Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico

Abstract

Successful exploration for mineral deposits requires tools that the explorationist can use to distinguish between targets with high potential for mineralization and those with lower economic potential. In this study, we describe a technique based on gangue mineral textures and fluid inclusion characteristics that has been applied to identify an area of high potential for gold-silver mineralization in the epithermal Ag-Au deposits at Guanajuato, Mexico. The Guanajuato mining district in Mexico is one of the largest silver producing districts in the world with continuous mining activity for nearly 500 years. Previous work conducted on the Veta Madre vein system that is located in the central part of this district identified favorable areas for further exploration in the deepest levels that have been developed and explored. The resulting exploration program discovered one of the richest gold-silver veins ever found in the district. This newly discovered vein that runs parallel to the Veta Madre was named the Santa Margarita vein. Selected mineralized samples from this vein contain up to 249 g/t of Au and up to 2,280 g/t Ag. Fluid inclusions in these samples show homogenization temperatures that range from 184 to 300°C and salinities ranging from 0 to 5 wt.% NaCl. Barren samples show the same range in homogenization temperature, but salinities range only up to 3 wt.% NaCl. Evidence of boiling was observed in most of the samples based on fluid inclusions and/or quartz and calcite textures. Liquid-rich inclusions with trapped illite are closely associated with high silver grades. The presence of assemblages of vapor-rich-only fluid inclusions, indicative of intense boiling or “flashing”, shows the best correlation with high gold grades.

Description

Keywords

Guanajuato Mining District, Veta Madre, fluid inclusions, boiling, flashing, mineral exploration, epithermal precious metals deposits

Citation