
Chapter 1

Introduction and Background

1



1.1 Motivation

Fluid shear layers play a very important role in the performance of the com-

bustion flow train components of air breathing propulsion devices. Shear layers are

responsible for mixing oxidizer with fuel, reactants with hot combustion products and

hot combustion products with cooling and dilution flows.

The functions performed by the shear layers are in large part made possible

by their dynamics which produce coherent structures of various scales and lifetimes.

Depending on the role of a particular shear layer both large and small scale mixing

may be desired. Currently, shear layer behaviour in the primary combustor is not

optimized for the desired effects, and generally, the dynamics will inevitably also affect

performance detrimentally. In order to minimize detrimental effects and maximize

performance enhancing dynamics, the shear layer dynamics must be first predicted

and then controlled using passive geometrical design changes, semi–active operating

point based control or fully active control.

The research described herein deals with the application of linear stability anal-

ysis to isothermal turbulent free shear layer flows and represents a stepping stone to

the even more complex scenario of reacting turbulent free shear layer flows. Still, it

is expected that the results from the present study will provide useful knowledge for

applications of flow control downstream of the flame in the primary combustor to

improve mixing and decrease the pattern factor at the exit of the combustor.

1.2 Background

1.2.1 Applied combustion systems research

Few studies performed using full-scale combustors have been published. Several

full–size combustor configurations have been studied in the last decade, examining

the dependence of the pattern factor on secondary flows and other parameters. The

Allied Signal F109 combustor was the subject of a study by Crocker et al. (1994).

They studied the optimal strength and direction for secondary mixing jets installed
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between the combustor exit and the first turbine stage to lower the pattern factor at

the turbine inlet. They found that the secondary mixing jets needed to be oriented

against the direction of residual swirl and that most of the momentum of the jets was

converted to turbulent kinetic energy. Mixing enhancement was thus achieved at the

expense of increased turbulent kinetic energy and therefore enhanced heat–transfer

to turbine blades, as well as increased pressure drop through the combustor. The

powerful dilution jets were oriented so as to maximize the shear with the primary

flow–field of the combustor. The shear layer structures thus generated provide good

large scale mixing at the expense of a larger residual turbulence energy.

Another study dealing with full-size combustor flows and their exit characteristics

is the study by Goebel et al. (1993). The study used various configurations of bypass,

cooling, dilution and nozzle flows to examine the influence of each on the turbulence

characteristics downstream of the combustor exit. The study concluded that the

dilution jets served to remove residual swirl and thus removed a major source of

shear–induced turbulence production. The dilution jets were observed to actually

lower the amount of turbulence downstream of the combustor exit.

Hassa et al. (2002) studied the isothermal flow field in a combustor sector model

of a MTU AeroEngines (Engine3E program) gas turbine. The results showed that

for the particular arrangement of dilution jets used in this prototype combustor, the

primary zone flow and dilution jet flow were very closely coupled. The dilution jets

clearly affected the recirculation zone of the isothermal flow and the recirculation zone

itself caused the jets to deflect upstream from the expected downstream deflection.

Interaction or lack thereof between primary zone and dilution flows may explain the

large differences in the results obtained in the studies above.

The contrasting results of Goebel et al. (1993) and Crocker et al. (1994) illustrate

the wide variety of results that can be obtained depending on the specific configuration

used. At the same time, combustor technology has not changed significantly in gas

turbines for propulsion in the last 15 to 20 years, and even the flow configuration for

modern ultra–lean premixed systems in gas turbines for power generation are closely

related to their predecessor designs. Yet still, relatively small differences in combustor
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geometry and flow arrangement yield entirely different behaviour.

The key to achieving future combustor performance gains and decreasing design

cycle time is therefore a fundamental understanding leading to control of the underly-

ing flow processes that cause the seemingly unrelated behaviour observed in different

full–scale and research configurations.

1.2.2 Flow characteristics in gas turbine combustors

Most combustor configurations utilize the excellent mixing and flame stabilization

characteristics of swirling flow in the design of the primary combustor flow. The

mixing characteristics of swirling flow stem in part from the inherent turbulence

producing shear present in this type of flow. The presence of swirl assists flame

stabilization through the enhancement of recirculation zones present behind bluff

bodies (Biswas et al., 1997) or otherwise in the generation of recirculation zones

through vortex breakdown (Sattelmayer et al., 1990).

Flame stabilization with similar characteristics can also be achieved using bluff

bodies in the absence of swirl. Bluff body flame stabilization is achieved through the

recirculation zone that is formed on the downstream side of the inserted bluff body.

Bluff body flame stabilization also involves complex fluid dynamics which promote

rapid mixing and reaction of the incoming fuel and oxidizer.

Whether continuous combustion is stabilized by swirl, swirl assisted by a bluff

body or a bluff body alone, shear layers play an essential role. Compared to the

relatively low amplification rates found in wall-bounded shear flow modes (pipe–flow

for example) free shear layer modes exhibit very large growth rates, giving rise to the

large coherent structures that promote large scale and small scale mixing necessary

for continuous high rate combustion.

For combustion stabilized by swirl alone, the unstable swirling jet breaks down

through an instability referred to as vortex breakdown and forms the recirculation

zone, shown schematically in Figure 1.1a. The recirculation zone brings hot com-

bustion products in contact with fresh mixture providing a source of active chemical

radicals and thermal energy to continuously initiate the combustion of the incoming
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reactants mixture. The location of the combustion zone is not fixed for this case but

may may be more stationary by subjecting the flow to a sudden expansion, triggering

the vortex breakdown. However, the presence of the sudden expansion adds a free

shear layer that affects combustor performance and generates its own recirculation

zone. An example of the interaction of the dynamic behaviors of the swirling jet

with the sudden expansion is described in Paschereit et al. (1999) and Paschereit

and Gutmark (1998). Those papers show that depending on the flow conditions ei-

ther an axisymmetric instability related to the sudden expansion or an asymmetric

instability related to vortex breakdown was observed. In the case where the natu-

ral swirl recirculation zone is enhanced by the presence of a bluff body the central

swirling vortex core is replaced by yet another shear layer on the inside of the flow,

shown in Figure 1.1b. Even without swirl, and using only a bluff body along with

a sudden expansion (Figure 1.1c) there are still two unstable free shear layers that

interact and make continuous combustion possible. The importance of the interac-

tion of the shear layers mentioned in each of the three configurations goes beyond

providing an environment suitable for rapid continuous combustion. The combined

shear layer interaction and associated dynamics also determine the structure of the

downstream flow field and turbulence levels, flame stability characteristics and hence

also the cooling and dilution flow requirements.

Shear layer dynamics also play an important role in the performance of one of

the most recently developed combustor concepts, the trapped vortex combustor as

presented by for example Hsu et al. (1998). In order to trap the vortex in the annular

groove in isothermal flow, the shear layer between the bypass flow and the cavity

flow must extend from the upstream edge and impinge on the downstream end. To

enable trapped vortex combustion, fuel and air are injected into the cavity in such

a way as to strengthen the vortex. The shear layer between the annular flow and

the cavity flow no longer impinges on the downstream end of the cavity but due to

the strengthening of the vortex through injection, vortex stability is maintained. The

dynamics of the shear layer between the bypass flow and the cavity flow still play a

crucial role in the performance of the combustor (Katta and Roquemore, 1998).
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Figure 1.1: Schematic of shear layers found in combustors

1.2.3 Flow Control Opportunities

In order to take full advantage of all the optimization and control opportuni-

ties such complex flows offer for the further improvement in combustor performance,

shear layer dynamics must be quantified and able to be predicted reliably with and

without combustion. Although combustion modifies the flow–field significantly, at

the base of the shear layer, where the dynamics and mode structure of the shear layer

instabilities are largely determined, the flow does not fundamentally change under

the influence of combustion. The results shown by Paschereit et al. (1999) bear this

out as the instabilities found during combustion were reproduced in a water tunnel

experiment. The instability frequency scaled with Strouhal number and as in the

combustion experiment, two different shear layer instability modes were observed to

dominate depending on the flow–rate. Similar behavior was observed by Stone and

Menon (2001) who studied the dynamic behaviour of a swirl combustor using a LES

computational model. Increasing swirl was found to discourage axisymmetric vortex

shedding modes. Flow instabilities are not confined to single nozzle combustor flow

6



studies. Hassa et al. (2002) reported instabilities in their sector model of a MTU

Aeroengines annular combustor.

The complexity of a multiple free shear layer flow does not merely present a

challenging research subject, it offers possibilities for a variety of control strategies

with reasonable control cost. The existence of a number of modes in free shear layers

offers the ability for a minimal geometry alteration or amount of forcing to effect

large changes in the flow field characteristics through the sensitivity of the shear

layer dynamics to the flow profile characteristics and the natural amplification the

shear layer modes provide.

There have been many flow control studies that have tried to take advantage

of the above mentioned amplification mechanisms inherent in shear layer dynamics.

Temporal excitation using acoustic drivers and speakers is most common (Panda

and McLaughlin, 1994; Coller, 2000) but piezo-electric actuators (Vandsburger and

Ding, 1995; Parekh et al., 1996) as well as other mechanical excitation techniques

(Vandsburger and Ding, 1993; Lee and Taghavi, 1996) have been studied. Synthetic

jets comprise a large sub–class of actuators in shear layer control. These actuators

are small oscillatory sources of momentum that have no net fluid mass contribution.

