 2 . The empirical values are slightly

different than in their paper because our sample periods are different from theirs. The sumulation results are presented in 

Table 11 . As the previous hazard functions, this one is reasonably successful in matching the frequency and size statistics. It

is clear that the function has to be very strongly asymmetric around zero (with price increases being more likely) in order

to match the considerably higher fraction of price increases. Caballero and Engel (2006) had obtained similar results with 

their original estimate. 
17 
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Appendix B. Estimated hazard function when ρ = 1 and ρ = 0 

In this section, we plot estimates of the hazard functions when ρ deviates from the level in our benchmark analysis. First,

we set ρ = 1 , thus the change of the idiosyncratic component follows a random walk, which is an assumption imposed by

Berger and Vavra (2018) . Figs. 8 panel (a) presents the full sample estimates. In addition, we estimate the hazard functions

at another extreme case with ρ = 0 as presented in Figs. 8 panel (b). Simulated moments are presented in Tables 12 - 13 . 
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Fig. 8. All estimates of the price adjustment hazard function with ρ = 1 and ρ = 0 . 

Table 12 

Empirical and simulated moments - full sample, ρ = 1 . 

Moment Data Quadratic Logistic Non-Parametric 

Avg. Frequency 0.107 0.102 0.105 0.100 

Avg. Frequency of Increases 0.076 0.062 0.068 0.063 

Avg. Frequency of Decreases 0.030 0.040 0.037 0.037 

Avg. Size 0.075 0.084 0.083 0.077 

Avg. Size of Increases 0.072 0.086 0.079 0.077 

Avg. Size of Decreases 0.079 0.082 0.091 0.077 

Fraction of Small Changes 0.132 0.147 0.154 0.168 

Avg. Dispersion (IQR) 0.099 0.125 0.122 0.112 

Dispersion of Increases 0.077 0.105 0.099 0.100 

Dispersion of Decreases 0.087 0.095 0.099 0.089 

Avg. Skewness –0.14 –0.13 –0.19 –0.16 

Corr(Frequency, π ) 0.70 0.693 0.790 0.818 

Corr(IQR, π ) –0.68 –0.347 –0.867 –0.666 

Corr(Skewness, π ) 0.36 0.259 0.300 0.242 

Table 13 

Empirical and simulated moments - full sample, ρ = 0 . 

Moment Data Quadratic Logistic Non-Parametric 

Avg. Frequency 0.107 0.102 0.097 0.099 

Avg. Frequency of Increases 0.076 0.063 0.068 0.062 

Avg. Frequency of Decreases 0.030 0.038 0.030 0.038 

Avg. Size 0.075 0.072 0.069 0.073 

Avg. Size of Increases 0.072 0.074 0.064 0.075 

Avg. Size of Decreases 0.079 0.068 0.078 0.069 

Fraction of Small Changes 0.132 0.136 0.172 0.139 

Avg. Dispersion (IQR) 0.099 0.112 0.097 0.115 

Dispersion of Increases 0.077 0.083 0.084 0.086 

Dispersion of Decreases 0.087 0.074 0.082 0.077 

Avg. Skewness –0.14 –0.155 –0.236 –0.142 

Corr(Frequency, π ) 0.70 0.845 0.872 0.810 

Corr(IQR, π ) –0.68 –0.619 –0.863 –0.643 

Corr(Skewness, π ) 0.36 0.265 0.145 0.312 
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Table 14 

Empirical and simulated moments - specific sectors (Non-parametric). 

