Tone classifier
Files
TR Number
Date
2014-02-24
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The goal of tone analysis is to identify tone from text. We focused on the following tones: alarmist, warning, reassuring, and explanatory. To detect tones from text automatically, we used a supervised machine learning approach. This is a classic text classification problem, and a usual practice in approaching such problems is to first examine text chunks using a Multinomial Naïve Bayes classifier (based on the bag-of-words model). The classifier is based on Bayes’s theorem with a feature model that is conditionally independent of the tone. The classifier is first trained using the features extracted from manually tagged text. After training, the classifier predicts tones for newly extracted, previously unseen, text.
Description
This software was developed as a part of research in applied algorithmic techniques to identify qualitative features and information flow in large text-based data sets.
This folder contains 15 files:
README.txt
results_file.csv
Tone Classifier Running Instructions.txt.txt
Tone_Classifier_Train.py
Tone_Classifier.py
ToneClassifier.pkl
ToneClassifier.pkl_01.npy
ToneClassifier.pkl_02.npy
ToneClassifier.pkl_03.npy
ToneTestingSet.csv
ToneTrainingSet.csv
Vectorizer_tfidf.pkl
Vectorizer_tfidf.pkl_01.npy
Vectorizer_tfidf.pkl_02.npy
Vectorizer_tfidf.pkl_03.npy
THIS DATA SET IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.