The capabilities of these actuators have been studied extensively by Smith and Glezer

(1998) and Rediniotis et al. (1999) among others. In most experiments the goal of

flow excitation is the increase of mixing between fluid streams separated by the shear

layer. Vandsburger and Ding (1993) report a doubling of the shear layer spreading

rate for excitation with a wire tuned to a natural frequency of 200 Hz using its

tension. Shear layer spreading and the associated mixing of fluid is also used by Coller

(2000) in experiments and modeling attempting to increase the pressure recovery in

a separating diffuser flow.

Spatial mode excitation has been used by a number of researchers and is an

interesting extension of simple temporal excitation of shear layers. Spatial mode

excitation uses spatially distributed excitation of the shear layer to increase the effect

of excitation. Cohen and Wygnanski (1987a) used circumferentially arranged acoustic

actuators around a circular jet to promote the development of targeted azimuthal

7



modes of instability. The superposition of several azimuthal modes of excitation was

also studied. The study showed that under judicious choice of the azimuthal modes

used for excitation, the jet could be distorted into non-circular shapes in the near field.

Cohen and Wygnanski (1987a) were able to interpret the results using linear stability

analysis along with some elementary concepts in non-linear interaction. The results

of Cohen and Wygnanski (1987a) were extended by Vandsburger and Ding (1995) for

triangular jets. Vandsburger and Ding (1995) used a piezo–ceramic amplified brass

shim to excite the shear layers at the exit of the triangular jet. The results showed

that far–field flow modulation could be achieved using counter–propagating azimuthal

waves. Far–field flow modulation could not be achieved using single azimuthal mode

excitation.

Swirling flow excitation has been less successful. Panda and McLaughlin (1994)

observed no coherent structures and predominant frequencies in the velocity spectra

of the natural (unexcited) swirling flow. Several types of coherent structures could

be identified by exciting different azimuthal modes. However, the excitation did not

yield significant changes in the flow–field as may have been expected given the large

excitation amplitudes used. The results of Panda and McLaughlin (1994) cannot

be considered typical because significant coherent structures have been observed in

combustion environments (Paschereit and Gutmark, 1998; Froud et al., 1995; Gouldin

et al., 1984) and isothermal environments (Paschereit et al., 1999; Garg and Leibovich,

1979; Gouldin et al., 1984) including the basic vortex breakdown studies of for example

Cassidy and Falvey (1970)(see Section 1.3). Still, it is clear that excitation in swirling

shear layers must be implemented differently from excitation in non–swirling flows

and that swirling flow characteristics are geometry dependent. The variety of results

found for swirling flow excitation are revisited in Section 1.4.1 and interpreted in

terms of flow stability characteristics.

All of the flow control studies discussed above employ open–loop control, where

some predetermined control signal is applied to the flow and the resulting influence

on the flow is measured. Feedback control complexity ranges from simple phase shift

type controllers to model based and adaptive controllers. For phase shift controllers,
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the control signal is proportional to the measured output, but shifted by a certain

phase which is determined by trial and error to achieve the optimum result. Model

based controllers allow all the tools of optimal control to be applied to help guarantee

that the optimal result can be achieved. Feedback control has been applied to the

problems of external flows with some success by a number of researchers, for example

Caruana et al. (2001). Feedback control in the wakes of cylinders has been studied

experimentally using simple phase–shift control algorithms by Tao et al. (1996) among

others. Model based feedback control is much more attractive in terms of optimization

but is often difficult in complex systems. Gillies (1998) analytically designed a low

order model based on proper orthogonal decomposition for the cylinder wake problem

and implemented nonlinear neural network control of the wake. Gillies (1998) also

showed that erroneous conclusions can be drawn from single sensor observations in

a feedback control system designed to eliminate the wake behind a cylinder. Coller

(2000) demonstrated modeling of the dynamic system underlying the flow in a diffuser

and was able to reproduce some of the global effects of open–loop control experiments

using synthetic jets. The model however still required 700 computational elements,

making the model too large to implement in real–time model based feedback control.

Noack et al. (2000) were able to prove controllability for the simple configuration of

a vortex in a corner subject to potential flow. Noack et al. (2000) demonstrated the

power of achieving controllability by formulating a measure of mixing and optimizing

control to achieve maximum mixing.

Another difficulty in flow control is the problem of quantifying the control in-

put beyond the basic actuation amplitude. It is very difficult to compare acoustic

excitation to piezo-mechanical or synthetic jet actuation except on qualitative terms

because the actual control input is not measured. The essential principal of all flow

control actuators seems to be the modulation of some amount of vorticity at the

boundary of the flow. In piezo-mechanical actuation the vorticity generation happens

at the end of a moving flap. For synthetic jets, the vorticity is generated at the lip

of of the orifice. In plain acoustic actuation, the main flow control input also occurs

by a conversion of acoustic energy to vorticity (Crighton, 1981). The problem with
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quantifying these vorticity inputs is that the location of conversion from mechanical or

acoustic energy to vorticity is very small and difficult to measure. A possibility for the

quantification of forcing in the case of acoustic excitation is offered by the interaction

between flow and acoustics at sharp boundaries. In studies aimed at quantifying and

understanding jet noise several researchers found significant dissipation of acoustic

power at the exit of a jet Bechert et al. (1977); Cargill (1982). They found acoustic

energy dissipation greater than 15 dB for low Mach number, low frequency excitation,

whereas for higher frequencies, acoustic energy was conserved. In effect, the jet acted

as a low frequency muffler.

Multiple models have been derived that to varying degrees of accuracy and com-

plexity, all quantitatively capture the attenuation effects (Munt, 1990; Moore, 1977;

Cargill, 1982; Bechert, 1980). Among these, the model by Bechert (1980) is the sim-

plest, specifically aimed at capturing the low frequency attenuation observed in his

experiments (Bechert et al., 1977). The common denominator for all of these models

is the reliance on the explicit or implicit application of a Kutta condition (Crighton,

1985) at the jet exit. The Kutta condition is used to remove the singularity in the

flow field that would be encountered in most shear layer type expansions of the flow

near the nozzle lip. The Kutta condition is indirectly responsible for the conversion

of acoustic energy to vorticity. The vorticity generated then couples into the base of

the shear layer and excites instabilities. These instabilities however are not generally

effective sound sources Crighton (1981), causing an attenuation of the transmitted

sound. In terms of flow actuation however, the above results indicate that measur-

ing acoustic power transmission properties allows the quantification of forcing in the

particular flow under study. Furthermore, the results show that the forcing is very

localized and limited to the very base of the shear layer where there is an effective

boundary layer discontinuity. It should be noted that the sound radiating proper-

ties of flows can be expected to change significantly under the addition of swirl, as

demonstrated in a simple model by Howe and Liu (1977).

Although the flow control studies described above have demonstrated the ability

to affect shear layer development significantly using various excitation techniques,
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there has not been to date a significant introduction of flow control in actual devices.

The demonstrated ability to affect shear layer development will enable the type of

flow control necessary to improve real device performance. The technology developed

in these basic flow control studies must be transitioned to flow fields found in real

applications. The research performed for this dissertation represents a first step in

such a transition by examining linear stability analysis methods for the identification

of flow control opportunities in complex turbulent free shear flows.

1.2.4 Predictive tools for flow design

The reliable prediction of primary combustor flows is still difficult even without

considering combustion or secondary flows. Chen and Lin (1999) found that strongly

swirling flows, as used in gas turbine combustors, require non-linear pressure-strain

modeling to obtain good accuracy in prediction in addition to requiring a full Reynolds

stress turbulence closure. The often used k − ε turbulence closure seems to be inad-

equate for swirling flows even when used with Richardson number type corrections

(Leschziner and Rodi, 1984; Armfield and Fletcher, 1989). Added to these difficulties

in the prediction of swirling flows is the fact that the flow, although often modeled as

axisymmetric, actually has significant three dimensional and unsteady features such

as the precessing vortex core (Gupta et al., 1984; Froud et al., 1995). These three

dimensional and unsteady features have been found to play a prominent role in com-

bustion instabilities (Paschereit et al., 1999). Few studies have been performed solving

the full three dimensional Navier-Stokes equations. The calculations by Biswas et al.

(1997) used a swirl modified k − ε turbulence model and showed reasonable agree-

ment with selected experimental results even with combustion. The experimental

data used for comparison however seems too coarse to allow a conclusive evaluation

of the model used.

Computational prediction abilities in non–swirling bluff body flows are superior

to those in swirling flows, although modeling in these flows still cannot be consid-

ered fully reliable, especially when turbulent combustion is considered. Finally, the

computational expense in calculating even bluff–body flows is still considerable.
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The prediction of complex three dimensional turbulent flows will benefit from fur-

ther advancements in large eddy simulation (LES). LES is attractive because modeling

of turbulence is essentially restricted to the dissipative scales whose interaction with

other scales is more fully understood and therefore more accurately modeled. The

required grid resolution for high Reynolds number LES calculations is however still

prohibitive in the computational effort required. Stone and Menon (2001) reported

requiring two weeks of computational time on a PC cluster calculating one case of

a premixed swirl combustor operating at a Reynolds number of 500,000. The study

did not incorporate finite chemical rate effects which would have further increased

computational expense. In view of the difficulties involved in the prediction of com-

plex separated shear flows there is a need for simple computational tools that allow

the prediction of selected important aspects of these separated flows. Among these

the most promising tools appear to be linear stability analysis and discrete vortex

methods.

