Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesizing a Heparin Mimic Material Derived from Cellulose Nanocrystals

    Thumbnail
    View/Open
    Gallagher_ZJ_T_2018.pdf (25.93Mb)
    Downloads: 2
    Supporting documents (870.3Kb)
    Downloads: 0
    Date
    2018-08-27
    Author
    Gallagher, Zahra Jane
    Metadata
    Show full item record
    Abstract
    To prevent clotting during dialysis, heparin is used to line the tubing which blood flows through. Unfortunately, many side effects arise from taking heparin, especially when it is used for an extended period of time. As such, long-term exposure for individuals undergoing dialysis every day is unavoidable. To prevent the solubilized heparin from entering the bloodstream, a polymer-based natural material is being investigated. This materials properties include reduction of coagulation and elimination of the long-term effects of heparin such as heparin induced thrombocytopenia and osteoporosis. Cellulose nanocrystals (CNCs) contain the same 1,4 linked pyranose backbone structure as heparin along with desirable mechanical properties, like high stiffness and anisotropic shape. By altering the functionalization on the surface of CNCs to closely mirror that of heparin, it should be possible to make a biomimetic material that counteracts blood clotting, while not introducing soluble small molecule anti-coagulants into the body. Through blood assays and platelet fixing analysis, we have been able to show that this change in functionalization does reduce coagulation. Surface chemistry of CNCs were modified from 'plain' CNCs (70 mmol SO3-/kg residual from hydrolysis) to 500 mmol COO-/kg (TEMPO oxidized) and 330 mmol SO3-/kg CNC (sulfonated CNCs). We will show that by utilizing CNCs reactive functional groups and incredible mechanical properties we are able to create a material that reduces clotting while maintaining the tubing's mechanical strength as well as eliminating heparin's side effects associated with it being a soluble anticoagulant.
    URI
    http://hdl.handle.net/10919/102408
    Collections
    • Masters Theses [19643]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us