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Environmental vs. demographic variability in two-species predator-prey models
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We investigate the competing effects and relative importance of intrinsic demographic and envi-
ronmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model
by means of Monte Carlo simulations on a two-dimensional lattice. Individuals are assigned inher-
itable predation efficiencies; quenched randomness in the spatially varying reaction rates serves as
environmental noise. We find that environmental variability enhances the population densities of
both predators and prey while demographic variability leads to essentially neutral optimization.

PACS numbers: 87.23.Cc, 05.40.-a, 87.18.Tt

The mathematical modeling of species interactions
continues to be a central issue in population ecology [1–4].
Several simple models have been proposed, investigated,
and sometimes realized under laboratory conditions. Yet
more realistic and thus biologically more relevant model
variants obviously have to include both external spatial
disorder in the reaction rates to account for varying envi-
ronmental conditions and intrinsic demographic hetero-
geneity stemming from trait variability in individuals.
While we addressed the former in a recent study [5], our
goal in this letter is to investigate the interplay between
quenched spatial rate disorder and additional variability
of individuals’ reaction rates, as well as intriguing evolu-
tionary co-optimization within interacting populations.

We focus on the Lotka-Volterra (LV) predator-prey
model owing to its simplicity and because its basic fea-
tures are well-understood. It was first introduced to
study fish populations in the Adriatic sea and chemi-
cal oscillations [6, 7]. While the original deterministic
LV (mean-field) equations yield neutral cycles and hence
persistent nonlinear oscillations around a marginal fixed
point [1], in stochastic implementations this species co-
existence fixed point becomes stable and is approached
very slowly through damped oscillations [8–14]. Spatially
extended stochastic versions of the LV model yield strik-
ing dynamical patterns and emergent inter-species cor-
relations [15–21] which may be utilized to quantitatively
assess the response to external or internal changes. Pop-
ulation stability can be measured via the extinction time
in small systems, where the stochastic kinetics ultimately
reaches an absorbing zero-particle state [20, 22].

In our study of the effects of environmental rate vari-
ability in the LV model, we found a remarkable increase
of the asymptotic population densities of both species
with enhanced quenched spatial disorder, i.e., predation
rates that are fixed to different lattice sites [5]. Yet
the observed erratic population oscillations and relax-
ation towards the (quasi-)steady state occur on the time
scale of many generations; for real biological systems,
one therefore needs to address Darwinian evolutionary
adaptation of individuals’ traits. Consequently, we in-
troduce fundamentally novel features by endowing in-

dividual predator and prey particles with randomly se-
lected rates, and investigate whether and how optimiza-
tion within each species due to imperfect efficiency inher-
itance (mimicking random mutations) further reinforces
the total population’s stability and fitness. Dynamical
coevolution of interacting species is a crucial feature of
adapting ecological systems and has been studied experi-
mentally [23, 24] as well as theoretically [25–28]. Combin-
ing quenched spatial with individual, evolving rate dis-
tributions allows us to quantitatively assess the relative
importance of environmental vs. demographic, inheri-
table variabilities in a nonlinear competing two-species
predator-prey system.

We find that both environmental and individual-based
variabilities combined with random mutations produce
a marked enhancement of the quasi-stationary densities
of both species, thus considerably extending our earlier
conclusions for purely environmental randomness [5]. In
addition, individual variability stabilizes both predator
and populations against extinction. Remarkably, the op-
timization of predation and evasion capabilities of either
species turns out to be essentially neutral in the popu-
lation densities; in contrast to genetic drift models [29],
our nonlinear model does not lead to trait fixation.

We consider a spatially extended version of the LV
model consisting of two particles species. The “predator”
species is subject to spontaneous decay A → ∅ with rate
µ, while the “prey” B reproduce (asexually): B → 2B
with rate σ. Different particles interact on-site with a
non-uniform predation rate λ, whereupon a prey is re-
moved and replaced with a predator: A+B → 2A. The
prey birth and predator death rates both remain fixed
at a uniform value σ = µ = 0.5 for all particles and
lattice sites, whereas the predation rates are allowed to
vary between different positions and participating par-
ticles (see below). Particles exist on a two-dimensional
square lattice with 128 × 128 sites and periodic bound-
ary conditions. (We could not find significant finite-size
effects already at this lattice size.) Both species perform
unbiased random walks via nearest-neighbor hopping oc-
curring with probability one, hence all rates are to be
understood relative to the diffusivity D. Reactions occur
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on-site, assuming infinite local carrying capacities, imply-
ing that the growth of the population on any single site is
essentially unrestricted (with a safety limit of ni ≤ 1000
per lattice site i that is never reached with the param-
eters investigated in the present study). The predator
extinction transition occurring in model variants with re-
stricted site occupation is thus absent here [12, 20, 21].
The initial population distribution of both predator and
prey particles is chosen randomly with a mean density
ρA,i = ρB,i = 1. The simulation proceeds via random se-
quential updates, with one Monte Carlo step being com-
pleted when on average each particle in the simulation
has moved and had a chance to react [30].
In order to model variability of individuals and trait in-