Discrete vortex methods offer an attractive alternative to complete modeling of

the complex flows encountered in propulsion devices. Discrete vortex methods are

based on the principle that in inviscid two-dimensional flows, vorticity is neither

produced nor destroyed. Saffman and Schatzman (1982) studied the von Karman

vortex street using a discrete finite size inviscid vortex model. Vortex strength and

spacing was determined by global energy and momentum conservation arguments.

The convergence of vortex methods for two dimensional inviscid flows was proven by

Hald (1979) and for three dimensional inviscid flows by Beale and Majda (1982). The

application of vortex methods in three dimensional flows is complicated by the fact

that vorticity altering processes such as vortex stretching exist and must be modeled.

A discrete vortex method was used by Coller (2000) to model the ability of synthetic

jet control to increase pressure recovery in a diffuser. The main problems encountered

in the development of the model was the correct description of the vorticity source at

the base of the separating shear layer and the modeling of the dissipation of vortices

near the diffuser wall. The simulation tracked about 700 vortices to describe the

flow–field dynamics adequately. Although discrete vortex methods are most suited to
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model inviscid flows, adaptations of the method to account for vorticity generation

near walls has been accomplished by algorithms such as the random vortex method

used by Gharakhani and Ghoniem (1996) in the calculation of the flow field inside a

combustion chamber with a moving piston.

The computational expense for these methods is however once again higher and

there are significant difficulties in handling circular wall geometries along with the

previously mentioned difficulties of vorticity generation in a free shear layer. The

importance of discrete vortex methods should not be underestimated, but underlying

the predictive abilities of these methods is a knowledge of the vorticity sources which

are very complex in nature for separated turbulent flows. A description of these

sources and further information on the complete modal structure of the shear layer

dynamics can be derived from linear stability analysis as described by for example

Wygnanski and Petersen (1987) and Michalke (1965) (See Section 1.4.

1.3 Experimental Studies in Swirling Flows

Experimental studies in swirling flows have been quite numerous. The swirling

flow studies range form the basic vortex breakdown studies in laminar flow of Harvey

(1962) to the full combustor model experiments of Paschereit et al. (1999). With

only very few exceptions these studies do not report spectral data and these types

of measurements are of central importance for the research effort reported on in this

thesis. The following paragraphs represent an overview of the various studies and

their results. More detailed aspects of the studies are discussed with respect to the

experimental results of the present study in Chapter 4 and Chapter 5.

One of the landmark studies in turbulent vortex breakdown is the study by

Cassidy and Falvey (1970). Starting from the axial momentum equation in cylindrical

coordinates the authors derive the non-dimensional parameters important for swirling

flows. Among the parameters found are the Reynolds number, a form of the Strouhal

number (fD3/Q), a non-dimensional pressure drop and the swirl number. The swirl

number as derived by Cassidy and Falvey (1970) is given in Equation 1.1.
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Sfalvey =
D
∫

ρruwdS

ρQ2
(1.1)

The experimental facility used incorporated a radial inflow swirler without center–

body and various lengths and diameters of pipe attached to the exit of the swirler.

Frequency was extracted from both wall pressure measurements and wall hot film

anemometry measurements. The results showed that for each swirl number, a Reynolds

number exists above which the frequency parameter is found to remain constant for

further changes in Reynolds number. Below this Reynolds number, the frequency

parameter decreases. This shows that above this Reynolds number, frequency will

vary linearly with flow rate. Plotting the Strouhal number against the swirl number

a linear relationship is found over the wide range of swirl number studied.

Another important experimental study in turbulent vortex breakdown is that by

Garg and Leibovich (1979). The authors study vortex breakdown in a water tunnel

where the experimental flow section is a slowly diverging pipe. Similar experimental

setups were used by Harvey (1962) and Sarpkaya (1971) in their studies of laminar

vortex breakdown. The study of Garg and Leibovich (1979) is noteworthy because it

is one of the first studies to use the non-intrusive LDV to measure the flow profiles

before and after breakdown. Additionally, Garg and Leibovich (1979) report on

the power spectra of the measured velocities. Mean profiles were measured for two

Reynolds numbers and at a wide range of swirl numbers. All the profiles contained

an axial momentum surplus in the center of the pipe before breakdown and a deficit

of axial momentum in the center of the pipe after breakdown. In some instances, the

flow profiles measured did not line up exactly with the pipe centerline. The radial

width of the axial momentum surplus can be associated with the size of the vortex

core. The vortex core is defined as that region of the flow field that exhibits solid

body rotation, i.e. where the rotational speed of the flow is constant and the swirl

velocity is linear. The size of the vortex core was hypothesized to be associated with

the boundary layer thickness shed from the center–body. Vortex breakdown increases

the size of the core noticeably but the swirl profile shape does not change appreciably.

Garg and Leibovich (1979) report that the type of vortex breakdown observed is
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a sensitive function of the maximum swirl angle of the flow. The swirl angle is defined

to be the inverse tangent of the maximum swirl to axial velocity ratio upstream of

breakdown. Angles of 49-52 degrees resulted in a bubble type vortex breakdown and

angles of 44-46 degrees resulted in a spiral vortex breakdown.

The power spectra reported by Garg and Leibovich (1979) contain large peaks

at around 13 Hz and 23.4 Hz in the wake of a bubble breakdown for a Reynolds

number of 11,480. The axial velocity fluctuations are most energetic at an off–axis

location approximately coinciding with the maximum swirl level. The swirl velocity

fluctuations are most energetic in the very center of the pipe. It must be mentioned

that the velocity fluctuations measured at the center of the pipe using the 2–D LDV

are actually radial velocity fluctuations. Nevertheless, the absence of axial velocity

fluctuations in the center of the pipe represents strong evidence for the observed

coherent motion to be associated with a circumferentially periodic flow structure and

not an axisymmetric flow structure. The equations of motion do not allow axial

velocity fluctuations for circumferentially periodic fluctuations. The frequency peaks

observed in the near vortex breakdown wake dissipate downstream. Power spectra

taken in the wake of a spiral vortex breakdown exhibit a single peak at approximately

the same frequency as the lower of the two bubble vortex breakdown frequencies.

The energy contained in these fluctuations is significantly lower than those observed

in the bubble breakdown, supporting the hypothesis that the bubble form of vortex

breakdown is the more ”violent” form of breakdown.

Garg and Leibovich (1979) also used the analytical results of Lessen et al. (1974)

to compare the frequencies of maximum growth predicted by linear stability theory

with the frequencies observed in the experiments in the wake of the vortex break-

down. Calculations show that the flow upstream of breakdown is stable, even to

non-axisymmetric disturbances, whereas the downstream flow, while still stable with

respect to axisymmetric disturbances is unstable to non-axisymmetric, circumferen-

tially periodic disturbances. The frequencies calculated from theory and the experi-

mentally observed frequencies compare well, and on average are well within 20% of

each other. Garg and Leibovich (1979) do not compare the disturbance eigenfunctions
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with the experimentally determined distribution of the fluctuations.

At the highest Reynolds number studied (22660), upstream low frequency coher-

ent fluctuations were measured that were absent in all other cases. The authors were

not able to explain this phenomenon except to speculate that it is perhaps related to

the existence of neutral waves excited downstream traveling upstream.

Gouldin et al. (1985) and Gouldin et al. (1984) report comparisons between the

flow structure and dynamics observed with and without combustion. The design

of the experimental facility includes the ability to have a core jet flow with one

swirl direction and an outer annular flow with the opposite swirl direction. Both

works include results from flows employing co-swirl and counter swirl. Of particular

interest to the research performed for this dissertation is the case of co-swirl. Periodic

oscillations are observed in the density fluctuation data for the combustion case (co-

swirl and counter swirl) and the velocity fluctuation data for the isothermal cases.

The density fluctuations are observed at 100 Hz while the velocity fluctuations are

observed at 356 Hz even though the inlet conditions and geometrical dimensions

of the facilities were very similar. Some concentrated low frequency energy around

100 Hz is observed for the counter swirl case but is reported absent for the co-swirl

case. Additionally, while the co-swirl combustion flow field exhibited flow reversal, the

isothermal case did not. For this flow geometry, the addition of combustion completely

modified the dynamics of the downstream flow field. This stands in contrast to the

already mentioned study of Paschereit et al. (1999) to be discussed further below.

The observed oscillations in the isothermal case were not distributed evenly over

the cross section. The peak energy of oscillation was observed on the half-radius of

the inner flow. Gouldin et al. (1985) suspect circumferentially symmetric but not

axisymmetric instabilities (azimuthal wavenumber = 1) are to blame for the observed

coherent isothermal fluctuations.

