Show simple item record

dc.contributor.authorElliott, Rachelen
dc.contributor.authorLewers, Mark E.en
dc.contributor.authorMihalcea, Leonardo C.en
dc.coverage.spatialUSAen
dc.date.accessioned2017-01-22T17:34:34Zen
dc.date.available2017-01-22T17:34:34Zen
dc.date.issued2016en
dc.identifier.urihttp://hdl.handle.net/10919/74409en
dc.description.abstractWe study some combinatorial objects related to the flag manifold X of Lie type G2. Using the moment graph of X we calculate all the curve neighborhoods for Schubert classes. We use this calculation to investigate the ordinary and quantum cohomology rings of b. As an application, we obtain positive Schubert polynomials for the cohomology ring of X and we find quantum Schubert polynomials which represent Schubert classes in the quantum cohomology ring of X.en
dc.format.extent437 - 451 page(s)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleQuantum Schubert polynomials for the G2 flag manifolden
dc.typeArticle - Refereeden
dc.description.versionPublished (Publication status)en
dc.contributor.departmentMathematicsen
dc.contributor.departmentPhysicsen
dc.title.serialInvolveen
dc.identifier.volume9en
dc.identifier.issue3en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record