Whole-Ecosystem Experiments Reveal Varying Responses of Phytoplankton Functional Groups to Epilimnetic Mixing in a Eutrophic Reservoir

Files
TR Number
Date
2019-01-29
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract

Water column mixing can influence community composition of pelagic phytoplankton in lakes and reservoirs. Previous studies suggest that low mixing favors cyanobacteria, while increased mixing favors green algae and diatoms. However, this shift in community dominance is not consistently achieved when epilimnetic mixers are activated at the whole-ecosystem scale, possibly because phytoplankton community responses are mediated by mixing effects on other ecosystem processes. We conducted two epilimnetic mixing experiments in a small drinking water reservoir using a bubble-plume diffuser system. We measured physical, chemical, and biological variables before, during, and after mixing and compared the results to an unmixed reference reservoir. We observed significant increases in the biomass of cyanobacteria (from 0.8 ± 0.2 to 2.4 ± 1.1 μg L−1, p = 0.008), cryptophytes (from 0.7 ± 0.1 to 1.9 ± 0.6 μg L−1, p = 0.003), and green algae (from 3.8 to 4.4 μg L−1, p = 0.15) after our first mixing event, likely due to increased total phosphorus from entrainment of upstream sediments. After the second mixing event, phytoplankton biomass did not change but phytoplankton community composition shifted from taxa with filamentous morphology to smaller, rounder taxa. Our results suggest that whole-ecosystem dynamics and phytoplankton morphological traits should be considered when predicting phytoplankton community responses to epilimnetic mixing.

Description
Keywords
algae, before-after-control-impact, lake management, morphology-based functional groups, phytoplankton community composition, reservoir management, bubble-plume diffuser, trait-based analysis, biophysical coupling, cyanobacteria
Citation
Lofton, M.E.; McClure, R.P.; Chen, S.; Little, J.C.; Carey, C.C. Whole-Ecosystem Experiments Reveal Varying Responses of Phytoplankton Functional Groups to Epilimnetic Mixing in a Eutrophic Reservoir. Water 2019, 11, 222.