Ahmed (1998a) and Ahmed (1998b) report on the results from a confined swirling

flow. The experimental setup is of particular note. Instead of moving the measure-

ment location axially along the experiment, the location of the expansion relative to

the probe was changed using a system sliding sleeves. In addition to the ingenious
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experimental design, radial velocities are reported by performing not only horizontal

scans (giving azimuthal velocity) but also vertical scans. To this end a special win-

dow was machined into the test section and the window was rotated as the probe was

translated vertically. The results of the study were used to examine the turbulent

kinetic energy budget under the assumption of circumferential symmetry. The pro-

duction term found most responsible for increases in turbulent fluctuations was the

term: u′v′∂U/∂r. The conclusion relies on the assumption that the v′w′ stress can be

modeled by v′v′ which may be a valid assumption for conditions without swirl. As

soon as swirl is introduced however, the anisotropy associated with such a flow does

not allow this assumption. At any rate, the underlying reason for the prominence

of the term determined dominant is the large radial gradient in axial velocity. The

term that may have contributed significantly but was dismissed involves the radial

gradient of the azimuthal velocity.

Dellenback et al. (1988) studied swirling flow in an axisymmetric expansion with-

out center–body, similar to the present experimental setup. To produce swirl, a vari-

able amount of water was directed through tangential inlets in the upstream pipe.

Measurements are not only reported downstream of the expansion but also in the noz-

zle. Dellenback et al. (1988) represents the only confined swirling flow study found

reporting velocity profiles upstream of the expansion. Dellenback et al. (1988) re-

ports inlet and downstream dump velocity profiles for swirl numbers ranging from 0.6

to 1.16. For these conditions, the inlet axial velocity profile has the form of a rede-

veloping wake which in the sudden expansion develops negative axial velocities. The

study also included lower swirl number results but the mean and RMS velocities for

these cases were not reported. Like other studies, the reported RMS velocities are

very high (20% when normalized with the mean inlet axial velocity). In addition to

these measurements, Dellenback et al. (1988) report on the measurement of the fre-

quency of velocity fluctuations in the flow field. Unfortunately, the strengths of these

oscillations are not reported. Similar to Cassidy and Falvey (1970), the study finds

that the non-dimensional oscillation frequency (Strouhal number) is close to linear

with swirl strength and that the non-dimensional frequency is in general insensitive
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to changes in Reynolds number.

Paschereit et al. (1999) report on a study comparing the combustion dynamics

and isothermal flow dynamics of a novel swirl inducing burner nozzle. Combustion

measurements showed that depending on operating condition either a helical mode

or axisymmetric mode of dynamic burning could be observed. A model of the burner

was then studied in a water tunnel where the same types of instabilities at the same

non-dimensional frequencies were observed. Unfortunately, the normalized data pre-

sented cannot be compared directly because not enough information is given on the

characteristic quantities used in the normalization of both velocity and frequency

data. Paschereit et al. (1999) also report on the radial distribution of the magnitudes

of the coherent fluctuations. These distributions reveal that the helical instability is

associated with the inner shear layer (vortex core) and that the axisymmetric insta-

bility is associated with the outer shear layer at the nozzle exit sudden expansion.

In the case with combustion, phase–locked images of OH∗ chemiluminescence were

taken showing the azimuthal periodicity of the fluctuations. Additionally, relative

phase measurements of OH∗ chemiluminescence at two locations are reported. As the

second of the two measurement points moves diametrically away from the first, the

phase relative to the first location changes for helical modes of instability whereas it

remains constant for axisymmetric modes. A 180 degree phase change was measured

for the helical mode indicating an azimuthal mode with wavenumber 1.

Experimental studies involving excitation of swirling flows are very rare. One of

the few studies is that by Panda and McLaughlin (1994) who studied the response of

a free swirling jet to external excitations. Acoustic actuators were placed just outside

the lip of a swirling flow nozzle. The actuators were controlled so that azimuthal

modes could be specifically targeted in excitation. Flow visualization studies showed

how a spiral vortex breakdown becomes more and more compact as the Reynolds

number is increased. The breakdown was no longer identifiable at a Reynolds number

of 40,000. The frequencies associated with the breakdown movement were reported

to be in the single Hertz range. Velocity measurements use hot–wire anemometry,

even though the authors report interference for some measurement locations and it
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has been shown that the insertion of hot–wire probes potentially causes significant

changes in the flow–field characteristics (e.g. Döbbeling, 1990). The power spectra

of velocity taken without forcing do not exhibit any traces of coherent motion, i.e.

frequency peaks. The power spectra do show an offset indicating that perhaps noise

contaminated the dynamic velocity measurement.

The excitation experiments of Panda and McLaughlin (1994) show that only for

very high excitation levels, is it possible to produce spectral peaks related to the

excitation in the power spectrum. The excitation level was measured a priori using

microphones to measure the acoustic pressure and then deducing the acoustic ve-

locity from a plane wave assumption. Based on these measurements, the excitation

level was determined to be only several percent of the mean velocity. No hot–wire

measurements were performed to verify that the excitation generated was actually

at the level calculated. Excitation was most successful at Strouhal numbers of 1.5

for a Reynolds number of 57,000, corresponding to 56 Hz. Panda and McLaughlin

(1994) report that the percentage of total fluctuation energy contained in the coher-

ent excited velocity fluctuations is about 25% for axisymmetric excitation and 40%

for helical excitations. The downstream growth of fluctuations is however only mod-

est and coherence is lost relatively quickly downstream. The radial distribution of

fluctuations is nearly identical for axisymmetric and helical excitation. The modest

growth of fluctuation energy downstream and the nearly identical radial distribution

of fluctuations points to the possibility that the applied excitation was too high in

amplitude to allow linear growth. Furthermore, it is possible that the point of excita-

tion is chosen in a region that is not optimal because it is located too far downstream

to couple into the thin areas of the shear layer. (The swirler hub in this experiment

is set back into the nozzle exit so that separation occurs inside the nozzle). Another

reason for the poor response may be that the location of excitation is at an axial

station that experiences large flow divergence so that the stability characteristics of

the flow are changing extremely quickly downstream. The flow divergence in this free

swirling jet is larger than that for a confined swirling jet.
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1.4 Linear Stability Analysis

1.4.1 Overview of results

Linear stability analysis consists of the study of the evolution of normal mode

perturbations to the underlying mean flow. The analysis has been instrumental in ob-

taining insight into the instabilities of jets (Michalke, 1971; Wygnanski and Petersen,

1987; Gaster et al., 1985). Cohen and Wygnanski (1987b) showed that linear stability

analysis could predict the radial distribution of velocity oscillations in a turbulent jet.

Cohen and Wygnanski (1987b) were also able show that the initial perturbations of

the flow at the exit of a jet were amplified by the shear layer according to the ampli-

fication rate as a function of frequency predicted by linear stability analysis. Linear

stability analysis has also been used to explain the evolution of trailing line vortices

generated from wings (Spall, 1993; Khorrami, 1995, 1991; Mayer and Powell, 1992).

Application of linear stability analysis to jets of various shapes allows a good charac-

terization of the mixing enhancement achieved through the action of fluid dynamic

instability (Huang et al., 1994; Shozo et al., 1989). Linear stability analysis was used

successfully to predict the occurrence of the von Karman vortex street behind bluff

bodies (Jackson, 1987; Kim and Pearlstein, 1990; Kelkar and Patankar, 1992).

Linear stability analysis on swirling jets emerging from nozzles has been per-

formed to predict the occurrence and some characteristics of vortex breakdown. Garg

and Leibovich (1979) showed that linear stability analysis could predict the main

frequency peaks observed in the wake of their turbulent vortex breakdown study

with reasonable accuracy. Loiseleux et al. (1998) and Loiseleux and Delbende (2000)

studied analytical representations of swirling jets and wakes and were able to derive

a criterion for the occurrence of vortex breakdown in high Reynolds number flows

which compared reasonably well with experimental data. Michalke (1999) was able

to predict the main frequency component of swirling jet noise with reasonable accu-

racy by calculating the vortex breakdown instability frequency using linear stability

analysis. Vortex breakdown was also studied in detail by Wang and Rusak (1997)

(also see Section 1.4.4) who analyzed the inviscid steady states of swirling flows. Lin-
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ear stability analysis was used in that study to show how the different steady states

found changed stability depending on the inlet swirl ratio. In both the studies by

Loiseleux et al. (1998) and Michalke (1999) the effects of viscosity and turbulence

were neglected. Turbulence and turbulent viscosity can play a very important role in

shear layer instability development as can be seen from the analysis done by Marasli

et al. (1989). Marasli et al. (1989) found that stability predictions for the varicose

mode of a turbulent wake were accurate only when the analysis accounted for the

presence of random turbulent fluctuations through a mean turbulent viscosity. The

influence of turbulent fluctuations may be more complicated for swirling flows due to

the anisotropic distribution of turbulence in these flows (Shtern et al., 2000). Further-

more, the more complex case of multiple free shear–layer flows such as bluff body flows

with sudden expansion geometries has not been studied. The effect of asymmetry in

the flow-field on stability has also not been studied.

1.4.2 Basic stability problem setup

Linear stability analysis examines the stability of a given steady state. To analyze

stability, perturbations are added to the basic flow quantities and the evolution of

these perturbations in time and space is studied. In general, the perturbations are of

normal mode form. For the study of 2-D parallel flow (i.e. flow does not evolve in the

axial direction and is uniform in the z direction) stability, the normal mode expansion

takes the form given in Equation 1.2. An example of such a flow is Poiseuille flow

between two infinite parallel plates.

f ′(x, y, t) = F (y)eiαx−iωt (1.2)

The governing equation (in stream function form) for the evolution of distur-

bances in a 2-D parallel incompressible viscous flow can be obtained from the incom-

pressible Navier–Stokes equations and is known as the Orr–Sommerfeld equation,

shown in Equation 1.3. In Equation 1.3 F represents a perturbation to the mean

stream function. The use of the stream function allows the evolution of the pertur-
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bations to be analyzed using just one fourth order differential equation as shown in

Equation 1.3.

