Examining Plasma Instabilities as Ionospheric Turbulence Generation Mechanisms Using Pseudo-Spectral Methods

TR Number
Date
2021-03-30
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Turbulence in the ionosphere is important to understand because it can negatively affect communication signals. This work examines different scenarios in the ionosphere in which turbulence may develop. The two main causes of turbulence considered in this work are the gradient drift instability (GDI) and the Kelvin-Helmholtz instability (KHI).

The likelihood of the development of the GDI during the August 17, 2017 total solar eclipse is studied numerically. This analysis uses the ``Sami3 is Also a Model of the Ionosphere" (SAMI3) model to study the effect of the eclipse on the plasma density. The calculated GDI growth rates are small compared to how quickly the eclipse moves over the Earth. Therefore, the GDI is not expected to occur during the solar eclipse.

A novel 2D electrostatic pseudo-spectral fluid model is developed to study the growth of these two instabilities and the problem of ionospheric turbulence in general. To focus on the ionospheric turbulence, a set of perturbed governing equations are derived. The model accurately captures the GDI growth rate in different limits; it is also benchmarked to the evolution of instability development in different collisional regimes of a plasma cloud.

The newly developed model is used to study if the GDI is the cause of density irregularities observed in subauroral polarization streams (SAPS). Data from Global Positioning System (GPS) scintillations and the Super Dual Auroral Radar Network (SuperDARN) are used to examine the latitudinal density and velocity profiles of SAPS. It is found that the GDI is stabilized by velocity shear and therefore will only generate density irregularities in regions of low velocity shear. Furthermore, the density irregularities cannot extend through regions of large velocity shear. In certain cases, the turbulence cascade power laws match observation and theory.

The transition between the KHI and the GDI is studied by understanding the effect of collisions. In low collisionality regimes, the KHI is the dominant instability. In high collisionality regimes, the GDI is the dominant instability. Using nominal ionospheric parameters, a prediction is provided that suggests that there exists an altitude in the upper textit{F} region ionosphere above which the turbulence is dominated by the KHI.

Description
Keywords
Plasma instabilities, computational physics, space science, Turbulence, pseudo-spectral methods, ionosphere
Citation