Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans

Abstract

N2O (Nitrous oxide, a booster oxidant in rockets) has attracted increasing interest as a means of enhancing energy production, and it can be produced by nitrate (NO3-) reduction in NO3--loading wastewater. However, conventional denitrification processes are often limited by the lack of bioavailable electron donors. In this study, we innovatively propose a self-photosensitized nonphototrophic Thiobacillus denitrificans (T. denitrificans-CdS) that is capable of NO(3)(-)reduction and N2O production driven by light. The system converted > 72.1 +/- 1.1% of the NO3--N input to N2O-N, and the ratio of N2O-N in gaseous products was > 96.4 +/- 0.4%. The relative transcript abundance of the genes encoding the denitrifying proteins in T. denitrificans-CdS after irradiation was significantly upregulated. The photoexcited electrons acted as the dominant electron sources for NO(3)(-)reduction by T. denitrificans-CdS. This study provides the first proof of concept for sustainable and low-cost autotrophic denitrification to generate N2O driven by light. The findings also have strong implications for sustainable environmental management because the sunlight-triggered denitrification reaction driven by nonphototrophic microorganisms may widely occur in nature, particularly in a semiconductive mineral-enriched aqueous environment.

Description
Keywords
Biohybrid system, Autotrophic denitrification, Semiconductors, Cadmium sulfide, Nitrous oxide
Citation