(U − c)(F ′′ − α2F ) − FU ′′ =
1

iαRe

(

F ′′′′ − 2α2F ′′ + α4F
)

(1.3)

Note that setting the right–hand side of Equation 1.3 equal to zero neglects

the effects of viscosity and Rayleigh’s equation is recovered from which the well

known inflection point theorem can be derived. With boundary conditions, the Orr-

Sommerfeld equation becomes an eigenvalue problem where F(y) is the eigenfunction

and either c or α in general is the eigenvalue. Early solutions fixed the value of α to

some real value and calculated the corresponding complex phase speed c. An analysis

of this type is often called a temporal stability analysis because disturbance growth is

in time rather than strictly in space. To compare results from the temporal stability

analysis with results from experiments, the temporal growth has to be transformed

to a spatial growth using the group velocity, the velocity with which wave energy is

convected. Gaster (1962) noted that such a transformation is only accurate for small

temporal growth rates and that in the case of larger growth rates, spatial growth must

be calculated directly by considering a complex wavenumber α. Such an analysis is

more intuitive since it uses a real frequency ω which can then be interpreted as a

forcing frequency and easily related to the physical parameters of a given experiment.

Researchers attempted to explain the transition from laminar to turbulent flow

using solutions to the Orr-Sommerfeld equations, reasoning that instabilities cause

the transition. However, for Poiseuille flow between infinite parallel plates (as well

as for Couette flow) the attempts failed. In the case of Poiseuille flow, the predicted

Reynolds number for instability was calculated to be 5772 by Orszag (1971) whereas

experiments exhibited transition at much lower Reynolds numbers. The discrepancy

between linear stability analysis and experiments observed for these flows will be

addressed in more detail below in Section 1.4.7.
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1.4.3 Flow stability in cylindrical coordinates

The cylindrical coordinate versions of the inviscid stability equations were studied

with much more success, starting with Batchelor and Gill (1962), who studied the

stability of axisymmetric jets. Batchelor and Gill (1962) also derived the equations

governing viscous stability in a parallel axisymmetric flow, along with the non–trivial

boundary conditions for this case. Batchelor and Gill (1962) also generated a stability

criterion for axisymmetric inviscid flows and proved the validity of Howard’s semi–

circle theorem (Sherman, 1990) in axisymmetric inviscid parallel flows. The inviscid

form of the axisymmetric disturbance equation is given in Equation 1.4 (Plaschko,

1979).

P ′′ +

(

1

r
− 2U ′

U − c

)

P ′ −
(

m2

r2
+ α2

)

P = 0 (1.4)

As noted by Cohen and Wygnanski (1987b), the restriction of the azimuthal

wavelength of the disturbances implied by Equation 1.4 introduces another impor-

tant scale to the stability problem, namely the relative size of the shear layer thickness

compared to the diameter of the jet. When the jet shear layer is very thin compared

to the diameter of the jet, the influence of curvature is negligible and results are a

very weak function of azimuthal wave number. As the shear layer increases in thick-

ness, the curvature becomes more important (Cohen and Wygnanski, 1987b). Cohen

and Wygnanski (1987b) were also able to demonstrate the physical relevance of the

disturbance eigenfunctions by selectively exciting a certain azimuthal mode and com-

paring the radial variation in induced velocity oscillations with the radial variation

of the magnitude of the corresponding eigenfunction. Linear stability analysis results

matched the distribution of velocity fluctuations well at eight locations downstream of

the nozzle. For each downstream location, the instability properties were calculated

from fits to the local velocity profile, thus accounting for the jet spreading slowly upon

exiting from the nozzle. The analysis was able to predict the change in magnitude in

the power spectrum over a wide range of frequencies when a short axial distance is

considered (x/D = 0.125 to x/D = 0.25). It is important to underline that the cor-
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respondence between linear stability analysis and experiment was achieved assuming

locally parallel flow and solving the parallel flow stability equations.

The linear stability analysis of Cohen and Wygnanski (1987b) did not match all

the experimental results. The agreement with calculated eigenfunctions was demon-

strated only to x/D = 0.70 with the agreement becoming less and less complete with

increasing downstream distance. Truly significant discrepancies are encountered when

integral effects are compared such as total amplification of a wave starting from the

exit of the jet. As pointed out by Cohen and Wygnanski (1987b), an extremely im-

portant factor in this type of comparison is the magnitude of the initial disturbance.

A larger initial disturbance causes quicker linear saturation and consequently a more

significant exaggeration in the predicted wave amplitude when linear analysis is com-

pared with experiment. The idea of wave saturation is also important in explaining

the process of ”vortex pairing”. Wygnanski and Petersen (1987) use purely linear

ideas to explain the appearance of vortex merging. The vorticity distribution associ-

ated with the linear amplifying wave exhibits two maxima. Wygnanski and Petersen

(1987) observed similar to Michalke (1965) that these two maxima approach each

other due to the spreading of the jet. The two maxima are only vertically displaced

when the wave reaches neutral stability. Wygnanski and Petersen (1987) postulate

that the appearance of subharmonic frequencies is not related to vortex merging but

should be associated with lower frequency flow disturbances (approximately subhar-

monic) that are amplified strongly in the region of neutral stability of the original

instability wave. Further evidence that vortex merging can be understood in terms of

lower frequency wave amplification can be derived from the work of Smith and Glezer

(1998) who shows that the synthetic jet produced in the experiments does not ex-

hibit vortex merging. The jet is produced by discrete vortices appearing at the given

forcing frequency. The vortices move under the self-induced velocity and eventually

disintegrate into turbulence but never merge. If vortex merging were a phenomenon

strictly related to vortex dynamics, then these vortices would merge. These qualita-

tively valuable insights from linear stability still do not improve important integral

estimates such as final wave amplitude.
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The effects of flow divergence on jet stability were first explicitly calculated by

Crighton and Gaster (1976) using a multiple scale expansion. The analysis took

advantage of the relatively slow mean flow divergence relative to the axially varying

exponential growth of the instability wave. The results of Crighton and Gaster (1976)

showed that flow divergence alters the growth rates and phase speed of the waves at

first order compared to the strictly parallel analysis. Furthermore, the divergence

causes the growth rate and phase speed to be different for different flow variables

(pressure,velocity, energy density, etc.), a characteristic also observed in experiments.

However, the radial eigenfunction of the disturbance is unaltered from its strictly

parallel flow approximation, explaining the good agreement obtained by Cohen and

Wygnanski (1987b) in their flow excitation study. The analysis of Crighton and

Gaster (1976) was extended to include the first two azimuthal modes by Plaschko

(1979). Both studies found reasonable agreement with experiments limited in general

by nonlinear amplitude effects. Parallel linear theory, slowly diverging linear theory

and experiment were compared in Wygnanski and Petersen (1987) for the axial de-

velopment of the wave amplitude. The results show that the amplitude predicted by

linear parallel analysis is four times as high as the amplitude measured in the exper-

iment. Non-parallel linear analysis improves the estimate significantly to reduce the

error to 40%. The remaining error can be attributed to nonlinear wave amplitude

effects.

In all the research on jets mentioned so far, the effects of viscosity or background

turbulence have been neglected. The influence of turbulence on the development of

unstable shear layers can be expected to be important due to the spatially non-uniform

viscosity-like effects introduced by turbulence. Many turbulence closure models are

based on the idea that turbulence acts similar to an enhanced, spatially varying vis-

cosity. High Reynolds number flows are associated with the insignificance of laminar

viscous forces. However, high Reynolds number flows are also turbulent and therefore

the viscous-like effect of turbulence becomes important. Consequently an inviscid ap-

proach to calculating the stability of high Reynolds number flows does not consider

the potentially important effects introduced by the presence of turbulence. Legner
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and Finson (1980) made the observation that ship wakes, which are dominated by the

small scale boundary layer turbulence shed from the ship’s hull, seem to damp out

the large scale free surface waves incident upon the wake. Legner and Finson (1980)

performed a linear stability analysis for a 2-D turbulent wake, assuming uniform,

fine-scaled, background turbulence. The governing equations were derived similarly

to the works of Hussain and Reynolds (Hussain and Reynolds, 1970; Reynolds and

Hussain, 1972; Hussain and Reynods, 1972) with the exception that turbulence clo-

sure in the work by Legner and Finson (1980) is effected at second order compared

to the first order closure invoked by Hussain and Reynolds (1970). The equations for

the turbulent stresses considering an infinitesimal wave disturbance in velocity were

derived by Reynolds and Hussain (1972). Chen and Crighton (1999) discusses the

influence of various second order closure models on 2–D jet stability, especially in re-

gards to the importance of the viscoelastic modeling of the turbulence. The results of

the study of Legner and Finson (1980) confirm the important viscous effect that the

presence of fine-scaled turbulence has on the growth or damping of incident velocity

waves. Lower order closure models have also been used in accounting for turbulence

effects.

