Technoeconomic Analysis of Textured Surfaces for Improved Condenser Performance in Thermoelectric Power Plants

TR Number
Date
2021-01-19
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Nonwetting surfaces including superhydrophobic (SHS) and liquid infused surfaces (SLIPS) exhibit diverse exceptional characteristics promoting numerous application opportunities. Engineered textured surfaces demonstrate multiple features including drag reduction, fouling reduction, corrosion resistance, anti-fogging, anti-icing, and condensation enhancement. Integrating these properties, nonwetting surfaces have shown significant potential in improving the efficiency of energy applications. The first part of the thesis work aims at developing a fundamental mathematical understanding of the wetting process on the solid surface followed by presenting fabrication methodologies specifically focused on metallic substrates. The second part of this thesis presents an exhaustive survey on recent advancements and researches about features of nonwetting surfaces that could be implemented in major industrial applications.

To establish how realistically these features could enhance the real-life applications, the third part of this work investigates the dynamic performance and economic benefits of using textured surfaces fabricated using an electrodeposition process for condenser tubes in thermoelectric power plants. The textured surfaces are expected to provide enhanced performance by deterring fouling and promoting dropwise condensation of the steam on the shell side. Using a thermal resistance network of a shell and tube condenser, detailed parametric studies are carried out to investigate the effect of various design parameters on the annual condenser performance measured in terms of its electric energy output of a representative 550 MW coal-fired power plant. A cost modeling tool and a new Levelized cost of condenser (LCOC) metric have been developed to evaluate the economic and performance benefits of enhanced condenser designs. The LCOC is defined as the ratio of the lifetime cost of the condenser (and associated costs such as coating, operation and maintenance) to the total electric energy produced by the thermoelectric power plant. The physical model is coupled with a numerical optimization method to identify the optimal design and operating parameters of the textured tubes that minimizes LCOC. Altogether, the study presents the first effort to construct and analyze enhanced condenser design with textured tube surfaces on annual thermoelectric power plant performance and compares it against the baseline condenser design with plain tubes.

Description
Keywords
Condenser, Energy, Fouling, SLIPS, Superhydrophobic, Texturing, Thermoelectric, Water, Anti-corrosion, Drag, Ice, Fog, Condensation, Electrodeposition coating
Citation
Collections