Proc Food UnProc Food House Furn Services 

data fitted data fitted data fitted data fitted 

Avg. Frequency 0.119 0.114 0.287 0.257 0.075 0.074 0.070 0.063 

Avg. Frequency of Increases 0.081 0.068 0.170 0.139 0.052 0.050 0.055 0.049 

Avg. Frequency of Decreases 0.037 0.046 0.111 0.118 0.022 0.024 0.011 0.014 

Avg. Size 0.107 0.106 0.123 0.145 0.088 0.087 0.072 0.063 

Avg. Size of Increases 0.099 0.104 0.119 0.142 0.082 0.087 0.071 0.060 

Avg. Size of Decreases 0.124 0.109 0.127 0.149 0.095 0.08 0.072 0.075 

Fraction of Small Changes 0.027 0.029 0.017 0.016 0.097 0.091 0.146 0.167 

Avg. Dispersion (IQR) 0.126 0.185 0.250 0.259 0.119 0.128 0.069 0.060 

Avg. Dispersion of Increases 0.075 0.084 0.163 0.108 0.085 0.086 0.068 0.068 

Avg. Dispersion of Decreases 0.101 0.092 0.178 0.111 0.115 0.098 0.061 0.086 

Avg. Skewness –0.309 –0.312 –0.169 –0.133 –0.366 –0.414 0.062 0.057 

Corr(Frequency, π ) 0.80 0.808 0.700 0.581 0.72 0.935 0.59 0.952 

Corr(IQR, π ) –0.69 –0.911 –0.46 –0.617 –0.73 –0.940 0.45 0.360 

Corr(Skewness, π ) –0.33 –0.545 –0.2 –0.7735 0.01 0.122 0.46 0.358 

-0.5 0 0.5
0

0.5

1

H
(x

)

Processed Food

-0.5 0 0.5
0

0.5

1
Unprocessed Food

-0.5 0 0.5
0

0.5

1
Household Furniture

-0.5 0 0.5
0

0.5

1
Service

Fig. 9. Sector-specific hazard functions (non-parametric). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C. Hazard function of specific sectors 

In this section, we present the estimated hazard function of four sectors: 1) Processed Food, 2) Unprocessed Food, 3) 

Household Furnishings and 4) Services. As presented in Nakamura and Steinsson (2008, 2010) and Luo and Villar (2020) ,

there is significant heterogeneity of price change statistics across sectors. Given the heterogeneity in various moments of 

price change distribution across sectors, it is important to estimate and compare hazard functions of various sectors. Table 14

presents the empirical as well as simulated moments of the four sectors. Fig. 9 plots the estimated hazard functions corre-

spondingly. 

Based on the data and the fitted hazard function, it is clear that price adjustment in the food sectors is more flexible

than in the household furnishings or service sectors. This is true in the sense that the frequency of price change is higher

in the food sectors (as already shown by Nakamura and Steinsson, 2008 ). However, we find that this is also true in terms

of the degree of state-dependence, and of the role of the extensive margin in price setting. Indeed, the hazard functions for

the food sectors have steeper slopes for small values of the price imbalance, and resemble the hazard functions associated 

with menu cost models. In contrast, the hazard function for services, in particular, is very flat for negative values of the

price imbalance. As in the analysis that we have presented so far, the differences in the shape of the hazard functions are

inferred from the different signs of the moment correlations across the sectors. 

Appendix D. Key parameters 

In this section, we focus on the effects of varying parameters of the flexible quadratic form of the hazard function. 

Fig. 10 shows how various moments change when the value of a pos (the linear term in the hazard function for the

positive region) varies from 0 to 2. The other parameters of the hazard function are held constant at the values recovered

from the estimation. 

The patterns displayed are intuitive. A larger a pos raises the probability of price adjustment of price adjustment for pos- 

itive values of x, which raises the frequency of price increases (and of overall price changes). However, a higher a pos also

raises the slope of the hazard function, leading to a stronger selection effect (the extent to which larger price imbalances

have a higher probability of adjustment is greater). That is why a smaller share of price changes are smaller than 1% in

absolute value. However, the average size of price changes falls because the density of price gaps (x) is highest for rela-

tively small values. This means that as a pos rises, there are proportionally more small and intermediate price changes (and
19 
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larger than 1% in absolute value). Finally, a greater slope clearly lowers both the dispersion and skewness correlations. For 

the dispersion correlation, the effect is greatest at relatively small values for the slope parameter (the correlation becomes 

almost perfectly negative at around a pos = 1 ), while for the skewness correlation the effect is quite consistent throughout

the region considered. 

In Fig. 11 , the same patterns can generally be seen for the slope of the hazard function in the negative region ( a neg ). As

the absolute value of a neg rises, the frequency of price change and decreases rise, while the fraction of small price changes

falls. In addition, the skewness correlation falls sharply, and only very small values of a neg are consistent with a non-negative

correlation. 

Fig. 12 below shows the patterns for the parameter setting the probability of price adjustment at 0 ( p 0 ). As expected,

the frequency of price change and fraction of small price changes rise with p 0 , while the average size of price changes

falls. There is also a very strong positive relationship with the skewness correlation, indicating that p 0 must be above 0.05

to attain a positive correlation as in the data. The relation with the dispersion correlation is less clear, and this correlation

remains significantly negative for all values of p 0 . 

Fig. 13 focuses on the effect of varying the quadratic coefficient b pos in the positive region. The relations here are less

clear as they are in the previous figures, but it can still be seen that the frequency of price change rises, and that the size

of price change and the moment correlations fall as b pos rises. This parameter raises the slope of the hazard function, but

more so for larger values of x . Since the density of x is concentrated around relatively small values of x , b pos does not have

such a strong effect on most observable moments. However, since it affects the probability of large price changes occurring, 

the skewness correlation is quite sensitive to it. 