Ragab and Wu (1989) used a Prandtl mixing length model to account for turbu-

lence effects in the development of a compressible mixing layer. Marasli et al. (1989)

simply found an effective Reynolds number based on the eddy viscosity concept and

measured turbulence intensities. Marasli et al. (1989) were able to show improvement

in the agreement of the distribution of the velocity perturbations in a two dimensional

turbulent wake. However, the relative phase of the velocity perturbation was not pre-

dicted correctly, a fact that may be attributed to the non–uniform distribution of

turbulence in the wake. To account for turbulence or solve lower Reynolds number

stability problems it becomes necessary to solve the viscous disturbance equations. In

Equation 1.3, the 2-D cartesian version of the disturbance equations is given. Equa-

tions 1.5 through 1.8 show the disturbance equations for axisymmetric parallel flow

with swirl and radial velocity similar to those given by Lessen and Singh (1973) and

Mayer and Powell (1992). It is clear that a non–zero radial component of velocity
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violates the parallel flow assumption, but the term will nevertheless not be dropped

for now. The results of Lessen and Singh (1973) interestingly pointed to the pos-

sibility that the viscous axisymmetric jet has a range of Reynolds numbers where

growth rates exceed that observed in the inviscid case. The findings were confirmed

by Morris (1976) who was able to use an energy argument to explain why the flow

exhibits this unexpected behaviour.

Continuity:

F ′ +
F

r
+

mG

r
+ αH = 0 (1.5)

Radial Momentum:

−iF ′′

Re
+ i

(

Vr −
1

Rer

)

F ′ +

[

ω + iV ′

r −
mW

r
− αU +

i

Re

(

m2 + 1

r2
+ α2

)]

F

+
2

r

(

im

Rer
− W

)

G + P ′ = 0

(1.6)

Azimuthal Momentum:

−G′′

Re
+

(

Vr −
1

Rer

)

G′ +

[

−iω +
Vr

r
+

imW

r
+ iαU +

1

Re

(

m2 + 1

r2
+ α2

)]

G

+

[

iW ′ +
1

r

(

2m

Rer
+ iW

)]

F +
im

r
P = 0

(1.7)

Axial Momentum:

−H ′′

Re
+

(

Vr −
1

Rer

)

H ′ +

[

−iω +
imW

r
+ iαU +

1

Re

(

m2 + 1

r2
+ α2

)]

H

+ iU ′F + iαP = 0

(1.8)

It should be mentioned that for mathematical convenience, the introduction of

the disturbances for the velocity components is slightly different. The radial pertur-

bation is introduced as i times the usual normal mode form as discussed above. The

set of equations 1.5 to 1.8 was solved by Lessen and Singh (1973) for the viscous

stability of jets and wakes in the self–similar region.

1.4.4 Stability of swirling flows

Viscosity is generally thought to have a stabilizing effect on the growth of in-

stabilities and a negligible effect on their frequency and eigenvectors. Since inviscid
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analysis is much more straightforward, it is thus generally thought to provide a worst

case scenario able to provide reasonably accurate frequency estimates. However, as

was seen above in the case of the 2–D wake (Marasli et al., 1989) and axisymmetric jet

(Lessen and Singh, 1973), the general thought may be misleading. Khorrami (1991)

as well as Mayer and Powell (1992) found purely viscous modes of instability in the

analysis of the trailing line (Batchelor) vortex. The swirling flow exhibited very long

wave instabilities, one axisymmetric and one asymmetric (m=1) that become stable

as the Reynolds number is increased. Even though the growth rates of these modes

were much lower than that of their inviscid counterparts Khorrami (1991) was able to

provide supporting evidence for their existence in the form of photographs of aircraft

contrails. In view of the results obtained by Marasli et al. (1989) the existence of

these instabilities in high Reynolds number flows may point to the viscous influence

of turbulence on the development of instabilities.

Swirling flow stability is not only important in the behavior of trailing line vor-

tices. Another major field of research involving swirling flows is that of the vortex

breakdown. Vortex breakdown is the abrupt transition a swirling flow undergoes un-

der certain conditions. Explanations for the occurrence of vortex breakdown vary and

still today no consensus has been reached. Many elegant studies have been performed,

starting with the analysis of Benjamin (1962) who compared vortex breakdown in

swirling flows to the hydraulic jump in free surface flows. According to Benjamin

(1962), vortex breakdown thus represents a transition from a supercritical flow state

to a corresponding subcritical flow state brought about by certain changes in the flow

environment such as an adverse pressure gradient . Many accompanying fascinating

flow visualizations were published of the phenomenon. Among these are the studies

by Harvey (1962) and Sarpkaya (1971). Figure 1.2 shows a photograph taken from

Sarpkaya (1971). To obtain the picture the vortex core as well as an off–axis location

was seeded with dye. The dye from the core is seen to accumulate in a recirculation

bubble before being ejected in a spiraling jet. The conditions for these amazing pic-

tures however are laminar and in turbulent high Reynolds number flows, the detail

structure of vortex breakdown is more difficult to visualize. In several studies how-
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Figure 1.2: Sketch of vortex breakdown structure based on (Sarpkaya, 1971) and
(Harvey, 1962)

ever, it has been possible to discover one particular structure. The precessing vortex

core (PVC) has been identified in combustion and isothermal flows (Froud et al.,

1995; Kihm et al., 1989) as a jet that whips around the central recirculation zone

with a speed approximately equal but not identical to the speed of rotation of the

swirling flow.

Not surprisingly, alternate explanations of vortex breakdown are based on the

stability of the flow. Leibovich and Stewartson (1983) derived a sufficient condition

for the instability of a columnar vortex such as a trailing line vortex. The criterion

is based on the assumption of inviscid flow and is given in Equation 1.9.

Instability if: WΩ′
[

Ω′Γ′ + (U ′)2
]

< 0 for any r. (1.9)

Garg and Leibovich (1979) had some success comparing their spectral velocity

measurements to the theory advanced by Lessen and Paillet (1974). More recently,

vortex breakdown has been associated with absolute instability. The matter of ab-

solute instability will be addressed in greater detail in Section 1.4.5. Loiseleux et al.

(1998) and Loiseleux and Delbende (2000) solved the inviscid parallel stability equa-

tions for various idealizations of swirling flow profiles and used the results in terms of

absolute stability to predict the occurrence of vortex breakdown as a function of the

swirl strength and the axial flow form (wake or jet). The analysis proved reasonably

successful for a variety of quoted studies (see Loiseleux et al., 1998). A similar anal-

ysis was performed by Michalke (1999) for the velocity profile measured by Lehmann

et al. (1997). The study was able to confirm the fact that the observed oscillations
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were largely radial in nature. The quantitative estimate for the instability frequency

however was 40% lower than the measured frequency.

The understanding of vortex breakdown has continued to evolve and though no

consensus on the mechanics of vortex breakdown has been reached, recent studies

have been able to unify stability and transition concepts to some extent. The analy-

sis by Benjamin (1962) was extended by Keller et al. (1985, 1988) who studied vortex

breakdown as a three stage process, extending the analogy with the hydraulic jump.

The first transition is hypothesized to occur without dissipation, whereas the second

transition can be dissipative. The next major step in the evolution of vortex break-

down analysis was the analytical work performed by Leibovich and Kribus (1990) who

studied large amplitude waves on swirling flows. Linear stability analysis in Kribus

and Leibovich (1994) showed that these large amplitude waves are stable to axisym-

metric perturbations but unstable to azimuthal mode perturbations beginning with

m = 1. The stability characteristics observed are thus consistent with the spiraling

downstream character of the recirculation bubble often observed in vortex breakdown.

The most comprehensive unifying analysis in the last decade however was per-

formed by a research group lead by Z. Rusak at RPI. In a series of papers, the

existence of multiple steady solutions and the physical selection process of which

steady state is observed in experiments was connected to the stability characteristics

of these solutions. Wang and Rusak (1997) summarize and extend two papers (Wang

and Rusak, 1996a,b) on swirling flows in straight pipes. The work is able to show

that columnar flows (flows without breakdown) become unstable (in a global sense)

as swirl is increased and transition to a corresponding non–columnar state (flow with

recirculation, i.e. vortex breakdown). The non-columnar state satisfying the govern-

ing equations becomes stable near the point where the columnar state loses stability

and vice-versa. For swirling flows in a pipe, the transition is a particular point of swirl

strength. For swirling flow in a diverging pipe, the transition occurs over a range of

swirl ratios with strong unsteady motion bridging the two flow regimes (Rusak and

Judd, 2001; Rusak et al., 1997). Additionally, the analysis in Wang and Rusak (1997)

was able to relate the loss of stability of the columnar flow state to the ideas of sub-
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critical and supercritical flow put forth originally by Benjamin (1962) and continued

by Keller et al. (1985, 1988). Finally, Rusak et al. (1998) shows that near the critical

swirl level, transition can be initiated by subjecting the flow to finite but still small

perturbations.

The stability analysis employed in this work is not unlike that described here with

the exception that the entire flow field was analyzed and the parallel flow assump-

tion was not required. It should also be mentioned that all the work reported has

dealt with entirely axisymmetric flows and stability to circumferentially non-uniform

perturbations has not been studied.

The problem with applying linear parallel stability analysis to these flow fields is

that they are in no reasonable approximation parallel. Still, an impressive amount of

information can be obtained by the study of these equations (see Section 1.4.5), even

in flows where the assumptions underlying the equations are categorically violated.

