Crossing the Air-Water Interface: Inspiration from Nature

Files

TR Number

Date

2018-06-01

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation aims to contribute toward the understanding of water-entry and -exit behaviors in nature. Since water is nearly a thousand times denser than air, transitioning between the two mediums is often associated with significant changes in force. Three topics with implications in water-entry are discussed, along with a fourth topic on water-exit. For a plunge-diving seabird, the first two stages of water-entry (initial impact and air-cavity formation) create large stresses on the bird's neck. Linear stability analysis of a cone-beam system impacting water shows buckling and non-buckling behaviors on the beam, which is extended to the diving birds. The next topic is related to the third stage of water-entry (air-cavity pinch-off), in which the chest feathers come in contact with the water. Here, the elasticity of Northern Gannet contour feathers is calculated using the nonlinear bending equation. The third topic will explore the formation of ripples along air cavity walls and their resulting force after pinch-off. An acoustic model predicts the observed wavelengths of the ripples. The final topic will delve into the mechanics of how animals leap out of water. A scaling law that balances the power of thrust and drag will predict the height of the jump. Finally, a bio-inspired robot was built to help identify physical conditions required to jump out of water.

Description

Keywords

Water-entry, water-exit, feather, seabird, plunge-dive, air-cavity, jumping, impact

Citation