GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm

Files
Main article (4.17 MB)
Downloads: 1331
TR Number
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Copernicus Publications
Abstract

The amplitude and phase scintillation indices are customarily obtained by specialised GPS Ionospheric Scintillation and TEC Monitors (GISTMs) from L1 signal recorded at the rate of 50 Hz. The scintillation indices S-4 and sigma(Phi) are stored in real time from an array of high-rate scintillation receivers of the Canadian High Arctic Ionospheric Network (CHAIN). Ionospheric phase scintillation was observed at high latitudes during a moderate geomagnetic storm (Dst = -61 nT) that was caused by a moderate solar wind plasma stream compounded with the impact of two coronal mass ejections. The most intense phase scintillation (sigma(Phi) similar to 1 rad) occurred in the cusp and the polar cap where it was co-located with a strong ionospheric convection, an extended tongue of ionisation and dense polar cap patches that were observed with ionosondes and HF radars. At sub-auroral latitudes, a sub-auroral polarisation stream that was observed by mid-latitude radars was associated with weak scintillation (defined arbitrarily as sigma(Phi) < 0.5 rad). In the auroral zone, moderate scintillation coincided with auroral breakups observed by an all-sky imager, a riometer and a magnetometer in Yellowknife. To overcome the limited geographic coverage by GISTMs other GNSS data sampled at 1 Hz can be used to obtain scintillation proxy indices. In this study, a phase scintillation proxy index (delta phase rate, DPR) is obtained from 1-Hz data from CHAIN and other GPS receivers. The 50-Hz and 1-Hz phase scintillation indices are correlated. The percentage occurrences of sigma(Phi) > 0.1 rad and DPR > 2mm s(-1), both mapped as a function of magnetic latitude and magnetic local time, are very similar.

Description
Keywords
Ionosphere, Ionospheric irregularities, Magnetospheric physics, Storms, And substorms, Radio science, Space and satellite communication, HF radar observations, Ionospheric scintillation, Solar minimum, Auroral, Oval, Convection, Networks, Climatology, Morphology, SuperDARN, Dynamics, Astronomy & astrophysics, Geosciences, multidisciplinary, Meteorology, Atmospheric sciences
Citation
Prikryl, P., Ghoddousi-Fard, R., Kunduri, B. S. R., Thomas, E. G., Coster, A. J., Jayachandran, P. T., Spanswick, E., and Danskin, D. W.: GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm, Ann. Geophys., 31, 805-816, doi:10.5194/angeo-31-805-2013, 2013.