heritance, each particle carries a predation efficacy prop-
erty η ∈ [0, 1], determined during the particle’s creation
and providing a coarse-grained characterization of the
combined efficacies of its genetic heritage (genes) and its
learned strategies (memes). An offspring’s position in
efficiency space will thus be near its parent’s location
but subject to random changes (mutations in the case of
genes, adaptations of strategies in the case of memes),
thereby suggesting the use of a normalized Gaussian dis-
tribution centered at the parent’s efficiency value ηP
(truncated to the interval [0, 1] accessible to a reaction
probability) to assign an efficiency value ηO to the off-
spring during reproduction. The standard deviation wP

of the Gaussian function constitutes a model parame-
ter and corresponds to the average severity of mutations
from one generation to the next. Note that the efficiency
assigned to a particle η is different from the traditional
genetic fitness, which is defined as the average number of
offspring produced by a genome. It represents a meso-
scopic continuous stochastic variable, as opposed to a
genetic description employing naturally discrete values.
Since we wish to address the distinctions between in-

ternal and spatial randomness, we introduce in addition
environmental variability by assigning a spatial preda-
tion efficacy value ηS to each lattice site, drawn from
a normalized Gaussian distribution with fixed mean 0.5
and standard deviation wS , truncated to [0, 1], and set
to be fixed in time [31]. The ensuing predation rate λ is
a random variable as well, namely a function of both the
spatial efficiency at the lattice site the reaction occurs on
and the two individual predation efficacies of the partic-
ipating predator and prey particles. We finally define a
model parameter ζ that describes the relative importance
of the spatial over individual efficacies:

λ = ζ ηS + (1− ζ) (ηA + ηB)/2 . (1)

Over many generations, species optimize their pre-
dation / evasion efficiency through evolving their ef-
ficacy distributions by means of random inheritance.
Figure 1(a) shows the population density histograms
ρA/B(η) for a representative case with moderate inher-
itance variability wP = 0.1. The initial population of
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FIG. 1: (Color online.) (a) The predator (red) and prey (blue)
population densities in the (quasi-)steady state as functions
of the predation efficiency, averaged over 104 Monte Carlo
simulation runs, optimize towards high ηA ≈ 0.71 and low
ηB ≈ 0.26 mean values, respectively. The standard deviation
of the Gaussian inheritance distribution is wP = 0.1 and the
spatial influence factor ζ = 0. In contrast to genetic drift
models, both densities do not fixate at extreme predation ef-
ficiencies (η = 0, 1). The dashed lines show the theoretical
prediction from an effective stochastic mean-field model. (b)
For a flat inheritance distribution (wP = ∞), the predators
experience no selection bias while the prey population is pref-
erentially selected towards low predation efficacies.

predator and prey particles had an assigned predation ef-
ficacy of ηA/B = 0.5. We have carefully checked that the
final (quasi-)steady state population distribution does
not depend on the (uncorrelated) initial conditions (ex-
cept for those rare simulation runs when either the prey
or predator population went extinct). The predator pop-
ulation maximum moves towards higher mean efficacy
whereas the prey population, for which lower values of
the predation efficiency are preferable, tends towards a
lower average. Predators with a slightly higher efficiency
value are more successful at predation and thereby re-
produce more often. Hence their improved predation ca-
pability is passed on to subsequent generations with a
higher frequency, driving the overall predator population
toward higher efficiency values. Similarly, prey particles
with a lower predation efficiency are better at evasion
and thus survive longer. This gives them the chance to
reproduce at a higher rate, driving the prey population
towards low mean efficacy. In the extreme situation of
completely random assignment of predation efficiencies,
where no correlations between the corresponding values
for parents and offspring are implemented (equivalent to
a uniform inheritance distribution with wP = ∞), we al-
ready see a strong tendency towards low efficacies for the
prey species; see Fig. 1(b). This feature is explained by
the bias in the predation rule that favors selection of prey
particles with higher efficiency values. For predators no
such bias exists; hence their population distribution in
efficiency space remains flat. Spatial fluctuations modify
the results quantitatively, but not qualitatively, whence
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FIG. 2: (Color online.) Mean extinction time te of a small
system of 10× 10 lattice sites as a function of individual vari-
ability wP and for ζ = 0. Extinction here is defined as the
event when either species goes extinct. With increasing vari-
ability the system on average takes longer to go extinct.

