Carbon storage during the regrowth and conversion of Virginia Piedmont forests

TR Number
Date
1985-06-05
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Recent increases in atmospheric carbon dioxide caused by the combustion of fossil fuels and tropical deforestation may result in global warming. Carbon accumulation by regrowing temperate forests, in regions such as the southeastern United States, may have been extensive enough to counterbalance releases of carbon from the tropics. In the Virginia Piedmont, large amounts of carbon have accumulated in phytomass and detritus of loblolly pine (Pinus taeda) plantations and natural forests regrowing on post-agricultural fields. After 50 years, carbon in phytomass of old field plantations was 200,000 kg/ha, twice the amount accumulated by natural forests. Detrital carbon accumulations totaled over 100,000 kg/ha, but were dependent upon amounts of erosional loss prior to reforestation.

The forested land area in the southeastern United States has stabilized, and forest conversion is now the primary form of reforestation. Therefore, the region's ability to continue to store carbon has been questioned. Still, the phytomass of late-rotation converted plantations stored 200,000 kg carbon/ha, twice the amount of the natural forests they replaced. In addition, while the harvest of natural forests resulted in small reductions in detrital carbon, it was rapidly restored to over 100,000 kg/ha within 30 years.

Houghton et al. (1983) developed a series of models describing carbon dynamics during reforestation. My data show that patterns of carbon accumulation exhibited by regrowing loblolly pine plantations are different from their models. Therefore, modifications of the models are suggested to improve estimates of carbon storage in temperate forests.

Description
Keywords
Citation
Collections