Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 ceramics

Files
Main article (1.2 MB)
Downloads: 1686
TR Number
Date
2012-04-01
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
Abstract

This study investigates the effect of two different Mn modifiers [MnO2 and Pb(Mn1/3Nb2/3)O-3(PMnN)] on the of phase transitions in Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 ceramics. The temperature dependence of polarization derived from measured pyroelectric current indicated change in nature of phase transition with MnO2 doping. This phenomenon was supported by the temperature evolution of the linear softening of low lying hard lattice mode as revealed by Raman analysis. The grain size was found to increase with MnO2 doping (5X) while decrease with PMnN modification (0.5X). Interestingly, the piezoelectric constant of MnO2 modified composition showed negligible degradation (<1%) even after heat treatment very close to the ferroelectric-paraelectric transition temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703124]

Description
Keywords
Physics
Citation
Yan, Yongke; Kumar, Ashok; Correa, Margarita; et al., "Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 ceramics," Appl. Phys. Lett. 100, 152902 (2012); http://dx.doi.org/10.1063/1.3703124