Soil Nitrogen Fertilization Increases Yeast Assimilable Nitrogen Concentrations in 'Golden Russet' and 'Medaille d'Or' Apples Used for Cider Production

Abstract

The recent growth in the U.S. hard-cider industry has increased the demand for cider apples (Malus xdomestica Borkh.), but little is known about how to manage orchard soil fertility best to optimize horticultural performance and juice characteristics for these cultivars. To assess whether nitrogen fertilizer applied to the soil can improve apple juice and cider quality, calcium nitrate (CaNO3) fertilizer was applied at different rates to the soil beneath 'Golden Russet' and 'Medaille d'Or' trees over the course of three growing seasons. The experiment started when the trees were in their second leaf. The trees were cropped in their third and fourth leaf. At the end of the first growing season of the experiment, the greatest fertilizer rate increased tree trunk cross-sectional area (TCSA) by 82% relative to the control, but this difference did not persist through to the end of the study. Yield and crop load were unaffected by the nitrogen fertilization treatments. Increasing the nitrogen fertilizer rate correlated positively with more advanced harvest maturity in 'Golden Russet' fruit, which resulted in greater soluble solid concentration (SSC). Fruit from the greatest fertilizer rate treatment had an average starch pattern index (SP1) that was 1 U greater than in the control, and an SSC that was 3% greater than the control. The fertilizer treatments did not affect juice pH, titratable acidity (TA), or total polyphenol concentrations. Yeast assimilable nitrogen (YAN) concentrations were increased by nitrogen fertilization for both cultivars in both harvest years. The greatest fertilizer treatment increased juice primary amino nitrogen by 103% relative to the control. Greater nitrogen fertilization rates correlated positively with less hydrogen sulfide production during the fermentation of 'Golden Russet' juice from the first, but not the second, harvest. During the first year, cumulative hydrogen sulfide production for the 'Golden Russet' control treatment was 29.6 mu g.L-1 compared with the 'Golden Russet' high treatment, which cumulatively produced 0.1 mu g.L-1. Greater maximum fermentation rates and shorter fermentation durations correlated positively with increased fertilization rate for both cultivars after the second harvest. High treatment fermentations had maximum fermentation rates 110% greater, and fermentation durations 30% shorter than the control. Other horticultural and juice-quality parameters were not affected negatively by the CaNO3 treatments. In orchards producing apples specifically for the hard-cider industry, nitrogen fertilizer could increase juice YAN, thus reducing the need for exogenous additions during cider production.

Description
Keywords
amino acid, fermentation, hard cider, Malus xdomestica Borkh., nitrogen fertilization, tree growth, yeast assimilable nitrogen
Citation