Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

TR Number
Date
2015-05-13
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. The design concept of reinforcing the wing structure using curvilinear stiffening members has been explored due to the development of novel manufacturing technologies like electron-beam-free-form-fabrication (EBF3). For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. The panel thickness, size and shape of stiffeners are optimized to minimize the structural weight. The geometry of spars and ribs greatly influences the design of stiffened panels. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". The aircraft design is characterized by multiple disciplines: structures, aeroelasticity and buckling. Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. The interaction between the global wing optimization and the local panel optimization is usually computationally expensive. A parallel computing technology has been developed in Python programming to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. Both the global wing design variables and local panel design variables are optimized to minimize the wing weight at an acceptable computational cost. The structural weight of the wing has been, therefore, reduced by 40% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. In the presence of structural discontinuities like cracks, delaminations, cutouts etc., the computational complexity increases significantly. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We investigate here the performance of the global-local scheme based on the finite element method by comparing it to the traditional finite element method. To do so, we conduct a 2D structural analysis of a composite square plate, with a thin rectangular notch at its center, subjected to a uniform transverse pressure, using the commercial software ABAQUS. We show that the presence of the thin notch affects only the local response of the structure and that the size of the affected area depends on the notch length. We investigate also the effect of the notch shape on the response of the structure. Stiffeners attached to composite panels may significantly increase the overall buckling load of the resultant stiffened structure. Buckling analysis of a composite panel with attached longitudinal stiffeners under compressive loads is performed using Ritz method with trigonometric functions. Results are then compared to those from ABAQUS FEA for different shell elements. The case of composite panel with one, two, and three stiffeners is investigated. The effect of the distance between the stiffeners on the buckling load is also studied. The variation of the buckling load and buckling modes with the stiffeners' height is investigated. It is shown that there is an optimum value of stiffeners' height beyond which the structural response of the stiffened panel is not improved and the buckling load does not increase. Furthermore, there exist different critical values of stiffener's height at which the buckling mode of the structure changes. Next, buckling analysis of a composite panel with two straight stiffeners and a crack at the center is performed. Finally, buckling analysis of a composite panel with curvilinear stiffeners and a crack at the center is also conducted. ABAQUS is used for these two examples and results show that panels with a larger crack have a reduced buckling load. It is shown also that the buckling load decreases slightly when using higher order 2D shell FEM elements. A damage tolerance framework, EBF3PanelOpt, has been developed to design and analyze curvilinearly stiffened panels. The framework is written with the scripting language PYTHON and it interacts with the commercial software MSC. Patran (for geometry and mesh creation), MSC. Nastran (for finite element analysis), and MSC. Marc (for damage tolerance analysis). The crack location is set to the location of the maximum value of the major principal stress while its orientation is set normal to the major principal axis direction. The effective stress intensity factor is calculated using the Virtual Crack Closure Technique and compared to the fracture toughness of the material in order to decide whether the crack will expand or not. The ratio of these two quantities is used as a constraint, along with the buckling factor, Kreisselmeier and Steinhauser criteria, and crippling factor. The EBF3PanelOpt framework is integrated within a two-step Particle Swarm Optimization in order to minimize the weight of the panel while satisfying the aforementioned constraints and using all the shape and thickness parameters as design variables. The result of the PSO is used then as an initial guess for the Gradient Based Optimization using only the thickness parameters as design variables. The GBO is applied using the commercial software VisualDOC.

Description
Keywords
Multidisciplinary optimization, stiffened panels, damage tolerance, stress intensity factor, composite panel, buckling, crack, global/local approach, Finite element method, parallel computing
Citation