Analysis of Model-driven vs. Data-driven Approaches to Engaging Student Learning in Introductory Geoscience Laboratories

Files

TR Number

Date

2004-05-04

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Increasingly, teachers are encouraged to use data resources in their classrooms, which are becoming more widely available on the web through organizations such as Digital Library for Earth System Education, National Science Digital Library, Project Kaleidoscope, and the National Science Teachers Association. As "real" data becomes readily accessible, studies are needed to assess and describe how to effectively use data to convey both content material and the nature of scientific inquiry and discovery. In this study, we created two introductory undergraduate physical geology lab modules for calculating plate motion. One engages students with a model-driven approach using contrived data. Students are taught a descriptive model and work with a set of contrived data that supports the model. The other lab exercise uses a data-driven approach with real data. Students are given the real data and are asked to make sense of it. They must use the data to create a descriptive model. Student content knowledge and understanding of the nature of science were assessed in a pretest-posttest experimental design using a survey containing 11 Likert-like scale questions covering the nature of science and 9 modified true/false format questions covering content knowledge. Survey results indicated that students gained content knowledge and increased their understanding of the nature of science with both approaches. Lab observations and written interviews indicate these gains resulted from students experiencing different pedagogical approaches used in each of the two labs.

Description

Keywords

Undergraduate, Geology, San Andreas, Areal Geology, Geochronology, History & Philosophy of Science, Surficial Geology, Plate Tectonics, Education (general), Geoscience

Citation

Collections