Show simple item record

dc.contributor.authorAljamal, Mohammad A.en
dc.contributor.authorAbdelghaffar, Hossam M.en
dc.contributor.authorRakha, Hesham A.en
dc.date.accessioned2020-08-21T15:02:37Zen
dc.date.available2020-08-21T15:02:37Zen
dc.date.issued2020-07-22en
dc.identifier.citationAljamal, M.A.; Abdelghaffar, H.M.; Rakha, H.A. Estimation of Traffic Stream Density Using Connected Vehicle Data: Linear and Nonlinear Filtering Approaches. Sensors 2020, 20, 4066.en
dc.identifier.urihttp://hdl.handle.net/10919/99812en
dc.description.abstractThe paper presents a nonlinear filtering approach to estimate the traffic stream density on signalized approaches based solely on connected vehicle (CV) data. Specifically, a particle filter (PF) is developed to produce reliable traffic density estimates using CV travel-time measurements. Traffic flow continuity is used to derive the state equation, whereas the measurement equation is derived from the hydrodynamic traffic flow relationship. Subsequently, the PF filtering approach is compared to linear estimation approaches; namely, a Kalman filter (KF) and an adaptive KF (AKF). Simulated data are used to evaluate the performance of the three estimation techniques on a signalized approach experiencing oversaturated conditions. Results demonstrate that the three techniques produce accurate estimates—with the KF, surprisingly, being the most accurate of the three techniques. A sensitivity of the estimation techniques to various factors including the CV level of market penetration, the initial conditions, and the number of particles in the PF is also presented. As expected, the study demonstrates that the accuracy of the PF estimation increases as the number of particles increases. Furthermore, the accuracy of the density estimate increases as the level of CV market penetration increases. The results indicate that the KF is least sensitive to the initial vehicle count estimate, while the PF is most sensitive to the initial condition. In conclusion, the study demonstrates that a simple linear estimation approach is best suited for the proposed application.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleEstimation of Traffic Stream Density Using Connected Vehicle Data: Linear and Nonlinear Filtering Approachesen
dc.typeArticle - Refereeden
dc.date.updated2020-08-21T13:49:05Zen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.contributor.departmentVirginia Tech Transportation Instituteen
dc.title.serialSensorsen
dc.identifier.doihttps://doi.org/10.3390/s20154066en
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International