Efficacy of corrosion control and pipe replacement in reducing citywide lead exposure during the Flint, MI water system recovery

Files

TR Number

Date

2020-08-25

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry

Abstract

Flint biosolids monitoring data demonstrate a sustained decline in total lead release to potable water from plumbing since the 2014–2015 Flint Water Crisis (FWC), due to enhanced corrosion control treatment (3 mg L−1 orthophosphate as PO4) and removing of ∼80% of lead and galvanized iron service lines through early 2020. The official 90th percentile water lead levels, which have now met the federal Lead and Copper Rule threshold of 15 μg L−1 for the last four years, are in agreement with those predicted by a previously established biosolids regression model. There is also no longer a correlation between the percentage of children under 6 years of age with blood lead ≥ 5 μg dL−1 and biosolids lead mass in the 44 months post-FWC (Nov 2015–Jun 2019), nor are there continued correlations between plumbing-related metals in the biosolids, with the exception of Cu:Zn found in brass alloys that remain installed in homes. After Flint achieves 100% replacement of lead and galvanized service line pipes, a biosolids data analysis predicts that the remaining sources of waterborne lead including leaded brass, lead solder and legacy lead in pipe scale, will still release about 16–28% of the pre-FWC lead mass to potable water. The efficacy of enhanced corrosion control and replacement of service lines that contain lead is, therefore, on the order of 72–84% effective at reducing citywide lead exposure, yet some significant water lead sources will still remain even after pipe replacement is complete.

Description

Keywords

Citation