It should be noted that the growth rates seen in swirling flows are still larger than

the growth rates observed in jets. On a scale relative to the axial amplification of the

disturbance, therefore, swirling flows are not as non–parallel as one may initially be

inclined to think.

1.4.5 Absolute and convective instability

The distinction between absolute and convective instability was first introduced

in the field of plasma stability. A phenomenological description of the difference is

given by Huerre and Monkewitz (1990). A flow that is convectively unstable behaves

as a spatial amplifier to specific ranges of frequencies whereas an absolutely unstable

flow behaves like a self–excited oscillator. As pointed out by Monkewitz and Sohn

(1986) in their study of the instabilities of hot jets, convectively unstable flows lend

themselves very well to control due to their intrinsic amplifying capabilities. Abso-

lutely unstable flows such as hot jets, under certain conditions (Monkewitz and Sohn,

1986), behave as self excited oscillators and are therefore much more difficult to con-

trol. From an observability standpoint however, self–excited flows are much more

easily monitored because the global instability has a certain form in space. Therefore
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the instability state can be identified with a relatively low amount of monitoring.

Still as reported later by Monkewitz (1989) the control of absolutely unstable flow is

challenging because control of one global mode will likely lead to the development of

a secondary global mode. Convectively unstable flows on the other hand have axially

continuously changing amplifying properties that would require, ideally, continuous

axial monitoring to obtain a full description of the flow characteristics. All cases

discussed above in Section 1.4.3 are not absolutely unstable anywhere in the flow.

Absolute and convective instability is generally distinguished using the impulse

response of a flow. If in response to the impulse the flow over all space returns to its

original state as time approaches infinity, the flow is at most convectively unstable.

If there is a period of time and space over which the impulse has excited growing

waves which are then however convected downstream, the flow is at least convectively

unstable. It follows that a necessary condition for absolute instability is convective

instability. To obtain a mathematical form for the condition of absolute instability, it

is sufficient to consider what happens to the initial impulse at the location the impulse

was given. For disturbances to grow in place it is necessary for the group velocity

(the velocity with which energy is transported) to be equal to zero. The condition

is expressed mathematically in Equation 1.10. Expanding ω(α) in a Taylor series

around αo immediately leads to the conclusion that αo is a saddle point of the complex

function ω(α). The mathematical condition for absolute stability then depends on the

sign of the imaginary part of ω. If the imaginary part is positive the flow is absolutely

unstable, whereas if it is negative the flow is convectively unstable (Monkewitz, 1990).

Furthermore, the branch point described by Equation 1.10 must be the result of

the coalescence of an upstream and a downstream mode (Huerre and Monkewitz,

1985). This so called ’pinching condition’ has the obvious physical interpretation

that absolute instability is the result of wave amplitude not only growing in the

downstream direction but also in the upstream direction. The pinching requirement

is illustrated in Figure 1.3. Figure 1.3 shows level curves, keeping the imaginary part

of the frequency ω constant. Each opposed pair of curves corresponds to the variation

of two eigenvalues as the real part of the frequency is varied at a given level of the
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Figure 1.3: Pinching condition for determination of absolute stability

imaginary part of the frequency. The two eigenvalues correspond to the upstream and

downstream traveling modes respectively. As the the imaginary part of the frequency

is increased past the location of the saddle point, the two opposed curves switch from

left right to top bottom.

dω

dα
(αo) = 0 with ωo = ω(αo) (1.10)

A locally absolutely unstable flow is globally unstable if in fact the flow is parallel.

However, even in the case of non–parallel flows a connection between local and global

stability exists. Chomaz et al. (1988) explicitly found this connection under the

assumption of a slowly varying mean flow. Specifically, they found that a necessary

condition for global instability is a finite area of local absolute instability. Even before

the connection between local absolute stability and global stability was positively

established, three global mode frequency selection criteria were advanced to attempt

to calculate the frequency of the oscillations observed. Pierrehumbert (1984) argued

that the observed oscillations should be dominated by the frequency of the maximum
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absolute growth rate found in the area of absolute instability. In other words, the

absolute growth rates are calculated for all axial locations, say, and the frequency of

the observed oscillations is the real part of the branch point value where the imaginary

part of the branch point frequency (ωo) has a maximum. Koch (1985) argued that any

point in flow where the absolute frequency is real acts as an effective narrow band

reflector for instability waves of that frequency. The presence of another reflector

would thus enable waves to be amplified between the two reflectors. The second

reflector can take the form of a solid boundary, which is an excellent broad band

reflector of instability waves or possibly a second point in the flow where the absolute

frequency is real. Finally, Monkewitz and Nguyen (1987) suggest that the frequency

observed is dominated by the first local resonance with a non-negative absolute growth

rate that is encountered by the flow. Analytically none of these criteria were able to

be verified except that the criterion due to Pierrehumbert (1984) gives a leading order

estimate for frequency in the case of the simple model used by Chomaz et al. (1988).

In fact, Huerre and Monkewitz (1990) show, based on the analysis of the Ginzburg-

Landau equation with variable coefficients (discussed further in Section 1.4.6), that

the absolute frequency of instability is given by another saddle point criterion, this

time between the local absolute complex frequency and a complex axial location. It

is unclear how this selection criterion should be implemented for real flows and we are

left with the first three selection criteria as summarized by Monkewitz and Nguyen

(1987) and described above.

Monkewitz and Nguyen (1987) noted that each of the three criteria appear to

work best with three types of absolutely unstable flows. The criterion of Pierrehum-

bert (1984) appears best suited to describe the evolution of a global instability in

flows that are largely unbounded such as the flows investigated by Pierrehumbert

(1984). The mechanism for global instability advanced by Koch (1985) appears best

suited to flows in which there is a pocket of absolute instability where the absolute

growth rates are never large and a solid boundary exists for efficient instability wave

reflection. Accordingly, the criterion performs best for bluff body flows just beyond

global instability. The frequency selection mechanism proposed by Monkewitz and
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Nguyen (1987) appears to perform best in flows with a solid boundary that contain

significant absolute instability.

The three criteria were evaluated by Hannemann and Oertel (1989) in a numeri-

cal study of the wake behind a flat plate at the supercritical Reynolds number of 200.

Hannemann and Oertel (1989) were able to obtain a pseudo steady state in their

numerical calculation from which they performed a time–accurate simulation of the

developing instability. They also solved the local Orr-Sommerfeld equation (Equa-

tion 1.3) to determine local stability properties. Hannemann and Oertel (1989) found

that none of the three selection criteria outlined above were able to predict both

frequency and growth rate. Both the criteria of Monkewitz and Nguyen (1987) and

Pierrehumbert (1984) predict the same frequency and growth rate because the max-

imum absolute growth rate occurs immediately at the downstream edge of the plate.

The growth rate predicted by these criteria was more than double that observed in the

numerical simulation. The predicted frequency was close to the saturation frequency

even though strictly speaking the criteria should only hold for the frequency during

the onset of instability. It should be noted that as expected, during the exponential

growth phase of the disturbance there was no change in frequency. As the saturation

state is approached, the frequency increases by approximately 8%. The criterion due

to Koch (1985) was also able to predict the saturation frequency. The criterion does

not provide an estimate for the initial growth rate. All these results are question-

able however since the saturation frequency prediction is based on the flow profiles

obtained in the pseudo steady state. The time mean flow in the saturation state dif-

fers significantly from the pseudo steady state, and so the stability properties of the

pseudo steady state may only be coincidentally related to the dynamic properties of

the saturation state. A study of how the stability properties change from the pseudo

steady state to the time mean saturation state was not reported. It should be noted

that the absolute growth rate exhibited a local maximum in the middle of the pocket

of absolute instability. The corresponding frequency matched the onset frequency of

instability very well. The success of the criterion of Pierrehumbert (1984) when the

region immediately behind the bluff body is ignored is not surprising considering the
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fact that the criterion was designed for unbounded flows.

Hannemann and Oertel (1989) then used base bleed in their numerical simulation

to suppress the instability and studied the stability properties of the generated mean

velocity profiles to see if base bleed control was mirrored in the stability properties. As

base bleed is increased, the absolute instability pocket predicted by analysis shrinks.

However, as predicted by Chomaz et al. (1988), global stability is attained before

local absolute instability is lost. Hannemann and Oertel (1989) conclude that linear

stability analysis can only provide an upper bound on the amount of bleed necessary to

eliminate the oscillations. However, the trend for a linear variation of onset frequency

with increasing base bleed was predicted by the criteria due to Monkewitz and Nguyen

(1987) and Pierrehumbert (1984). If the local maximum is used for the application

of the criterion due to Pierrehumbert (1984) as described above, linear stability also

predicts the quantitative variation of the onset frequency. Again however, no results

were reported to answer the question whether or not the saturation frequency is at

all related to the local stability properties of the time mean flow state in saturation.

The ideas of Monkewitz and Nguyen (1987) were extended to axisymmetric bluff–

body wakes by Monkewitz (1988) with limited success. Whereas 2-D bluff body flows

seem insensitive to the actual geometry of the bluff body, the occurrence of vortex

shedding and its characteristics are very geometry sensitive in axisymmetric bluff

body flows. Still, Monkewitz (1988) was able to show that vortex shedding, when it

occurs, is likely due to global instability similar to the 2-D bluff body flows.

