Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • Destination Areas (DAs) and Strategic Growth Areas (SGAs)
    • Destination Areas (DAs)
    • Destination Area: Data and Decisions (D&D)
    • View Item
    •   VTechWorks Home
    • Destination Areas (DAs) and Strategic Growth Areas (SGAs)
    • Destination Areas (DAs)
    • Destination Area: Data and Decisions (D&D)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The molecular mechanism linking muscle fat accumulation to insulin resistance

    Thumbnail
    View/Open
    molecular_mechanism_linking_muscle_fat_accumulation_to_insulin_resistance.pdf (88.94Kb)
    Downloads: 209
    Date
    2004
    Author
    Dohm, G. Lynis
    Hulver, Matthew W.
    Metadata
    Show full item record
    Abstract
    Skeletal muscle insulin resistance is a co-morbidity of obesity and a risk factor for the development of type 2 diabetes mellitus. Insulin resistance is associated with the accumulation of intramyocellular lipids. Intramyocellular triacylglycerols do not appear to be the cause of insulin resistance but are more likely to be a marker of other lipid intermediates such as fatty acyl-CoA, ceramides or diacylglycerols. Fatty acyl-CoA, ceramides and diacylglycerols are known to directly alter various aspects of the insulin signalling cascade. Insulin signalling is inhibited by the phosphorylation of serine and threonine residues at the levels of the insulin receptor and insulin receptor substrate 1. Protein kinase C is responsible for the phosphorylation of the serine and threonine residues. Fatty acyl-CoA and diacylglycerols are known to activate protein kinase C. The cause of the intramyocellular accumulation of fatty acyl-CoA and diacylglycerols is unclear at this time. Reduced fatty acid oxidation does not appear to be responsible, as fatty acyl-CoA accumulates in skeletal muscle with a normal fatty acid oxidative capacity. Other potential mechanisms include oversupply of lipids to muscle and/or up regulated fatty acid transport.
    URI
    http://hdl.handle.net/10919/79624
    Collections
    • Destination Area: Data and Decisions (D&D) [132]
    • Scholarly Works, Department of Human Nutrition, Foods, and Exercise [253]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us