Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows

Files
Main article (1.14 MB)
Downloads: 1012
TR Number
Date
2012-07-01
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Abstract

This work investigates the error caused by nonuniformities along the line-of-sight in velocity measurement using tunable diode-laser absorption spectroscopy (TDLAS). Past work has demonstrated TDLAS as an attractive diagnostic technique for measuring velocity, which is inferred from the Doppler shift of two absorption features using two crossing laser beams. However, because TDLAS is line-of-sight in nature, the obtained velocity is a spatially averaged value along the probing laser beams. As a result, nonuniformities in the flow can cause uncertainty in the velocity measurement. Therefore, it is the goal of this work to quantify the uncertainty caused by various nonuniformities typically encountered in practice, including boundary layer effects, the divergence/convergence of the flow, and the methods used to fit the Doppler shift. Systematic analyses are performed to quantify the uncertainty under various conditions, and case studies are reported to illustrate the usefulness of such analysis in interpreting experimental data obtained from a scramjet facility. We expect this work to be valuable for the design and optimization of TDLAS-based velocimetry, and also for the quantitative interpretation of the measurements. (C) 2012 Optical Society of America

Description
Keywords
Wavelength-modulation spectroscopy, Water-vapor, Temperature, Distribution, Scramjet combustor, Gas temperature, Parameters, Pressure, Sensors
Citation
Fei Li, Xilong Yu, Weiwei Cai, and Lin Ma, "Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows," Appl. Opt. 51, 4788-4797 (2012); doi: 10.1364/AO.51.004788