Finite Element Modeling and Performance Evaluation of Piezoelectric Energy Harvesters with Various Piezoelectric Unit Distributions

TR Number
Date
2021-03-14
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract

The piezoelectric energy harvester (PEH) is a device for recycling wasted mechanical energy from pavements. To evaluate energy collecting efficiency of PEHs with various piezoelectric unit distributions, finite element (FE) models of the PEHs were developed in this study. The PEH was a square of 30 cm × 30 cm with 7 cm in thickness, which was designed according to the contact area between tire and pavement. Within the PEHs, piezoelectric ceramics (PZT-5H) were used as the core piezoelectric units in the PEHs. A total of three distributions of the piezoelectric units were considered, which were 3 × 3, 3 × 4, and 4 × 4, respectively. For each distribution, two diameters of the piezoelectric units were considered to investigate the influence of the cross section area. The electrical potential, total electrical energy and maximum von Mises stress were compared based on the computational results. Due to the non-uniformity of the stress distribution in PEHs, more electrical energy can be generated by more distributions and smaller diameters of the piezoelectric units; meanwhile, more piezoelectric unit distributions cause a higher electrical potential difference between the edge and center positions. For the same distribution, the piezoelectric units with smaller diameter produce higher electrical potential and energy, but also induce higher stress concentration in the piezoelectric units near the edge.

Description
Keywords
piezoelectric energy harvester, finite element simulation, piezoelectric unit distributions, electrical potential and energy, von Mises stress
Citation
Du, C.; Liu, P.; Yang, H.; Jiang, G.; Wang, L.; Oeser, M. Finite Element Modeling and Performance Evaluation of Piezoelectric Energy Harvesters with Various Piezoelectric Unit Distributions. Materials 2021, 14, 1405.