Plastic Relaxation of Highly Tensile Strained (100) Ge/InGaAs Heterostructures

Files
TR Number
Date
2015-07-29
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Biaxial tensile strain has been shown to greatly enhance the optoelectronic properties of epitaxial germanium (Ge) layers. As a result, tensile-Ge (and#949t-Ge) layers grown on larger lattice constant InGaAs or GeSn have attracted great research interest. However, no previous studies have investigated the plastic relaxation occurring in these and#949t-Ge layers. Here, we experimentally demonstrate that plastic relaxation occurs in nearly all and#949t-Ge epitaxial layers that are of practical interest for optoelectronic applications, even when layers may still exhibit strain-enhanced characteristics. We show arrays of misfit dislocations (MDs), which are mostly disassociated, form at the and#949t-Ge/InGaAs interface for and#949t-Ge layers as thin as 15 nm with less than 1% total mismatch. Wedge geometry of plain view transmission electron microscopy (PV-TEM) foils is utilized to carry out a depth dependent investigation MD spacing for a range of and#949t-Ge/InGaAs heterostructures. MD spacing measured by PV-TEM is correlated to and#949t-Ge layer relaxation measured by high-resolution x-ray diffraction. We confirm very low relaxation (< 10% relaxed) in and#949t-Ge layers does not imply they have been coherently grown. We demonstrate plastic relaxation in the and#949t-Ge layer is acutely sensitive to grown-in threading dislocations (TDs) in the template material, and that reducing TD density is critical for maximizing strain retention. Given that and#949t-Ge layer thicknesses of 150+ nm with greater than 1% tensile strain are desired for optoelectronic devices, this work suggests that MDs may inevitably be present at and#949t-Ge/InGaAs heterointerfaces in practical devices, and that the effect of MDs on optoelectronic performance must be better understood.

Description
Keywords
tensile, strain, germanium, misfit dislocations, stacking faults, plastic relaxation, elastic relaxation, Shockley partial dislocations
Citation
Collections