we observe a slightly more pronounced effect in the prey
distribution in our studies of non-spatial systems.
In order to analytically verify our data we write

down the mean-field equations for a well-mixed zero-
dimensional LV system with individual variability. We
consider the number of particles of species A and B as a
function of predation efficiency. The predation efficiency
η is a bounded quantity in the interval [0, 1] assigned
to particles at their time of creation. We discretize this
interval into N bins with a spacing of ∆η = 1/N and
midpoint ηi = (i + 1/2)/N , and denote the number of
A and B particles in a bin i respectively as ai and bi
(i = 0, . . . , N−1). To model individual variability we in-
troduce the probability fij = f(ηi, ηj) for a parent with
efficiency ηi to produce offspring with efficiency ηj . The
predation rate is a function of the efficacies of the preda-
tor A and prey B participating in the predation reaction:
λij = (ηi + ηj)/2 [essentially the discretized Eq. (1) with
ζ = 0]. Thus we arrive at the coupled mean-field rate
equations for the case of purely individual variability:

ȧi = −µai +
∑

j

∑

k λjkfikakbj , (2)

ḃi = σ
∑

k fikbk −
∑

j λijajbi . (3)

The steady-state densities are obtained by setting the
time derivatives to zero, yielding expressions for ai and
bi that can be solved iteratively for any inheritance prob-
ability distribution f , as shown (dashed) in Fig. 1(a).
In the special case of a uniform probability distribu-

tion (implying the absence of any correlation between
the predation efficiencies of parent and offspring parti-
cles) fij = 1/N , the steady-state densities, defined by
ρA,i = ai/

∑

j aj and ρB,i = bi/
∑

j bj , can be obtained
exactly. The predator population acquires a constant (η-
independent) value of ρA = 1/N , whereas the prey popu-
lation decreases with increasing η as ρB(η) =

2

N ln 3

1

1+2η .
This result is exactly mirrored by our zero-dimensional
Monte Carlo simulations. In spatially extended systems
fluctuations modify the density distributions, leading to
a prey density dependence that is slightly less steep as a
function of the predation efficiency, see Fig. 1(b). Corre-
lation effects not captured by mean-field theory are evi-
dently strongest at the distribution maxima.
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FIG. 3: (Color online.) (a) The (quasi-)steady state predator
density ρA as a function of the spatial and individual variabil-
ity wS and wP for ζ = 0.3. The black line represents the slice
of equal spatial and individual variability wS = wP from the
minimum in (b). (b) The predator density shows a consis-
tent increase for all values of the spatial variability influence
ζ as function of equal variabilities w = wS = wP over a sys-
tem with zero variability. A remarkable minimum is observed
near ζ = 0.3 (black line). (c) The standard deviation of the
predation rate σλ, calculated via error propagation from the
spatial and individual predation efficiency distributions.

We collected extinction time histograms for small sys-
tems (lattice size 10 × 10 sites) to determine the influ-
ence of individual variability on the stability of the pop-
ulation. In finite stochastic systems with an absorbing
state (here, predator extinction), fluctuations will even-
tually drive the system into the absorbing state. Figure 2
demonstrates that the mean extinction time is enhanced
by a factor up to ≈ 4.5 by individual variability, render-
ing the system markedly more robust against extinction.

To quantify the influence of variability, and in particu-
lar the distinction between individual (internal) variabil-
ity and spatial environmental randomness, we measured
its impact on the (quasi-)steady state particle density for
both species. Figure 3(a) displays the relative change of
the predator density ρA(wS , wP ) over the zero-variability
case as a function of wS and wP for ζ = 0.3. Both types
of variability contribute additively and positively to the
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density enhancement. Figure 3(b) shows the relative den-
sity change as a function of w = wS = wP and ζ [32].
The prey density shows the same quantitative behavior
for all parameter ranges. Hence we observe a significant
increase of the population densities of both species for
higher variability not only for purely spatial (ζ = 1) ran-
domness [5], but also for individual variability (ζ = 0).
In contrast, the effect of spatial randomness in either the
prey birth rate σ or the predator death rate µ on the
species densities stayed below a rather low value of 2%.