The extension of local linear stability analysis to flows that have a stronger non–

parallel character is difficult. The analysis of Chomaz et al. (1988) indicates that as

the flow becomes more non–parallel, boundary conditions for the flow become more

important. Boundary effects have indeed been shown to be important in a study

by Chao et al. (1991) who examined the spectral characteristics of swirling flows

under changes of the downstream boundary condition. The study also found the flow

to be very sensitive to downstream actuation, a view that is consistent with that of

Benjamin (1962) who predicted that the flow downstream of vortex breakdown should

be subcritical and thus admit upstream traveling waves.
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1.4.6 Global stability

Global stability was connected to local stability by Chomaz et al. (1988) using

a simplified model for the global evolution of the instability based on the Ginzburg-

Landau relation shown in Equation 1.11. The equation was formally derived by

Stewartson and Stuart (1971) in the study of how a wave packet is amplified in plane

Poiseuille flow. Equation 1.11 can be solved not only for the strictly parallel case

where the coefficients are all constant but also for the case where coefficients vary.

Most interesting here is the case where ωαα remains constant but both ωo and αo are

allowed to vary slowly with the axial coordinate (Hunt and Crighton, 1991). Using

a quadratic variation in coefficients, Chomaz et al. (1988) proved the necessity of a

finite expanse of local absolute instability for global instability to become possible.

∂Ψ

∂t
− ωαααo

∂Ψ

∂x
− i

2
ωαα

∂2Ψ

∂x2
+ i
[

ωo +
ωαα

2
α2

o

]

Ψ = 0 (1.11)

Monkewitz (1989) used Equation 1.11 (including a forcing term) to study the

prospect for feedback control in locally absolutely unstable but still globally stable

flows as well as globally unstable flows. The study showed that it was relatively

straightforward to bring the system to oscillate by applying forcing at the damped

global frequency. The control of an existing self–excited global instability however

proved far more difficult. In fact control was only achievable for very small global

mode growth rates, for more supercritical flows, controlling the unstable global mode

caused the excitation of a higher global mode. This observation is consistent with

several experimental observations quoted in Monkewitz (1989) such as the difficulties

in obtaining control over the von Karman vortex street at larger supercritical Reynolds

numbers (Tao et al., 1996).

Linear stability analysis does not have to be performed on the local level. It is

possible to perform a 2-D linear stability analysis where the form of the perturba-

tion is such that the normal mode is no longer periodic in the axial direction. The

axial dependence is then absorbed into the eigenfunction, leaving only the temporal

frequency as periodic. Global linear stability analysis has been performed by Jack-
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son (1987) for variously shaped bluff bodies. Zebib (1987) performed global linear

stability analysis on flow over a long cylinder. Kim and Pearlstein (1990) performed

the analysis on flow past a sphere. Global stability analysis of course is not able to

predict the saturation state but the onset frequencies are routinely well predicted, at

the cost of significant additional computational expense and complexity of course.

Finally, it is important to mention a different type of global instability where the

feedback is not strictly internal to the flow but rather occurs through the acoustics

of the system. It is possible for a perturbation to be amplified by the shear layer

and then transported to the system boundary via acoustics and fed back to the

base of the shear layer as a coherent excitation. The feedback loop can cause the

entire system to become unstable. Interestingly, some of the same characteristics

observed in attempting to model control of self–excited globally unstable flows were

seen in acoustic feedback control experiments with jets. As reported in Monkewitz

(1989), the jet became self–excited above a certain feedback control gain. The nature

of the self–excited mode was found to be greatly dependent on speaker and sensor

locations, a feature which has also been observed in the globally unstable bluff–body

flows discussed in detail above. The acoustic feedback also played an important role

in the study of Gutmark et al. (1991) who examined isothermal and reacting flows

in sudden expansions. Gutmark et al. (1991) found that fluid dynamic instabilities

played an important role in determining which acoustic mode becomes unstable in

the presence of combustion.

1.4.7 Amplification without unstable eigenvalues

The global stability of a flow does not guarantee that all disturbances are imme-

diately damped, because the flow is indeed locally unstable and some transient growth

can be expected. Cossu and Chomaz (1997) were able to analytically show how such

amplification is possible. Once again the Ginzburg-Landau model given in Equa-

tion 1.11 was analyzed for a quadratic axial variation of the coefficients. However, in

this analysis the interest lay in the maximum amount of transient amplification that

can obtained from a perturbation whether coherent or random. The analysis made
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use of the pseudo–spectrum which holds the key to defining such transient growth.

The pseudo–spectrum is a term due at least in part to Trefethen (1992).

The pseudo–spectrum of an operator or in a discrete sense, a matrix is the spec-

trum of eigenvalues of a randomly perturbed matrix. If the operator is orthogonal

then perturbations of order ε will result in changes in the spectrum of eigenvalues

of order ε. However if the operator is non-orthogonal, the pseudo spectrum will be

significantly different from the original operator spectrum, allowing the existence of

unstable perturbed eigenvalues even if all eigenvalues of the original operator are sta-

ble. The Ginzburg-Landau operator is a non-orthogonal operator. Interestingly, the

more parallel the flow is the more non-orthogonal the operator becomes (Cossu and

Chomaz, 1997). Cossu and Chomaz (1997) showed explicitly that excitation of the

flow near the globally damped resonance can result in very large amplification of the

input signal. In general, the amount of transient gain achieved depends on the form of

the excitation. Furthermore, the eventual decay in the amplified disturbance is gov-

erned by the actual least damped eigenvalue, underlining the fact that the original

spectrum is only able to determine asymptotic time behaviour. Cooper and Crighton

(2000) used global mode analysis for the case of a slowly diverging isothermal jet to

show that the preferred Strouhal number, as given by the damped global frequency,

is close to those observed in most experiments, i.e. 0.44. The analysis was able to

show remarkable similarity between experiment and model in the near and far field

directivity pattern of the acoustic field generated by the instability. The calculation

of the damped global frequency involves the search for yet another saddle point, this

time in the complex temporal frequency and spatial coordinate planes. The sad-

dle point search in complex spatial coordinates is performed using rational function

extrapolation.

In Section 1.4.2 it was pointed out that instability theory failed to predict turbu-

lent transition for 2-D Poiseuille flow. Since the early results of Orszag (1971) much

work has been done to explain the apparent premature transition to turbulence in

Poiseuille flow. Gustavsson (1991) showed that 3-D disturbances can be amplified

significantly over a finite period of time before eventually decaying. The 3-D dis-

39



turbances considered by Gustavsson (1991) represent a favorable phase relationship

between independent vorticity and velocity perturbations. The form of the perturba-

tion in the velocity resembles cross–stream streaks which are also observed in exper-

iments. Butler and Farrell (1992) used variational methods and principles based on

the pseudo-spectrum to find the form of the perturbation that would achieve maximal

gain in a given time frame. The Orr-Sommerfeld operator also is a non-orthogonal

operator. The results were very similar to those of Gustavsson (1991) in terms of

the optimal form of the perturbation and the maximum amplification achieved. An

excellent introduction to the subject of pseudo spectra and calculation of transient

amplification is given by Trefethen et al. (1993). The issue of transient amplifica-

tion may also be important in swirling and convectively stable flows if the governing

operator is non-orthogonal.

1.5 Summary

1.5.1 Experiments

Although many studies report distributions of mean and RMS velocities, only

very few report power spectra or other dynamic details of the velocity fluctuations.

Garg and Leibovich (1979) studied turbulent vortex breakdown in a slowly expanding

pipe and found significant concentrations of spectra energy for the bubble form of

vortex breakdown. Panda and McLaughlin (1994) studied the dynamics of a free

swirling jet and found no concentration of spectral energy and reported difficulty in

exciting the flow field. The present research will exhaustively report on the dynamics

observed in the swirling flows measured in Chapter 5.

1.5.2 Analysis

Many forms of analysis have been performed in order to obtain a more complete

understanding of the behavior of swirling flows. Wang and Rusak (1997) analyzes

the global stability of a developing swirling flow and finds that vortex breakdown is
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associated with a loss of stability of the columnar solution branch as the amount of

swirl in the flow field is increased. Keller et al. (1985, 1988) take the approach of

Benjamin (1962) and exploit the analogy between vortex breakdown and a hydraulic

jump to explain the occurrence and structure of vortex breakdown. These global

approaches to the analysis of swirling flows are analytically involved and in general

are difficult to apply to real non-idealized flow fields. The approach taken here is

similar to that of Michalke (1999) who analyzed a local velocity profile typical of

swirling flows with vortex breakdown. The analysis determined the local stability

characteristics of the flow field. However, absolute instability was found so that the

entire flow field can be expected to be affected by the instability. The locally parallel

flow assumption makes it possible to analyze a very large variety of flow fields.

Other dynamic analysis approaches exist in the field of fluid dynamics but have

so far not been applied to swirling flows. The most interesting of these is the pseudo-

spectral analysis as presented by Trefethen et al. (1993). Pseudo-spectral analysis

is not reported in this study, though the rapid broadband production of turbulence

observed in swirling flows may be closely related to mode-to-mode distribution of

energy facilitated by a non-orthogonal dynamic flow operator (similar to the Orr-

Sommerfeld operator).
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