Effect of Overturning Restraint on the Performance of Fully Sheathed and Perforated Timber Framed Shear Walls

Files
THESIS.PDF (1.6 MB)
Downloads: 288
TR Number
Date
1997-12-05
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This study investigates the monotonic and cyclic response of light-frame wood shear walls with and without openings. Effects of overturning restraint in the form of tie-down anchors and corner segments on light-frame shear walls with and without door and window openings were quantified. While the results are useful to refine a design methodology for shear walls containing openings, they also provide important knowledge that is needed to accurately quantify anchorage requirements for shear wall design, and assess remaining load and ductility capacity of wood frame buildings after earthquakes or hurricanes.

Sixteen full-scale wall specimens were tested using monotonic and sequential phased displacement (SPD) patterns. A total of five different wall configurations, five anchorage, and two loading conditions were used. All walls were eight feet (2.4m) high. Straight wall specimens were forty feet (12.2m) long, whereas corner walls measured twelve feet (3.7m) in length. The analysis includes data from a previous investigation in order to further expand the scope of this study. Results reveal that ultimate capacity and stiffness increase with increasing overturning restraint. A shift in failure mode was observed when overturning restraints were omitted. Accumulated damage experienced by the wall specimens tested cyclically was fairly uniform, regardless of the amount of overturning restraint or size of openings present.

Description
Keywords
shearwall, timber, anchor, tie-down, cyclic, monotonic, Wood
Citation
Collections