Show simple item record

dc.contributor.authorImmel, Thomas J.
dc.contributor.authorEastes, Richard W.
dc.contributor.authorMcClintock, William E.
dc.contributor.authorMende, Steven B.
dc.contributor.authorFrey, Harald U.
dc.contributor.authorTriplett, Colin
dc.contributor.authorEngland, Scott L.
dc.date.accessioned2020-10-13T17:18:31Z
dc.date.available2020-10-13T17:18:31Z
dc.date.issued2020-09-30
dc.identifier.citationImmel, T.J.; Eastes, R.W.; McClintock, W.E.; Mende, S.B.; Frey, H.U.; Triplett, C.; England, S.L. Daily Variability in the Terrestrial UV Airglow. Atmosphere 2020, 11, 1046.
dc.identifier.urihttp://hdl.handle.net/10919/100469
dc.description.abstractNew capability for observing conditions in the upper atmosphere comes with the implementation of global ultraviolet (UV) imaging from geosynchronous orbit. Observed by the NASA GOLD mission, the emissions of atomic oxygen (OI) and molecular nitrogen (N2) in the 133–168-nm range can be used to characterize the behavior of these major constituents of the thermosphere. Observations in the ultraviolet from the first 200 days of 2019 indicate that the oxygen emission at 135.6 nm varies much differently than the broader Lyman-Birge-Hopfield (LBH) emission of N2. This is determined from monitoring the average instrument response from two roughly 1000 km2 areas, well separated from one another, at the same time of each day. Variations in the GOLD response to UV emissions in the monitored regions are determined, both in absolute terms and relative to a running 7-day average of GOLD measurements. We find that variations in N2 emissions in the two separate regions are significantly correlated, while oxygen emissions, observed in the same fixed geographic regions at the same universal time each day, exhibit a much lower correlation, and exhibit no correlation with the N2 emissions in the same regions. This indicates that oxygen densities in the airglow-originating altitude range of 150–200 km vary independently from the variations in nitrogen, which are so well correlated across the dayside to suggest a direct connection to variation in solar extreme-UV flux. The relation of the atomic oxygen variations to solar and geomagnetic activity is also shown to be low, suggesting the existence of a regional source that modifies the production of atomic oxygen in the thermosphere.en
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherMDPI
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleDaily Variability in the Terrestrial UV Airglowen
dc.typeArticle - Refereeden_US
dc.date.updated2020-10-13T13:24:25Z
dc.contributor.departmentAerospace and Ocean Engineering
dc.title.serialAtmosphere
dc.identifier.doihttps://doi.org/10.3390/atmos11101046
dc.type.dcmitypeText
dc.type.dcmitypeStillImage


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International