Fig. 14 presents the effect of varying the quadratic coefficient b neg . These patterns come out somewhat more clearly than

those for b pos . That is because the linear parameter for the negative region ( a neg ) is set to be close to zero (a value that we

estimate), so raising b neg makes a greater difference to the slope of the hazard function in the negative region. 

The final set of parameters to consider are the thresholds at which the probability of price adjustment jumps to 1

( c pos & c neg ). Fig. 15 shows the results for the positive threshold. What stands out is the fact that most moments are fairly

constant until the value of c pos reaches 10–20%, after which there are sharp movements. This is again due to the fact that

the values of the price gap are concentrated below these values. As expected, the frequency of price change rises sharply

once the threshold goes below 15%, and the skewness correlation becomes sharply negative. The patterns for the negative 

threshold ( c negati v e presented in Fig. 16 ) are generally the same. 
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Fig. 12. Effect of varying p 0 . 

Fig. 13. Effect of varying b pos . 
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Fig. 14. Effect of varying b neg . 
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Fig. 15. Effect of varying c pos . 
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Fig. 16. Effect of varying c neg . 

 

 

 

 

 

 

 

Appendix E. The value of using moment correlations 

As discussed in Section 3 , using the inflation-skewness correlation as a target moment in the estimation provides consid- 

erable information on the shape of the hazard function. Using this moment in the estimation prevents us from estimating 

a hazard function for each time period, as is done by Berger and Vavra (2018) and Petrella et al. (2018) , as we cannot

estimate the value of the correlation period by period. In this appendix, we illustrate an important benefit of using the

inflation-skewness correlation, namely that it allows us to discriminate between different hazard functions that would ap- 

pear plausible in a generic period if we only relied on other moments. 

We estimate two different types of hazard function: a flexible quadratic function as in Eq. 3 , and a CalvoSS-type function

that features a discrete jump in the probability of adjustment beyond an inaction region. These two functions are estimated 

using the same set of target moments from one particular period in our sample, 1984Q2, because values for the selected mo-

ments in this period were broadly similar to those of the average over time. The moments used are: the average frequency

of price change, the frequency of price increases, frequency of price decreases, average absolute value of price changes, and 

the average (over time) inter-quantile range and skewness of price changes. These moments are similar to the ones used by

Berger and Vavra (2018) and Petrella et al. (2018) . Values in the data and the values implied by the two different hazard
functions are shown in Table 15 . 

Table 15 

1984Q2 moments. 

Moment Data Quadratic CalvoSS 

Targeted moments 

Avg. Frequency 9.2% 9.0% 8.9% 

Avg. Dispersion (IQR) 0.077 0.080 0.075 

Avg. Skewness –0.15 –0.15 –0.12 

Avg. Size 7.2 7.1% 7.3% 

Avg. Frequency of Increases 6.5% 6.4% 6.2% 

Avg. Frequency of Decreases 2.3% 2.6% 2.6% 

Untargeted moment 

Corr(Skewness, π ) 0.36 0.10 –0.88% 
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Fig. 17. Alternative hazard functions for 1984Q2. 

Table 16 

Monetary non-neutrality for 1984Q2 

hazard functions. 

Hazard Function Var(c t ) × 10 4 

Quadratic 0.420 

CalvoSS 0.332 

 

 

 

 

 

 

 

 

 

 

The two hazard functions estimated with these target moments are shown in Fig. 17 . Although the two hazard functions

match the same static moments and have similar values for small price gaps, the probability of price adjustment according 

to the CalvoSS-type function rises rapidly for smaller values of the price gap. As a consequence, the CalvoSS function implies

a negative inflation-skewness correlation, while the flexible quadratic function implies a flat inflation-skewness correlation. 

All of this is consistent with the logic laid out at the end of Section 3 that a flat or non-negative inflation-skewness correla-

tion is not consistent with a hazard function with rapidly increasing probability of price adjustment for small values of the

price gap. 

This exercise illustrates how not considering the inflation-skewness correlation can result in different estimates for 

the hazard function. This is quantitatively important, because these functions imply different degrees of monetary non- 

neutrality, as suggested by the difference in their shape. The values of non-neutrality implied by each function are shown 

in Table 16 . Although these differences are not as large as those between the different types of hazard functions shown in

our main results ( Table 5 ), the differences are still substantial. 
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