The striking minimum in the density increase occur-
ring near a spatial influence factor ζ = 0.3 arises from the
combined variabilities through the quenched randomness
of the lattice and the emergent variability of the indi-
vidual particles. We argue that the density increase is
primarily a monotonic function of the variability in the
predation rate λ. Using the dependence of the preda-
tion rate λ on the spatial predation efficacy value ηS and
the predation efficiencies of the participating particles ηA
and ηB given in the text, the standard deviation of λ is
σλ =

√

ζ2 σ2
S + (1− ζ)2 (σ2

A + σ2
B)/2. Due to the trun-

cation of predation efficiency values to the range [0, 1],
the effective standard deviation of the spatial predation
efficacy is different from the environmental variability pa-
rameter. Similarly, the standard deviation of the preda-
tion efficiencies of individual particles have to be taken
from simulation data. Figure 3(c) shows the resulting
standard deviation of λ as a function of w and ζ which
is a measure of the effective combined variability. It re-
flects the minimum in the density increase at ζ ≈ 0.3.
The data also emphasize that environmental variability
has a more pronounced effect on the species densities as
compared to demographic variability, since the density
increase is disproportionally higher for ζ → 1.

Surprisingly, we observe that low individual variability
with weak or no spatial influence, i.e. 0 < wP ≪ 1 and
ζ = 0, yields the strongest species optimization with the
maxima of the predator and prey populations closest to
η = 1 and η = 0 respectively; see Fig. 1(a). But the en-
hancement of the overall species densities in this regime is
minute and tends to zero for small wP ; see the lower right
corner of Fig. 3(b). The respective benefits of the up- /
downward optimization of the predator / populations in
terms of predation efficiency clearly almost cancel each
other. Hence we conclude that predation efficiency opti-
mization is essentially neutral and carries no benefit for
either species in terms of their net population densities
(at least in the context of our model), despite its vital ne-
cessity to ensure the survival of coevolving species. This
also reinforces our argument that the density enhance-
ment is a function of rate variability only.

The predator-predator and prey-prey correlation
lengths lAA and lBB and typical predator-prey distance
lAB, measured by extracting the (quasi-)steady state ex-
ponential decay length and the position of the maxi-
mum (in the case of lAB) from the correlation functions
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FIG. 4: (Color online.) (a) The correlation length lAA from
the predator-predator autocorrelation function. The prey-
prey correlation length lBB would essentially display the same
shape as lAA scaled by ∼ 0.9. (b) The predator density re-
laxation time τrelax toward the quasi-stationary state.

Cαβ(x) = 〈nαi+xnβi〉 − ραρβ with α, β = A,B [33], de-
crease for increasing variability w; see Fig. 4(a). For
ζ = 1 we reproduce the data from Ref. [5], where we
argued that the decrease in lαβ indicated a more tightly
clustered population around lattice sites with small spa-
tial predation efficiency ηS , leading to the observed en-
hanced densities and higher amplitudes in the initial pop-
ulation oscillations. Surprisingly we also see a (less pro-
nounced) decrease of lαβ for ζ → 0, indicating the ex-
istence of spontaneously formed tight activity patches
around clusters of highly optimized prey particles. To
investigate the effect of the combined variability on the
relaxation of the population densities we collected data
on the characteristic decay time of the initial predator
population oscillations by least-square fitting of an ex-
ponentially decaying sinosiodal function to the predator
species density time series; see Fig. 4(b). As expected, in-
creasing disorder w induces a roughly threefold decrease
in the purely spatial case (ζ = 1) and about a twofold
decrease in the individual variability case (ζ = 0).

In conclusion we performed an extensive numerical
Monte Carlo simulation study to assess how external en-
vironmental randomness and individual variability mod-
ified through mutations during inheritance compete and
affect the coevolutionary population dynamics of two co-
existing species in a spatial stochastic LV model. The
overall predator and prey densities are both enhanced by
environmental variations, while evolutionary optimiza-
tion within each species has an essentially neutral net
effect. To better understand this evolutionary trait op-
timization, we derived a mean-field model that qualita-
tively reproduces our simulation results. In addition we
find that increased individual variability stabilizes both
populations against extinction. There are certainly other
intriguing aspects pertaining to variability in ecologi-
cal models that deserve further investigation, promising
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amazingly rich features and crucial quantitative insight.
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