Simulation and Integration of a 6-DOF Controllable Multirotor Vehicle

Files
TR Number
Date
2020-08-07
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The purpose of this thesis is to develop an existing design of a fully controllable multi-rotor vehicle toward simulating small satellite dynamics, enabling technology development to be accelerated and component failure risks to be mitigated by providing a testing platform with dynamics similar to those of small satellites in orbit. Evaluating dynamics-sensitive software and hardware components for use in small satellite operations has typically been relegated to simulated or physically constrained testing environments. More recently, researchers have begun using multi-rotor aerial vehicles to mimic the orbital motion of such satellites, further increasing simulation fidelity. The dynamical nature of multi-rotor vehicles allows them to accurately simulate the translational dynamics of a small satellite, but they struggle to accurately simulate rotational dynamics, as conventional multi-rotor vehicles' translational and rotational dynamics are coupled. In this thesis, an optimal design for a multi-rotor vehicle independently controllable in all six degrees of freedom is evaluated as a suitable simulation platform. The design of the proposed physical system is discussed and progress toward its construction is demonstrated. To facilitate future research endeavors, a simulation of the vehicle in a software-in-the-loop environment, using the Gazebo dynamics simulator, is developed and its performance evaluated. This simulation is then used to evaluate the vehicle's feasibility as a small-satellite dynamics simulator by tasking it with tracking dynamic position and attitude time histories representative of a small satellite.

Description
Keywords
Multi-rotor vehicles, Spacecraft simulation, 6-DOF, Dynamics simulator
Citation
Collections